Loongson 3A3000 / 3B3000 processor

User Manual

volume One

Multi-core processor architecture, register description and system software programming guide V1.3

2017 Nian 4 Yue

Loongson Zhongke Technology Co., Ltd.

The copyright of this document belongs to Loongson Zhongke Technology Co., Ltd. and reserves all rights. Without written permission, any company and individual No one may publicize, reprint or otherwise distribute any part of this document to third parties. Otherwise, the law will be investigated Legal responsibility.

Disclaimer

This document only provides periodic information, and the content can be updated at any time according to the actual situation of the product without notice. Ruin The company does not assume any responsibility for direct or indirect losses caused by improper use of documents.

Loongson Zhongke Technology Co., Ltd.

Loongson Technology Corporation Limited

Address: Building 2, Longxin Industrial Park, Zhongguancun Environmental Protection Technology Demonstration Park, Haidian District, Beijing

Building No. 2, Loongson Industrial Park,

Zhongguancun Environmental Protection Park, Haidian District, Beijing

Telephone (Tel): 010-62546668

Fax: 010-62600826

Page 3

Reading guide

"Godson 3A3000 / 3B3000 Processor User Manual" is divided into the first and second volumes.

"Loongson 3A3000 / 3B3000 Processor User Manual" is divided into two parts, the first part introduces Loongson 3A3000 / 3B3000

Multi-core processor architecture and register descriptions, on-chip system architecture, main module functions and configuration, register list and

The domain is described in detail.

Volume 2 of the "Loongson 3A3000 / 3B3000 Processor User Manual" introduces Loongson in detail from the perspective of system software developers

3A3000 / 3B3000 uses the GS464e high-performance processor core.

revise history

Document name: Loongson 3A3000 / 3B3000 Processor User Manual

--volume One

Document update record version number V1.3

founder: Chip R & D Department

Creation Date: 2017-04-13

Update history

Serial 1	num bép dated	version nur	nber update content
1	2016-06-14	V1.0	initial version
2	2016-09-14	V1.1	Updated some PLL configuration register descriptions, updated software and hardware changes descriptions
3	2016-11-25	V1.2	Add register description of BBGEN section
4	2017-04-13	V1.3	Add SPI address space description

Manual feedback: service@loongson.cn

You can also submit chip production to our company through the problem feedback website http://bugs.loongnix.org/ Problems in the use of products, and obtain technical support.

Godson 3A3000 / 3B3000 processor user manual directory

table of Contents

1 Overview.	<u> 11</u>	
1.1 Introduction to Loongson series processors	11	
1.2 Introduction to Godson 3A3000 / 3B3000	12	
2 System Configuration and Control	15	
2.1 Chip working mode	15	
2.2 Description of control pins	15	
2.3 Cache consistency	17	
2.4 Physical address space distribution at the node level of the system		17
2.5 Address Routing Distribution and Configuration	19	
2.6 Chip Configuration and Sampling Register	2 <u>5</u>	
3 GS464e processor core	30	
4 Shared Cache (SCache)	32	
5 Matrix processing accelerator	34	
6 Interruption and communication between processor cores	37	
7 I / O interrupt	4 <u>0</u>	
8 Temperature sensor	43	
8.1 Real-time temperature sampling	43	
8.2 High and low temperature interrupt trigger	43	
8.3 High temperature automatic frequency reduction setting		. 44
9 DDR2 / 3 SDRAM controller configuration	46	
9.1 DDR2 / 3 SDRAM Controller Function Overview	<u>46</u>	
9.2 DDR2/3 SDRAM read operation protocol	<u>46</u>	
9.3 DDR2 / 3 SDRAM write operation protocol	<u>47</u>	
9.4 DDR2 / 3 SDRAM parameter configuration format	<u>47</u>	
9.5 Software Programming Guide	51	
9.5.1 Initialization	51	
9.5.2 Control of reset pin	<u> 51</u>	
9.5.3 Leveling	<u>53</u>	

I

Page 6

Godson 3A3000 / 3B3000 processor user manual directory

9.5.3.2 Gate Leveling54			
9.5.4 Initiate MRS commands separately	55		
9.5.5 Arbitrary operation control bus	<u>56</u>		
9.5.6 Self-loop test mode control	<u> 56</u>		
9.5.7 ECC function usage control	57		
10 HyperTransport Controller	<u> 58</u>		
10.1 HyperTransport hardware setup and initialization		. 58	
10.2 HyperTransport protocol support	61		
10.3 HyperTransport interrupt support	<u> 62</u>		
10.4 HyperTransport Address Window	62		
10.4.1 HyperTransport Space	<u>62</u>		
10.4.2 Internal window configuration of HyperTransport controller			63
10.5 Configuration Register	64	<u>4</u>	
10.5.1 Bridge Control 66			
10.5.2 Capability Registers 66			
10.5.3 User-defined register	69		
10.5.4 Receive diagnostic register	71		
10.5.5 Interrupt routing mode selection register	71		
10.5.6 Receive buffer initial register	<u> 71</u>		
10.5.7 Receive Address Window Configuration Register		72	
10.5.8 Interrupt Vector Register	<u>75</u>		
10.5.9 Interrupt Enable Register	78		
10.5.10 Interrupt Discovery & Configuration			
10.5.11 POST address window configuration register		82	
10.5.12 Prefetchable address window configuration register		<u></u>	83
10.5.13 UNCACHE Address Window Configuration Register			84
10.5.14 P2P Address Window Configuration Register		87	
10.5.15 Command send buffer size register	89		
10.5.16 Data transmission buffer size register	89		
10.5.17 Send buffer debug register	89		
10.5.18 PHY impedance matching control register		<u>. 90</u>	

II

10.5.19 Revision ID Register	<u>91</u>
10.5.20 Error Retry Control Register	9 <u>1</u>
10.5.21 Retry Count Register	92
10.5.22 Link Train Register	92
10.5.23 Training 0 Timeout Short Timer Register	93
10.5.24 Training 0 Time-out timer register	<u>94</u>
10.5.25 Training 1 Count Register	94
10.5.26 Training 2 Count Register	<u>94</u>
10.5.27 Training 3 Count Register	<u>94</u>
10.5.28 Software Frequency Configuration Register	95
10.5.29 PHY Configuration Register	<u>96</u>
10.5.30 Link initialization debug register	97
10.5.31 LDT debug register	<u>97</u>
10.6 Access method of HyperTransport bus configuration space	98
10.7 HyperTransport multiprocessor support	98
11 Low speed IO controller configuration	101
11.1 PCI Controller	101
11.2 LPC Controller	106
11.3 UART Controller	107
11.3.1 Data Register (DAT)	108
11.3.2 Interrupt Enable Register (IER)	108
11.3.3 Interrupt Identification Register (IIR)	108
11.3.4 FIFO Control Register (FCR)	109
11.3.5 Line Control Register (LCR)	109
11.3.6 MODEM Control Register (MCR)	111
11.3.7 Line Status Register (LSR)	111
11.3.8 MODEM Status Register (MSR)	113
11.3.9 Frequency Division Latch	113
11.4 SPI Controller	114
11.4.1 Control Register (SPCR)	114
11.4.2 Status Register (SPSR)	115

III

Page 8

Godson 3A3000 / 3B3000 processor user manual directory

11.4.3 Data Register (TxFIFO) 115		
11.4.4 External Register (SPER) 115		
11.4.5 Parameter control register (SFC_PARAM)	11 <u>6</u>	
11.4.6 Chip Select Control Register (SFC_SOFTCS)	<u>116</u>	
11.4.7 Timing control register (SFC_TIMING)	<u> 117</u>	
11.5 IO Controller Configuration	118	
2 Chip Configuration Register List		
3 Software and Hardware Design Guidelines		162
13.1 Hardware modification guide	162	

13.2 Description of Frequency Setting	1	163
13.3 PMON Change Guide	163	
13.4 Guidelines for kernel changes	164	

IV

Page 9

Loongson 3A3000 / 3B3000 processor user manual picture directory

Figure catalog

Figure 1-1 Loongson No. 3 system structure		
Figure 1-2 Loongson No. 3 node structure		
Figure 1-3 Godson 3A3000 / 3B3000 chip structure13		
Figure 3-1 GS464e structure diagram		
Figure 7-1 Loongson 3A3000 / 3B3000 processor interrupt routing diagram		
Figure 9-1 DDR2 SDRAM read operation protocol 47		
Figure 9-2 DDR2 SDRAM write operation protocol		
Figure 10-1 HT protocol configuration access in Loongson 3A3000 / 3B3000		
Figure 10-2 Four-piece Loongson No. 3 interconnection structure		<u>. 99</u>
Figure 10-3 Two-chip Loongson No. 3 8-bit interconnection structure	100	
Figure 10-4 Two-chip Loongson No. 3 16-bit interconnection structure		100
Figure 11.1 Configure the read and write bus address generation	105	

v

Page 10

Godson 3A3000 / 3B3000 processor user manual table of contents

Table directory

Table 2-1 Control pin description	
Table 2-2 Node-level system global address distribution	
Table 2-3 Address distribution in nodes	
Table 2-4 Address distribution in nodes	
Table 2-5 The space access attributes corresponding to the MMAP field	
Table 2-6 Primary Crossbar Address Window Register Table	
Table 2-7 Correspondence between the slave device number and the module at the secondary XBARtwe	enty two
Table 2-8 The space access attributes corresponding to the MMAP field	
Table 2-9 Secondary XBAR address window conversion register tabletwenty two	
Table 2-10 Secondary XBAR default address configuration	
Table 2-11 Chip Configuration Register (Physical Address 0x1fe00180)25	
Table 2-12 Chip sampling register (physical address 0x1fe00190)25	
Table 2-13 Chip node and processor core software frequency multiplication setting register (physical address 0x1fe001b0) 27	
Table 2-14 Chip memory and HT clock software frequency multiplier setting register (physical address 0x1fe001c0) 28	
Table 2-15 Chip processor core software frequency division setting register (physical address 0x1fe001d0) 28	
Table 4-1 Shared Cache Lock Window Register Configuration 33	
Table 5-1 Matrix processing programming interface description34	
Table 5-2 Matrix processing register address description35	
Table 5-3 Trans_ctrl register description35	
Table 5-4 Trans_status register description36	
Table 6-1 Inter-processor interrupt related registers and their function descriptions	
Table 6-2 Interrupt and communication register list of processor core 0	
Table 6-3 List of Internuclear Interrupts and Communication Registers of No. 1 Processor Core 38	
Table 6-4 List of Internuclear Interrupts and Communication Registers of No. 2 Processor Core3	<u>8</u>
Table 6-5 List of Internuclear Interrupts and Communication Registers of Processor Core 3	
Table 7-1 Interrupt Control Register 41	
Table 7-2 IO Control Register Address	

Table 7-3 Description of Interrupt Routing Register	. 42
<u>Table 7-4 Interrupt Routing Register Address</u> 42	

VI

Page 11

Godson 3A3000 / 3B3000 processor user manual table of contents

<u>Table 8-1 Temperature sampling register description</u> 43
Table 8-2 High and low temperature interrupt register description 44
Table 8-3 Description of high-temperature down-frequency control register
<u>Table 10-1 HyperTransport bus related pin signals</u> 58
Table 10-2 Commands that the HyperTransport receiver can receive61
Table 10-3 Commands to be sent out in two modes 61
<u>Table 10-4 Default Address Window Distribution of the Four HyperTransport Interfaces</u>
Table 10-5 Address window distribution inside HyperTransport interface of Loongson No. 3 processor
Table 10-6 Address window provided in HyperTransport interface of Loongson 3A3000 / 3B3000 processor 63
Table 10-7 Software visible register list 64
Table 10-8 Bus Reset Control Register Definition 66
Table 10-9 Definition of Command, Capabilities Pointer, Capability ID registers
Table 10-10 Link Config, Link Control register definition 67
Table 10-11 Definition of Revision ID, Link Freq, Link Error, Link Freq Cap Registers
Table 10-12 Definition of Feature Capability Register
Table 10-13 MISC register definition 69
Table 10-14 Receive Diagnostic Register
Table 10-15 Interrupt Routing Selection Register
Table 10-16 Receive buffer initial register
Table 10-17 HT Bus Receive Address Window 0 Enable (External Access) Register Definition
<u>Table 10-18 HT Bus Receive Address Window 0 Base Address (External Access) Register Definition</u>
Table 10-19 HT Bus Receive Address Window 1 Enable (External Access) Register Definition
<u>Table 10-20 HT Bus Receive Address Window 1 Base Address (External Access) Register Definition</u>
Table 10-21 HT Bus Receive Address Window 2 Enable (External Access) Register Definition
Table 10-22 HT Bus Receive Address Window 2 Base Address (External Access) Register Definition
Table 10-23 HT Bus Receive Address Window 3 Enable (External Access) Register Definition
Table 10-24 HT Bus Receive Address Window 3 Base Address (External Access) Register Definition
Table 10-25 HT Bus Receive Address Window 4 Enable (External Access) Register Definition
<u>Table 10-26 HT Bus Receive Address Window 4 Base Address (External Access) Register Definition</u>
Table 10-27 HT Bus Interrupt Vector Register Definition (1)
<u>Table 10-28 Definition of HT Bus Interrupt Vector Register (2)</u>

VII

Godson 3A3000 / 3B3000 processor user manual table of contents

Table 10-29 HT Bus Interrupt Vector Register Definition (3)		<u>. 77</u>	
Table 10-30 HT Bus Interrupt Vector Register Definition (4)		<u>. 77</u>	
Table 10-31 HT Bus Interrupt Vector Register Definition (6)		<u>. 77</u>	
Table 10-32 HT Bus Interrupt Vector Register Definition (7)		<u>. 77</u>	
Table 10-33 Definition of HT Bus Interrupt Vector Register (8)		<u>78</u>	
Table 10-34 HT Bus Interrupt Enable Register Definition (1)	<u> 79</u>		
Table 10-35 HT Bus Interrupt Enable Register Definition (2)	<u> 79</u>		
Table 10-36 HT Bus Interrupt Enable Register Definition (3)	<u> 79</u>		
Table 10-37 HT Bus Interrupt Enable Register Definition (4)	79		
Table 10-38 HT Bus Interrupt Enable Register Definition (5)	80		
Table 10-39 HT Bus Interrupt Enable Register Definition (6)	80		
Table 10-40 HT Bus Interrupt Enable Register Definition (7)	80		
Table 10-41 HT Bus Interrupt Enable Register Definition (8)	80		
Table 10-42 Interrupt Capability Register Definition	81		
Table 10-43 Dataport register definition	81		
Table 10-44 IntrInfo register definition (1)	<u> 81</u>		
Table 10-45 IntrInfo register definition (2)	81		
Table 10-46 HT Bus POST Address Window 0 Enable (Internal Access)		82	
Table 10-47 HT Bus POST Address Window 0 Base Address (Internal Access)		8	<u>2</u>
Table 10-48 HT Bus POST Address Window 1 Enable (Internal Access)			
Table 10-49 HT Bus POST Address Window 1 Base Address (Internal Access)			. 83
Table 10-50 HT Bus Prefetchable Address Window 0 Enable (Internal Access)		9	<u>83</u>
Table 10-51 HT Bus Prefetchable Address Window 0 Base Address (Internal Access)			84
Table 10-52 HT Bus Prefetchable Address Window 1 Enable (Internal Access)			84
Table 10-53 HT Bus Prefetchable Address Window 1 Base Address (Internal Access)			84
Table 10-54 HT Bus Uncache Address Window 0 Enable (Internal Access)		85	
Table 10-55 HT Bus Uncache Address Window 0 Base Address (Internal Access)			85
Table 10-56 HT Bus Uncache Address Window 1 Enable (Internal Access)			
Table 10-57 HT Bus Uncache Address Window 1 Base Address (Internal Access)			86
Table 10-58 HT Bus Uncache Address Window 2 Enable (Internal Access)			_
Table 10-59 HT Bus Uncache Address Window 2 Base Address (Internal Access)			<u>. 86</u>

VIII

Page 13

Godson 3A3000 / 3B3000 processor user manual table of contents

Table 10-60 HT Bus Uncache Address Window 3 Enable (Internal Access)	<u> 87</u>	
Table 10-61 HT Bus Uncache Address Window 3 Base Address (Internal Access)	87	
Table 10-62 HT Bus P2P Address Window 0 Enable (External Access) Register Definition	87	
Table 10-63 HT Bus P2P Address Window 0 Base Address (External Access) Register Definition		. 88
Table 10-64 HT Bus P2P Address Window 1 Enable (External Access) Register Definition	88	
Table 10-65 HT Bus P2P Address Window 1 Base Address (External Access) Register Definition		. 88
Table 10-66 Command Send Buffer Size Register 89	<u>!</u>	
Table 10-67 Data transmission buffer size register 8	9	

<u>Table 10-68 Send Buffer Debug Register</u> 90	
Table 10-69 Impedance Matching Control Register	<u> 91</u>
Table 10-70 Revision ID Register 91	
Table 10-71 Error Retry Control Register	
Table 10-72 Retry Count Register 92	
Table 10-73 Link Train Register 92	
Table 10-74 Training 0 Timeout Short Timer Register	93
Table 10-75 Training 0 Timeout Long Count Register	94
Table 10-76 Training 1 Count Register 94	
Table 10-77 Training 2 Count Register 94	
Table 10-78 Training 3 Count Register 95	
Table 10-79 Software Frequency Configuration Register	<u>95</u>
Table 10-80 PHY Configuration Register	<u>96</u>
Table 10-81 Link Initialization Debug Register	<u> 97</u>
Table 10-82 LDT debug registers 9	<u>8</u>
Table 11-1 PCI Controller Configuration Header	101
<u>Table 11-2 PCI Control Register</u> 102	
Table 11-3 PCI / PCIX bus request and response line allocation	105
Table 11-4 LPC Controller Address Space Distribution	106
Table 11-5 Meaning of LPC Configuration Register	106
Table 11-6 SPI controller address space distribution	<u> 114</u>
Table 11-7 IO Control Register	118
Table 11-8 Detailed description of registers	119

IX

Page 14

Godson 3A3000 / 3B3000 processor user manual table of contents

X

Page 15

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

1 Overview

1.1 Introduction to Loongson series processors

 $Loongs on\ processor\ mainly\ includes\ three\ series.\ Loongs on\ No.\ 1\ processor\ and\ its\ IP\ series\ are\ mainly\ for\ embedded\ applications.$

Core 2 superscalar processor and its IP series are mainly for desktop applications, and Godson 3 multi-core processor series is mainly for service

Server and high-performance machine applications. According to the needs of the application, some of Loongson 2 can also face some high-end embedded applications,

Some low-end Loongson 3 can also be used for some desktop applications. The above three series will be developed in parallel.

Loongson 3 multi-core series processors are based on a scalable multi-core interconnect architecture design, integrating multiple high-performance on a single chip.

The processor core and a large number of level 2 caches, and the interconnection of multiple chips through high-speed I / O interfaces to form a larger scale system.

The scalable interconnection structure adopted by Godson 3 is shown in Figure 1-1 below. Both the on-chip and multi-chip systems of Godson No. 3 adopt two Dimension mesh interconnection structure, where each node is composed of 8 * 8 crossbars, each crossbar is connected to four processor cores

And four shared caches, and interconnect with other nodes in four directions of east (E) south (N) west (W) north (N). therefore,

2*2 meshes can be connected to 16 processor cores, and 4*4 meshes can be connected to 64 processor cores.

Loongson No. 3 node and two-dimensional interconnection structure, (a) node structure, (b) 2 * 2 mesh network connected to 16 processors, (c) The 4 * 4 mesh network connects 64 processors.

Figure 1-1 Loongson No. 3 system structure

The structure of Loongson No. 3 node is shown in Figure 1-2 below. Each node has two levels of AXI crossbars connected to the processor and shared

11

Page 16

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

Cache, memory controller and IO controller. Among them, the first level AXI crossbar switch (called X1 Switch, referred to as X1)

Connect the processor and shared cache. The second level crossbar switch (called X2 Switch, referred to as X2 for short) is connected to share Cache and Memory controller.

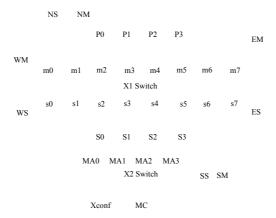


Figure 1-2 Loongson No. 3 node structure

In each node, up to 8 * 8 X1 crossbars are connected to four GS464 processor cores through four Master ports

(P0, P1, P2, P3 in the figure), connected to four interleave shared caches with four slave ports through four slave ports

 $Block\ (S0,S1,S2,S3\ in\ the\ figure), connected\ to\ the\ four\ directions\ of\ east,\ south,\ west\ and\ north\ through\ four\ pairs\ of\ Master\ /\ Slave$

Other nodes or IO nodes (EM / ES, SM / SS, WM / WS, NM / NS in the figure).

The X2 crossbar is connected to four shared caches through four Master ports, and one is connected to at least one Slave port

Memory controller, at least one Slave port connected to a crossbar configuration module (Xconf) is used to configure this node

The X1 and X2 address windows, etc. You can also connect more memory controllers and IO ports as needed.

1.2 Introduction to Godson 3A3000 / 3B3000

Loongson 3A3000 / 3B3000 is a process upgrade version of Loongson 3A2000 / 3B2000 quad-core processor.

 $Compared\ with\ the\ core\ 3A1000,\ PLL_AVDD\ is\ changed\ from\ 2.5V\ to\ 1.8V,\ which\ is\ more\ used\ than\ the\ Loongson\ 3A2000\ /\ 3B2000\ /\ 3B20000\ /\ 3B20000\ /\ 3B20000\ /\ 3B20000\ /\$

 $PLL_AVDD.\ Loongson\ 3A3000\ /\ 3B3000\ is\ a\ single-node\ 4-core\ processor,\ manufactured\ using\ 28nm\ process,$

The main frequency is 1.2GHz-1.5GHz, and the main technical characteristics are as follows:

12

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

- Four 64-bit super-scalar GS464e high-performance processor cores are integrated on-chip;
- On-chip integrated 8MB split shared three-level cache (composed of 4 individual modules, each module has a capacity of 2MB);
- Maintain the cache consistency of multi-core and I / O DMA access through the directory protocol;
- Two 64-bit DDR2 / 3 controllers with ECC and 667MHz are integrated on-chip;
- 3B3000 integrates two 16-bit 1.6GHz HyperTransport controllers (hereinafter referred to as HT);
- 3A3000 on-chip HT1 is a 16-bit 1.6GHz HT controller, HT0 is not available;
- Each 16-bit HT port is split into two 8-way HT ports for use.
- On-chip integrated 32-bit 33MHz PCI;
- Integrate 1 LPC, 2 UARTs, 1 SPI, 16 GPIO interfaces on-chip.

Compared with Loongson 3A2000 / 3B2000, the main improvements are as follows:

- Processor core microstructure upgrade;
- Memory controller structure and frequency upgrade;
- HT controller structure and frequency upgrade;
- The performance of the whole chip is optimized and improved.

 $The overall \ architecture \ of \ Loongson \ 3A3000 \ / \ 3B3000 \ chip \ is \ based \ on \ two-level \ interconnection. \ The \ structure \ is \ shown \ in \ Figures \ 1-3 \ below.$

Figure 1-3 Loongson 3A3000 / 3B3000 chip structure

The first level interconnection uses a 6x6 crossbar switch, which is used to connect four GS464e cores (as a master device) and four shares Cache module (as a slave device), and two IO ports (each port uses a Master and a Slave).

13

Page 18

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

Each IO port connected to the first-level interconnect switch is connected to a 16-bit HT controller, and each 16-bit HT port can also

 $Used \ as \ two \ 8-bit\ HT \ ports. \ The \ HT \ controller \ is \ connected \ to \ the \ first-level \ interconnect \ switch \ through \ a \ DMA \ controller. \ The \ DMA \ controller \ through \ a \ DMA \ controller \ through$

The controller is responsible for the DMA control of the IO and the maintenance of the consistency between the slices. The DMA controller of Godson 3 can also be configured Realize prefetching and matrix transposition or transfer.

The second level interconnection uses a 5x4 crossbar switch to connect 4 shared Cache modules (as the master device), two DDR2/3 and the second level interconnection uses a 5x4 crossbar switch to connect 4 shared Cache modules (as the master device), two DDR2/3 are the second level interconnection uses a 5x4 crossbar switch to connect 4 shared Cache modules (as the master device), two DDR2/3 are the second level interconnection uses a 5x4 crossbar switch to connect 4 shared Cache modules (as the master device), two DDR2/3 are the second level interconnection uses a 5x4 crossbar switch to connect 4 shared Cache modules (as the master device), two DDR2/3 are the second level interconnection uses a 5x4 crossbar switch to connect 4 shared Cache modules (as the master device), two DDR2/3 are the second level interconnection uses a 5x4 crossbar switch to connect 4 shared Cache modules (as the master device), the second level interconnection uses a 5x4 crossbar switch to connect 4 shared Cache modules (as the master device), the second level interconnection uses a 5x4 crossbar switch to connect 4 shared Cache modules (as the master device), the second level interconnection uses a 5x4 crossbar switch and the second level interconnection uses a 5x4 crossbar switch as the second level interconnection uses a 5x4 crossbar switch and the second level interconnection uses a 5x4 crossbar switch and the second level interconnection uses a 5x4 crossbar switch and the second level interconnection uses a 5x4 crossbar switch and the second level interconnection uses a 5x4 crossbar switch and the second level interconnection uses a 5x4 crossbar switch and the second level interconnection uses a 5x4 crossbar switch and the second level interconnection uses a 5x4 crossbar switch and the second level interconnection uses a 5x4 crossbar switch and the second level interconnection uses a 5x4 crossbar switch and the second level interconnection uses a 5x4 crossbar switch and the second level interconnection uses a 5x4 crossbar switch a

Memory controller, low-speed high-speed I / O (including PCI, LPC, SPI, etc.) and configuration register module inside the chip.

The above two-level interconnect switches all use separate data channels for reading and writing. The width of the data channel is 128 bits.

The processor core has the same frequency to provide high-speed on-chip data transmission.

14

Page 19

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

2 System configuration and control

2.1 Chip working mode

 $According \ to \ the \ structure \ of \ the \ system, \ Loongson \ 3A 3000 \ / \ 3B 3000 \ mainly \ includes \ three \ working \ modes:$

- Single chip mode. The system contains only one Loongson 3A3000 / 3B3000, which is a symmetric multiprocessor system (SMP);
- Multi-chip interconnect mode. The system contains 2 or 4 Loongson 3A3000 / 3B3000, through Loongson

The HT ports of 3A3000 / 3B3000 are interconnected, which is a non-uniform memory multiprocessor system (CC-NUMA)

Large-scale interconnection model. Large-scale multi-chip expansion interconnection through dedicated expansion bridges, forming a large-scale non-uniform
 Uniform access to multi-processor systems (CC-NUMA).

2.2 Description of control pins

The main control pins include DO_TEST, ICCC_EN, NODE_ID [1: 0], CLKSEL [15: 0], PCI_CONFIG.

Table 2- 1 Control pin description

gnal Up and down

1'b1 means function mode DO TEST pull up 1'b0 means test mode

1'b1 means multi-chip consistent interconnect mode

ICCC EN drop down 1'b0 means single chip mode

NODE_ID [1: 0] Indicates the processor number in multi-chip consistent interconnect mode

HT clock control

signal effect

1'b1 means the HT controller frequency is only set by hardware CLKSEL [15]

1'b0 means HT controller frequency can be set by software

1'b1 means HT PLL uses normal clock input

CLKSEL [14] 1'b0 means HT PLL uses differential clock input

2'b00 means the PHY clock is 1.6GHZ

2'b01 indicates that the PHY clock is 3.2GHZ

CLKSEL [13:12] 2'b10 means the PHY clock is 1.2GHz

2'b11 means the PHY clock is 2.4GHz

15

CLKSEL [15: 0]

Page 20

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

2'b00 indicates that the HT controller clock is divided by 8 of the PHY clock

2'b01 indicates that the HT controller clock is divided by 4 of the PHY clock

CLKSEL [11:10] 2'b10 means the HT controller clock is divided by 2 of the PHY clock

2'b11 indicates that the HT controller clock is SYSCLOCK

Note: When CLKSEL [13:10] == 4'b1111, the HT controller clock is in bypass mode and used directly

External input 100MHz reference clock

MEM clock control

signal effect

5'b11111 means MEM clock directly uses memclk

5'b01111 indicates that the MEM clock is set by software. For the setting method, see

Section 2.6

In other cases, the MEM clock is CLKSEL [9: 5]

memclk * (clksel [8: 5] +30) / (clksel [9] +3)

memclk * (clksel [8: 5] +30) must be $1.2 GHz \sim 3.2 GHz$

memclk is the input reference clock, which must be $20 \sim 40 MHz$

CORE clock control

signal effect

5'b11111 indicates that the CORE clock directly uses sysclk

5'b011xx indicates that the CORE clock is set by software. For the setting method, see

Instructions in Section 2.6.

5'b01111 is normal working mode, otherwise it is debugging mode

5'b0110x indicates that the processor interface is in asynchronous mode

CLKSEL [4: 0] 5'b011x0 means delayed debug control mode

In other cases, the CORE clock is

sysclk * (clksel [3: 0] +30) / (clksel [4] +1)

Note:

sysclk is the input reference clock, which must be $20 \sim 40 MHz$

IO configuration control

7 HT bus cold start is forced to 1.0 mode

PCI_CONFIG [7: 0]

6: 4 needs to be set to 000

PCI master mode

16

Page 21

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

- Need to be set to 0
- Use external PCI arbitration
- 0 Use SPI boot function

2.3 Cache consistency

 $Loongson\ 3A3000\ /\ 3B3000\ maintains\ the\ cache\ between\ the\ processor\ and\ the\ I\ /\ O\ accessed\ through\ the\ HT\ port$

It is consistent, but the hardware does not maintain the cache consistency of the I/O devices connected to the system through PCI. During driver development,

When DMA (Direct Memory Access) transmission is performed on a device connected via PCI, the software needs to perform Cache

Consistency maintenance.

2.4 Distribution of physical address space at the node level of the system

The system physical address distribution of Loongson No. 3 series processors adopts a globally accessible hierarchical addressing design

The extensions developed by the system are compatible. The physical address width of the entire system is 48 bits. According to the upper 4 bits of the address, the entire address sp. It is evenly distributed to 16 nodes, that is, each node is allocated 44-bit address space.

 $Loongson\ 3A3000\ /\ 3B3000\ processor\ can\ directly\ use\ 4\ chips\ to\ connect\ directly\ to\ build\ CC-NUMA\ system.$

The processor number is determined by the pin NODEID, and the address space of each chip is distributed as follows:

Table 2-2 Node-level system global address distribution

Chip node number (NODEID)	Address [47:44] bits	starting address	End address
0	0	0x0000_0000_0000	0x0FFF_FFFF_FFFF
1	1	0x1000_0000_0000	0x1FFF_FFFF_FFFF
2	2	0x2000_0000_0000	0x2FFF_FFFF_FFFF
3	3	0x3000_0000_0000	0x3FFF_FFFF_FFFF

Loongson 3A3000 / 3B3000 uses a single-node 4-core configuration, so Loongson 3A3000 / 3B3000 chip integrated DDR

 $The \ corresponding \ addresses \ of \ the \ memory \ controller, \ HT \ bus, \ and \ PCI \ bus \ are \ included \ from \ 0x0 \ (inclusive) \ to \ 0x1000_0000_0000 \ (not \ bus) \ decreases \ decr$

The 44-bit address is in each node, and the 44-bit address space is further evenly distributed to the most likely connection within the node.

8 more devices. The lower 43 bits of addresses are owned by 4 shared cache modules, and the higher 43 bits of addresses are further

The [43:42] bits are distributed to devices connected to the 4 directional ports. According to the different configuration of chip and system structure, if

If there is no slave device connected to a port, the corresponding address space is reserved address space, and access is not allowed.

17

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

The slave devices corresponding to the address space of the first-level crossbar in Loongson 3A3000 / 3B3000 are as follows:

Table 2-3 Address distribution in nodes

device	Address [43:41]	Start address within the	node Node end address
Shared Cache	0,1,2,3	0x000_0000_0000	0x7FF_FFFF_FFFF
HT0 controller	6	0xC00_0000_0000	0xDFF_FFFF_FFFF
HT1 controller	7	0xE00_0000_0000	0xFFF_FFFF_FFFF

Unlike the mapping relationship of direction ports, Loongson 3A3000 / 3B3000 can be determined according to the actual application access behavior

Set the cross-addressing mode of shared cache. The 4 shared Cache modules in the node correspond to a total of 43 address spaces, and

The address space corresponding to each module is determined according to one of the two selection bits of the address bit, and can be dynamically configured by software modify. The configuration register named SCID_SEL is set in the system to determine the address selection bits, as shown in the following table. In default

In this case, it is distributed by means of [7: 6] status hash, that is, two bits of address [7: 6] determine the corresponding shared cache number.

The register address is 0x3FF00400.

Table 2-4 Address distribution in nodes

SCID_SEL	Address bit selection	SCID_SEL	Address bit selection
4'h0	7: 6	4'h8	23:22
4'h1	9: 8	4'h9	25:24
4'h2	11:10	4'ha	27:26
4'h3	13:12	4'hb	29:28
4'h4	15:14	4'hc	31:30
4'h5	17:16	4'hd	33:32
4'h6	19:18	4'he	35:34
4'h7	21:20	4'hf	37:36

2.5 Distribution of physical address space within a node

The default distribution of the internal 44-bit physical address of each node of Loongson 3A3000 / 3B3000 processor is shown in the following table:

Table 2-2 44-bit physical address distribution in the node

starting address	End address	name	Explanation
0x0000_0000_0000	0x0000_0FFF_FFFF	RAM	Need to use two-level crossbar for mapping
0x0000_1000_0000	0x0000_1FFF_FFFF	Low speed IC	Need to use two-level crossbar for mapping

18

Page 23

Godson ${\bf 3A3000}$ / ${\bf 3B3000}$ Processor User Manual • Volume 1

0x2000_0000_0000	0x2FFF_FFFF_FFFF	2	2
0x3000 0000 0000	0x3FFF FFFF FFFF	3	3

Loongson 3A3000 / 3B3000 uses a single-node 4-core configuration, so Loongson 3A3000 / 3B3000 chip integrated DDR

2.6 Address Routing Distribution and Configuration

The routing of Loongson 3A3000 / 3B3000 is mainly realized through the two-stage crossbar of the system. First-level crossbar can

Each Master port receives requests for routing configuration, each Master port has 8 address windows, you can

Complete target routing in 8 address windows. Each address window consists of three 64-bit registers BASE, MASK and MMAP

Composed, BASE is aligned in K bytes; MASK adopts a format similar to the high bit of the netmask; the lower three bits of MMAP indicate the pair

According to the number of the target Slave port, MMAP [4] means to allow instruction fetch, MMAP [5] means to allow block read, MMAP [6] means

Table 2-5 The space access attributes corresponding to the MMAP field

[7] [6] [5] [4]

 $Window\ enable Allow\ interleaved\ access\ to\ SCACHE, valid\ when\ the\ slave\ number\ is\ 0,\ according \ the \ threadove\ Allow\ fetching\ access to\ SCACHE, valid\ when\ the\ slave\ number\ is\ 0,\ according \ threadove\ Allow\ fetching\ access to\ SCACHE,\ valid\ when\ the\ slave\ number\ is\ 0,\ according \ threadove\ Allow\ fetching\ access to\ SCACHE,\ valid\ when\ the\ slave\ number\ is\ 0,\ according \ threadove\ Allow\ fetching\ access to\ SCACHE,\ valid\ when\ the\ slave\ number\ is\ 0,\ according \ threadove\ Allow\ fetching\ access to\ SCACHE,\ valid\ when\ the\ slave\ number\ is\ 0,\ according \ threadove\ Allow\ fetching\ access to\ slave\ number\ is\ 0,\ according \ threadove\ Allow\ fetching\ number\ number\ is\ 0,\ according \ threadove\ number\ numbe$

A section of SCID_SEL configuration routes requests that hit window addresses

Allow interleaved access to Scache to be enabled, MMAP [7] means window is enabled.

Window hit formula: (IN_ADDR & MASK) == BASE

Since Loongson 3 uses fixed routing by default, the configuration window is closed when the power is turned on.

System software is required to enable and configure it.

The address window conversion register is shown in the table below.

Table 2-6 Register Table of Address Window of Primary Crossbar

address register address register

0x3ff0_2000 CORE0_WIN0_BASE 0x3ff0_2100 CORE1_WIN0_BASE

0x3ff0_2008 CORE0_WIN1_BASE 0x3ff0_2108 CORE1_WIN1_BASE

0x3ff0_2010 CORE0_WIN2_BASE 0x3ff0_2110 CORE1_WIN2_BASE

0x3ff0_2018 CORE0_WIN3_BASE 0x3ff0_2118 CORE1_WIN3_BASE

0x3ff0_2020 CORE0_WIN4_BASE 0x3ff0_2120 CORE1_WIN4_BASE

0x3ff0_2020 CORE0_WIN5_BASE 0x3ff0_2120 CORE1_WIN5_BASE

0x3ff0_2020 CORE0_WIN6_BASE 0x3ff0_2120 CORE1_WIN5_BASE

0x3ff0_2030 CORE0_WIN6_BASE 0x3ff0_2130 CORE1_WIN6_BASE

0x3ff0_2038 CORE0_WIN7_BASE 0x3ff0_2138 CORE1_WIN7_BASE

0x3ff0_2040 CORE0_WIN0_MASK 0x3ff0_2140 CORE1_WIN0_MASK

0x3ff0_2040 CORE0_WIN1_MASK 0x3ff0_2148 CORE1_WIN1_MASK

19

Page 24

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

0x3ff0_2050 CORE0_WIN2_MASK 0x3ff0_2150 CORE1_WIN2_MASK 0x3ff0_2058 CORE0_WIN3_MASK 0x3ff0_2158 CORE1_WIN3_MASK 0x3ff0_2160 CORE1_WIN4_MASK 0x3ff0_2160 CORE1_WIN4_MASK 0x3ff0_2060 CORE0_WIN5_MASK 0x3ff0_2160 CORE1_WIN5_MASK 0x3ff0_2068 CORE0_WIN5_MASK 0x3ff0_2168 CORE1_WIN5_MASK 0x3ff0_2070 CORE0_WIN6_MASK 0x3ff0_2170 CORE1_WIN6_MASK 0x3ff0_2078 CORE0_WIN7_MASK 0x3ff0_2178 CORE1_WIN7_MASK 0x3ff0_2080 CORE0_WIN0_MMAP 0x3ff0_2180 CORE1_WIN0_MMAP 0x3ff0_2080 CORE0_WIN1_MMAP 0x3ff0_2180 CORE1_WIN1_MMAP 0x3ff0_2090 CORE0_WIN2_MMAP 0x3ff0_2190 CORE1_WIN2_MMAP 0x3ff0_2090 CORE0_WIN3_MMAP 0x3ff0_2190 CORE1_WIN3_MMAP 0x3ff0_2098 CORE0_WIN4_MMAP 0x3ff0_2190 CORE1_WIN4_MMAP 0x3ff0_20a0 CORE0_WIN5_MMAP 0x3ff0_21a0 CORE1_WIN4_MMAP 0x3ff0_20a8 CORE0_WIN5_MMAP 0x3ff0_21a0 CORE1_WIN5_MMAP 0x3ff0_20b0 CORE0_WIN6_MMAP 0x3ff0_21b0 CORE1_WIN6_MMAP 0x3ff0_20b0 CORE0_WIN6_MMAP 0x3ff0_21b0 CORE1_WIN6_MMAP 0x3ff0_20b0 CORE0_WIN7_MMAP 0x3ff0_21b0 CORE1_WIN7_MMAP

0x3ff0_2200 CORE2_WIN0_BASE 0x3ff0_2300 CORE3_WIN0_BASE 0x3ff0_2208 CORE2_WIN1_BASE 0x3ff0_2308 CORE3_WIN1_BASE 0x3ff0_2210 CORE2_WIN2_BASE 0x3ff0_2310 CORE3_WIN2_BASE $0x3ff0_2218\ CORE2_WIN3_BASE\ 0x3ff0_2318\ CORE3_WIN3_BASE$ 0x3ff0_2220 CORE2_WIN4_BASE 0x3ff0_2320 CORE3_WIN4_BASE $0x3ff0_2228\ CORE2_WIN5_BASE\ 0x3ff0_2328\ CORE3_WIN5_BASE$ 0x3ff0 2230 CORE2 WIN6 BASE 0x3ff0 2330 CORE3 WIN6 BASE $0x3ff0_2238\ CORE2_WIN7_BASE\ 0x3ff0_2338\ CORE3_WIN7_BASE$ 0x3ff0_2240 CORE2_WIN0_MASK 0x3ff0_2340 CORE3_WIN0_MASK 0x3ff0_2248 CORE2_WIN1_MASK 0x3ff0_2348 CORE3_WIN1_MASK 0x3ff0_2250 CORE2_WIN2_MASK 0x3ff0_2350 CORE3_WIN2_MASK 0x3ff0_2258 CORE2_WIN3_MASK 0x3ff0_2358 CORE3_WIN3_MASK 0x3ff0_2260 CORE2_WIN4_MASK 0x3ff0_2360 CORE3_WIN4_MASK 0x3ff0_2268 CORE2_WIN5_MASK 0x3ff0_2368 CORE3_WIN5_MASK 0x3ff0_2270 CORE2_WIN6_MASK 0x3ff0_2370 CORE3_WIN6_MASK 0x3ff0_2278 CORE2_WIN7_MASK 0x3ff0_2378 CORE3_WIN7_MASK 0x3ff0_2280 CORE2_WIN0_MMAP 0x3ff0_2380 CORE3_WIN0_MMAP

20

Page 25

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

0x3ff0_2288 CORE2_WIN1_MMAP 0x3ff0_2388 CORE3_WIN1_MMAP 0x3ff0_2290 CORE2_WIN2_MMAP 0x3ff0_2390 CORE3_WIN2_MMAP 0x3ff0_2298 CORE2_WIN3_MMAP 0x3ff0_2398 CORE3_WIN3_MMAP 0x3ff0_22a0 CORE2_WIN4_MMAP 0x3ff0_23a0 CORE3_WIN4_MMAP 0x3ff0_22a8 CORE2_WIN5_MMAP 0x3ff0_23a8 CORE3_WIN5_MMAP 0x3ff0_22b0 CORE2_WIN6_MMAP 0x3ff0_23b0 CORE3_WIN6_MMAP 0x3ff0_22b8 CORE2_WIN7_MMAP 0x3ff0_23b8 CORE3_WIN7_MMAP

	0x3ff0_2600	HT0_WIN0_BASE	0x3ff0_2700	HT1_WIN0_BASE		
	0x3ff0_2608	HT0_WIN1_BASE	0x3ff0_2708	HT1_WIN1_BASE		
	0x3ff0_2610	HT0_WIN2_BASE	0x3ff0_2710	HT1_WIN2_BASE		
	0x3ff0_2618	HT0_WIN3_BASE	0x3ff0_2718	HT1_WIN3_BASE		
	0x3ff0_2620	HT0_WIN4_BASE	0x3ff0_2720	HT1_WIN4_BASE		
	0x3ff0_2628	HT0_WIN5_BASE	0x3ff0_2728	HT1_WIN5_BASE		
	0x3ff0_2630	HT0_WIN6_BASE	0x3ff0_2730	HT1_WIN6_BASE		
	0x3ff0_2638	HT0_WIN7_BASE	0x3ff0_2738	HT1_WIN7_BASE		
0x3ff0_2640 HT0_WIN0_MASK 0x3ff0_2740 HT1_WIN0_MASK						
	0x3ff0_2648 HT0_WIN1_MASK 0x3ff0_2748 HT1_WIN1_MASK					
	0x3ff0_2650 HT0_WIN2_MASK 0x3ff0_2750 HT1_WIN2_MASK					
	0x3ff0_2658 HT0	_WIN3_MASK 0x3ff0_2	758 HT1_WIN3_N	MASK		
	0x3ff0_2660 HT0	_WIN4_MASK 0x3ff0_2	760 HT1_WIN4_N	MASK		
	0x3ff0_2668 HT0	_WIN5_MASK 0x3ff0_2	768 HT1_WIN5_N	MASK		
	0x3ff0_2670 HT0_WIN6_MASK 0x3ff0_2770 HT1_WIN6_MASK					
	0x3ff0_2678 HT0_WIN7_MASK 0x3ff0_2778 HT1_WIN7_MASK					
	0x3ff0_2680 HT0	_WIN0_MMAP 0x3ff0_2	2780 HT1_WIN0_N	MMAP		

0x3ff0_2688 HT0_WIN1_MMAP 0x3ff0_2788 HT1_WIN1_MMAP
0x3ff0_2690 HT0_WIN2_MMAP 0x3ff0_2790 HT1_WIN2_MMAP
0x3ff0_2698 HT0_WIN3_MMAP 0x3ff0_2798 HT1_WIN3_MMAP
0x3ff0_26a0 HT0_WIN4_MMAP 0x3ff0_27a0 HT1_WIN4_MMAP
0x3ff0_26a8 HT0_WIN5_MMAP 0x3ff0_27a8 HT1_WIN5_MMAP
0x3ff0_26b0 HT0_WIN6_MMAP 0x3ff0_27b0 HT1_WIN6_MMAP
0x3ff0_26b0 HT0_WIN6_MMAP 0x3ff0_27b0 HT1_WIN6_MMAP

twenty one

Page 26

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

There are configuration register address space, DDR2 address space, and PCI address space in the second-level XBAR of Godson 3

There are three IP-related address spaces. The address window is for the CPU and PCI-DMA two IPs with master device functions

It is set for routing and address translation. Both CPU and PCI-DMA have 8 address windows, which can complete the target

The choice of address space and the conversion from source address space to target address space.

Each address window is composed of three 64-bit registers BASE, MASK and MMAP, BASE is aligned with K bytes, MASK Using a format similar to the high-order bit of the netmask, MMAP contains the converted address, routing and enable control bits, As shown in the following table:

[63:48] [47:10] [7:4] [3:0]

Interleaved selection bit Address after conversit/mindow enable Slave number

Among them, the device corresponding to the slave device number is shown in the following table:

Table 2-7 Correspondence between the slave device number and the module at the secondary XBAR

Slave number Default value

0 No. 0 DDR2 / 3 controller

1 No. 1 DDR2 / 3 controller

2 Low-speed I / O (PCI, LPC, etc.)

3 Configuration register

The meaning of the window enable bit is shown in the following table:

Table 2-8 The space access attributes corresponding to the MMAP field

[7] [6] [5]

 $Window \ enable Allow \ interleaved \ access \ to \ DDR, \ valid \ when \ the \ slave \ device \ number \ is \ 0, \ according \ to \ device \ access \ device \ number \ is \ 0, \ according \ to \ device \ device \ number \ is \ 0, \ according \ to \ device \ device \ number \ is \ 0, \ according \ to \ device \ device \ number \ is \ 0, \ according \ to \ device \ device \ number \ is \ 0, \ according \ to \ device \ device \ number \ is \ 0, \ according \ to \ device \ number \ is \ 0, \ according \ to \ device \ number \ is \ 0, \ according \ to \ device \ number \ is \ 0, \ according \ to \ number \ is \ 0, \ according \ to \ number \ num$

Select bit configuration to route requests that hit the window address. The interleaving enable bit is required

Greater than 10

It should be noted that the window configuration of the first-level XBAR cannot perform address translation for Cache consistency requests, otherwise

The address at the SCache will be inconsistent with the address at the first-level cache of the processor, resulting in incorrect maintenance of Cache consistency.

 $Window \ hit \ formula: \qquad (IN_ADDR \ \& \ MASK) == BASE$

New address conversion for this a:ADDR = (IN ADDR & ~ MASK) | {MMAP [63:10], 10'h0}

The address window conversion register is as follows:

Table 2-9 Secondary XBAR address window conversion register table

address register description Default value

twenty two

Godson **3A3000** / **3B3000** Processor User Manual • Volume 1

3ff0 0000 CPU_WIN0_BASE CPU window 0 base address	0x0	
3ff0 0008 CPU_WIN1_BASE CPU window 1 base address	0x1000_0000	
3ff0 0010 CPU_WIN2_BASE CPU window 2 base address	0x0	
3ff0 0018 CPU_WIN3_BASE CPU window 3 base address	0x0	
3ff0 0020 CPU_WIN4_BASE CPU window 4 base address	0x0	
3ff0 0028 CPU_WIN5_BASE CPU window 5 base address	0x0	
3ff0 0030 CPU_WIN6_BASE CPU window 6 base address	0x0	
3ff0 0038 CPU_WIN7_BASE CPU window 7 base address	0x0	
3ff0 0040 CPU_WIN0_MASK CPU window 0 mask	0xffff_ffff_f000_0000	
3ff0 0048 CPU_WIN1_MASK CPU window 1 mask	0xffff_ffff_f000_0000	
3ff0 0050 CPU_WIN2_MASK CPU window 2 mask	0x0	
3ff0 0058 CPU_WIN3_MASK CPU window 3 mask	0x0	
3ff0 0060 CPU_WIN4_MASK CPU window 4 mask	0x0	
3ff0 0068 CPU_WIN5_MASK Mask of CPU window 5	0x0	
3ff0 0070 CPU_WIN6_MASK CPU window 6 mask	0x0	
3ff0 0078 CPU_WIN7_MASK CPU window 7 mask	0x0	
3ff0 0080 CPU_WIN0_MMAP CPU window 0 new base address	0xf0	
3ff0 0088 CPU_WIN1_MMAP CPU window 1 new base address	0x1000_00f2	
3ff0 0090 CPU_WIN2_MMAP CPU window 2 new base address	0	
3ff0 0098 CPU_WIN3_MMAP CPU window 3 new base address	0	
3ff0 00a0 CPU_WIN4_MMAP CPU window 4 new base address	0x0	
3ff0 00a8 CPU_WIN5_MMAP CPU window 5 new base address 0x0		
3ff0 00b0 CPU_WIN6_MMAP CPU window 6 new base address 0		
3ff0 00b8 CPU_WIN7_MMAP CPU window 7 new base address	0	
3ff0 0100 PCI_WIN0_BASE PCI window 0 base address	0x8000_0000	
3ff0 0108 PCI_WIN1_BASE PCI window 1 base address	0x0	
3ff0 0110 PCI_WIN2_BASE PCI window 2 base address	0x0	

twenty three

Page 28

Godson ${\bf 3A3000}$ / ${\bf 3B3000}$ Processor User Manual • Volume 1

3ff0 0118 PCI_WIN3_BASE PCI window 3 base address	0x0
3ff0 0120 PCI_WIN4_BASE PCI window 4 base address	0x0
3ff0 0128 PCI_WIN5_BASE PCI window 5 base address	0x0
3ff0 0130 PCI WIN6 BASE PCI window 6 base address	0x0

3ff0 0138 PCI_WIN7_BASE PCI window 7 base address	0x0		
3ff0 0140 PCI_WIN0_MASK PCI window 0 mask	0xffff_ffff_8000_0000		
3ff0 0148 PCI_WIN1_MASK Mask of PCI window 1	0x0		
3ff0 0150 PCI_WIN2_MASK PCI window 2 mask	0x0		
3ff0 0158 PCI_WIN3_MASK PCI window 3 mask	0x0		
3ff0 0160 PCI_WIN4_MASK PCI window 4 mask	0x0		
3ff0 0168 PCI_WIN5_MASK PCI window 5 mask	0x0		
3ff0 0170 PCI_WIN6_MASK Mask of PCI window 6	0x0		
3ff0 0178 PCI_WIN7_MASK Mask of PCI window 7	0x0		
3ff0 0180 PCI_WIN0_MMAP PCI window 0 new base address 0xf0			
3ff0 0188 PCI_WIN1_MMAP PCI window 1 new base address 0x0			
3ff0 0190 PCI_WIN2_MMAP New base address of PCI window 2 0			
3ff0 0198 PCI_WIN3_MMAP PCI window 3 new base address 0			
3ff0 01a0 PCI_WIN4_MMAP PCI window 4 new base address 0x0			
3ff0 01a8 PCI_WIN5_MMAP PCI window 5 new base address 0x0			
3ff0 01b0 PCI_WIN6_MMAP New base address of PCI window 6 0			
3ff0 01b8 PCI_WIN7_MMAP PCI window 7 new base address 0			

According to the default register configuration, after the chip is started, the address range of 0x00000000-0x0fffffff of the CPU (256M) mapped to the address range of 0x00000000-0x0fffffff of DDR2, 0x10000000 of CPU-

0x1fffffff interval (256M) is mapped to PCI 0x10000000-0x1fffffff interval, PCIDMA 0x80000000

-The address range (256M) of 0x8fffffff is mapped to the address range of 0x00000000-0x0fffffff of DDR2.

The software can implement new address space routing and conversion by modifying the corresponding configuration registers.

In addition, when there is a read access to an illegal address due to CPU speculative execution, none of the eight address windows hit.

The configuration register module returns all 0 data to the CPU to prevent the CPU from dying.

twenty four

Page 29

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

Table 2- 10 Level 2 XBAR default address configuration

	owner	High position	Base address
r	No. 0 DDR controller	0x0000_0000_0FFF_FFFF	0x0000_0000_0000_0000
I, etc.)	Low-speed I / O (PC)	0x0000_0000_1FFF_FFFF	0x0000_0000_1000_0000

2.7 Chip configuration and sampling register

 $\label{lem:configuration} Chip configuration \ register \ (Chip_config) \ and \ chip \ sampling \ register \ in \ Godson \ 3A3000 \ / \ 3B3000 \ (Chip_sample) \ provides \ a \ mechanism \ to \ read \ and \ write \ the \ configuration \ of \ the \ chip.$

Table 2-11 Chip Configuration Register (Physical Address 0x1fe00180)

Bit fiel	d Field name	access	Reset value	description
3: 0-		RW	4'b7	Keep
4	MC0_disable_ddr2_confspace	RW	1'b0	Whether to disable MC0 DDR configuration space
5	-	RW	1'b0	Keep

		Loongs on	3A3000	/ 3B3000 Processor User Manual
6	-	RW	1'b0	Keep
7	MC0_ddr2_resetn	RW	1'b1	MC0 software reset (active low)
8	MC0_clken	RW	1'b1	Whether to enable MC0
9	MC1_disable_ddr2_confspace	RW	1'b0	Whether to disable MC1 DDR configuration space
10	-	RW	1'b0	Keep
11	-	RW	1'b0	Keep
12	MC1_ddr2_resetn	RW	1'b1	MC1 software reset (active low)
13	MC1_clken	RW	1'b1	Whether to enable MC1
26:24 H	ITO_freq_scale_ctrl	RW	3'b111	HT controller divide by 0
27	HT0_clken	RW	1'b1	Whether to enable HT0
30:28 H	IT1_freq_scale_ctrl	RW	3'b111	HT controller divided by 1
31	HT1_clken	RW	1'b1	Whether to enable HT1
42:40 N	lode0_freq_ ctrl	RW	3'b111	Node 0 frequency division
43	-	RW	1'b1	
46:44 N	lode1_freq_ ctrl	RW	3'b111	Node 1 frequency division
47	-	RW	1'b1	
63:56 C	cpu_version	R	2'h39	CPU version
95:64				(air)
127: 96	Pad1v8_ctrl	RW	6'h780 1v	8 pad control
other		R		Keep

Table 2- 12 Chip sampling register (physical address 0x1fe00190)

25

Page 30

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

Bit field	field name	access	Reset value	description
31: 0	Compcode_core	R		*
47:32 S	ys_clkseli	R	Onl	poard frequency setting
55:48 B	ad_ip_core	R	core	e7-core0 is bad
57:56 B	ad_ip_ddr	R	Wh	ether 2 DDR controllers are bad
61:60 B	ad_ip_ht	R	Wh	ether 2 HT controllers are bad
83:80 C	ompcode_ok	R		
88	Thsens0_overflow	R	Ten	nperature sensor 0 overflow (over 125 °C)
89	Thsens1_overflow	R	Ten	nperature sensor 1 overflow (over 125 °C)
			Ten	nperature sensor 0 Celsius
111: 96	Thsens0 out	R	Kno	ot point temperchetgree= Thens0_out
111.70			* 73	31 / 0x4000-273
			Ten	nperature range -40 degrees - 125 degrees
			Ten	nperature sensor 1 Celsius
127: 112 Thsens1_out		R	Kno	ot point temperateuree = Thens1_out
			* 73	31 / 0x4000-273
			Ten	nperature range -40 degrees - 125 degrees
other		R	Kee	ер

The following sets of software frequency multiplication setting registers are used to set the CLKSEL to software control mode (refer to section 2.2 CLKSEL setting method), the operating frequency of each clock. Among them, MEM CLOCK configuration corresponds to the memory controller and bus Clock frequency; CORE CLOCK corresponds to the clock frequency of the processor core, on-chip network and high-speed shared cache; HT CLOCK pair The HT controller clock frequency should be used.

 $\label{loop-configuration} Each clock configuration generally has two parameters, DIV_LOOPC and DIV_OUT. The final clock frequency is (reference clock * DIV_LOOPC) / DIV_OUT.$

 $For the \ HT \ CLOCK \ configuration \ method \ is \ special, \ please \ refer \ to \ the \ specific \ configuration \ method \ in \ section \ 10.0.58.$

In software control mode, the default corresponding clock frequency is the frequency of the external reference clock (for CORE CLOCK, it is

The corresponding frequency of pin SYS_CLK; for MEM CLOCK, the frequency corresponding to pin MEM_CLK)

Set the software for the clock during the operation. The process of setting each clock should follow the following methods:

- The other registers in the setting register except SEL_PLL_* and SOFT_SET_PLL, that is, these two
 The register is written as 0 during the setting process;
- 2) Other register values remain unchanged, set SOFT_SET_PLL to 1;
- 3) Wait for the lock signal LOCKED_* in the register to be 1;
- 4) Set SEL_PLL_* to 1, and the corresponding clock frequency will be switched to the frequency set by the software.

In 3A3000 / 3B3000, two different PLLs can be used

L1 L2

se al_m耀de

PLL

26

Page 31

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

Table 2-13 Chip node and processor core software frequency multiplication setting register (physical address 0x1fe001b0)

Bit field	d Field name	access	Reset value	e description
0	SEL_PLL_NODE	RW	0x0	Node clock non-software bypass entire PLL
1	SEL_PLL_NODE	RW	0x0	Core clock non-software bypass entire PLL
2	SOFT_SET_PLL	RW	0x0	Allow software to set PLL
3	BYPASS_L1	RW	0x0	Bypass L1 PLL
15: 4	-	RW	0x0	-
16	LOCKED_L1	R	0x0	Whether L1 PLL is locked
17	LOCKED_L2	R	0x0	Whether L2 PLL is locked
18:17-		R	0x0	-
19	PD_L1	RW	0x0	Turn off L1 PLL
20	PD_L2	RW	0x0	Turn off L2 PLL
twenty	y one			
twents	y tSkerial mode	RW	0x0	0: Select L1 PLL as the main clock
twenty	usediai_mode	ΚW		1: Select L2 PLL as the main clock
twenty	y therial mode3	RW	0x0	0: Use NODE clock as the core clock
twenty	y unceun_mode5	KW	OAO	1: Select CORE clock as the core clock
25:24-		RW		-
31:26 L	1_DIV_REFC	RW	0x1	L1 PLL input parameters
40:32 L	1_DIV_LOOPC	RW	0x1	L1 PLL input parameters
41				
47:42 L	1_DIV_OUT	RW	0x1	L1 PLL input parameters
50:48 L	2_DIV_REFC	RW	0x1	L2 PLL input parameters
53:51				
63:54 L	2_DIV_LOOPC	RW	0x1	L2 PLL input parameters
69·64 L	2 DIV OUT	RW	0x1	L2 PLL input parameters
				Only one bit is required
96	BBGEN_enable	RW	0x0	Bias enable
97	BBMUX_first	RW	0x0	Set to switch voltage mode first
99:98 B	BMUX_SEL_0	RW	0x0	BBMUX_SEL_0 setting value
101: 100	BBGEN_feedback	RW	0x0	Disable BBGEN feedback signal
	BBGEN_vbbp_val	WO	0x0	Setting value of Vbbp
111: 108	BBGEN_vbbn_val	WO	0x0	Setting value of Vbbn
123-122	BBMUX SEL 1	RW	0x0	BBMUX_SEL_1 setting value
125: 124	BBMUX_SEL_2	RW	0x0	BBMUX_SEL_2 setting value

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

127: 126 BBMUX_SEL_3 RW 0x0 BBMUX_SEL_3 setting value other - RW Keep

Note: PLL ouput = (clk_ref * div_loopc) / div_out.

The VCO frequency of the L1 PLL (the part in parentheses in the above formula) must be in the range 1.2GHz-3.2GHz. Should be It is also applicable to MEM PLL and HT PLL. The VCO frequency of the L2 PLL must be in the range 3.2GHz-6.4GHz.

Table 2- 14 Chip memory and HT clock software frequency multiplication setting register (physical address 0x1fe001c0)

Bit field	Field name	access	Reset value	description
0	SEL_MEM_PLL	RW	0x0	MEM clock non-software bypass entire PLL
1	SOFT_SET_MEM_PLL	RW	0x0	Allow software to set MEM PLL
2	BYPASS_MEM_PLL	RW	0x0	Bypass MEM_PLL
5: 3				
6	LOCKED_MEM_PLL	R	0x0	Whether MEM_PLL is locked
7	PD_MEM_PLL	RW	0x0	Turn off MEM PLL
				MEM PLL input parameters
13: 8	MEM_PLL_DIV_REFC	RW	0x1	When selecting NODE clock (NODE_CLOCK_SEL
				When 1), it is used as frequency division input
23:14 M	EM_PLL_DIV_LOOPC	RW	0x41	MEM PLL input parameters
29:24 M	EM_PLL_DIV_OUT	RW	0x0	MEM PLL input parameters
30	NODE CLOCK SEL	RW	0x0	0: Use MEM_PLL as the MEM clock
30	NODE_CLOCK_SEL	IC VV	OXO	1: Use NODE_CLOCK as the crossover input
32	SEL_HT0_PLL	RW	0x0	HT0 non-software bypass PLL
33	SOFT_SET_HT0_PLL	RW	0x0	Allow software to set HT0 PLL
34	BYPASS_HT0_PLL	RW	0x0	Bypass HT0_PLL
35	LOCKEN_HT0_PLL	RW	0x0	Allow lock HT0 PLL
37:36 LC	OCKC_HT0_PLL	RW	0x0	Determine whether the HT0 PLL is locked with phase accuracy
38	LOCKED_HT0_PLL	R	0x0	Whether HT0_PLL is locked
45:40 H	TO_DIV_HTCORE	RW	0x1	HT0 Core PLL input parameters
48	SEL_HT1_PLL	RW	0x0	HT1 non-software bypass PLL
49	SOFT_SET_HT1_PLL	RW	0x0	Allow software to set HT1 PLL
50	BYPASS_HT1_PLL	RW	0x0	Bypass HT1_PLL
51	LOCKEN_HT1_PLL	RW	0x0	Allow HT1 PLL to be locked
53:52 LC	OCKC_HT1_PLL	RW	0x0	Determine whether the HT1 PLL is locked with phase accuracy
54	LOCKED_HT1_PLL	R	0x0	Whether HT1_PLL is locked
61:56 H	T1_DIV_HTCORE	RW	0x1	HT1 Core PLL input parameters
other		RW		Keep

Table 2-15 Chip processor core software frequency division setting register (physical address 0x1fe001d0)

28

Page 33

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

Bit field	Field name	access	Reset value	description
2: 0	core0_freqctrl	RW	0x7	Core 0 division control value
3	core0_en	RW	0x1	Core 0 clock enable
6: 4	core1_freqctrl	RW	0x7	Core 1 division control value

Loongson 3A3000 / 3B3000 Processor User Manual

7	core1_en	RW	0x1	Core 1 clock enable
10: 8	core2_freqctrl	RW	0x7	Core 2 divider control value
11	core2_en	RW	0x1	Core 2 clock enable
14:12 co	ore3_freqctrl	RW	0x7	Core 3 division control value
15	core3_en	RW	0x1	Core 3 clock enable

Note: The clock frequency value after the software frequency division is equal to the original

Of (frequency division control value +1) / 8

29

Page 34

Godson ${\bf 3A3000}$ / ${\bf 3B3000}$ Processor User Manual • Volume 1

3 GS464e processor core

GS464e is a four-launch 64-bit high-performance processor core. The processor core can be used as a single core for high-end embedded

Applications and desktop applications can also be used as basic processor cores to form on-chip multi-core systems for server and high-performance applications

use. Multiple GS464 cores in Loongson 3A3000 / 3B3000 and shared cache modules are formed via AXI interconnection network

It is a multi-core structure with a distributed shared on-chip last-level cache. The main features of GS464 are as follows:

- MIPS64 compatible, support Godson extended instruction set;
- Four-shot superscalar structure, two fixed-point, two floating-point, and two memory access components;
- Each floating-point component supports full-pipe 64-bit / dual 32-bit floating-point multiply-add operations;
- The memory access component supports 128-bit memory access, the virtual address is 64 bits, and the physical address is 48 bits;
- Support register renaming, dynamic scheduling, branch prediction and other out-of-order execution technologies;
- 64 items are all connected, plus 8 groups connected to 1024 items, a total of 1088 items TLB, 64 items TLB, variable page size small;

- The size of the first-level instruction cache and data cache are 64KB, and the 4-way group is connected;
- Victim Cache is a private secondary cache with a size of 256KB and connected by 16 channels;
- Support Non-blocking access and Load-Speculation and other access optimization technologies;
- Support Cache consistency protocol, can be used for on-chip multi-core processor;
- Instruction Cache implements parity check, and Data Cache implements ECC check;
- Support the standard EJTAG debugging standard, which is convenient for hardware and software debugging;
- Standard 128-bit AXI interface.

The structure of GS464e is shown in the figure below. GS464e For more detailed introduction, please refer to GS464e user manual and MIPS64 User manual.

30

Page 35

Godson **3A3000** / **3B3000** Processor User Manual • Volume 1

Figure 3- 1 GS464e structure diagram

31

Page 36

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

4 Shared Cache (SCache)

The SCache module is a three-level cache shared by all processor cores within the Loongson 3A3000 / 3B3000 processor.

The main features of the SCache module include:

- Using 128-bit AXI interface.
- 16 items Cache access queue.
- Keywords first.
- Fastest 12 beats from receiving a read invalid request to returning data.
- Support Cache consistency protocol through the directory.
- It can be used for on-chip multi-core structure, and can also be directly connected with single processor IP.
- The 16-way group connection structure is adopted.
- Support ECC check.
- · Support DMA consistent read and write and prefetch reading.
- Support 16 kinds of shared cache hashes.
- Support sharing cache by window lock.
- Ensure that read data returns atomicity.

Shared Cache module includes shared Cache management module scachemanage and shared Cache access module

scacheacess. The Scachemanage module is responsible for processor access requests from the processor and DMA, and the shared cache

The TAG, directory and data are stored in the scacheaccess module. In order to reduce power consumption, Cache TAG,

 $The \ directory \ and \ data \ can \ be \ accessed \ separately. \ The \ shared \ Cache \ status \ bit \ and \ w \ bit \ are \ stored \ with \ the \ TAG, \ and \ the \ TAG \ is \ stored \ in \ the \ TAG \ RAM$

In, the directory is stored in DIR RAM, and the data is stored in DATA RAM. Invalid request to access shared cache and read at the same time

Get out the TAGs and directories of all roads, and select the directories according to TAG, and read the data according to the hits. Replace request, re

 $The fill \ request \ and \ write \ back \ request \ only \ operate \ the \ TAG, \ directory \ and \ data \ along \ the \ way.$

In order to improve the performance of some specific computing tasks, the shared cache adds a lock mechanism. Shares that fall in the locked area

The Cache block will be locked, so it will not be replaced by the shared Cache (unless the 16-way shared Cache is locked)

The four groups of lock window registers in the shared Cache module can be dynamically configured through the chip configuration register space, but

It must be ensured that one of the 16-way shared cache must not be locked. The size of each group of windows can be adjusted according to the mask,

However, it cannot exceed 3/4 of the size of the entire shared cache. In addition, when the shared cache receives the DMA write request, if it is written

The area is hit and locked in the shared cache, then the DMA write will be written directly to the shared cache instead of memory.

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

Table 4- 1 Shared Cache Lock Window Register Configuration

name	address	Bit field	description
Sl Yaock0_val d	0x3ff00200	[63:63] Lo	ock window 0 valid bits
Sl Yaock0_add	0x3ff00200	[47: 0]	No. 0 lock window lock address
Sl Yaock0_mask	0x3ff00240	[47: 0]	Lock window mask 0
Sl Yaock1_val d	0x3ff00208	[63:63] Lo	ock window 1 valid bit
Sl Yaock1_add	0x3ff00208	[47: 0]	Lock address of No. 1 lock window
Sl Yaock1_mask	0x3ff00248	[47: 0]	Lock window mask number 1
Sl Yaock2_val d	0x3ff00210	[63:63] Lo	ock window 2 valid bits
Sl Yaock2_add	0x3ff00210	[47: 0]	Lock address of No. 2 lock window
Sl Yaock2_mask	0x3ff00250	[47: 0]	Lock window mask number 2
Sl Yaock3_val d	0x3ff00218	[63:63] Lo	ock window 3 valid bits
Sl Yaock3_add	0x3ff00218	[47: 0]	Lock address of No. 3 lock window
Sl Yaock3_mask	0x3ff00258	[47: 0]	Lock window mask number 3

For example, when an address addr makes slock0_valid && ((addr & slock0_mask) ==

 $(slock0_addr \& slock0_mask))$ is 1, this address is locked by the lock window 0.

33

Godson 3A3000 / 3B3000 has built-in two matrix processing accelerators independent of the processor core. Its basic functions are

Through the configuration of the software, the function of transposing or moving the matrix stored in the memory from the source matrix to the target matrix can be realized.

 $The two \ accelerators \ are \ integrated \ in the two \ Hyper Transport \ controllers \ of \ Loongson \ 3A3000 \ / \ 3B3000, \ respectively.$

The crossbar realizes reading and writing of SCache and memory.

Since the order of elements in the same Cache line before transposition is scattered in the matrix after transposition, in order to improve read and write efficiency

Multiple rows of data need to be read in, so that these data can be written in Cache row units in the transposed matrix, so

A buffer area with a size of 32 lines is set in the module to achieve horizontal writing (reading from the source matrix to the buffer),

Longitudinal readout (write from buffer to target matrix).

The working process of matrix processing is to first read in 32 rows of source matrix data, and then write the 32 rows of data into the target matrix, according to

Go on again until the entire matrix is transposed or moved. The matrix processing accelerator can also only prefetch the source as needed

The matrix is not written to the target matrix. In this way, the operation of prefetching the data into the SCache is realized.

The source matrix involved in transposing or moving may be a small matrix located in a large matrix. Therefore, the matrix address can be

If it is not completely continuous, there will be gaps between the addresses between adjacent rows, and more programming control interfaces need to be implemented. Table 5-1 beld 5-4 shows the programming interface involved in matrix processing.

Table 5-1 Matrix processing programming interface description

address	name	Attribu	tes Explanation
0x3ff00600	$s \sim c_sta \sim t_add \sim$	RW	Source matrix start address
0x3ff00608	dst_sta t_add	RW	Target matrix start address
0x3ff00610	Yao w	RW	Number of elements in a row of the source matrix
0x3ff00618	c Yaol	RW	Number of elements in a column of the source matrix
0x3ff00620	length	RW	Row span of the large matrix where the source matrix is located (bytes)
0x3ff00628	w dth	RW	Row span of the large matrix where the target matrix is located (bytes)
0x3ff00630	t ans_ct l	RW	Transpose control register
0x3ff00638	t ans_status	RO	Transpose Status Register

34

Page 39

Godson ${\bf 3A3000}$ / ${\bf 3B3000}$ Processor User Manual • Volume 1

Table 5- 2 Matrix processing register address description

address	name
0x3ff00600	$S \sim c_sta \sim t_add \sim of \ transpose \ module \ 0$
0x3ff00608	No. 0 transpose module's dst_sta \sim t_add \sim
0x3ff00610	No Yao 0 of transpose module w
0x3ff00618	C Yaol of transpose module 0
0x3ff00620	Length of transposed module 0
0x3ff00628	W dth of transpose module 0
0x3ff00630	Transpose module No. 0 t ans_ct 1
0x3ff00638	Transformer No. 0's t_ans_status
0x3ff00700	$S \sim c_sta \sim t_add \sim of \ transpose \ module \ 1$
0x3ff00708	Dst_sta t_add of transpose module 1

Table 5- 3 t ans_ct l register description

Field Explanation

- 0 Enable bit
- Whether to write the target matrix. When it is 0, only the source matrix is prefetched, but the target matrix is not written.
- 2 After the source matrix is read, whether it is effectively interrupted.
- 3 After the target matrix is written, whether it is effectively interrupted,
- 7.4 A ~ cmd, read command internal control bit. When a cache is 4'hf, it must be set to 4'hc. It doesn't make sense when a cache is other value.
- 11..8 A Cache, read command internal control bit. When it is 4'hf, the cache path is used, and when it is 4'h0, the uncache path is used. other

 The value is meaningless.
- 15...12 Awcmd, write command internal control bit. When awcache is 4'hf, it must be set to 4'hb. Unintentional when awcache is other values

 Righteousness
- 19..16 Awcache, write command internal control bit. When it is 4'hf, the cache path is used, and when it is 4'h0, the uncache path is used. other

35

Page 40

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

The value is meaningless.

21...20 Element size of matrix, 00 means 1 byte, 01 means 2 bytes, 10 means 4 bytes, 11 means 8 bytes

twenty two ans_yes, 1 means transpose; 0 means not transpose

Table 5-4 t ans_status register description

Field Explanation

0 Source matrix read

The target matrix is written

36

Page 41

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

6 Inter-processor interrupt and communication

 $Godson\ 3A3000\ /\ 3B3000\ implements\ 8\ inter-core\ interrupt\ registers\ (IPI)\ for\ each\ processor\ core\ to\ support\ multiple\ core$

Interrupt and communication between the processor cores during BIOS startup and operating system operation, the description and addresses are shown in Table 6-1 to Table 6-5.

Table 6-1: Inter-processor interrupt related registers and their functional description

name	Read and write	palraissiptium
IPI_Status	R	32-bit status register, if any bit is set and the corresponding bit is enabled, the
		The processor core INT4 interrupt line is set.
IPI_Enable	RW	32-bit enable register to control whether the corresponding interrupt bit is valid
IPI_Set	W	32 position register, write 1 to the corresponding bit, the corresponding STATUS register
		Bit is set
IPI_Clea	W	32-bit clear register, write 1 to the corresponding bit, the corresponding STATUS register
		Bit cleared 0
Ma lB Yao x0	RW	Cache register, used to transfer parameters at startup, according to 64 or 32 bit
		Uncache access.
Ma lB Yao x01	RW	Cache register, used to transfer parameters at startup, according to 64 or 32 bit
		Uncache access.
Ma lB Yao x02	RW	Cache register, used to transfer parameters at startup, according to 64 or 32 bit
		Uncache access.
Ma lB Yao x03	RW	Cache register, used to transfer parameters at startup, according to 64 or 32 bit
		Uncache access.

The interrupt-related registers and functions of Godson 3A3000 / 3B3000 and processor cores are described as follows:

Table 6- 2 Interrupt and Communication Register List of No. 0 Processor Core

name	address	Authority	description
C Yaocheng e0_IPI_Status	0x3ff01000	R	IPI_Status register of processor core 0
C Yaocheng e0_IPI_Enalbe	0x3ff01004	RW	IPI_Enalbe register of processor core 0
C Yaocheng e0_IPI_Set	0x3ff01008	W	IPI_Set register of processor core 0
C Yaocheng e0 _IPI_Clea	0x3ff0100c	W	IPI_Clea register of processor core 0
C Yao Cheng e0_Ma lB Yao	00x03ff01020	RW	IPI_Ma lB Yao x0 register of processor core 0
C Yao Yi e0_ Ma lB Yao x1	0x3ff01028	RW	IPI_Ma lB Yao x1 register of processor core 0
C Yao Cheng e0_ Ma lB Ya	@x2ff01030	RW	IPI_Ma lB Yao x2 register of processor core 0
C Yao Ya e0_ Ma lB Yao x	30x3ff01038	RW	IPI_Ma lB Yao x3 register of processor core 0

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

Table 6-3 Internuclear Interrupt and Communication Register List of No. 1 Processor Core

name	address	Authority	description
C Yaoyi e1_IPI_Status	0x3ff01100	R	IPI_Status register of processor core 1
C Yaocheng e1_IPI_Enalbe	0x3ff01104	RW	IPI_Enalbe register of processor core 1
C Yaoyi e1_IPI_Set	0x3ff01108	W	IPI_Set register of processor core 1
C Yaocheng e1 _IPI_Clea	0x3ff0110c	W	IPI_Clea register of processor core 1
C Yao Ya e1_Ma lB Yao x0	0x3ff01120	R	IPI_Ma lB Yao x0 register of processor core 1
C Yao Yi e1_ Ma lB Yao x1	0x3ff01128	RW	IPI_Ma lB Yao x1 register of processor core 1
C Yao Yi e1_ Ma lB Yao x2	0x3ff01130	W	IPI_Ma lB Yao x2 register of processor core 1
C Yao Yi e1_ Ma lB Yao x3	0x3ff01138	W	IPI_Ma lB Yao x3 register of processor core 1

Table 6-4 Internuclear Interrupt and Communication Register List of No. 2 Processor Core

name	address	Authority	description	
C Yaocheng e2_IPI_Status	0x3ff01200	R	IPI_Status register of processor core 2	
C Yaocheng e2_IPI_Enalbe	0x3ff01204	RW	IPI_Enalbe register of processor core 2	
C Yaoyi e2_IPI_Set	0x3ff01208	W	IPI_Set register of processor core 2	
C Yaocheng e2 _IPI_Clea	0x3ff0120c	W	IPI_Clea register of processor core 2	
C Yao Cheng e2_Ma lB Yao	00x03ff01220	R	IPI_Ma lB Yao x0 register of processor core 2	
C Yao Ya e2_ Ma lB Yao x	10x3ff01228	RW	IPI_Ma lB Yao x1 register of processor core 2	
C Yao Ya e2_ Ma lB Yao x2	20x3ff01230	W	IPI_Ma lB Yao x2 register of processor core 2	
C Yao Yi e2 Ma lB Yao x3	30x3ff01238	W	IPI Ma lB Yao x3 register of processor core 2	

Table 6-5 List of Internuclear Interrupts and Communication Registers of Processor Core

name	address	Authority	description
C Yaocheng e3_IPI_Status	0x3ff01300	R	IPI_Status register of processor core 3
C Yaocheng e3_IPI_Enalbe	0x3ff01304	RW	IPI_Enalbe register of processor core 3
C Yaoyae3_IPI_Set	0x3ff01308	W	IPI_Set register of processor core 3
C Yaocheng e3 _IPI_Clea	0x3ff0130c	W	IPI_Clea register of processor core 3
C Yao Cheng e3_Ma lB Yao	00x03ff01320	R	IPI_Ma lB Yao x0 register of processor core 3
C Yao Ya e3_ Ma lB Yao x	10x3ff01328	RW	IPI_Ma lB Yao x1 register of processor core 3
C Yao Ya e3_ Ma lB Yao x2	20x3ff01330	W	IPI_Ma lB Yao x2 register of processor core 3
C Yao Yi e3_ Ma lB Yao x3	30x3ff01338	W	IPI_Ma lB Yao x3 register of processor core 3

Listed above is the inter-core of a single-node multi-processor system composed of a single Loongson 3A3000 / 3B3000 chip

 $Break \ the \ relevant \ register \ list. \ When \ using \ multiple \ Loongson \ 3A3000 \ / \ 3B3000 \ interconnections \ to \ form \ a \ multi-node \ CC-NUMA \ system, each \ and the \ and the \ angle \ and the \ angle \ angle$

38

Page 43

The base address of the node is in a fixed offset relationship. For example, the IPI_Status address of processor core 0 in node 0 is 0x3ff01000, and the address of processor 0 of node 1 is 0x10003ff01000, and so on.

39

Page 44

Godson **3A3000** / **3B3000** Processor User Manual • Volume 1

7 I / O interrupt

Loongson 3A3000 / 3B3000 chip supports up to 32 interrupt sources and is managed in a unified manner, as shown in Figure 7-1 below Shows that any IO interrupt source can be configured to enable, trigger, and the target processor core to be routed Interrupt the foot.

Figure 7- 1 Schematic diagram of Loongson 3A3000 / 3B3000 processor interrupt routing

Interrupt related configuration registers are used to control the corresponding interrupt lines in the form of bits.

See Table 7-1 for sexual configuration. The interrupt enable (Enable) configuration has three registers: Intenset, Intenclr and Inten.

Intenset sets the interrupt enable, and the interrupt corresponding to the bit written to 1 in the Intenset register is enabled. Intenelr clear interrupt

When enabled, the interrupt corresponding to the bit written to 1 in the Intenclr register is cleared. The Inten register reads the current status of each interrupt enable

40

Page 45

Godson ${\bf 3A3000}$ / ${\bf 3B3000}$ Processor User Manual • Volume 1

condition. The interrupt signal in the form of a pulse (such as PCI_SERR) is selected by the Intedge configuration register. Writing 1 means that the pulse triggers Send, write 0 means level trigger. The interrupt handler can clear the pulse record through the corresponding bit of Intenclr.

Table 7- 1 Interrupt Control Register

Bit field			Access proper		
	Intedge	Inten	Intenset	Intencl	Interrupt source
3: 0	RW / 0	R / 0	W / 0	W / 0	Sys_nt0-3
7: 4	RO / 0	R / 0	RW / 0	RW / 0	PCI_INTn
8	RO / 0	R / 0	RW / 0	RW / 0	$Mat \sim x_nt0$
9	RO / 1	R / 0	RW / 0	RW / 0	Mat x_nt1
10	RO / 1	R / 0	RW / 0	RW / 0	Lpc
12: 11	RW / 0	Keep	Keep	Keep	Mc0-1
13	RW / 0	R / 0	RW / 0	RW / 0	Ba e
14	RW / 0	R / 0	RW / 0	RW / 0	Thsens nt
15	RW / 0	R / 0	RW / 0	RW / 0	Pc _pe
23: 16	RW / 0	R / 0	RW / 0	RW / 0	HT0 nt0-7
31: 24	RW / 0	R / 0	RW / 0	RW / 0	HT1 nt0-7

Table 7- 2 IO Control Register Address

name	Address offset	description
Int s	0x3ff01420	32-bit interrupt status register
Inten	0x3ff01424	32-bit interrupt enable status register

Intenset	0x3ff01428	32-bit setting enable register
Intencl	0x3ff0142c	32-bit clear enable register
Intedge	0x3ff01438	32-bit trigger mode register
CORE0_INTISR	0x3ff01440	32-bit interrupt status routed to CORE0
CORE1_INTISR	0x3ff01448	32-bit interrupt status routed to CORE1
CORE2_INTISR	0x3ff01450	32-bit interrupt status routed to CORE2
CORE3_INTISR	0x3ff01458	32-bit interrupt status routed to CORE3

Four processor cores are integrated in Loongson 3A3000 / 3B3000, the above 32-bit interrupt sources can be configured by software

Select the target processor core to be interrupted. Further, the interrupt source can be optionally routed to the processor core interrupt INT0 to INT3

Any one of the IP2 to IP5 corresponding to CP0_Status. Each of the 32 I / O interrupt sources corresponds to one 8

The bit routing controller, its format and address are shown in Table 7-3 and 7-4 below. The routing register is routed in a vector way

By choice, such as 0x48 indicates routing to INT2 of processor 3.

41

Page 46

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

Table 7-3 Interrupt Routing Register Description

Bit field	Explanation
3:0	Routed processor core vector number
7: 4	Routed processor core interrupt pin vector number

Table 7-4 Interrupt Routing Register Address

name		Address offset description	name	Address offset description	
Ent	y0	0x3ff01400 Sys_ nt0	Ent	y16 0x3ff01410 HT0- nt0	
Ent	y1	0x3ff01401 Sys_nt1	Ent	y17 0x3ff01411 HT0- nt1	
Ent2		0x3ff01402 Sys_nt2	Ent	y18 0x3ff01412 HT0- nt2	
Ent	y3	0x3ff01403 Sys_nt3	Ent	y19 0x3ff01413 HT0- nt3	
Ent	y4	0x3ff01404 Pc _ nt0	Ent	y20 0x3ff01414 HT0- nt4	
Ent	у5	0x3ff01405 Pc _ nt1	Ent	y21 0x3ff01415 HT0- nt5	
Ent	y6	0x3ff01406 Pc _ nt2	Ent 信	y22 0x3ff01416 HT0- nt6	
Ent	y 7	0x3ff01407 Pc _ nt3	Ent	y23 0x3ff01417 HT0- nt7	
Ent	y8	0x3ff01408 Mat x nt0	Ent	y24 0x3ff01418 HT1- nt0	
Ent	у9	0x3ff01409 Mat x nt1	Ent	y25 0x3ff01419 HT1- nt1	
Ent	y10	0x3ff0140a Lpc nt	Ent	y26 0x3ff0141a HT1- nt2	
Ent	y11	0x3ff0140b Mc0	Ent	y27 0x3ff0141b HT1- nt3	
Ent	y12	0x3ff0140c Mc1	Ent	y28 0x3ff0141c HT1- nt4	
Ent	y13	0x3ff0140d Ba e	Ent	y29 0x3ff0141d HT1- nt5	
Ent	y14	0x3ff0140e Thsens nt	Ent	y30 0x3ff0141e HT1- nt6	
Ent	y15	0x3ff0140f Pc_pe / se	Е	nt y31 0x3ff0141f HT1- nt7	

42

Page 47

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

8 Temperature sensor

8.1 Real-time temperature sampling

 $Loongson\ 3A3000\ /\ 3B3000\ internally\ integrates\ two\ temperature\ sensors, which \ can\ be\ registered\ by\ sampling\ starting\ at\ 0x1FE00198$

The device can be used for observation, and at the same time, it can be controlled by flexible high and low temperature interruption alarm or automatic frequency modulation function. The corresponding bits of the sampling register are as follows (the base address is 0x1FE00198):

Table 8-1 Temperature sampling register description

Bit field	Field name	access	Reset value	description	
twenty	fblusens0_overflow	R		Temperature sensor 0 overflow (over 125 $^{\circ}\mathrm{C}$)	
25	Thsens1_overflow	R	Temperature sensor 1 overflow (over 12		
				Temperature sensor 0 Celsius	
47-22 Th	isens0 out	R		Knot point temperategree= Thens0_out	
47.32 11	seliso_out	K		* 731 / 0x4000-273	
				Temperature range -40 degrees – 125 degrees	
				Temperature sensor 1 Celsius	
65:48 Thsens1_out	sens1 out	R		Knot point temperalegree=Thens1_out	
				-* 731 / 0x4000-273	
				Temperature range -40 degrees – 125 degrees	

Through the setting of the control register, it is possible to achieve interruptions above the preset temperature, interruptions below the preset temperature and high temperature. Automatic frequency reduction function.

8.2 High and low temperature interrupt trigger

For the high and low temperature interrupt alarm function, there are 4 groups of control registers to set their thresholds. Each set of register packets Contains the following three control bits:

GATE: Set the threshold for high or low temperature. When the input temperature is higher than the high temperature threshold or lower than the low temperature threshold, i Interruption

 $EN: interrupt\ enable\ control.\ The\ setting\ of\ this\ group\ of\ registers\ is\ valid\ after\ being\ set\ to\ 1;$

 $SEL: Input \ temperature \ selection. \ At \ present, \ 3A3000 \ / \ 3B3000 \ integrate \ two \ temperature \ sensors \ inside, this \ register \ is \ used \ to \ configure \ and \ the \ register \ is \ used \ to \ configure \ and \ the \ register \ is \ used \ to \ configure \ and \ the \ register \ is \ used \ to \ configure \ and \ the \ register \ is \ used \ to \ configure \ and \ the \ register \ is \ used \ to \ configure \ and \ the \ register \ is \ used \ to \ configure \ and \ the \ register \ the \ register \ is \ used \ to \ configure \ and \ register \ the \ reg$

The temperature of which sensor is selected as input. You can use 0 or 1.

 $The high temperature interrupt control \ register \ contains \ 4 \ sets \ of \ setting \ bits \ for \ controlling \ high \ temperature interrupt \ trigger;$

The device contains 4 sets of setting bits for controlling low temperature interrupt trigger. There is also a set of registers used to display the interrupt status, divided

Do not correspond to high temperature interrupt and low temperature interrupt, any write operation to this register will clear the interrupt status.

The specific descriptions of these registers are as follows:

Table 8-2 High and low temperature interrupt register description

register	address	control	Explanation
			$\label{eq:continuous} \ensuremath{[7:0]:Hi_gate0: high temperature threshold 0, an interrupt will be generated if this temperature is exceeded} \\$
			[8: 8]: Hi_en0: High temperature interrupt enable 0
			[11:10]: Hi_Sel0: Select the temperature sensor input source of high temperature interrupt
			[23:16]: Hi_gate1: high temperature threshold 1, exceeding this temperature will generate an interrupt
			[24:24]: Hi_en1: High temperature interrupt enable 1
			[27:26]: Hi_Sel1: Select the temperature sensor input source for high temperature interrupt 1
			[39:32]: Hi_gate2: High temperature threshold 2, above this temperature will generate an interrupt
			[40:40]: Hi_en2: High temperature interrupt enable 2
			[43:42]: Hi_Sel2: Select the temperature sensor input source for high temperature interrupt 2
			[55:48]: Hi_gate3: High temperature threshold 3, exceeding this temperature will generate interrupt
High temperature inte	rrupt control register		[56:56]: Hi_en3: High temperature interrupt enable 3
Thsens_int_ctrl_Hi	0x3ff01460	RW	[59:58]: Hi_Sel3: Select the temperature sensor input source for high temperature interrupt 3
			[7: 0]: Lo_gate0: low temperature threshold 0, below this temperature will generate an interrupt
			[8: 8]: Lo_en0: Low temperature interrupt enable 0
			[11:10]: Lo_Sel0: Select the temperature sensor input source for low temperature interrupt 0
			[23:16]: Lo_gate1: low temperature threshold 1, below this temperature will generate an interrupt
			[24:24]: Lo_en1: Low temperature interrupt enable 1
			[27:26]: Lo_Sel1: Select the temperature sensor input source for low temperature interrupt 1
			[39:32]: Lo_gate2: Low temperature threshold 2, below this temperature will generate an interrupt
			[40:40]: Lo_en2: Low temperature interrupt enable 2
			[43:42]: Lo_Sel2: Select the temperature sensor input source for low temperature interrupt 2
			[55:48]: Lo_gate3: Low temperature threshold 3, below this temperature will generate an interrupt
Low temperature inte	rrupt control register		[56:56]: Lo_en3: Low temperature interrupt enable 3
Thsens_int_ctrl_Lo	0x3ff01468	RW	[59:58]: Lo_Sel3: Select temperature sensor input source for low temperature interrupt 3
			Interrupt status register, write any value to clear the interrupt
Interrupt status registe	er		[0]: High temperature interrupt trigger
Thsens_int_status / cl	r 0x3ff01470	RW	[1]: Low temperature interrupt trigger

8.3 High temperature automatic frequency reduction setting

In order to ensure the operation of the chip in a high-temperature environment, you can set the high-frequency automatic frequency reduction, so that the chip exceeds

In the range, it actively divides the clock to achieve the effect of reducing the chip turnover rate.

For the high temperature frequency reduction function, there are 4 sets of control registers to set its behavior. Each set of registers contains the following four Control bit:

44

Page 49

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

GATE: Set the threshold for high or low temperature. When the input temperature is higher than the high temperature threshold or lower than the low temperature threshold, i Frequency division operation;

EN: interrupt enable control. The setting of this group of registers is valid after being set to 1;

SEL: Input temperature selection. At present, 3A3000 / 3B3000 integrate two temperature sensors inside, this register is used to configure.

The temperature of which sensor is selected as input. You can use 0 or 1.

FREQ: frequency division number. When the frequency division operation is triggered, the frequency is adjusted to FREQ / 8 times the current clock frequency.

Table 8-3 High-temperature down-frequency control register description

register address control Explanation

Four sets of setting priority from high to low

[7: 0]: Scale_gate0: High temperature threshold 0, frequency will be reduced if this temperature is exceeded

[8: 8]: Scale_en0: High temperature frequency reduction enable 0

[11:10]: Scale_Sel0: Select the temperature sensor input source of high temperature down-conversion 0

[14:12]: Scale_freq0: frequency division value when frequency is reduced

[23:16]: Scale_gate1: High temperature threshold 1, exceeding this temperature will reduce the frequency

[24:24]: Scale_en1: High temperature frequency reduction enable 1

[27:26]: Scale_Sel1: Select the temperature sensor input source for high temperature down-conversion 1

[30:28]: Scale freq1: frequency division value when frequency is reduced

[39:32]: Scale_gate2: High temperature threshold value 2, if this temperature is exceeded, frequency will be reduced

[40:40]: Scale_en2: High temperature frequency reduction enable 2

[43:42]: Scale_Sel2: Select the temperature sensor input source for high temperature down-conversion 2

[59:58]: Scale_Sel3: Select the temperature sensor input source for high temperature down-conversion 3

[46:44]: Scale_freq2: frequency division value when frequency is reduced

[55:48]: Scale gate3: High temperature threshold 3, over this temperature will reduce the frequency

[56:56]: Scale_en3: High temperature frequency reduction enable 3 $\,$

High temperature down frequency control register
Thsens_freq_scale 0x3ff01480

RW

[62:60]: Scale_freq3: Frequency division value when frequency is reduced

45

Page 50

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

9 DDR2 / 3 SDRAM controller configuration

The design of the integrated memory controller inside Loongson No. 3 processor complies with the industry standard of DDR2 / 3 SDRAM (JESD79-2 And JESD79-3). In the Godson 3 processor, all memory read / write operations are implemented in compliance with JESD79-2B and The provisions of JESD79-3.

9.1 DDR2 / 3 SDRAM controller function overview

Loongson No. 3 processor supports a maximum of 4 CS (implemented by 4 DDR2 SDRAM chip select signals, that is, two double-sided memory Article), contains a total of 19-bit address bus (ie: 16-bit row and column address bus and 3-bit logical Bank bus).

When Loongson No. 3 processor chooses to use different memory chip types, it can adjust the DDR2 / 3 controller parameter settings

To support. Among them, the maximum number of chip selects (CS_n) supported is 4, the number of row addresses (RAS_n) is 16, and the column addresses (CAS_n)

The number is 15, and the number of logical volume selection (BANK_n) is 3.

The physical address of the memory request sent by the CPU can be mapped to many different addresses according to different configurations inside the controller Shoot.

The memory control circuit integrated in the Loongson 3 processor only accepts memory read / write requests from the processor or external devices

Demand, in all memory read / write operations, the memory control circuit is in the slave state.

The memory controller in Loongson No. 3 processor has the following characteristics:

• Full pipeline operation of commands and read and write data on the interface

- Memory command merging and sorting improve overall bandwidth
- Configure register read and write ports, you can modify the basic parameters of the memory device
- Built-in dynamic delay compensation circuit (DCC) for reliable transmission and reception of data
- The ECC function can detect 1-bit and 2-bit errors on the data path, and can perform self-correction on 1-bit errors.
 Error correction
- Support 133-667MHZ working frequency

9.2 DDR2 / 3 SDRAM read operation protocol

The protocol of DDR2 / 3 SDRAM read operation is shown in Figure 11-2. In the figure, the command (Command, referred to as CMD) is composed of RAS_n, CAS_n and WE_n are composed of three signals. For read operations, RAS_n = 1, CAS_n = 0, and WE_n = 1.

46

Page 51

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

Figure 9- 1 DDR2 SDRAM read operation protocol

In the figure above, Cas Latency (CL) = 3, Read Latency (RL) = 3, and Burst Length = 8.

9.3 DDR2 / 3 SDRAM write operation protocol

The protocol of DDR2 / 3 SDRAM write operation is shown in Figure 11-3. The command CMD in the figure is composed of RAS_n, CAS_n and WE_n, It consists of three signals. For write operations, RAS_n = 1, CAS_n = 0, and WE_n = 0. In addition, unlike read operations, write

The operation requires DQM to identify the mask of the write operation, that is, the number of bytes to be written. DQM is synchronized with the DQs signal in the figure.

Figure 9- 2 DDR2 SDRAM write operation protocol

In the above picture, Cas Latency (CL) = 3, Write Latency (WL) = Read Latency (RL) -1 = 2,

Burst Length = 4.

9.4 DDR2 / 3 SDRAM parameter configuration format

The parameter list and description of the memory controller software are as follows:

47

Page 52

Godson **3A3000** / **3B3000** Processor User Manual • Volume 1

63:56	55:48	47:40	39:32	31:24	23:16	15: 8	7: 0
0x000 dll_close_disable	Dll_adj_cnt	Dll_value_ck (R	D)	Dll_init_done (RD)		Version (RD)	
dll_sync_disable							
0x008							
0x010							
0x018 Dll_ck_3	Dll_ck_2	Dll_ck_1	Dll_ck_0	Dll_increment	Dll_start_point	Dll_bypass	Init_start
0x020 Dq_oe_end_0	Dq_oe_begin_	_0 Dq_stop_edge_	0Dq_start_edge_	0 Rddata_delay_0	Rddqs_lt_half_0	Wrdqs_lt_half_0	Wrdq_lt_half_0
0x028 Rd_oe_end_0	Rd_oe_begin_	_0 Rd_stop_edge_	0 Rd_start_edge_	0 Dqs_oe_end_0	Dqs_oe_begin_0	Dqs_stop_edge_0	Dqs_start_edge_0
0x030 Enzi_end_0	Enzi_begin_0	Wrclk_sel_0	Wrdq_clkdelay	_0 Odt_oe_end_0	Odt_oe_begin_0	Odt_stop_edge_0	Odt_start_edge_0
0x038 Enzi_stop_0	Enzi_start_0	Dll_oe_shorten_	ODIl_rddqs_n_0	Dll_rddqs_p_0	Dll_wrdqs_0	Dll_wrdata_0	Dll_gate_0
0x040 Dq_oe_end_1	Dq_oe_begin_	_1 Dq_stop_edge_	1Dq_start_edge_	1 Rddata_delay_1	Rddqs_lt_half_1	Wrdqs_lt_half_1	Wrdq_lt_half_1
0x048 Rd_oe_end_1	Rd_oe_begin_	_1 Rd_stop_edge_	1 Rd_start_edge_	1 Dqs_oe_end_1	Dqs_oe_begin_1	Dqs_stop_edge_1	Dqs_start_edge_1
0x050 Enzi_end_1	Enzi_begin_1	Wrclk_sel_1	Wrdq_clkdelay	_1 Odt_oe_end_1	Odt_oe_begin_1	Odt_stop_edge_1	Odt_start_edge_1
0x058 Enzi_stop_1	Enzi_start_1	Dll_oe_shorten_	1 Dll_rddqs_n_1	Dll_rddqs_p_1	Dll_wrdqs_1	Dll_wrdata_1	Dll_gate_1
0x060 Dq_oe_end_2	Dq_oe_begin_	_2 Dq_stop_edge_	2Dq_start_edge_	2 Rddata_delay_2	Rddqs_lt_half_2	$Wrdqs_lt_half_2$	Wrdq_lt_half_2
0x068 Rd_oe_end_2	Rd_oe_begin_	_2 Rd_stop_edge_	2 Rd_start_edge_	2 Dqs_oe_end_2	Dqs_oe_begin_2	Dqs_stop_edge_2	Dqs_start_edge_2
0x070 Enzi_end_2	Enzi_begin_2	Wrclk_sel_2	Wrdq_clkdelay	_2 Odt_oe_end_2	Odt_oe_begin_2	Odt_stop_edge_2	Odt_start_edge_2
0x078 Enzi_stop_2	Enzi_start_2	Dll_oe_shorten_	2Dll_rddqs_n_2	Dll_rddqs_p_2	Dll_wrdqs_2	Dll_wrdata_2	Dll_gate_2
0x080 Dq_oe_end_3	Dq_oe_begin_	_3 Dq_stop_edge_	3Dq_start_edge_	3 Rddata_delay_3	$Rddqs_lt_half_3$	$Wrdqs_lt_half_3$	Wrdq_lt_half_3
0x088 Rd_oe_end_3	Rd_oe_begin_	_3 Rd_stop_edge_	3 Rd_start_edge_	3 Dqs_oe_end_3	Dqs_oe_begin_3	Dqs_stop_edge_3	Dqs_start_edge_3
0x090 Enzi_end_3	Enzi_begin_3	Wrclk_sel_3	Wrdq_clkdelay	_3 Odt_oe_end_3	Odt_oe_begin_3	Odt_stop_edge_3	Odt_start_edge_3
0x098 Enzi_stop_3	Enzi_start_3	Dll_oe_shorten_	3 Dll_rddqs_n_3	Dll_rddqs_p_3	Dll_wrdqs_3	Dll_wrdata_3	Dll_gate_3
0x0A0 Dq_oe_end_4	Dq_oe_begin_	_4 Dq_stop_edge_	4Dq_start_edge_	4 Rddata_delay_4	$Rddqs_lt_half_4$	$Wrdqs_lt_half_4$	Wrdq_lt_half_4
0x0A8 Rd_oe_end_4	Rd_oe_begin_	_4 Rd_stop_edge_	4 Rd_start_edge_	4 Dqs_oe_end_4	Dqs_oe_begin_4	Dqs_stop_edge_4	Dqs_start_edge_4
0x0B0 Enzi_end_4	Enzi_begin_4	Wrclk_sel_4	Wrdq_clkdelay	_4 Odt_oe_end_4	Odt_oe_begin_4	Odt_stop_edge_4	Odt_start_edge_4
0x0B8 Enzi_stop_4	Enzi_start_4	Dll_oe_shorten_	4Dll_rddqs_n_4	Dll_rddqs_p_4	Dll_wrdqs_4	Dll_wrdata_4	Dll_gate_4
0x0C0 Dq_oe_end_5	Dq_oe_begin_	_5 Dq_stop_edge_	5Dq_start_edge_	5 Rddata_delay_5	$Rddqs_lt_half_5$	$Wrdqs_lt_half_5$	$Wrdq_lt_half_5$
0x0C8 Rd_oe_end_5	Rd_oe_begin_	_5 Rd_stop_edge_	5 Rd_start_edge_	5 Dqs_oe_end_5	Dqs_oe_begin_5	Dqs_stop_edge_5	Dqs_start_edge_5
0x0D0 Enzi_end_5	Enzi_begin_5	Wrclk_sel_5	Wrdq_clkdelay	_5 Odt_oe_end_5	Odt_oe_begin_5	Odt_stop_edge_5	Odt_start_edge_5
0x0D8 Enzi_stop_5	Enzi_start_5	Dll_oe_shorten_	5 Dll_rddqs_n_5	Dll_rddqs_p_5	Dll_wrdqs_5	Dll_wrdata_5	Dll_gate_5
0x0E0 Dq_oe_end_6	Dq_oe_begin_	_6 Dq_stop_edge_	6Dq_start_edge_	6 Rddata_delay_6	$Rddqs_lt_half_6$	$Wrdqs_lt_half_6$	$Wrdq_lt_half_6$
0x0E8 Rd_oe_end_6	Rd_oe_begin_	_6 Rd_stop_edge_	6 Rd_start_edge_	6 Dqs_oe_end_6	Dqs_oe_begin_6	Dqs_stop_edge_6	Dqs_start_edge_6
0x0F0 Enzi_end_6	Enzi_begin_6	Wrclk_sel_6	Wrdq_clkdelay	_6 Odt_oe_end_6	Odt_oe_begin_6	Odt_stop_edge_6	Odt_start_edge_6
0x0F8 Enzi_stop_6	Enzi_start_6	Dll_oe_shorten_	6Dll_rddqs_n_6	Dll_rddqs_p_6	Dll_wrdqs_6	Dll_wrdata_6	Dll_gate_6
0x100 Dq_oe_end_7	Dq_oe_begin_	_7 Dq_stop_edge_	7Dq_start_edge_	7 Rddata_delay_7	$Rddqs_lt_half_7$	$Wrdqs_lt_half_7$	Wrdq_lt_half_7
0x108 Rd_oe_end_7	Rd_oe_begin_	_7 Rd_stop_edge_	7 Rd_start_edge_	7 Dqs_oe_end_7	Dqs_oe_begin_7	Dqs_stop_edge_7	Dqs_start_edge_7
0x110 Enzi_end_7	Enzi_begin_7	Wrclk_sel_7	Wrdq_clkdelay	_7 Odt_oe_end_7	Odt_oe_begin_7	Odt_stop_edge_7	Odt_start_edge_7
0x118 Enzi_stop_7	Enzi_start_7	Dll_oe_shorten_	7Dll_rddqs_n_7	Dll_rddqs_p_7	Dll_wrdqs_7	Dll_wrdata_7	Dll_gate_7
0x120 Dq_oe_end_8	Dq_oe_begin_	_8 Dq_stop_edge_	8Dq_start_edge_	8 Rddata_delay_8	$Rddqs_lt_half_8$	$Wrdqs_lt_half_8$	$Wrdq_lt_half_8$
0x128 Rd_oe_end_8	Rd_oe_begin_	_8 Rd_stop_edge_	8 Rd_start_edge_	8 Dqs_oe_end_8	Dqs_oe_begin_8	Dqs_stop_edge_8	Dqs_start_edge_8

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

0x130 Enzi_end_8	Enzi_begin_8	Wrelk sel 8	Wrda clkdelay	8 Odt_oe_end_8	Odt_oe_begin_8	Odt_stop_edge_8	Odt_start_edge_8
0x138 Enzi stop 8	Enzi start 8	Dll_oe_shorten_8			Dll_wrdqs_8	Dll_wrdata_8	Dll gate 8
0x140 Pad_ocd_clk	Pad_ocd_ctl	Pad_ocd_dqs	Pad_ocd_dq	Pad_enzi	Dil_widqs_0	Pad_en_ctl	Pad_en_clk
0x148 Pad_adj_code_dqs				ruu_c	Pad_vref_internal		Pad_modezi1v8
0x150	Pad_reset_po	Pad_adj_code_cl		Pad_adj_code_cmd		Pad_adj_code_addr	_
	comp_code_o	Pad_comp_okn		comp_code_i	Pad_comp_mode		Pad_comp_pd
0x160 Rdfifo_empty (RD		Overflow (RD)	1 ac	Dram_init (RD)	Rdfifo_valid	Cmd_timming	Ddr3_mode
0x168 Ba_xor_row_offse		Cmd_delay	Burst_length	Bank / Cs_resync	Cs_zq	Cs_mrs	Cs_enable
0x170 Odt_wr_cs_map	t Addi_IIIIITOI	Odt wr length	Odt_wr_delay	Odt_rd_cs_map	C3_Zq	Odt_rd_length	Odt_rd_delay
0x178		Out_wi_length	Out_wi_uciay	Out_ru_cs_map		Out_ru_lengtii	Out_ru_uciay
0x180 Lvl_resp_0 (RD)	Lyl done (RD)Lvl_ready (RD)		Lvl_cs	tLVL_DELAY	Lvl_req (WR)	Lvl_mode
0x188 Lvl_resp_8 (RD)			Doul room 5 (PD)Lvl_resp_4 (RD)	Lvl_resp_3 (RD)		Lvl_resp_1 (RD)
	Lvi_iesp_/ (ix		. – .– .				
0x190 Cmd_a		Cmd_ba	Cmd_cmd	Cmd_cs	Status_cmd (RD)		Command_mode
0x198		Status_sref (RD)	Sreiresn_req		Pre_all_req (RD)		Mrs_req (WR)
0x1A0 Mr_3_cs_0		Mr_2_cs_0		Mr_1_cs_0		Mr_0_cs_0	
0x1A8 Mr_3_cs_1		Mr_2_cs_1		Mr_1_cs_1		Mr_0_cs_1	
0x1B0 Mr_3_cs_2		Mr_2_cs_2		Mr_1_cs_2		Mr_0_cs_2	
0x1B8 Mr_3_cs_3	CIVE	Mr_2_cs_3	avon	Mr_1_cs_3	470 CM	Mr_0_cs_3	(DDD 1 T.)
0x1C0 tRESET	tCKE	tXPR	tMOD	tZQCL	tZQ_CMD	tWLDQSEN	tRDDATA
0x1C8 tFAW	tRRD	tRCD	tRP	tREF	tRFC	tZQCS	tZQperiod
0x1D0 tODTL	tXSRD	tPHY_RDLAT	tPHY_WRLAT	_		agn	tRAS_min
0x1D8 tXPDLL	tXP	tWR	tRTP	tRL	tWL	tCCD	tWTR
0x1E0 tW2R_diffCS	_	tR2P_sameBA	tW2P_sameBA	_	tR2W_sameBA	tW2R_sameBA	tW2W_sameBA
0x1E8 tR2R_diffCS		tR2P_sameCS	tW2P_sameCS	_	tR2W_sameCS	tW2R_sameCS	tW2W_sameCS
0x1F0 Power_up	Age_step	tCPDED	Cs_map	Bs_config	Nc	Pr_r2w	Placement_en
0x1F8 Hw_pd_3	Hw_pd_2	Hw_pd_1	Hw_pd_0	Credit_16	Credit_32	Credit_64	Selection_en
0x200 Cmdq_age_16		Cmdq_age_32		Cmdq_age_64		tCKESR	tRDPDEN
0x208 Wfifo_age		Rfifo_age		Power_stat3	Power_stat2	Power_stat1	Power_stat0
0x210 Active_age		Cs_place_0	Addr_win_0	Cs_diff_0	Row_diff_0	Ba_diff_0	Col_diff_0
0x218 Fastpd_age		Cs_place_1	Addr_win_1	Cs_diff_1	Row_diff_1	Ba_diff_1	Col_diff_1
0x220 Slowpd_age		Cs_place_2	Addr_win_2	Cs_diff_2	Row_diff_2	Ba_diff_2	Col_diff_2
0x228 Selfref_age		Cs_place_3	Addr_win_3	Cs_diff_3	Row_diff_3	Ba_diff_3	Col_diff_3
0x230 Win_mask_0				Win_base_0			
0x238 Win_mask_1				Win_base_1			
0x240 Win_mask_2				Win_base_2			
0x248 Win_mask_3				Win_base_3			
0x250	Cmd_monitor	Axi_monitor		Ecc_code (RD)	Ecc_enable	Int_vector	Int_enable
0x258							
0x260 Ecc_addr (RD)							
0x268 Ecc_data (RD)							

49

Page 54

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

0x270 Lpbk_ecc_mask (RD) Prbs_init		Lpbk_error (RD)	Prbs_23	Lpbk_start	Lpbk_en
0x278 Lpbk_ecc (RD)	Lpbk_data_mask (RD)	Lpbk_correct (RD)		Lpbk_counter (RD)	
0x280 Lpbk_data_r (RD)					
$0x288 \; Lpbk_data_f (RD)$					
0x290 Axi0_bandwidth_w		$Axi0_bandwidth_r$			
0x298 Axi0_latency_w		Axi0_latency_r			
0x2A0 Axi1_bandwidth_w		$Axi1_bandwidth_r$			
0x2A8 Axi1_latency_w		Axi1_latency_r			
0x2B0 Axi2_bandwidth_w		$Axi2_bandwidth_r$			
0x2B8 Axi2_latency_w		Axi2_latency_r			

0x2C0 Axi3_bandwidth_w Axi3_bandwidth_r 0x2C8 Axi3_latency_w Axi3_latency_r 0x2D0 Axi4 bandwidth w Axi4 bandwidth r 0x2D8 Axi4_latency_w Axi4_latency_r 0x2E0 Cmdq0_bandwidth_w Cmdq0_bandwidth_r 0x2E8 Cmdq0 latency w Cmdq0 latency r 0x2F0 Cmdq1_bandwidth_w Cmdq1 bandwidth r 0x2F8 Cmdq1_latency_w Cmdq1_latency_r 0x300 Cmdq2_bandwidth_w Cmdq2_bandwidth_r 0x308 Cmdq2_latency_w $Cmdq2_latency_r$ 0x310 Cmdq3_bandwidth_w Cmdq3_bandwidth_r 0x318 Cmdq3 latency w Cmdq3 latency r 0x320 tRESYNC_length tRESYNC_shift tRESYNC_max tRESYNC_min Pre_predict tREF low tXS 0x328 tRESYNC_delay Rdbuffer_max Retry tRDQidle 0x330 Stat en Wr_pkg_num Rwq_rb Stb_en Addr_new Rd_fifo_depth Retry_cnt 0x338 0x340 tREFretention Ref_num tREF_IDLE Ref_sch_en 0x348 0x350 Lpbk data en 0x358 Lpbk_ecc_mask_en Lpbk_ecc_en Lpbk_data_mask_en 0x360 Int_ecc_cnt_fatal Int_ecc_cnt_errorEcc_cnt_cs_3 Ecc_cnt_cs_2 Ecc_cnt_cs_1 0x368 0x370 Prior_age3 Prior_age2 Prior_age1 Prior_age_0 0x378 Row_hit_place 0x380 Zq_cnt_1 Zq_cnt_0

Zq_cnt_2

50

0x388 Zq_cnt_3

Page 55

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

9.5 Software Programming Guide

9.5.1 Initial operation

The initialization operation is started when the software writes 1 to the register Init_start (0x018). Set Init_start

Before the signal, all other registers must be set to the correct values.

The DRAM initialization process of software and hardware cooperation is as follows:

- (1) The software writes correct configuration values to all registers, but $Init_start$ (0x018) is in the process Must be kept at 0;
- (2) The software sets Init_start (0x018) to 1, which will lead to the start of hardware initialization;
- (3) The initialization operation starts inside the PHY, and the DLL will try to perform the lock operation. If the lock is successful, you can

Dll_init_done (0x000) reads the corresponding status, and can read and write from Dll_value_ck (0x000)

The number of front lock delay lines; if the lock is not successful, the initialization will not continue (at this time, you can set

 $Dll_bypass~(0x018)~makes~initialization~continue~to~execute);$

- (4) After the DLL is locked (or bypass set), the controller will send the DRAM to the DRAM according to the initialization requirements of the corresponding DRAM Issue the corresponding initialization sequence, such as the corresponding MRS command, ZQCL command, etc.;
- (5) Software can judge whether the memory initialization operation is completed by sampling the Dram_init (0x160) register.

In order to more easily control the reset pin in STR and other states, you can use the reset_ctrl (0x150) register

For special reset pin (DDR_RESETn) control, there are two main control modes:

- (1) In general mode, reset_ctrl [1:0] == 2'b00. In this mode, the reset signal pin behaves as a
 - $Compatible \ with \ general \ control\ modes.\ Connect\ DDR_RESETn\ directly\ to\ the\ corresponding\ pin\ on\ the\ memory\ slot\ on\ the\ motherboard.\ lead$
- When not powered: the pin status is low;
- At power-on: the pin status is low;

The behavior of the feet is:

- When the controller starts to initialize, the pin state is high;
- During normal operation, the pin status is high.

The timing is shown below:

51

Page 56

Godson **3A3000 / 3B3000** Processor User Manual • Volume 1

- (2) Reverse mode, reset_ctrl [1: 0] == 2'b10. In this mode, the reset signal pin is in memory
 - In actual control, the effective level is opposite to the general control mode. So the DDR_RESETn needs to be

Connect to the corresponding pin on the memory slot through the inverter. The behavior of the pins is:

- When not powered: the pin status is low;
- At power-on: the pin status is low;
- When the controller starts to configure: the pin state is high;
- When the controller starts to initialize: the pin state is low;
- Normal operation: The pin state is low.

The timing is shown below:

(3) Reset inhibit mode, pm_reset_ctrl [1: 0] == 2'b01. In this mode, the reset signal pin

During the work of a memory, keep low level. Therefore, the motherboard needs to pass DDR_RESETn through the inverter and the memory

The corresponding pins on the slot are connected. The behavior of the pins is:

Always low

The timing is shown below:

52

Page 57

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

By cooperating with the latter two reset modes, it is possible to realize STR directly using the reset signal of the memory controller control. When the entire system is started from a shutdown state, use the method in (2) to use the memory module to reset normally and start jobs. When the system recovers from the STR, use the method in (3) to reconfigure the memory module so that it does not damage

The original state of the memory module makes it resume normal operation.

9.5.3 Leveling

Leveling operation is in DDR3, used to intelligently configure the phase relationship between various signals in the read and write operations of the memory controller Operation. Usually it includes Write Leveling, Read Leveling and Gate Leveling. In this controller,

Only Write Leveling and Gate Leveling are implemented, Read Leveling is not implemented, the software needs to pass judgment

The correctness of reading and writing to achieve the functions completed by Read Leveling. In addition to the DQS phase operating during Leveling

In addition to the bit and GATE phase, the configuration of writing DQ phase and reading DQ phase can be calculated according to these last confirmed phases

Reset method.

9.5.3.1 Write Leveling

- (1) Write Leveling is used to configure the phase relationship between writing DQS and clock. Software programming needs to refer to The next step.
- (2) Complete the controller initialization, see the previous section;
- (3) Set Dll_wrdqs_x (x = 0... 8) to 0;
- (4) Set Lvl_mode (0x180) to 2'b01;
- $(5) \ Sampling \ the \ Lvl_ready \ (0x180) \ register, \ if \ it \ is \ 1, \ it \ means \ that \ the \ Write \ Leveling \ request \ can \ be \ started;$
- (6) Set Lvl_req (0x180) to 1;
- $(7) \ Sampling \ the \ Lvl_done \ (0x180) \ register, if \ it \ is \ 1, it \ means \ that \ a \ Write \ Leveling \ request \ is \ completed;$

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

- (8) Sampling Lvl_resp_x (0x180, 0x188) register, if it is 0, the corresponding Dll_wrdqs_x [6: 0]
 - Increase 1 and repeat 5-7; if it is 1, it means that the Write Leveling operation has been successful;
- (9) At this time, the value of Dll_wrdqs_x should be the correct setting value.
- (10) At this point, the Write Leveling operation ends. If in this process, Lvl_resp_x is found at the first sampling
 - Is 1, the result is problematic, you should check whether other registers have wrong settings.
 - The memory may include Wrdqs_lt_half, Dqs_start_edge, Dqs_stop_edge, Dqs_oe_begin,
 - Dqs oe end.
- (11) Then set Wrdqs_lt_half_x according to whether the value of Dll_wrdqs_x is less than 0x40;
- (12) Set Dll_wrdata_x according to whether the value of Dll_wrdqs_x is less than 0x20. If Dll_wrdqs_x>

```
0x20, Dll_wrdata_x = Dll_wrdqs_x - 0x20, otherwise Dll_wrdata_x = Dll_wrdqs_x + 0x60;
```

- (13) Set Wrdata_lt_half_x according to whether the value of Dll_wrdata_x is less than 0x40;
- (14) Determine whether the following conditions exist: different Dll_wrdata_x values are near 0x40, and there are edges crossing 0x40

The situation appears (refer to some Dll_wrdata_x is slightly less than 0x40, and some Dll_wrdata_x is slightly greater than

0x40). If this happens, set the corresponding Wrdata_lt_half_x == 0 data set

Write_clk_delay_x is 1. Then reduce the values of tPHY_WRDATA and tRDDATA by 1;

(15) Set Lvl_mode (0x180) to 2'b00 to exit Write Leveling mode;

9.5.3.2 Gate Leveling

Gate Leveling is used to configure the timing of enabling the sampling and reading DQS window in the controller. Refer to the following steps for software programming.

- Complete the controller initialization, see the previous section;
- (2) Complete Write Leveling, see the previous section;
- (3) Set Dll_gate_x (x = 0... 8) to 0;
- (4) Set Lvl_{mode} (0x180) to 2'b10;
- (5) Sampling the Lvl_ready (0x180) register, if it is 1, it means that the Gate Leveling request can be started;
- (6) Set Lvl_req (0x180) to 1;
- (7) Sampling the Lvl_done (0x180) register, if it is 1, it means that a Gate Leveling request is completed;
- (8) Sampling Lvl_resp_x [0] (0x180, 0x188) register. If the first sample finds Lvl_resp_x [0]
 - Is 1, increase the corresponding Dll_gate_x [6: 0] by 1 and repeat 6-8 until the sampling result is 0
 Otherwise, proceed to the next step:
- (9) If the sampling result is 0, increase the corresponding Dll_gate_x [6: 0] by 1 and repeat 6-9; if it is
 - 1, it means that the Gate Leveling operation has been successful;

54

Page 59

Godson ${\bf 3A3000}$ / ${\bf 3B3000}$ Processor User Manual • Volume 1

- $(10) At this point, the Gate Leveling operation ends, and the sum of Dll_gate_x~[6:0] and Dll_wrdata_x~[6:0]$
 - In fact, it is to read the phase relationship of DQS relative to the PHY internal clock. The following is based on the results of Leveling Adjust each parameter.
- $(11)\ If\ the\ sum\ of\ Dll_gate_x\ [6:0]\ and\ Dll_wrdata_x\ [6:0]\ is\ less\ than\ 0x20\ or\ greater\ than\ 0x60,\ then\ t$
 - $Dll_rddqs_lt_halt \ is \ set \ to \ 1. \ Because \ the \ phase \ relationship \ of \ rddqs \ is \ actually \ equal \ to \ the \ read \ DQS \ in \ the \ input$
 - Delay by 1/4 on the basis.
- (12) At this time, if the value of Dll gate x is greater than 0x40, the value of Dll gate x is subtracted from 0x40; otherwise,

Just set it to 0.

(13) After the adjustment, perform two Lvl_req operations respectively, and observe Lvl_resp_x [7: 5] and

The value of Lvl_resp_x [4: 2] changes. If each increase is Burst_length / 2, continue to step 13

Operation; if not 4, you may need to add or subtract one to Rd_oe_begin_x

Burst_length / 2, it is likely that some fine-tuning of the value of Dll_gate_x

(14) Set Lvl_mode (0x180) to 2'b00 to exit Gate Leveling mode;

9.5.4 Initiate MRS commands separately

The order of MRS commands issued by the memory controller to the memory are:

```
MR2_CS0, MR2_CS1, MR2_CS2, MR2_CS3,
```

MR3_CS0, MR3_CS1, MR3_CS2, MR3_CS3,

MR1_CS0, MR1_CS1, MR1_CS2, MR1_CS3,

MR0_CS0, MR1_CS1, MR1_CS2, MR1_CS3.

Among them, whether the MRS command corresponding to CS is valid or not is determined by Cs_mrs, and only the corresponding chip select on Cs_mrs

Is valid, the MRS command will be issued to the DRAM. The corresponding value of each MR is determined by the register Mr * _cs *.

These values are also used for MRS commands when initializing memory.

The specific operations are as follows:

- (1) Set the registers Cs_mrs (0x168) and Mr * _cs * (0x190 0x1B8) to the correct values;
- (2) Set Command_mode (0x190) to 1 to make the controller enter the command sending mode;
- (3) Sampling Status_cmd (0x190), if it is 1, it means the controller has entered command sending mode Go to the next step, if it is 0, you need to continue to wait;
- (4) Write Mrs_req (0x198) to 1, send MRS command to DRAM;
- (5) Sampling Mrs_done (0x198), if it is 1, it means that the MRS command has been sent and can be exited, such as

55

Page 60

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

If it is 0, you need to continue to wait;

(6) Set Command_mode (0x190) to 0 to make the controller exit the command sending mode.

9.5.5 Any operation control bus

The memory controller can send any command combination to the DRAM through the command sending mode, and the software can set Cmd_cs,

Cmd_cmd, Cmd_ba, Cmd_a (0x168), issued to DRAM in command sending mode.

The specific operations are as follows:

- (1) Set the registers Cmd_cs, Cmd_cmd, Cmd_ba, Cmd_a (0x190) to the correct values;
- (2) Set Command_mode (0x190) to 1 to make the controller enter the command sending mode;
- $(3) Sampling \ Status_cmd \ (0x190), if it is 1, it means the controller has entered command sending mode$

Go to the next step, if it is 0, you need to continue to wait;

- (4) Write Cmd_req (0x190) to 1 to send commands to DRAM;
- (5) Set Command_mode (0x190) to 0 to make the controller exit the command sending mode.

9.5.6 Self-loop test mode control

The self-loop test mode can be used in test mode or normal function mode, for this reason, the memory controller

Two sets of independent control interfaces are realized respectively, one set is used for direct control by the test port in the test mode, and the other set is used for

In the normal function mode, the configuration enabling test is performed by the register configuration module.

The multiplexing of these two sets of interfaces is controlled by the port test_phy. When test_phy is valid, the controller 's

The test_* port is controlled, and the self-test at this time is completely controlled by the hardware; when test_phy is invalid, use software programming

The parameters of pm_* are controlled. The specific signal meaning of using the test port can refer to the part of the same name in the register parameters.

The two sets of interfaces are basically the same in terms of control parameters, only the access points are different. Here we introduce the

- 制 方法。 Manufacturing methods. The specific operations are as follows:
 - (1) Set all the parameters of the memory controller correctly;
 - (2) Set the register Lpbk en (0x270) to 1;
 - (3) Set the register Init_start (0x018) to 1;
 - (4) The sampling register Dll_init_done (0x000), if this value is 1, it means that the DLL is locked and can

Proceed to the next operation; if this value is 0, you need to continue to wait; (when using the test port for control

When you do n't see the output of this register, you do n't need to sample this register, but only need to

56

Page 61

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

Wait here for a certain period of time to ensure that the DLL is locked, and then proceed to the next step);

(5) Set the register Lpbk_start (0x270) to 1; at this time, the self-loop test is officially started.

So far, since the loop test has started, the software needs to constantly check whether there is an error. The specific operations are as follows:

(6) Sampling register Lpbk_error (0x270), if this value is 1, it means there is an error, at this time you can pass

Observe the first error through Lpbk_ * and other observation registers (0x270, 0x278, 0x280, 0x288)

Incorrect data and correct data; if this value is 0, it means that no data error has occurred.

9.5.7 ECC function usage control

The ECC function is only available in 64-bit mode.

Ecc enable includes the following 4 control bits:

 $\label{lem:cc_enable} \ \ Ecc_enable\ \ [0]\ \ controls\ \ whether\ the\ ECC\ \ function\ \ is\ enabled. \ Only\ \ when\ \ this\ \ valid\ \ bit\ is\ set,\ the\ \ ECC\ \ function\ \ will\ \ be\ \ enabled.$

Ecc_enable [1] controls whether an error is reported through the read response path inside the processor, so that two ECC bits appear

Wrong read access can immediately lead to abnormal processor cores.

Ecc_enable [2] controls whether an error is reported through the write response path inside the processor, so that two ECC bits appear

Wrong write access (write after read) can immediately cause an exception to the processor core.

Ecc_enable [3] controls the trigger timing of recording error information in the register. These error messages are performed without software

 $In the case of processing, it will not be triggered continuously, and only the information of the first error will be recorded. This information includes {\tt Ecc_code}, {\tt Code}, {\tt Cod$

Ecc_addr, Ecc_data. When Ecc_enable [3] is 0, as long as an ECC error occurs (including 1 bit error

And 2 bit error), this record will be triggered, when Ecc_enable [3] is 1, only ECC two bits appear

Wrong, this record will be triggered. And this "first time" refers to that the corresponding bit of the interrupt vector register is set. Just

That is, the access that caused the interruption was recorded.

In addition, ECC errors can also be notified to the processor core through interrupts. This interrupt is entered via Int_enable

行控制。 Line control. The interrupt includes two vectors, Int_vector [0] indicates that an ECC error (including 1 bit error and 2 bit error) occurs,

Int_vector [1] indicates that two ECC errors have occurred. Int_vector is cleared by writing 1 to the corresponding bit.

57

Page 62

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

10 HyperTransport controller

 $In\ Loongson\ 3A3000\ /\ 3B3000,\ the\ HyperTransport\ bus\ is\ used\ to\ connect\ external\ devices\ and\ interconnect\ multiple\ chipselfor an external\ devices\ and\ interconnect\ multiple\ chipselfor\ devices\ dev$

When used for peripheral connection, the user program can freely choose whether to support IO Cache consistency (through the address window Uncache

Set, see section 10.5.13 for details): When configured to support Cache consistency mode, IO device accesses internal DMA

Transparent to the Cache level, that is, the consistency is automatically maintained by the hardware, without the need for software to maintain it through the program Cache instructi

When the HyperTransport bus is used for multi-chip interconnection, the HT0 controller (the initial address is

 $0x0C00_0000_0000 - 0x0DFF_FFFF_FFFF) \ can \ support \ the \ consistent \ transmission \ of \ Cache \ between \ chips \ through \ pin \ configuration,$

The HT1 controller (the initial address is $0x0E00_0000_0000 - 0x0FFF_FFFF_FFFF$) can be supported by software configuration

For consistent maintenance of Cache between chips, see section 10.7.

The HyperTransport controller supports up to 16-bit bidirectional width and 2.0GHz operating frequency. At the beginning of the system automatically

After initializing the connection, the user program can modify the corresponding configuration register in the protocol to achieve the width and running frequency.

Changes, and re-initialize, see section 10.1 for specific methods.

The main features of Loongson 3A3000 / 3B3000 HyperTransport controller are as follows:

- Support HT1.0 / HT3.0 protocol
- Support 200/400/800/1600 / 2000MHz operating frequency
- HT1.0 supports 8-bit width
- HT3.0 supports 8/16 bit width
- Each HT controller (HT0 / HT1) can be configured as two 8-bit HT controllers
- The direction of bus control signals (including PowerOK, Rstn, LDT_Stopn) can be configured
- \bullet Peripheral DMA space Cache / Uncache can be configured
- It can be configured as Cache consistency mode when used for multi-chip interconnection

10.1 HyperTransport hardware setup and initialization

HyperTransport bus is composed of transmission signal bus and control signal pins, etc. The following table gives

HyperTransport bus related pins and their functional description.

Table 10-1 Hype T ansp Yaotong bus related pin signals

in name descriptio

HT0_8x2 Bus width configuration 1: Configure the 16-bit HyperTransport bus as two independent 8-bit buses,

Page 63

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

Controlled by two independent controllers, the address space is divided into

HT0_Lo: address [40] = 0;

HT0_Hi: address [40] = 1;

0: Use the 16-bit HyperTransport bus as a 16-bit bus, by

HT0_Lo control, the address space is the address of HT0_Lo, namely address [40]

= 0; HT0_Hi all signals are invalid.

HT0_Lo_mode Master mode

1: Set HT0_Lo as the master mode, in this mode, the bus control signal, etc.

Driven by HT0_Lo, these control signals include HT0_Lo_Powerok,

 $HT0_Lo_Rstn, HT0_Lo_Ldt_Stopn.$ In this mode, these controls

The control signal can also be bidirectionally driven. At the same time this pin determines (negative) registration

The initial value of the device "Act as Slave", when this register is 0,

The Bridge bit in the packet on the HyperTransport bus is 1, otherwise it is 0.

In addition, when this register is 0, if the HyperTransport bus

When the requested address does not hit the receiving window of the controller, it will be regarded as P2P.

Seek to send back to the bus again, if this register is 1, there is no hit, then make

Respond to bad requests.

0: Set HT0_Lo to slave mode, in this mode, bus control signals, etc.

Driven by the opposite device, these control signals include HTO_Lo_Powerok,

 $HT0_Lo_Rstn, HT0_Lo_Ldt_Stopn. \ In \ this \ mode, \ these \ controls$

The control signal is driven by the other device. If it is not driven correctly, the

Does not work correctly.

HT0_Lo_Powerok Bus Powerok

HyperTransport bus Powerok signal,

When HT0_Lo_Mode is 1, it is controlled by HT0_Lo;

When HT0_Lo_Mode is 0, it is controlled by the opposite device.

HT0_Lo_Rstn

HyperTransport bus Rstn signal,

When HT0_Lo_Mode is 1, it is controlled by HT0_Lo;

When $HT0_Lo_Mode$ is 0, it is controlled by the opposite device.

HT0_Lo_Ldt_Stopn Bus Ldt Stopn

Bus Rstn

HyperTransport bus Ldt_Stopn signal,

HyperTransport bus Ldt_Reqn signal,

When HT0_Lo_Mode is 1, it is controlled by HT0_Lo;

When HT0_Lo_Mode is 0, it is controlled by the opposite device.

HT0_Lo_Ldt_Reqn Bus Ldt_Reqn

HT0_Hi_mode Master mode

1: Set HT0_Hi to master mode, in this mode, bus control signals, etc.

Driven by HT0_Hi, these control signals include HT0_Hi_Powerok,

HT0_Hi_Rstn, HT0_Hi_Ldt_Stopn. In this mode, these controls

The control signal can also be bidirectionally driven. At the same time this pin determines (negative) registration

The initial value of the device "Act as Slave", when this register is 0,

The Bridge bit in the packet on the HyperTransport bus is 1, otherwise it is 0.

In addition, when this register is 0, if the HyperTransport bus

When the requested address does not hit the receiving window of the controller, it will be regarded as P2P.

Seek to send back to the bus again, if this register is 1, there is no hit, then make

Respond to bad requests.

0: Set HT0_Hi to slave mode, in this mode, bus control signals, etc.

Driven by the counterpart device, these control signals include $HT0_Hi_Powerok,$

59

Page 64

Godson ${\bf 3A3000}$ / ${\bf 3B3000}$ Processor User Manual • Volume 1

 $HT0_Hi_Rstn, HT0_Hi_Ldt_Stopn.$ In this mode, these controls

The control signal is driven by the other device. If it is not driven correctly, the

Does not work correctly.

HT0_Hi_Powerok Bus Powerok

HyperTransport bus Powerok signal,

When HT0_Lo_Mode is 1, it is controlled by HT0_Hi;

When HT0_Lo_Mode is 0, it is controlled by the opposite device.

When HT0_8x2 is 1, control the upper 8-bit bus;

When HT0_8x2 is 0, it is invalid.

HT0_Hi_Rstn	Bus Rstn	HyperTransport bus Rstn signal,
		When HT0_Lo_Mode is 1, it is controlled by HT0_Hi;
		When HT0_Lo_Mode is 0, it is controlled by the opposite device.
		When HT0_8x2 is 1, control the upper 8-bit bus;
		When HT0_8x2 is 0, it is invalid.
HT0_Hi_Ldt_Stopn	Bus Ldt_Stopn	HyperTransport bus Ldt_Stopn signal,
		When HT0_Lo_Mode is 1, it is controlled by HT0_Hi;
		When HT0_Lo_Mode is 0, it is controlled by the opposite device.
		When HT0_8x2 is 1, control the upper 8-bit bus;
		When HT0_8x2 is 0, it is invalid.
HT0_Hi_Ldt_Reqn	Bus Ldt_Reqn	HyperTransport bus Ldt_Reqn signal,
		When HT0_8x2 is 1, control the upper 8-bit bus;
		When HT0_8x2 is 0, it is invalid.
HT0_Rx_CLKp [1: 0]	CLK [1: 0]	HyperTransport bus CLK signal
HT0_Rx_CLKn [1: 0]		When HT0_8x2 is 1, CLK [1] is controlled by HT0_Hi
HT0_Tx_CLKp [1: 0]		CLK [0] is controlled by HT0_Lo
HT0_Tx_CLKp [1: 0]		When HT0_8x2 is 0, CLK [1: 0] is controlled by HT0_Lo
HT0_Rx_CTLp [1: 0]	CTL [1: 0]	HyperTransport bus CTL signal
HT0_Rx_CTLn [1: 0]		When HT0_8x2 is 1, CTL [1] is controlled by HT0_Hi
HT0_Tx_CTLp [1: 0]		CTL [0] is controlled by HT0_Lo
HT0_Tx_CTLn [1: 0]		When HT0_8x2 is 0, CTL [1] is invalid
		CTL [0] is controlled by HT0_Lo
HT0_Rx_CADp [15: 0]	CAD [15: 0]	HyperTransport bus CAD signal
HT0_Rx_CADn [15: 0]		When HT0_8x2 is 1, CAD [15: 8] is controlled by HT0_Hi
HT0_Tx_CADp [15: 0]		CAD [7: 0] is controlled by HT0_Lo
HT0_Tx_CADn [15: 0]		When HT0_8x2 is 0, CAD [15: 0] is controlled by HT0_Lo

The initialization of HyperTransport starts automatically after each reset is completed, and the HyperTransport bus after a cold start

It will automatically work at the lowest frequency (200MHz) and the smallest width (8bit), and try to initiate a bus initialization handshake. initialization

Whether it is in the completed state can be read from the register "Init Complete" (see Section 10.5.2). After initialization,

The width of the bus can be read from the registers "Link Width Out" and "Link Width In" (see Section 10.5.2).

After initialization, the user can rewrite the registers "Link Width Out", "Link Width In" and "Link

Freq ", at the same time, you need to configure the corresponding register of the other device. After the configuration is completed, you need to warm reset the bus or pass 60

Page 65

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

The "HT_Ldt_Stopn" signal performs a reinitialization operation so that the rewritten value of the register takes effect. Reinitialized

After completion, the HyperTransport bus will work at the new frequency and width. It should be noted that both ends of HyperTransport

The configuration of the device needs to be one-to-one, otherwise the HyperTransport interface will not work properly.

10.2 HyperTransport protocol support

Godson 3A3000 / 3B3000's HyperTransport bus supports most commands in version 1.03 / 3.0 protocol, and

In addition, some extended instructions are added to the extended consistency protocol that supports multi-chip interconnection. In the above two modes,

The commands that the HyperTransport receiver can receive are shown in the following table. It should be noted that HyperTransport is not supported

Bus atomic operation commands.

Table 10-2 Hype, T, and ansp commands that can be received by the receiving end

coding	aisle	command	Standard mode	Extension (consistency)
000000	-	NOP	Empty package or flow co	ontrol
000001	NPC	FLUSH	No operation	
x01xxx	NPC	Write	bit 5: 0-Nonposted	bit 5: Must be 1, POSTED
	or		1-Posted	
	PC		bit 2: 0 – Byte	bit 2: 0 – Byte

01xxxx	NPC	Read	Doubleword bit 1: Don't Care bit 0: Don't Care bit 3: Don't Care bit 2: 0 - Byte 1 - Doubleword	1 – Doubleword bit 1: Don't Care bit 0: must be 1 bit 3: Don't Care bit 2: 0 – Byte 1 – Doubleword bit 1: Don't Care
	_		bit 1: Don't Care bit 0: Don't Care	bit 0: must be 1
110000	R	RdRespons e	Read operation returns	
110011	R	TgtDone	Write operation returns	
110100	PC	WrCoherent		Write command extension
110101	PC	WrAddr		Write address extension
111000	R	RespCohere nt		Read response extension
111001	NPC	RdCoherent		Read command extension
111010	PC	Broadcast	No operation	
111011	NPC	RdAddr		Read address extension
111100	PC	FENCE	Guaranteed order relationship)
111111	-	Sync / Error	Sync / Error	

For the sending end, the commands sent out in the two modes are shown in the following table.

Table 10-3 Commands to be sent out in two modes

coding	aisle	command	Standard mode	Extension (consistency)
000000	-	NOP	Empty package or flow control	
x01x0x	NPC or	Write	bit 5: 0-Nonposted 1-Posted	bit 5: Must be 1, POSTED
61				

Page 66

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

	PC		bit 2: 0 – Byte 1 – Doubleword bit 0: must be 0 bit 2: 0 – Byte	bit 2: 0 – Byte 1 – Doubleword bit 0: must be 1 bit 2: 0 – Byte
010x0x	NPC	Read	1 – Doubleword	1 – Doubleword
			bit 0: Don't Care	bit 0: must be 1
110000	R	RdResponse	Read operation returns	
110011	R	TgtDone	Write operation returns	
110100	PC	WrCoherent		Write command extension
110101	PC	WrAddr		Write address extension
111000	R	RespCoherent		Read response extension
111001	NPC	RdCoherent		Read command extension
111011	NPC	RdAddr		Read address extension
111111	-	Sync / Error	Will only forward	

10.3 HyperTransport interrupt support

The HyperTransport controller provides 256 interrupt vectors, which can support Fix, Arbiter and other types of interrupts.

Automatically write to the interrupt register, and perform interrupt notification to the system interrupt controller according to the setting of the interrupt mask register. With

For the body's interrupt control, please see the interrupt control register set in Section 10.5.8.

In addition, the controller provides special support for PIC interrupts to speed up this type of interrupt processing.

 $A \ typical \ PIC \ interrupt \ is \ completed \ by \ the \ following \ steps: \\ \textcircled{1} \ The \ PIC \ controller \ sends \ a \ PIC \ interrupt \ request \ to \ the \ system; \\ \textcircled{2} \ The \ system; \\ \textcircled{2} \ The \ system; \\ \textcircled{3} \ The \ system; \\ \textcircled{4} \ The \ system; \\ T$

Send the interrupt vector query to the PIC controller; ③ The PIC controller sends the interrupt vector number to the system; ④ The system clears the PIC controller

The corresponding interrupt on the controller. Only after the above four steps are completed, the PIC controller will issue the next interrupt to the system. for

Loongson 3A3000 / 3B3000 HyperTransport controller will automatically perform the first three steps of processing and interrupt the PIC to

Write the corresponding position in the 256 interrupt vectors. After the software system has processed the interrupt, it needs to go to step 4.

Management, that is, to issue a clear interrupt to the PIC controller. After that, the process of the next interrupt is started.

10.4 HyperTransport address window

10.4.1 HyperTransport space

In the Loongson 3A3000 / 3B3000 processor, the default address windows of the four HyperTransport interfaces are distributed as follows:

Table 10- 4 Address window distribution of the default 4 Hype, T, and Ansp interfaces

0x0C00_0000_0000	0x0CFF_FFFF_FFFF	1 Tbytes	HT0_LO window
Base address	End address	size	definition

62

Page 67

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

0x0D00_0000_0000	0x0DFF_FFFF_FFFF	1 Tbytes	HT0_HI window
0x0E00_0000_0000	0x0EFF_FFFF_FFFF	1 Tbytes	HT1_LO window
0x0F00_0000_0000	0x0FFF_FFFF_FFFF	1 Tbytes	HT1_HI window

By default (not configured separately for the system address window), the software

HyperTransport interface to access, in addition, the software can also configure the address window on the crossbar

Implement access to it with other address spaces (see section 2.5 for details). 40 inside each HyperTransport interface

The address window distribution of the bit address space is shown in the following table.

Table 10-5 Address window distribution inside the interface of Loongson No. 3 processor Hype-T-Tan-Ansp

Base address	End address	size	definition
$0x00_0000_0000$	0xFC_FFFF_FFFF	1012 Gbytes	MEM space
0xFD_0000_0000	0xFD_F7FF_FFFF	3968 Mbytes	Keep
0xFD_F800_0000	0xFD_F8FF_FFFF	16 Mbytes	Interrupt
0xFD_F900_0000	0xFD_F90F_FFFF	1 Mbyte	PIC interrupt response
0xFD_F910_0000	0xFD_F91F_FFFF	1 Mbyte	system message
0xFD_F920_0000	0xFD_FAFF_FFFF	30 Mbytes	Keep
0xFD_FB00_0000	0xFD_FBFF_FFFF	16 Mbytes	HT controller configuration space
0xFD_FC00_0000	0xFD_FDFF_FFFF	32 Mbytes	I / O space
0xFD_FE00_0000	0xFD_FFFF_FFFF	32 Mbytes	HT bus configuration space
0xFE_0000_0000	0xFF_FFFF_FFFF	8 Gbytes	Keep

10.4.2 Internal window configuration of HyperTransport controller

 $Loongson\ 3A3000\ /\ 3B3000\ processor\ provides\ a\ variety\ of\ rich\ address\ windows\ in\ HyperTransport$

For user use, the functions and functions of these address windows are described in the following table.

Table~10-6~Address~window~provided~in~the~interface~of~Loongson~3A3000~/~3B3000~processor~Hype,~T,~ansp,~Yaot~Address~window~provided~in~the~interface~of~Loongson~3A3000~/~3B3000~processor~Hype,~T,~ansp,~Yaot~Address~window~provided~in~the~interface~of~Loongson~3A3000~/~3B3000~processor~Hype,~T,~ansp,~Yaot~Address~window~provided~in~the~interface~of~Loongson~3A3000~/~3B3000~processor~Hype,~T,~ansp,~Yaot~Address~window~provided~in~the~interface~of~Loongson~3A3000~/~3B3000~processor~Hype,~T,~ansp,~Yaot~Address~window~provided~in~the~interface~of~Loongson~address~window~provided~in~the~interface~of~Loongson~address~window~processor~hype,~T,~ansp,~Yaot~hype,~T,~ansp,~Yaot~hype,~T,~ansp,~Yaot~hype,~T,~ansp,~Yaot~hype,~T,~ansp,~Yaot~hype,~T,~ansp,~Yaot~hype,~T,~ansp,~Yaot~hype,~T,~ansp,~Yaot~hype,~T,~Address~window~proce

Address window Number of	of windowsept bus	effect	Remarks	
Receive window (See window configuration Section 10.5.7)	HyperTransport	Determine whether to HyperTransport Visits sent on the bus ask.	When in main bridge mode (ie configuration register Act_as_slave is 0), only falling Access in these address windows will be included The local bus responds, other visits will be Think it is P2P access and send it back HyperTransport bus; in the design When in standby mode (that is, in the configuration register act_as_slave is 1), only falls here Access in these address windows will be Received and processed by the line, other visits will be According to the agreement to return an error.	
Post window (See window configuration 10.5.11)	Internal bus		inflactunial write visits that fall in these address spaces regutestion will be as Post Write. Post Write: HyperTransport protocol In this kind of write access does not need to wait for writing In response, that is, the controller sends to the bus	

Page 68

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

After this write access will enter the processor Row write access complete response

When the processor cores are executed out of order, the total

Issue some guess read access or fetch Access, this access for some IO space

Prefetch window

(See window configuration 10.5.12) Internal bus Determine whether to redeise wrong. By default, this
Department's Cache acesses to the HT controller will return directly without Visit the HyperTransport bus

ask. Through these windows you can enable This type of access to the HyperTransport bus

Loongson 3A3000 / 3B3000 processor Department of IO DMA access, in the case of

Determine whether to HyperTransport Access via Cache SCache judges that it is a hit, thus maintaining it Access operations on the Occanisatency information. And through these windows HyperTransport (See window configuration 10.5.13)

The configuration can make hits in these windows For internal

Uncache access Access directly in the way of Uncache

Ask about memory without maintaining its IO through hardware

Consistency information.

10.5 Configuration Register

Uncache window

The configuration register module is mainly used to control the configuration register access from the AXI SLAVE terminal or the HT RECEIVER terminal.

Ask for requests, perform external interrupt processing, and save a large number of configuration files that can be seen by the software for controlling the various working modes of Memory.

First, the access and storage of configuration registers used to control various behaviors of the HT controller are in this module

 $The access offset address is 0xFD_FB00_0000 \ to \ 0xFD_FBFF_FFFF \ on the \ HT \ controller \ side. \ All \ software in the \ HT \ controller \ side.$

The visible registers of the software are shown in the following table:

Table 10-7 Software visible register list

Offset address	name	description
0x30		
0x34		
0x38		
0x3c	Bridge Control	Bus Reset Control
0x40		Command, Capabilities Pointer, Capability ID
0x44		Link Config, Link Control
0x48	Capability Registers	Revision ID, Link Freq, Link Error, Link Freq Cap
0x4c		Feature Capability
0x50	Custom register	MISC
0x54	Receive Diagnostic Register	Used to diagnose the signal sampled at the receiving end
0x58	Interrupt routing mode selection	n registresponding to 3 interrupt routing methods
0x5c	Receive buffer register	
0x60	Receive address window	HT bus receive address window 0 enable (external access)
0x64	Configuration register	HT bus receive address window 0 base address (external access)

Page 69

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

HT bus receive address window 1 enable (external access)
HT bus receive address window 1 base address (external access)
HT bus receive address window 2 enable (external access)
HT bus receive address window 2 base address (external access)
HT bus receive address window 3 enable (external access)
HT bus receive address window 3 base address (external access)
HT bus receive address window 4 is enabled (external access)

	I	Loongson 3A3000 / 3B3000 Processor User Manual
0x154		HT bus receive address window 4 base address (external access)
0x80		HT bus interrupt vector register [31: 0]
0x84		HT Bus Interrupt Vector Register [63:32]
0x88		HT Bus Interrupt Vector Register [95:64]
0x8c		HT bus interrupt vector register [127: 96]
0x90	Interrupt vector register	HT bus interrupt vector register [159: 128]
0x94		HT Bus Interrupt Vector Register [191: 160]
0x98		HT Bus Interrupt Vector Register [223: 192]
0x9C		HT Bus Interrupt Vector Register [255: 224]
0xA0		HT bus interrupt enable register [31: 0]
0xA4		HT bus interrupt enable register [63:32]
0xA8		HT bus interrupt enable register [95:64]
0xAC		HT bus interrupt enable register [127: 96]
0xB0	Interrupt enable register	HT bus interrupt enable register [159: 128]
0xB4		HT bus interrupt enable register [191: 160]
0xB8		HT bus interrupt enable register [223: 192]
0xBC		HT bus interrupt enable register [255: 224]
0xC0		Interrupt Capability
0xC4	Interrupt Discovery &	DataPort
0xC8	Configuration	IntrInfo [31: 0]
0xCC		IntrInfo [63:32]
0xD0		HT bus POST address window 0 enable (internal access)
0xD4	POST address window	HT bus POST address window 0 base address (internal access)
0xD8	Configuration register	HT bus POST address window 1 enable (internal access)
0xDC		HT bus POST address window 1 base address (internal access)
0xE0		HT bus can be prefetched address window 0 enabled (internal access)
0xE4	Prefetchable address window	HT bus prefetchable address window 0 base address (internal access)
0xE8	Configuration register	HT bus prefetch address window 1 enabled (internal access)
0xEC		Ht bus prefetchable address window 1 base address (internal access)
0xF0		HT bus Uncache address window 0 enable (external access)
0xF4		HT bus Uncache address window 0 base address (external access)
0xF8		HT bus Uncache address window 1 is enabled (external access)
0xFC	Uncache address window	HT bus Uncache address window 1 base address (external access)
0x168	Configuration register	HT bus Uncache address window 2 enable (external access)
0x16C		HT bus Uncache address window 2 base address (external access)
0x170		HT bus Uncache address window 3 enable (external access)
0x174		HT bus Uncache address window 3 base address (external access)
0x158		HT bus P2P address window 0 enable (external access)
0x15C		HT bus P2P address window 0 base address (external access)
0x160	P2P address window configuration	On presides P2P address window 1 enable (external access)
0x164		HT bus P2P address window 1 base address (external access)
0x100	Sender buffer size register	Sender command buffer size register

Page 70

Godson ${\bf 3A3000}$ / ${\bf 3B3000}$ Processor User Manual • Volume 1

0x104		Data buffer size register at the sending end
0x108	Buffer debug register on the send	in Used to manually set the size of the sender buffer (for debugging)
0x10C		isters for impedance PHY Configuration of the sending and receiving ends
0x110	Revision ID register	Used to configure the controller version
0x118	Error Retry Control Register	Retry Count Rollover, Short Retry Attempts
0x11C	Retry Count register	Used for error retransmission count in HyerTransport 3.0 mode
0x130	Link Train Register	HyperTransport 3.0 link initialization and link training control
0x134	Training 0 timeout short count se	nd Jsed for Training 0 short timer timeout threshold configuration
0x138	Register Training 0 Overtime long count	Used for Training 0 long count timeout threshold configuration
0x13C	Register Training 1 count register	Hard for Training 1 and the shall and and a
	Training 1 count register	Used for Training 1 count threshold configuration
0x140	<u>Training 2 count register</u>	For Training 2 count threshold configuration
0x144	Training 3 count register	Used for Training 3 count threshold configuration
0x178	Software frequency configuration	rBealize the frequency switching of the controller in the working process
0x17C	PHY configuration register	Used to configure PHY related physical parameters
0x180	Link initialization debug register	Used to ignore the PHY CDR lock signal and customize the waiting time
0x184	LDT debug register	It is used to configure the time from invalid LDT signal to link initialization

The specific meaning of each register is as follows:

Offset: 0x3C
Reset value: 0x00000000
name: Bus Reset Control

Table 10- 8 Bus Reset Register Definition

Bit field Bit field name Bit width reset value Visit description

31:23 Reserved 4 0x0 Keep

twenty twoReset 12 0x0 R/W Bus reset control:

0-> 1: Set HT_RSTn to 0, reset the bus

1-> 0: HT_RSTn is set to 1, the bus is reset

21: 0 Reserved 5 0x0 Keep

10.5.2 Capability Registers

Offset: 0x40

Reset value: 0x20010008

name: Command, Capabilities Pointer, Capability ID

Table 10-9 C Yao mmand, Capab lt es P Yao nte, Capab l ty ID register definition

Bit field Bit field name Bit width reset value Visit description

31:29 HOST / Sec 3 0x1 R Command format is HOST / Sec

28:27 Reserved 2 0x0 R Keep

66

Page 71

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

26	Act as Slave	1	0x0	R/W	HOST / SLAVE mode
			/ 0x1		The initial value is determined by the pin HOSTMODE
					HOSTMODE pull-up: 0
					HOSTMODE drop-down: 1
25	Reserved	1	0x0		Keep
twenty fo	oulHost Hide	1	0x0	Whethe	er R / W prohibits register access from HT bus
twenty th	reReserved	1	0x0		Keep
22:18	Unit ID	5	0x0	R/W	In HOST mode: can be used to record the number of IDs used
					In SLAVE mode: record your own Unit ID
17	Double Ended	1	0x0	R	No dual HOST mode
16	Warm Reset	1	0x1	R	Bridge Control uses warm reset in reset
15: 8	Capabilities Pointer 8		0xa0	R	Next Cap register offset address

0x08

R

Offset: 0x44

Reset value: 0x00112000

Capability ID

7: 0

name: Link Config, Link Control

Table 10-10 L nk C Yao nf g, L nk C Yao nt Ya Yao l Register definition

Bit field	Bit field name	Bit wid	th reset value	Visit de	escription
31	ht_phase_select	1	0x0 Phase selection enable		Phase selection enable
31	_disable	1	OAO		0: enable phase selection function
					1: Disable the phase selection function
30:28	Link Width Out	3	0x0	R/W	Sender width The value after cold reset is the maximum width of the current connection, write this post
					The value of the register will be the next warm reset or HT
					Effective after Disconnect
					000: 8-bit mode

HyperTransport capability ID

001: 16-bit mode

27 Reserved 1 0x0 Keep

26:24	Link Width In	3	0x0	R/W	Receiver width
					The value after cold reset is the maximum width of the current connection, write this post $% \left(1\right) =\left(1\right) \left(1$
					The value of the register will be the next warm reset or HT
					Effective after Disconnect
twenty th	reĐw Fc out	1	0x0	R	The sender does not support double-word flow control
22:20	Max Link Width out 3		0x1	R	The maximum width of the sending end of the HT bus: 16bits
19	Dw Fc In	1	0x0	R	The receiver does not support double-word flow control

67

Page 72

Godson **3A3000** / **3B3000** Processor User Manual • Volume 1

18:16	Max Link Width In	3	0x1	R Maximum width of HT bus receiving end: 16bits
15:14	Reserved	2	0x0	Keep
13	LDTSTOP#	1	0x1	R / W when When the HT bus enters the HT Disconnect state, is it off
	Tristate Enable			Close HT PHY
				1: Close
				0: do not close
12:10	Reserved	3	0x0	Keep
9	CRC Error (hi)	1	0x0	R / W CRC error in the upper 8 bits
8	CRC Error (lo)	1	0x0	CRC error occurred in the lower 8 bits of R / W
7	Trans off	1	0x0	R / W HT PHY shutdown control
				When in 16-bit bus operating mode
				1: Turn off high / low 8-bit HT PHY
				0: enable the low 8-bit HT PHY,
				The upper 8-bit HT PHY is controlled by bit 0
6	End of Chain	0	0x0	R HT bus end
5	Init Complete	1	0x0	R Whether the HT bus initialization is completed
4	Link Fail	1	0x0	R Indicates connection failure
3: 2	Reserved	2	0x0	Keep
1	CRC Flood Enable 1		0x0	R / W Whether to flood the HT bus when a CRC error occurs
0	Trans off (hi)	1	0x0	R/W use $$W$$ When the 16-bit HT bus runs an 8-bit protocol,
				High 8-bit PHY shutdown control
				1: Turn off the upper 8-bit HT PHY
				0 11 1: 1 0 1: ITE DITY

0: enable high 8-bit HT PHY

Offset: 0x48 Reset value:

Revision ID, Link Freq, Link Error, Link Freq Cap name:

Table 10-11 Rev s Yao n ID, L nk F eq, L nk E 耀 偡, L nk F eq eq Cap Register definition

Bit field	Bit field name	Bit widt	h reset value	Visit de	scription
31:16	Link Freq Cap	16	0x0025	R	Supported HT bus frequency, generated according to external PLL settings Different values
15:14	Reserved	2	0x0		Keep
13	Over Flow Error	1	0x0	R	HT bus packet overflow
12	Protocol Error	1	0x0	R/W	Agreement error,
					Refers to an unrecognized command received on the HT bus

Page 73

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

HT bus operating frequency Link Freq 0x0

The value written to this register will be the next warm reset or HT

Effective after Disconnect

0000: 200M 0010: 400M

0101: 800M

7: 0 Revision ID 0x23 R / W version number: 1.03

Offset: 0x4C 0x00000002 Reset value: Feature Capability name:

Table 10-12 Definition of Featu e Capab l ty register

Bit field	Bit field name	Bit widt	h reset value	Visit de	scription
31: 9	Reserved	25	0x0		Keep
8	Extended Register 1		0x0	R	No
7: 4	Reserved	3	0x0		Keep
3	Extended CTL Time 1		0x0	R	No need
2	CRC Test Mode	1	0x0	R	not support
1	LDTSTOP#	1	0x1	R	Support LDTSTOP #
0	Isochronous Mode 1		0x0	R	not support

10.5.3 Custom register

Offset: 0x50 0x00904321 Reset value: MISC name:

Table 10- 13 MISC register definition

Bit field	Bit field name	Bit widt	h reset value	Visit description
31	Reserved	1	0x0	Keep
30	Ldt Stop Gen	1	0x0	R/W makes the bus enter $\begin{tabular}{ll} LDT & DISCONNECT & mode \\ \end{tabular}$
				The correct method is: 0-> 1
29	Ldt Req Gen	1	0x0	$_{\mbox{R/W}}$ from $^{\mbox{Wake}}$ up HT bus in LDT DISCONNECT, set
				LDT REO n

The correct way is to set 0 first and then set 0: 0-> 1

In addition, direct read and write requests to the bus can also be automatically

Wake up bus

69

Page 74

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

 $_{\mbox{R}\,/\,\mbox{W}}$. To which redirects other than standard interrupts are redirected to 28:24 Interrupt Index 0x0 In the interrupt vector (including SMI, NMI, INIT, INTA, INTB, INTC, INTD)

A total of 256 interrupt vectors, this register indicates the interrupt direction

The upper 5 bits of the quantity, the internal interrupt vector is as follows: 000: SMI $\,$

001: NMI

010: INIT

011: Reservered

100: INTA 101: INTB

110: INTC

111: INTD

32/64/128/256 bit write access, whether to use twenty threDword Write 0x1R/W for

Dword Write command format

1: Use Dword Write

0: Use Byte Write (with MASK)

Whether it is processor consistency mode twenty twoCoherent Mode R 0x0

Determined by pin ICCC_EN

twenty oneNot Care Seqid 0x0Does R / W don't care about HT order relationship

Whether to convert the commands on the Axi bus to different SeqIDs, 20 Not Axi2Seqid 0x1

If not converted, all read and write commands will use Fixed

Fixed ID number in Seqid

1: No conversion 0: conversion

Fixed Seqid 0x0 R / W When Not Axi2Seqid is valid, configure the

15:12 Priority Nop R / W HT bus Nop flow control packet priority 0x4 11:8 Priority NPC 4 0x3 R / W Non Post channel read and write priority Priority RC 7.4 R / W Response channel reading and writing priority 0x2

Post channel read and write priority

0x0: highest priority 0xF: lowest priority

The priority of each channel is changed according to time.

High priority strategy, the group register is used to configure each channel

'S initial priority

70

19:16

3: 0

Priority PC

Page 75

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

10.5.4 Receive diagnostic register

Offset: 0x54 0x00000000 Reset value:

Receive Diagnostic Register

Table 10-14 Receive Diagnostic Register

Bit field	Bit field name	Bit width reset value	Visit de	scription
0	Sample_en	1 0x0	R/W	Enable cad and ctl for sampling input 0x0: prohibited
				0x1: enable
15: 8	x_ctl_catch	twenty foliw0	R/W	Save the sampled input ctl
10.0		twenty rame	10, 11	(0,2,4,6) Four phases corresponding to CTL0 sampling
				(1,3,5,7) Four phases corresponding to CTL1 sampling
31:16	x cad phase 0	twenty four0	R/Wsa	ave the input CAD [15: 0] value obtained by sampling

10.5.5 Interrupt routing mode selection register

Offset: 0x58

Reset value: 0x000000000

name: Interrupt routing mode selection register

Table 10-15 Interrupt Route Selection Register

Bit field Bit field name Bit width reset value Visit description

9: 8 ht_int_stripe 2 0x0 R / W corresponds to neutron methods, see 0 interrupt direction for details

Volume register 0x0: ht_int_stripe_1 0x1: ht_int_stripe_2 0x2: ht_int_stripe_4

10.5.6 Receive buffer initial register

Offset: 0x5c Reset value: 0x07778888

name: Receive buffer initialization configuration register

Table 10- 16 Receive buffer initial register

Bit field Bit field name Bit width reset value Visit description

27:24 rx_buffer_r_data 4 0x0 R/W Receive buffer read data buffer initialization information

23:20 rx_buffer_npc_data 4 0x0 R/W receive buffer npc data buffer initialization information

71

Page 76

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

19:16	rx_buffer_pc_data	4	0x0	R / W receive buffer pc data buffer initialization information
15:12	rx_buffer_b_cmd	4	0x0	R / W receive buffer initialization command buffer initialization information
11: 8	rx_buffer_r_cmd	4	0x0	R / W receive buffer read command initialization information
7: 4	rx_buffer_npc_cmd 4		0x0	R / W receive buffer npc command buffer initialization information
3: 0	rx buffer pc cmd	4	0x0	R / W receive buffer pc command buffer initialization information

10.5.7 Receive address window configuration register

The address window hit formula in the HT controller is as follows:

hit = (BASE & MASK) == (ADDR & MASK)

 $addr_out = TRANS_EN?\ TRANS\ |\ ADDR\ \& \sim MASK:\ ADDR$

It should be noted that when configuring the address window register, the high bit of MASK should be all 1, and the low bit should be all 0.0 in MASK

The actual number of bits indicates the size of the address window.

The address in the receive address window is the address received on the HT bus. The HT address falling within the P2P window will be regarded as P2P

The command is forwarded back to the HT bus, and the HT address that falls within the normal receive window and is not in the P2P window will be sent to the CPU.

The command at its address will be forwarded back to the HT bus as a P2P command

Offset: 0x60

Reset value: 0x00000000

name: HT bus receive address window 0 enable (external access)

Table 10- 17 HT Bus Receive Address Window 0 Enable (External Access) Register Definition

Bit field Bit field name Bit width reset value Visit description

31 ht_rx_image0_en 1 0x0 R / W HT bus receives address window 0, enable signal

ht_rx_image0_ 30 0x0 R / W HT bus receives address window 0, mapping enable signal

trans en

ht_rx_image0_ 29: 0 0x0 R / W HT bus receive address window 0, the mapped address [53:24]

trans [53:24]

Offset: 0x64 Reset value: 0x00000000

HT bus receive address window 0 base address (external access) name:

Table 10- 18 HT bus receive address window 0 base address (external access) register definition

Bit field Bit field name Bit width reset value Visit description

72

Page 77

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

Bit field	Bit field name	Bit widt	h reset value	Visit description
31:16	ht_rx_image0_	16	0x0	R / W HT bus receive address window 0, address base address [39:24]
	base [39:24]			
15: 0	ht_rx_image0_	16	0x0	R / W HT bus receive address window 0, address masked [39:24]
	mask [39:24]			

Offset: 0x68 Reset value: 0x00000000

HT bus receive address window 1 enable (external access) name:

Table 10- 19 HT bus receive address window 1 enable (external access) register definition

Bit field	Bit field name	Bit widt	h reset value	Visit description
31	ht_rx_image1_en	1	0x0	R / W HT bus receives address window 1, enable signal
30	ht_rx_image1_	1	0x0	R / W HT bus receives address window 1, map enable signal
	trans_en			
29: 0	ht_rx_image1_	30	0x0	R / W HT bus receive address window 1, the mapped address [53:24]
	trans [53:24]			

Offset: 0x6c 0x00000000 Reset value:

name: HT bus receive address window 1 base address (external access)

Table 10- 20 HT bus receive address window 1 base address (external access) register definition

Bit field	Bit field name	Bit widt	h reset value	Visit description
31:16	ht_rx_image1_	16	0x0	R / W HT bus receive address window 1, address base address [39:24]
	base [39:24]			
15: 0	ht_rx_image1_	16	0x0	R / W HT bus receive address window 1, address masked [39:24]
	mask [39:24]			

Offset: 0x70 0x00000000 Reset value:

HT bus receive address window 2 enable (external access) name:

Table 10-21 HT Bus Receive Address Window 2 Enable (External Access) Register Definition

Bit field	Bit field name	Bit widt	h reset value	Visit description
31	ht_rx_image2_en	1	0x0	R / W HT bus receives address window 2, enable signal
30	ht_rx_image2_	1	0x0	R / W HT bus receives address window 2, map enable signal
	trans en			

Page 78

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

Bit field Bit field name Bit width reset value Visit description

29: 0 ht_rx_image2_ 16 0x0 R/W HT bus receive address window 2, the translated address [53:24] trans [53:24]

Offset: 0x74

Reset value: 0x00000000

name: HT bus receive address window 2 base address (external access)

Table 10-22 HT Bus Receive Address Window 2 Base Address (External Access) Register Definition

Bit field Bit field name Bit width reset value Visit description

31:16 ht_rx_image2_ 16 0x0 R/W HT bus receive address window 2, address base address [39:24]

15: 0 ht_rx_image2_ 16 0x0 R/W HT bus receive address window 2, address masked [39:24]

mask [39:24]

Offset: 0x148

Reset value: 0x00000000

name: HT bus receive address window 3 enable (external access)

Table 10-23 HT Bus Receive Address Window 3 Enable (External Access) Register Definition

Bit field Bit field name Bit width reset value Visit description

31 ht_rx_image3_en 1 0x0 R/W HT bus receives address window 3, enable signal

30 ht_rx_image3_ 1 0x0 R/W HT bus receives address window 3, mapping enable signal trans_en

29: 0 ht_rx_image3_ 16 0x0 R/W HT bus receive address window 3, the translated address [53:24] trans [53:24]

Offset: 0x14C Reset value: 0x00000000

name: HT bus receive address window 3 base address (external access)

Table 10- 24 HT Bus Receive Address Window 3 Base Address (External Access) Register Definition

Offset: 0x150

74

Page 79

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

Reset value: 0x00000000

name: HT bus receive address window 4 is enabled (external access)

Table 10- 25 HT Bus Receive Address Window 4 Enable (External Access) Register Definition

Bit field	Bit field name	Bit widt	h reset value	Visit description
31	ht_rx_image4_en	1	0x0	R / W HT bus receives address window 4, enable signal
30	ht_rx_image4_	1	0x0	R / W HT bus receives address window 4, map enable signal
	trans_en			
29: 0	ht_rx_image4_	16	0x0	R / W HT bus receive address window 4, the translated address [53:24]
	trans [53:24]			

Offset: 0x154

Reset value: 0x000000000

name: HT bus receive address window 4 base address (external access)

Table 10-26 HT Bus Receive Address Window 4 Base Address (External Access) Register Definition

Bit field	Bit field name	Bit wid	th reset value	Visit description
31:16	ht_rx_image4_	16	0x0	R / W HT bus receive address window 4, address base address [39:24]
	base [39:24] ht_rx_image4_			
15: 0	mask [39:24]	16	0x0	R / W HT bus receive address window 4, address masked [39:24]

10.5.8 Interrupt Vector Register

A total of 256 interrupt vector registers, including the direct mapping of Fix, Arbiter and PIC interrupts on the HT bus

 $Up \ to \ this \ 256 \ interrupt \ vectors, \ other \ interrupts \ such \ as \ SMI, \ NMI, \ INIT, \ INTA, \ INTB, \ INTC, \ INTD \ can$

To map to any 8-bit interrupt vector through [28:24] of register 0x50, the order of mapping is {INTD, INTC,

INTB, INTA, 1'b0, INIT, NMI, SMI}. At this time, the corresponding value of the interrupt vector is {Interrupt Index, internal The amount [2: 0]}.

LS3A1000E and above, 256 interrupt vectors choose different mappings of register configuration according to interrupt routing

To different interrupt lines, the specific mapping method is:

```
ht_int_stripe_1:

[0,1,2,3 ...... 63] Corresponding to interrupt line 0 / HT HI Corresponding to interrupt line 4

[64,65,66,67 ... 127] Corresponding to interrupt line 1 / HT HI Corresponding to interrupt line 5

[128,129,130,131 ... 191] Corresponding to interrupt line 2 / HT HI Corresponding to interrupt line 6
```

75

Page 80

Godson ${\bf 3A3000}$ / ${\bf 3B3000}$ Processor User Manual • Volume 1

```
[192,193,194,195 ... 255] corresponds to interrupt line 3 / HT HI corresponds to interrupt line 7

ht_int_stripe_2:

[0,2,4,6 ...... 126] Corresponding to interrupt line 0 / HT HI Corresponding to interrupt line 4

[1,3,5,7 ... 127] corresponds to interrupt line 1 / HT HI corresponds to interrupt line 5

[128,130,132,134 ... 254] Corresponding to interrupt line 2 / HT HI Corresponding to interrupt line 6

[129,131,133,135 ... 255] corresponds to interrupt line 3 / HT HI corresponds to interrupt line 7

ht_int_stripe_4:

[0,4,8,12 ... 252] corresponds to interrupt line 0 / HT HI corresponds to interrupt line 4

[1,5,9,13 ... 253] corresponds to interrupt line 1 / HT HI corresponds to interrupt line 5

[2,6,10,14 ... 254] corresponds to interrupt line 2 / HT HI corresponds to interrupt line 6
```

[3,7,11,15 ... 255] corresponds to interrupt line 3 / HT HI corresponds to interrupt line 7

The following description of the interrupt vector corresponds to ht_int_stripe_1, and the other two methods can be obtained from the above description.

For LS3A1000D and below, only ht int stripe 1 can be used.

Offset: 0x80

Reset value: 0x000000000

name: HT bus interrupt vector register [31: 0]

Table 10-27 HT bus interrupt vector register definition (1)

Bit field Bit field name Bit width reset value Visit description

31:0 Interrupt_case 32 0x0 R/W HT bus interrupt vector register [31:0],

[31: 0] Corresponding to interrupt line 0 / HT HI Corresponding to interrupt line 4

Offset: 0x84

Reset value: 0x000000000

name: HT Bus Interrupt Vector Register [63:32]

Table 10-28 Definition of HT Bus Interrupt Vector Register (2)

Bit field Bit field name Bit width reset value Visit description

31: 0 Interrupt_case 32 0x0 R/W HT bus interrupt vector register [63:32],

[63:32] Corresponding to interrupt line 0 / HT HI Corresponding to interrupt line 4

Offset: 0x88

Reset value: 0x00000000

76

Page 81

Godson ${\bf 3A3000}$ / ${\bf 3B3000}$ Processor User Manual • Volume 1

name: HT Bus Interrupt Vector Register [95:64]

Table 10-29 HT Bus Interrupt Vector Register Definition (3)

Bit field Bit field name Bit width reset value Visit description

 $31:0 \qquad \text{Interrupt_case} \qquad \qquad 32 \qquad \quad 0x0 \qquad \qquad R\,/\,W \quad \text{HT bus interrupt vector register [95:64],}$

[95:64] Corresponding to interrupt line 1 / HT HI Corresponding to interrupt line 5

Offset: 0x8c Reset value: 0x00000000

name: HT bus interrupt vector register [127: 96]

Table 10- 30 HT Bus Interrupt Vector Register Definition (4)

Bit field Bit field name Bit width reset value Visit description

31:0 Interrupt_case 32 0x0 R/W HT bus interrupt vector register [127: 96],

[127: 96] Corresponding to interrupt line 1 / HT HI Corresponding to interrupt line 5

Offset: 0x90

Reset value: 0x00000000

name: HT bus interrupt vector register [159: 128]

Table 10-31 HT bus interrupt vector register definition (5)

Bit field Bit field name Bit width reset value Visit description

 $31{:}\ 0 \qquad \qquad 1 \\ \text{Interrupt_case} \qquad \qquad 32 \qquad \qquad 0 \\ \text{x0} \qquad \qquad R \, / \, W \qquad \qquad HT \text{ bus interrupt vector register [159: 128],}$

[159: 128] Corresponding to interrupt line 2 / HT HI Corresponding to interrupt line 6

Offset: 0x94

Reset value: 0x00000000

name: HT Bus Interrupt Vector Register [191: 160]

Table 10-31 HT bus interrupt vector register definition (6)

```
Bit field Bit field name
                                   Bit width reset value Visit description
                                                        R/W HT bus interrupt vector register [191: 160],
          Interrupt_case
31:0
                                           0x0
          [191: 160]
                                                                Corresponding to interrupt line 2 / HT HI Corresponding to interrupt line 6
Offset
                   0x98
Reset value:
                   0x00000000
name
                   HT Bus Interrupt Vector Register [223: 192]
                              Table 10-32 HT Bus Interrupt Vector Register Definition (7)
Bit field Bit field name
                                   Bit width reset value Visit description
```

Page 82

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

```
Bit field Bit field name
                                    Bit width reset value Visit description
                                                         R / W HT bus interrupt vector register [223: 192],
           Interrupt\_case
                                            0x0
           [223: 192]
                                                                 Corresponding to interrupt line 3 / HT HI Corresponding to interrupt line 7
Offset
                    0x9c
Reset value:
                    0x00000000
name:
                    HT Bus Interrupt Vector Register [255: 224]
                               Table 10-33 Definition of HT Bus Interrupt Vector Register (8)
Bit field Bit field name
                                    Bit width reset value Visit description
                                                         R / W HT bus interrupt vector register [255: 224],
           Interrupt_case
           [255: 224]
                                                                 Corresponding to interrupt line 3 / HT HI Corresponding to interrupt line 7
```

10.5.9 Interrupt enable register

A total of 256 interrupt enable registers correspond to the interrupt vector registers. Set to 1 to enable the corresponding interrupt, set to 0

It is an interrupt mask

The 256 interrupt vectors are mapped to different interrupt lines according to the different register configurations of the interrupt routing method.

Is mapped as:

```
ht_int_stripe_1:

[0,1,2,3 ...... 63] Corresponding to interrupt line 0 / HT HI Corresponding to interrupt line 4

[64,65,66,67 ... 127] Corresponding to interrupt line 1 / HT HI Corresponding to interrupt line 5

[128,129,130,131 ... 191] Corresponding to interrupt line 2 / HT HI Corresponding to interrupt line 6

[192,193,194,195 ... 255] corresponds to interrupt line 3 / HT HI corresponds to interrupt line 7

ht_int_stripe_2:

[0,2,4,6 ...... 126] Corresponding to interrupt line 0 / HT HI Corresponding to interrupt line 4

[1,3,5,7 ... 127] corresponds to interrupt line 1 / HT HI corresponds to interrupt line 5

[128,130,132,134 ... 254] Corresponding to interrupt line 2 / HT HI Corresponding to interrupt line 6

[129,131,133,135 ... 255] corresponds to interrupt line 3 / HT HI corresponds to interrupt line 7

ht_int_stripe_4:

[0,4,8,12 ... 252] corresponds to interrupt line 0 / HT HI corresponds to interrupt line 4

[1,5,9,13 ... 253] corresponds to interrupt line 1 / HT HI corresponds to interrupt line 5
```

78

Page 83

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

 $[2,\!6,\!10,\!14\dots254]$ corresponds to interrupt line 2 / HT HI corresponds to interrupt line 6

[3,7,11,15 ... 255] corresponds to interrupt line 3 / HT HI corresponds to interrupt line 7

The following description of the interrupt vector corresponds to ht_int_stripe_1, and the other two methods can be obtained from the above description.

Offset: 0xa0

Reset value: 0x00000000

name: HT bus interrupt enable register [31: 0]

Table 10-34 Definition of HT Bus Interrupt Enable Register (1)

Bit field Bit field name Bit width reset value Visit description

31:0 Interrupt_mask 32 0x0 R/W HT bus interrupt enable register [31: 0],

[31: 0] Corresponding to interrupt line 0 / HT HI Corresponding to interrupt line 4

Offset: 0xa4
Reset value: 0x00000000

name: HT bus interrupt enable register [63:32]

Table 10-35 Definition of HT Bus Interrupt Enable Register (2)

Bit field Bit field name Bit width reset value Visit description

31: 0 Interrupt_mask 32 0x0 R/W HT bus interrupt enable register [63:32],

[63:32] Corresponding to interrupt line 0 / HT HI Corresponding to interrupt line 4

Offset: 0xa8
Reset value: 0x00000000

name: HT bus interrupt enable register [95:64]

Table 10- 36 HT Bus Interrupt Enable Register Definition (3)

Bit field Bit field name Bit width Reset value access description 31:0 Interrupt_mask $32 \quad 0x0 \quad R/W$ HT bus interrupt enable register [95:64],

[95:64] Corresponding to interrupt line 1 / HT HI Corresponding to interrupt line 5

Offset: 0xac Reset value: 0x000000000

name: HT bus interrupt enable register [127: 96]

Table 10-37 HT Bus Interrupt Enable Register Definition (4)

79

Page 84

Godson **3A3000** / **3B3000** Processor User Manual • Volume 1

Bit field Bit field name Bit width Reset value access

description

Interrupt_mask HT bus interrupt enable register [127: 96], 31: 0 32 0x0 R/W

[127: 96] Corresponding to interrupt line 1 / HT HI Corresponding to interrupt line 5

Offset: 0xb0
Reset value: 0x000000000

name: HT bus interrupt enable register [159: 128]

Table 10-38 Definition of HT Bus Interrupt Enable Register (5)

Bit field Bit field name Bit width reset value Visit description

31: 0 Interrupt_mask 32 0x0 R / W HT bus interrupt enable register [159: 128],

[159: 128] Corresponding to interrupt line 2 / HT HI Corresponding to interrupt line 6

Offset: 0xb4

Reset value: 0x00000000

name: HT bus interrupt enable register [191: 160]

Table 10-39 Definition of HT Bus Interrupt Enable Register (6)

Bit field Bit field name Bit width reset value Visit description

31: 0 Interrupt_mask 32 0x0 R/W HT bus interrupt enable register [191: 160],

[191: 160] Corresponding to interrupt line 2 / HT HI Corresponding to interrupt line 6

Offset: 0xb8
Reset value: 0x00000000

name: HT bus interrupt enable register [223: 192]

Table 10-40 HT bus interrupt enable register definition (7)

Bit field Bit field name Bit width reset value Visit description

31: 0 Interrupt_mask 32 0x0 R/W HT bus interrupt enable register [223: 192],

[223: 192] Corresponding to interrupt line 3 / HT HI Corresponding to interrupt line 7

Offset: 0xbc Reset value: 0x000000000

name: HT bus interrupt enable register [255: 224]

Table 10- 41 HT Bus Interrupt Enable Register Definition (8)

Bit field Bit field name Bit width reset value Visit description

31: 0 Interrupt_mask 32 0x0 R / W HT bus interrupt enable register [255: 224],

[255: 224] Corresponding to interrupt line 3 / HT HI Corresponding to interrupt line 7

80

Page 85

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

10.5.10 Interrupt Discovery & Configuration

Offset: 0xc0
Reset value: 0x80000008
name: Interrupt Capability

Table 10- 42 Inte upt Capab l ty Register Definition

Bit field Bit field name Bit width reset value Visit description

31:24 Capabilities Pointer 8 0x80 R Interrupt discovery and configuration block

 23:16
 Index
 8
 0x0
 R / W Read register offset address

 15: 8
 Capabilities Pointer 8
 0x0
 R
 Capabilities Pointer

 7: 0
 Capability ID
 8
 0x08
 R
 Hypertransport Capability ID

Offset: 0xc4
Reset value: 0x00000000
name: Dataport

Table 10-43 Datap Yaot Register Definition

Bit field Bit field name	Bit width reset	value Visi	t description
--------------------------	-----------------	------------	---------------

31: 0 Dataport 32 0x0 R / W When the previous register Index is 0x10, this register is read and written

The result is the 0xa8 register, otherwise 0xac

Offset: 0xc8

Reset value: 0xF8000000

name: IntrInfo [31: 0]

Table 10-44 Definition of Int and Inf Yao Register (1)

Bit field Bit field name Bit width reset value Visit description 31:24 Intrlnfo [31:24] 32 0xF8 R Keep

23: 2 IntrInfo [23: 2] twenty two R / W IntrInfo [23: 2], when the PIC interrupt is issued, the value of IntrInfo

Used to represent interrupt vector

1: 0 Reserved 2 0x0 R Keep

 Offset:
 0xcc

 Reset value:
 0x00000000

 name:
 IntrInfo [63:32]

Table 10-45 Int Yao Inf Yao register definition (2)

81

Page 86

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

31: 0	IntrInfo [63:32]	32	0x0	R	Keen
Bit field	Bit field name	Bit wi	dth reset value	Visit	description

10.5.11 POST address window configuration register

For the address window hit formula, see section 10.5.7.

The address in this window is the address received on the AXI bus. All write accesses that fall in this window will be immediately in AXI B

The channel returns and is sent to the HT bus in the format of the POST WRITE command. Instead of writing requests in this window, NONPOST

WRITE is sent to the HT bus, and waits for the HT bus to respond before returning to the AXI bus.

Offset: 0xd0

Reset value: 0x00000000

name: HT bus POST address window 0 enable (internal access)

Table 10-46 HT Bus POST Address Window 0 Enable (Internal Access)

Bit field	Bit field name	Bit widt	h reset value	Visit description
31	ht_post0_en	1	0x0	R / W HT bus POST address window 0, enable signal
30	ht_depart0_en	1	0x0	R / W HT access unpacking enable (corresponding to external CPU core
				uncache ACC operation window)
29:23	Reserved	14	0x0	Keep
15: 0	ht_post0_trans	16	0x0	R/W HT bus POST address window 0, the translated address [39:24]
	[39:24]			

Offset: 0xd4

Reset value: 0x00000000

name: HT bus POST address window 0 base address (internal access)

Table 10-47 HT bus POST address window 0 base address (internal access)

Bit field Bit field name Bit width reset value Visit description

 $31:16 \qquad \qquad ht_post0_base \qquad \qquad 16 \qquad 0x0 \qquad \qquad R\,/\,W\,HT\,bus\,POST\,address\,window\,0,\,address\,base\,address\,[39:24]$

[39:24]

15: 0 ht_post0_mask 16 0x0 R / W HT bus POST address window 0, address masked [39:24]

[39:24]

Offset: 0xd8

Reset value: 0x000000000

name: HT bus POST address window 1 enable (internal access)

82

Page 87

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

Table 10-48 HT Bus POST Address Window 1 Enable (Internal Access)

Bit field	Bit field name	Bit widt	h reset value	Visit description
31	ht_post1_en	1	0x0	R/W HT bus POST address window 1, enable signal
30	ht_depart1_en	1	0x0	R / W HT access unpacking enable (corresponding to external CPU core
				uncache ACC operation window)
29:16	Reserved	14	0x0	Keep
15: 0	ht_post1_trans	16	0x0	R / W HT bus POST address window 1, the translated address [39:24]
	[39:24]			

Offset: 0xdc

Reset value: 0x00000000

name: HT bus POST address window 1 base address (internal access)

Table 10-49 HT bus POST address window 1 base address (internal access)

Bit field	Bit field name	Bit width reset value		Visit description		
31:16	ht_post1_base	16	0x0	R / W HT bus POST address window 1, address base address [39:24]		
	[39:24]					
15: 0	ht_post1_mask	16	0x0	R / W HT bus POST address window 1, address masked [39:24]		
	[39:24]					

10.5.12 Prefetchable address window configuration register

For the address window hit formula, see section 10.5.7.

The address in this window is the address received on the AXI bus. Only the instruction fetch instructions and CACHE access that fall in this window

Is sent to the HT bus, other fetch instructions or CACHE access will not be sent to the HT bus, but will return immediately, if it is a read

Command, it will return the corresponding number of invalid read data.

Offset: 0xe0

Reset value: 0x00000000

HT bus can be profetabled address windout

name: HT bus can be prefetched address window 0 enabled (internal access)

Table 10- 50 HT bus prefetchable address window 0 is enabled (internal access)

Bit field Bit field name Bit width reset value Visit description

31 ht_prefetch0_en 1 0x0 R/W HT bus can prefetch address window 0, enable signal 30:23 Reserved 15 0x0 Keep

83

Page 88

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

Offset: 0xe4

Reset value: 0x00000000

name: HT bus prefetchable address window 0 base address (internal access)

Table 10-51 HT Bus Prefetchable Address Window 0 Base Address (Internal Access)

Bit field name Bit width reset value Visit description

31:16 ht_prefetch0_ 16 0x0 R/W HT bus can pre-fetch address window 0, address base address [39:24] Bit address

15: 0 ht_prefetch0_ 16 0x0 R/W HT bus can prefetch address window 0, address masked [39:24] and mask [39:24]

Offset: 0xe8
Reset value: 0x00000000

name: HT bus prefetch address window 1 enabled (internal access)

Table 10-52 HT Bus Prefetchable Address Window 1 Enable (Internal Access)

Bit field Bit field name

Bit width reset value Visit description

1 0x0 R/W HT bus can prefetch address window 1, enable signal

30:23 Reserved

15 0x0 Keep

15:0 ht_prefetch1_ 16 0x0 R/W HT bus can pre-fetch address window 1, the translated address [39:24] trans [39:24]

Offset: 0xec

Reset value: 0x00000000

name: HT bus prefetch address window 1 base address (internal access)

Table 10-53 HT bus prefetchable address window 1 base address (internal access)

Bit field Bit field name Bit width reset value Visit description

31:16 ht_prefetch1_ 16 0x0 R/W HT bus can prefetch address window 1, address base address [39:24]

15: 0 ht_prefetch1_ 16 0x0 R/W HT bus can prefetch address window 1, address masked [39:24]

mask [39:24]

10.5.13 UNCACHE address window configuration register

For the address window hit formula, see section 10.5.7.

The address in this window is the address received on the HT bus. Read and write commands that fall into this window address will not be sent to

SCACHE, will not make the first-level CACHE invalid, but will be sent directly to memory or other address space, that is

The read and write commands in this address window will not maintain the CACHE consistency of IO. This window is mainly aimed at some

Hitting operations that can increase the efficiency of storage, such as video memory access.

Offset: 0xf0

Reset value: 0x00000000

name: HT bus Uncache address window 0 enable (internal access)

Table 10-54 HT Bus Uncache Address Window 0 Enable (Internal Access)

Bit field Bit field name Bit width reset value Visit description

1 0x0 R/WHT bus uncache address window 0, enable signal

1 0x0 R/WHT bus uncache address window 1, mapping enable signal trans_en

29: 0 ht_uncache0_ 16 0x0 R/WHT bus uncache address window 0, the translated address trans [53:24]

Offset: 0xf4
Reset value: 0x000000000

name: HT bus Uncache address window 0 base address (internal access)

Table 10-55 HT Bus Uncache Address Window 0 Base Address (Internal Access)

Bit field Bit field name Bit width reset value Visit description

31:16 ht_uncache0_ 16 0x0 R/W HT bus uncache address window 0, address base address [39:24]

15: 0 ht_uncache0_ 16 0x0 R/W HT bus uncache address window 0, address masked [39:24]

mask [39:24]

Offset: 0xf8

Reset value: 0x00000000

name: HT bus Uncache address window 1 is enabled (internal access)

Table 10-56 HT Bus Uncache Address Window 1 Enable (Internal Access)

Bit field Bit field name Bit width reset value Visit description

31 ht_uncache1_en 1 0x0 R/W HT bus uncache address window 1, enable signal

85

Page 90

Godson ${\bf 3A3000}$ / ${\bf 3B3000}$ Processor User Manual • Volume 1

30 ht_uncache1_ 1 0x0 R / W HT bus uncache address window 1, mapping enable signal trans_en

29: 0 ht_uncache1_ 16 0x0 R / W HT bus uncache address window 1, the translated address trans [53:24]

Offset: 0xfc Reset value: 0x00000000

name: HT bus Uncache address window 1 base address (internal access)

Table 10-57 HT Bus Uncache Address Window 1 Base Address (Internal Access)

Bit field Bit field name Bit width reset value Visit description

 $31:16 \qquad ht_uncache1_ \qquad \qquad 16 \qquad 0x0 \qquad \qquad R\ /\ W\ HT\ bus\ uncache\ address\ window\ 1,\ address\ base\ address\ [39:24]$

base [39:24]

 $15:0 \qquad \qquad ht_uncache1_ \qquad \qquad 16 \qquad 0x0 \qquad \qquad R\,/\,W\,HT\,bus\,uncache\,address\,window\,1,\,address\,masked\,[39:24]$

mask [39:24]

Offset: 0x168

Reset value: 0x00000000

name: HT bus Uncache address window 2 enable (internal access)

Table 10-58 HT Bus Uncache Address Window 2 Enable (Internal Access)

Bit field Bit field name Bit width reset value Visit description

31 ht_uncache1_en 1 0x0 R / W HT bus uncache address window 2, enable signal

30 ht_uncache1_ 1 0x0 R / W HT bus uncache address window 2, mapping enable signal

trans_en

29: 0 ht_uncache1_ 16 0x0 R / W HT bus uncache address window 2, the translated address

trans [53:24] [53:24]

Offset: 0x16c Reset value: 0x000000000

name: HT bus Uncache address window 2 base address (internal access)

Table 10-59 HT Bus Uncache Address Window 2 Base Address (Internal Access)

Bit field Bit field name Bit width reset value Visit description

 $31:16 \qquad \begin{array}{ccc} ht_uncache1_ & 16 & 0x0 & R\ /\ W\ HT\ bus\ uncache\ address\ window\ 2,\ address\ base\ address\ [39:24] \end{array}$

base [39:24]

86

Page 91

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

Bit field Bit field name Bit width reset value Visit description

 $15:0 \qquad \qquad ht_uncache1_ \qquad \qquad 16 \qquad 0x0 \qquad \qquad R\,/\,W\,HT \,bus\,uncache\,address\,window\,2, address\,masked\,[39:24]$

mask [39:24]

Offset: 0x170

Reset value: 0x00000000

name: HT bus Uncache address window 3 enable (internal access)

Table 10- 60 HT Bus Uncache Address Window 3 Enable (Internal Access)

Bit field Bit field name Bit width reset value Visit description

31 ht_uncache1_en 1 0x0 R / W HT bus uncache address window 3, enable signal
30 ht_uncache1_ 1 0x0 R / W HT bus uncache address window 3, mapping enable signal

trans_en

29: 0 ht_uncache1_ 16 0x0 R / W HT bus uncache address window 3, the translated address

trans [53:24] [53:24]

Offset: 0x174

Reset value: 0x00000000

name: HT bus Uncache address window 3 base address (internal access)

Table 10-61 HT Bus Uncache Address Window 3 Base Address (Internal Access)

Bit field Bit field name Bit width reset value Visit description

31:16 ht_uncache1_ 16 0x0 R/W HT bus uncache address window 3, address base address

base [39:24]

15: 0 ht_uncache1_ 16 0x0 R / W HT bus uncache address window 3, address masked [39:24]

mask [39:24]

10.5.14 P2P address window configuration register

For the address window hit formula, see section 10.5.7.

The address in this window is the address received on the HT bus. The read and write commands at the address of this window are directly used as P2P

The command is forwarded back to the bus, which has the highest priority relative to the normal receive window and Uncache window.

Offset: 0x158

Reset value: 0x000000000

name: HT bus P2P address window 0 enable (external access)

Table 10-62 HT Bus P2P Address Window 0 Enable (External Access) Register Definition

87

Page 92

Godson ${\bf 3A3000}$ / ${\bf 3B3000}$ Processor User Manual • Volume 1

Bit field	Bit field name	Bit wid	th reset value	Visit description
31	ht_rx_image2_en	1	0x0	R/W HT bus P2P address window 0, enable signal
30	ht_rx_image2_	1	0x0	R/W HT bus P2P address window 0, mapping enable signal
	trans_en			
29: 0	ht_rx_image2_	16	0x0	R/W HT bus P2P address window 0, translated address [53:24]
	trans [53:24]			

Offset: 0x15c

Reset value: 0x00000000

name: HT bus P2P address window 0 base address (external access)

Table 10-63 HT bus P2P address window 0 base address (external access) register definition

Bit field	Bit field name	Bit widt	h reset value	Visit description
31:16	ht_rx_image2_	16	0x0	R/W HT bus P2P address window 1, address base address [39:24]
	base [39:24]			
15: 0	ht_rx_image2_	16	0x0	R/W HT bus P2P address window 1, address masked [39:24]
	mask [39:24]			

Offset: 0x160

Reset value: 0x00000000

name: HT bus P2P address window 1 enable (external access)

Table 10-64 HT Bus P2P Address Window 1 Enable (External Access) Register Definition

Bit field	Bit field name	Bit widt	h reset value	Visit description
31	ht_rx_image2_en	1	0x0	R / W HT bus P2P address window 1, enable signal
30	ht_rx_image2_	1	0x0	R/W HT bus P2P address window 1, mapping enable signal
	trans_en			
29: 0	ht_rx_image2_	16	0x0	R/W HT bus P2P address window 1, the translated address [53:24]
	trans [53:24]			

Offset: 0x164

Reset value: 0x00000000

name: HT bus P2P address window 1 base address (external access)

Table 10-65 HT bus P2P address window 1 base address (external access) register definition

Bit field Bit field name Bit width reset value Visit description

88

Page 93

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

Bit field	Bit field name	Bit widt	h reset value	Visit description
31:16	ht_rx_image2_	16	0x0	R/W HT bus P2P address window 1, address base address [39:24]
	base [39:24]			
15: 0	ht_rx_image2_	16	0x0	R / W HT bus P2P address window 1, address masked [39:24]
	mask [39:24]			

10.5.15 Command send buffer size register

The command sending buffer size register is used to observe the number of buffers available for each command channel at the sending end.

Offset: 0x100

Reset value: 0x00000000

name: Command send buffer size register

Table 10-66 Command Send Buffer Size Register

Bit field	Bit field name	Bit widt	th reset value	Visit de	escription	
31:24	B_CMD_txbuffer	8	0x0	R	Number of B channel command buffers at the sending end	
2316	R_CMD_txbuffer	8	0x0	R	Number of R channel command buffers at the sending end	
15: 8	NPC_CMD_txbuffer 8		0x0	R	Number of NPC channel command buffers at the sending end	
7: 0	PC_CMD_txbuffer	8	0x0	R	Number of PC channel command buffers at the sending end	

10.5.16 Data transmission buffer size register

The data transmission buffer size register is used to observe the number of buffers available for each data channel at the sending end.

Offset: 0x104

Reset value: 0x000000000

name: Data transmission buffer size register

Table 10-67 Data transmission buffer size register

Bit field	Bit field name	Bit wid	lth reset valu	ae access	s description
31:24	Reserved	8	0x0	R	Keep
2316	R_DATA_txbuffer	8	0x0	R	Number of R channel data buffers at the sending end
15: 8	NPC_DATA_txbuffer 8		0x0	R	Number of NPC channel data buffers at the sending end
7: 0	PC_DATA_txbuffer	8	0x0	R	Number of PC channel data buffers at the sending end

10.5.17 Send buffer debug register

Send buffer debugging register is used to manually set the number of buffers at the sending end of the HT controller.

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

Adjust the number of different send buffers.

Offset: 0x108

Reset value: 0x00000000

name: Send buffer debug register

Table 10-68 Send Buffer Debug Register

Bit field	Bit field name	Bit wid	th reset value	Visit de	scription
31:30	Reserved	2	0x0	R	Keep
29	Tx_neg	1	0x0	R/W	Debugging symbols are cached on the sending end 0: increase the corresponding number
					1: Reduce (number of corresponding registers + 1)
28	Tx_buff_adj_en	1	0x0	R/W	Buffer debugging enable register on the sending end 0-> 1: make the value of this register increase and decrease
27:24	R_DATA_txadj	4	0x0	R/Ws	
					When tx_neg is 0, increase R_DATA_txadj;
					When tx_neg is 1, reduce R_DATA_txadj + 1
23:20	NPC_DATA_txadj	4	0x0	R/Ws	ender NPC channel data cache increase and decrease
					When tx_neg is 0, increase NPC_DATA_txadj;
					When tx_neg is 1, reduce NPC_DATA_txadj + 1
19:16	PC_DATA_txadj	4	0x0	R/Ws	ender Increase or decrease the number of PC channel data buffers
					When tx_neg is 0, add PC_DATA_txadj;
					When tx_neg is 1, reduce PC_DATA_txadj + 1
15:12	B_CMD_txadj	4	0x0	R/Ws	ender Increase and decrease the number of B channel command cache
					When tx_neg is 0, increase B_CMD_txadj;
					When tx_neg is 1, reduce B_CMD_txadj + 1
11: 8	R_CMD_txadj	4	0x0	R/Ws	ender R channel command cache increase or decrease the number
					When tx_neg is 0, increase R_CMD_txadj;
					When tx_neg is 1, reduce R_CMD_txadj + 1
7: 4	NPC_CMD_txadj	4	0x0	R/Ws	ender NPC channel command / data cache increase and decrease
					When tx_neg is 0, increase NPC_CMD_txadj;
					When tx_neg is 1, reduce NPC_CMD_txadj + 1
3: 0	PC_CMD_txadj	4	0x0	R/Ws	PC channel command cache increase and decrease
					When tx_neg is 0, increase PC_CMD_txadj;
					When tx_neg is 1, reduce PC_CMD_txadj + 1

10.5.18 PHY impedance matching control register

Used to control the impedance matching enable of the PHY, and set the impedance matching parameters at the transmitter and receiver

Offset: 0x10C

Reset value: 0x00000000

00

Page 95

Godson ${\bf 3A3000}$ / ${\bf 3B3000}$ Processor User Manual • Volume 1

name: PHY impedance matching control register

Table 10-69 Impedance Matching Control Register

Bit field	Bit field name	Bit widt	h reset value	Visit description
31	Tx_scanin_en	1	0x0	R / W TX impedance matching enable
30	Rx_scanin_en	1	0x0	R / W RX impedance matching enable
27:24	Tx_scanin_ncode	4	0x0	R / W TX impedance matching scan input ncode
23:20	Tx_scanin_pcode	4	0x0	R / W TX impedance matching scan input pcode
19:12	Rx_scanin_code	8	0x0	R / W RX impedance matching scan input

10.5.19 Revision ID register

It is used to configure the controller version and configure it to a new version number, which takes effect through Warm Reset.

Offset: 0x110

Reset value: 0x00200000

name: RevisionID register

Table 10-70 Rev s Yao ID Register

Bit field	Bit field name	Bit widt	h reset value	Visit de	scription
31:24	Reserved	8	0x0	R	Keep
23:16	Revision ID	8	0x20	R/W	Revision ID control register
					0x20: HyperTransport 1.00
					0x60: HyperTransport 3.00
15: 0	Reserved	16	0x0	R	Keep

10.5.20 Error Retry Control Register

Used to enable error retransmission in HyerTransport 3.0 mode, configure the maximum number of Short Retry, display

Whether the Retry counter rolls over.

Offset: 0x118

Reset value: 0x00000000

name: Error Retry Control Register

Table 10-71 E Reach Ret Rey Control Register

Bit field	Bit field name	Bit widt	h reset value	Visit de	scription
31:10	Reserved	twenty t	v00x0	R	Keep
9	Retry Count Rollover	1	0x0	R	Retry counter count rollover
8	Reserved	1	0x0	R	Keep
91					

Page 96

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

7: 6	Short Retry Attempts	2	0x0	The maximum number of Short Retry allowed by R / W
------	----------------------	---	-----	--

10.5.21 Retry Count register

Used for error retransmission count in HyerTransport 3.0 mode.

Offset: 0x11C

Reset value: 0x00000000

name: Retry Count register

Table 10- 72 Ret y C Yaount Register

Bit field	Bit field name	Bit wi	dth reset value	Visit d	description
31:20	Reserved	12	0x0	R	Keep
19:16	Rrequest delay	4	0x0	R/W	is used to control the random transmission of Rrequest transmission in consistency mode

Machine delay range 000: 0 Delay 001: Random delay 0-8 010: Random delay 8-15 011: Random delay 16-31 100: Random delay 32-63 101: Random delay 64-127

110: Random delay 128-255

111: 0 Delay

15: 0 Retry Count R Retry count

10.5.22 Link Train Register

HyperTransport 3.0 link initialization and link training control register.

Offset: 0x130 0x00000070 Reset value: Link Train Register name:

Table 10-73 L nk T 偡 an Register

Bit field Bit field name Bit width reset value access description 31:23 Reserved 0x0 R Keep

R / W The sending end is at 22:21 Transmitter LS select 2 0x0

Link status: 2'b00 LS1

92

14

8: 7

3

2

Page 97

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

2'b01 LS0 2'b10 LS2

2'b11 LS3 0x0

0x0

0x0

0x0

In HyperTransport 3.0 mode, any 4 by default

Throttling

Receiver LS select

Scrambling Enable

Dsiable

Only one Non-info CMD can appear in consecutive DWS;

1'b0 Enable Cmd Throttling

1'b1 Disable Cmd Throttling

13:10 0x0 Reserved

Cmd 1

The R / W receiver is at

Link status 2'b00 LS1

2'b01 LS0 2'b10 LS2 2'b11 LS3

6: 4 Long Retry Count 3 0x7 R / W Long Retry Whether R / W is enabled

0: Disable Scramble

1: enable Scramble

8B10B Enable 0x0 Whether R / W is enabled $^{\mbox{8B10B}}$

0: Disable 8B10B

1: enable 8B10B

Whether AC mode is detected 0: AC mode is not detected

1: AC mode detected

0 Reserved 0x0R Keen

10.5.23 Training 0 timeout short timer register

It is used to configure Training 0 short-time timeout threshold in HyerTransport 3.0 mode, the counter clock frequency is

HyperTransport3.0 link bus clock frequency is 1/4.

Offset: 0x134 Reset value: 0x00000080

AC

Training 0 timeout short count register name:

Table 10-74 T an ng 0 Time-out short timer register

Bit field Bit field name Bit width reset value Visit description

31: 0 T0 time 32 0x8 R/W Training 0 Timeout short timer register

93

Page 98

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

10.5.24 Training 0 Time-out timer register

Used for Training 0 long counting timeout threshold in HyerTransport 3.0 mode, the counter clock frequency is

HyperTransport3.0 link bus clock frequency is 1/4.

Offset: 0x138

Reset value: 0x000fffff

name: Training 0 timeout long count register

Table 10-75 T an ng 0 timeout long count register

Bit field Bit field name Bit width reset value Visit description

31: 0 T0 time 32 0xfffff R/W Training 0 Time-out long count register

10.5.25 Training 1 count register

Used in Training 1 counting threshold in HyerTransport 3.0 mode, the counter clock frequency is

 $HyperTransport 3.0\ link\ bus\ clock\ frequency\ is\ 1/4.$

Offset: 0x13C Reset value: 0x0004fffff

name: Training 1 count register

Table 10- 76 T an ng 1 count register

Bit field Bit field name Bit width reset value Visit description

31: 0 T1 time 32 0x4fffff R / W Training 1 count register

10.5.26 Training 2 count register

Used in Training 2 counting threshold in HyerTransport 3.0 mode, the counter clock frequency is

HyperTransport3.0 link bus clock frequency is 1/4.

Offset: 0x144Reset value: 0x0007fffff

name: Training 2 count register

Table 10-77 T anan ng 2 count register

Bit field Bit field name Bit width reset value Visit description

31: 0 T2 time 32 0x7ffffff R / W Training 2 count register

10.5.27 Training 3 count register

Used in Training 3 counting threshold in HyerTransport 3.0 mode, the counter clock frequency is

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

HyperTransport3.0 link bus clock frequency is 1/4.

Offset: 0x13C

name: Training 3 count register

Table 10-78 T anan ng 3 count register

Bit field Bit field name Bit width reset value Visit description

31: 0 T3 time 32 0x7fffff R / W Training 3 Count register

10.5.28 Software frequency configuration register

It is used to switch the controller to the link frequency and controller frequency supported by any protocol and PLL during the working process;

The specific switching method is: on the premise of enabling the software configuration mode, set bit 1 of the software frequency configuration register, and

Write parameters related to the new clock, including div_refc and div_loop that determine the output frequency of the PLL

 $Frequency\ coefficients\ phy_hi_div\ and\ phy_lo_div,\ and\ the\ frequency\ division\ coefficient\ core_div\ of\ the\ controller.\ Then\ enter\ the\ warm$

reset or LDT disconnect, the controller will automatically reset the PLL and configure new clock parameters.

The calculation formula of the clock frequency is:

HyperTransport 1.0:

```
PHY_LINK_CLK = 50MHz × div_loop / div_refc / phy_div
```

HT_CORE_CLK = 100MHz × div_loop / div_refc / core_div

HyperTransport 3.0:

```
PHY LINK CLK = 100MHz × div loop / div refc
```

HT_CORE_CLK = 100MHz × div_loop / div_refc / core_div

The time to wait for the PLL to relock is about 30us by default when the system clk is 33M;

Write a custom upper limit of wait count in the memory;

Offset: 0x178

Reset value: 0x00000000

name: Software frequency configuration register

Table 10-79 Software Frequency Configuration Register

Bit field Bit field name Bit width reset value Visit description

 $31:27 \hspace{1.5cm} PLL \hspace{0.1cm} relock \hspace{0.5cm} 5 \hspace{0.5cm} 0x0 \hspace{0.5cm} R \hspace{0.1cm} / \hspace{0.1cm} W \hspace{0.1cm} counter \hspace{0.1cm} upper \hspace{0.1cm} limit \hspace{0.1cm} configuration \hspace{0.1cm} register, \hspace{0.1cm} set \hspace{0.1cm} counter \hspace{0.1cm} select \hspace{0.1cm} counter \hspace{0.1cm} select \hspace{0.1cm} counter \hspace{0.1cm} select \hspace{0.1cm} counter \hspace{0.1cm} upper \hspace{0.1cm} limit \hspace{0.1cm} configuration \hspace{0.1cm} register, \hspace{0.1cm} set \hspace{0.1cm} counter \hspace{0.1cm} select \hspace{0.1cm} counter \hspace{0.1cm} upper \hspace{0.1cm} limit \hspace{0.1cm} configuration \hspace{0.1cm} register, \hspace{0.1cm} set \hspace{0.1cm} counter \hspace{0.1cm} select \hspace{0.1cm} counter \hspace{0.1cm} upper \hspace{0.1cm} limit \hspace{0.1cm} configuration \hspace{0.1cm} register, \hspace{0.1cm} set \hspace{0.1cm} counter \hspace{0.1cm} set \hspace{0.1cm} set \hspace{0.1cm} counter \hspace{0.1cm} set \hspace{0.1cm} set \hspace{0.1cm} counter \hspace{0.1cm} set \hspace{0.$

counter , The upper limit of the counter is

95

Page 100

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

 $\{PLL_relock_counter,\,5'h1f\},\,otherwise\,\,the\,\,upper\,\,limit\,\,of\,\,count$

10'3ff

26 Counter select 1 0x0 R/W Lock timer custom enable:

 $1b0\ uses\ the\ default\ upper\ counting\ limit;$

1'b1 is calculated by PLL_relock_counter

25: 22 Soft_phy_lo_div 4 0x0 R / W High PHY Divider

21: 18 Soft_phy_hi_div 4 0x0 R / W Low PHY Divider

17: 16 Soft_div_refc 2 0x0 R / W PLL internal frequency division factor

15: 9	Soft_div_loop	7	0x0	R / W I	PLL internal frequency multiplication factor
8: 5	Soft_core_div	4	0x0	R / W 0	controller clock division factor
4: 2	Reserved	3	0x0	R	Keep
1	Soft cofig enable	1	0x0	R / W	Software configuration enable bit 1'b0 disable software frequency configuration
					1'b1 Enable software frequency configuration
0	Reserved	1	0x0	R	Keep

10.5.29 PHY Configuration Register

Used to configure PHY related physical parameters. When the controller is used as two independent 8bit controllers, the upper PHY

And the lower PHY are independently controlled by the two controllers; when the controller acts as a 16bit controller, the upper and lower

The configuration parameters of the lower PHY are controlled by the lower controller;

Offset: 0x17C Reset value: 0x83308000

name: PHY configuration register

Table 10- 80 PHY Configuration Register

Bit field	Bit field name	Bit wid	th reset value	Visit description
31	Rx_ckpll_term	1	0x1	R / W PLL to RX end on-chip transmission line termination impedance
30	Tx_ckpll_term	1	0x0	R/W PLL to TX terminal on-chip transmission line termination impedance
29	Rx_clk_in_sel_	1	0x0	$R/W\qquad \hbox{Clock PAD Clock selection for data PAD, HT1}$
				Automatically select CLKPAD in mode:
				1'b0 external clock source
				1'b1 PLL clock
28	Rx ckdll sell	1	0x0	R / W is used to lock DLL clock selection:
				1'b0 PLL clock
				1'b1 external clock source
27:26	Rx_ctle_bitc	2	0x0	R / W PAD EQD high frequency gain
96				

Page 101

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

25:24	Rx_ctle_bitr	2	0x3	R/WF	AD EQD low frequency gain
23:22	Rx_ctle_bitlim	2	0x0	R/WF	AD EQD compensation limit
twenty on	eRx_en_ldo	1	0x1	R/W	LDO control 1'b0 LDO disabled
					1'b1 LDO enable
20	Rx en by	1	0x1	R/W	BandGap control
					1'b0 BandGap disabled
					1'b1 BandGap enable
19: 17 Re	served	3	0x0	R	Keep
16:12	Tx_preenmp	5	0x08	R/WF	AD pre-emphasis control signal
11: 0	Reserved	12	0x0	R	Keep

10.5.30 Link initialization debug register

Used to configure whether to use the CDR provided by the PHY during the link initialization process in HyperTransport 3.0 mode

The lock signal is used as the link CDR completion flag; if the lock signal is ignored, the controller needs to count and wait

By default, the default CDR is completed.

Offset: 0x180

Reset value: 0x00000000

name: Link initialization debug register

Table 10-81 Link Initialization Debug Register

Bit field	Bit field name	Bit wic	lth reset value	e access	description		
15	Cdr_ignore_enable 1		0x0	R/W	Whether to ignore the CRC lock during link initialization and pass the counter Wait for the count to complete: 1'b0 wait for CDR lock		
					1'b1 Ignore the CDR lock signal and wait through the counter		
14:00	Cdr_wait_counter	15	0x0	R/W	Waiting for the upper limit of the counter count, based on the technology of the controller clock completion		

10.5.31 LDT debug register

After the software changes the controller frequency, the timing of the LDT reconnect phase will be inaccurate, and the counter needs to be configured.

After the frequency is configured as software, the time between the LDT signal being invalid and the controller starting link initialization, the timing is based on the control

Clock.

Offset: 0x184

Reset value: 0x000000000

97

Page 102

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

name: LDT debug register

Table 10-82 LDT debug registers

Bit fiel	d Bit field name	Bit wid	th reset value	Visit description
31:16	Rx_wait_time	16	0x0	R / W RX terminal waits for the initial value of the counter
15: 0	Tx wait time	16	0x0	R / W TX terminal waits for the initial value of the counter

10.6 Access method of HyperTransport bus configuration space

The protocol of the HyperTransport interface software layer is basically the same as the PCI protocol. Since the access to the configuration space is directly

The underlying protocol is related, and the specific access details are slightly different. As listed in Table 10-5, the address range of the HT bus configuration space

The range is 0xFD_FE00_0000 to 0xFD_FFFF_FFFF. For configuration access in the HT protocol, the Godson 3A3000 / 3B3000

It is implemented in the following format:

Type 0:

Type 1:

Figure 10-1 Configuration access of HT protocol in Loongson 3A3000 / 3B3000

10.7 HyperTransport multiprocessor support

Consistency request between 4 chips. The following provides two multiprocessor interconnection methods:

Four piece Loongson No. 3 interconnection structure

The four CPUs are connected in pairs to form a ring structure. Each CPU uses two 8-bit controllers of HT0 to connect with two adjacent chips,

98

Page 103

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

Among them, HTx_LO is the master device, and HTx_HI is the slave device, and the interconnection structure as shown below is obtained:

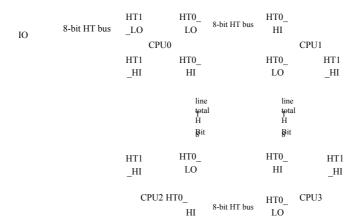


Figure 10- 2 Four-chip Loongson No. 3 interconnection structure

Loongson 3 interconnection routing

Loongson No. 3 interconnection routing adopts simple XY routing method. When routing, X followed by Y, taking four chips as an example, ID

The numbers are 00, 01, 10, and 11, respectively. If you send a request from 11 to 00, it is a route from 11 to 00, first go in the X direction,

Go from 11 to 10, then go in Y direction, and go from 10 to 00. And when the response of the request returns from 00 to 11, the routing first goes

X direction, from 00 to 01, and then Y direction, from 01 to 11. As you can see, these are two different routing lines. by

Due to the characteristics of this algorithm, we will adopt different methods when constructing the interconnection of two chips.

Two piece Loongson No. 3 interconnection structure

Due to the nature of the fixed routing algorithm, we have two different methods when constructing the interconnection of two chips. The first is to adopt Use 8-bit HT bus interconnection. In this interconnection method, only 8-bit HT interconnection can be used between the two processors. Two chip numbers They are 00 and 01 respectively. From the routing algorithm, we can know that when two chips access each other, they are interconnected by four chips.

Consistent 8-bit HT bus. As follows:

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

Figure 10--3 Two-chip Loongson No. 3 8-bit interconnection structure

However, our widest HT bus can use 16-bit mode, so the connection method to maximize bandwidth should be adopted

16-bit interconnect structure. In Godson III, as long as the HT0 controller is set to 16-bit mode, all are sent to the HT0 controller

Will be sent to HT0_LO instead of HT0_HI or HT0_LO according to the routing table.

We can use the 16-bit bus when interconnecting. Therefore, we only need to correctly configure the 16-bit mode of CPU0 and CPU1

You can use the 16-bit HT bus interconnection to set and connect the high and low bus correctly. And this interconnect structure can also be used 8

Bit HT bus protocol for mutual access. The resulting interconnection structure is as follows:

IO 16-bit HT bus
$$\begin{array}{c} \mathrm{HT} \\ \mathrm{1} \end{array}$$
 CPU0 HT0 16-bit HT bus HT0 CPU1

Figure 10--4 Two-chip Loongson No. 3 16-bit interconnection structure

100

Page 105

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

11 Low-speed IO controller configuration

Loongson No. 3 I / O controller includes PCI controller, LPC controller, UART controller, SPI controller, GPIO

And configuration registers. These I / O controllers share an AXI port, and the CPU request is sent to the phase after address decoding Should be the equipment.

11.1 PCI controller

The PCI controller of Loongson 3 can be used as the main bridge to control the entire system, or it can work as a common PC device.

On the PCI bus. Its implementation conforms to the PCI 2.3 specification. The PCI controller of Godson 3 also has a built-in PCI arbiter.

The configuration header of the PCI controller is located at 256 bytes starting at 0x1FE00000, as shown in Table 11-1.

Table 11- 1 PCI controller configuration header

	Tuoic	11 11 C1 controller config	dration neader	
Byte 3	Byte 2	Byte 1	Byte 0	address
Dev	ce ID	Ven	d Yao ID	00
Sta	ntus	C Ya	ao mmand	04
	Class C Yaode		Rev s Yao n ID	08
BIST	Heade Type	Latency T me	CacheL ne S ze	0C
	Base Add	ess Reg ste 0		10
	Base Add	ess Reg ste 1		14
	Base Add	ess Reg ste 2		18
	Base Add	ess Reg ste 3		1C
	Base Add	ess Reg ste 4		20
	Base Add	ess Reg ste 5		twenty four
				28
Subsyst	tem ID	Subsystem	Vend Yao ID	2C
				30
			Capab It es P Yao nte	34
				38
Max mum Latency	M n mum G ant	Inte upt P n	Inte upt L ne	3C
	Implementat Yao n S	Spec fc Reg ste (ISR40)		40
	Implementat Yaon S	pec fc Reg ste (ISR44)		44
	Implementat Yao n S	Spec fc Reg ste (ISR48)		48
	Implementat Yao n S	Spec fc Reg ste (ISR4C)		4C
	Implementat Yaon S	pec fc Reg ste (ISR50)		50
	Implementat Yao n S	Spec fc Reg ste (ISR54)		54
	Implementat Yaon S	pec fc Reg ste (ISR58)		58
404				
101				

Page 106

Godson ${\bf 3A3000}$ / ${\bf 3B3000}$ Processor User Manual • Volume 1

PCIX C Yaommand Reg ste E0
PCIX Status Reg ste E4

The PCIX controller of Loongson 3A3000 / 3B3000 supports three 64-bit windows, composed of {BAR1, BAR0}, {BAR3, BAR2}, {BAR5, BAR4} The base address of three pairs of register configuration windows 0, 1, 2. The size, enable, and other details of the window Three corresponding registers PCI_Hit0_Sel, PCI_Hit1_Sel, PCI_Hit2_Sel control, please refer to Table 2 for specific bit fields

Table 11- 2 PCI Control Register

Bit fie	ld	I	ield name		access	Reset v	alue		Explanation
REC	i_40								
31	ta	_	ead_Yao		Read and (Write 1 cle	0	ta		get end received access to IO or unprefetched area
30	ta	-	ead_d sca	d	Read and	0	Т	he d	elay request on the get side of ta is discarded
29	ta	-	esp_delay		Read and	d writØ		Afi	get When to give access delay / spl t er timeout ht away
							ta		get access retry strategy

Read and write0 0: According to internal logic (see bit 29) 28 ta _delay_ et y 1: Retry nov _ ead_ab 耀 t_en Read and write 27 If ta_get timeout for internal read request, whether to let ta_get-ab Yao-t respond 26:25 Rese ved If ta get times out for internal write request, whether to let ta get-ab Yao t respond twentytthree_maste _ab 耀 t Read and write0 Whether to allow maste-ab Yaot ta get subsequent delay timeout Read and write00 22:20 ta _subseq_t me Yaout 000: 8 cycles Other: Not supported ta get initial delay timeout In PCI mode 0: 16 cycles 1-7: Disable counter 8-15: 8-15 cycle In PCIX mode, the timeout count is fixed at 8 cycles. Read and wr0000 19:16 ta _ n t_t me Yaout delay visits 0: 8 delay access 8: 1 delay access 9: 2 delay visit 10: 3 delay visit 11: 4 delay visit 102

Page 107

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

```
12: 5 delay visit
                                                      13: 6 delay visit
                                                      14: 7 delay visit
                                                      15: 8 delay visit
                                                      Prefetchable boundary configuration (in units of 16 bytes)
                                                      FFF: 64KB to 16byte
15: 4 ta p ef b Yao unda y Read and wr@@0h
                                                      FFE: 64KB to 32byte
                                                      FF8: 64KB to 128byte
                                                      Use ta _p ef_b 耀 unda y configuration
                                                      0: prefetch to device boundary
       ta _p ef_b耀 und_en Read and write
                                                      1: Use ta _p ef_b 耀 unda y
                                                      ta get spl t write control
          _spl tw_ct l
                                  Read and write0
                                                      0: Block access except P Yao sted Mem Yao Cheng y W Cheng te
                                                      1: Block all access until spl t is completed
                                                      Disable mate access timeout
      mas_lat_t meyaut
                                  Read and write0
                                                      0: Allow maste to access timeout
                                                      1: not allowed
  REG 44
31: 0 Rese ved
  REG_48
                                                      ta get unprocessed request number vector
31: 0 ta __pend ng_seq
                                  Read and write
                                                      The corresponding bit can be cleared by writing 1
  REG 4C
31:30 Rese ved
                                                      Allow subsequent reads to skip past unfinished writes
 29
                                  Read and write0
      mas_w te_defe
                                                      (Only valid for PCI)
                                                      Allow subsequent reads and writes to bypass previous unfinished reads
                                  Read and write0
       mas_ ead_defe
                                                      (Only valid for PCI)
                                                      Maximum number of IO requests out
 27 mas_耀_defe _cnt
                                                      0: controlled by
                                  Read and write0
                                                      1:1
```

The maximum number of maste to support reading outside (only valid for PCI)

```
Read and write 0
26:24 mas_ ead_defe
                                                     1-7: 1-7
                                                     Note: A dual address cycle access accounts for two
                                 Read only 00h
                                                     ta, get / maste, error number
23:16 e
            _seq_ d
                                                     ta 偡 get / maste erroneous command type
 15
              _type
                                  Read only 0
 14
                                  Read only 0
              _m 耀 dule
                                                     The wrong module
103
```

Page 108

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

		0: ta get
		1: maste
13 system_e 耀 Read	and write0	ta / get / maste / system error (write 1 clear)
12 data_pa ty_e 耀 Read	and write0	ta / get / maste / data parity error (write 1 clear)
11 ct l_pa ty_e Read	and write0	ta 性 get / maste 性 Address parity error (write 1 clear)
10: 0 Rese ved -	-	
REG_50		
31: 0 mas pend ng seq Read	1 :.0	maste unprocessed request number vector
31. 0 mas_pend ng_seq Read	and write	The corresponding bit can be cleared by writing 1
REG_54		
31: 0 mas_spl t_e Read	and write0	spl t returns the wrong request number bit vector
REG_58		
31:30 Rese ved -	-	
Acts		ta get spl t return priority
29:28 ta _spl t_p 耀 ty Read	and write ⁰	0 highest, 3 lowest
OFF OFF AND ADDRESS OF THE ADDRESS O	Read and write	maste
27:26 mas_ eq_p 耀 ty Read	and write	0 highest, 3 lowest
		Arbitration algorithm (arbitration between the visit of maste and the return of spl t from ta)
25 P 耀 ty_en Read	Read and write	0: fixed priority
		1: rotation
24:18 Reserved -	-	
17 mas_ et y_ab 耀 ted Read	and write0	maste Retry cancellation (write 1 clear)
16 mas_t dy_t me Yaout Read	and write0	maste ~ TRDY timeout count
		maste
15: 8 mas_ et y_value Read	and wri@h	0: unlimited retry
		1-255: 1-255 times
		maste TRDY timeout counter
7: 0 mas_t dy_c Yaount Read	and wri@0h	0: disabled
		1-255: 1-255 beat

Before initiating configuration space read and write, the application program should first configure the PCIMap_Cfg register to tell the controller to initiate

The type of configuration operation and the value on the upper 16-bit address line. Then read and write the 2K space starting from 0x1fe80000

You can access the configuration header of the corresponding device. The device number is obtained by coding according to PCIMap_Cfg [15: 0] from low to high priority.

The configuration operation address generation is shown in Figure 11-1.

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

Figure 11-1 Configure read and write bus address generation

The PCI arbiter implements two-level round robin arbitration, bus docking, and isolation of damaged master devices. See its configuration and status PXArb_Config and PXArb_Status registers. See Table 11-3 for the assignment of PCI bus request and response lines.

Table 11- 3 PCI / PCIX bus request and response line assignment

Request and answer line	description
0	Internal integrated PCI / PCIX controller
7: 1	External request $6 \sim 0$

The rotation-based arbitration algorithm provides two levels, and the second level as a whole is scheduled as a member of the first level. When multiple

When the device applies for the bus at the same time, the first level device is rotated once, and the device with the highest priority in the second level can get the bus.

The arbiter is designed to be switched at any time as long as conditions permit. For some PCI devices that do not conform to the protocol,

Doing so may make it abnormal. Using mandatory priority allows these devices to occupy the bus through continuous requests.

Bus docking refers to whether or not to select one to give an enable signal when no device requests to use the bus. For already

As far as allowed devices are concerned, directly initiating bus operations can improve efficiency. The internal PCI arbiter provides two docking modes:

The last master device and the default master device. If you cannot dock in special occasions, you can set the arbiter to dock to

The default is No. 0 master device (internal controller), and the delay is 0.

105

Page 110

Godson **3A3000 / 3B3000** Processor User Manual • Volume 1

11.2 LPC controller

The LPC controller has the following characteristics:

- Comply with LPC1.1 specification
- Support LPC access timeout counter

- Supports Mem Yaoyue Read and Mem Yaoyyw access types
- Support F mwa e Mem Yao y Ready, F mwa e Mem Yao yyy W te Access type (single byte)
- Support I / O ead, I / O w te access type
- Support Mem Yaoyay access type address translation
- Support Se zed IRQ specification, provide 17 interrupt sources

The address space distribution of LPC controller is shown in Table 11-4:

Table 11-4 LPC Controller Address Space Distribution

Address name	Address range	size
LPC B Yaoyao	0X1FC0_0000-0X1FD0_0000	1MByte
LPC Mem Yao Yi	0X1C00_0000-0X1D00_0000	16MByte
LPC I / O	0X1FF0_0000-0X1FF1_0000	64KByte
LPC Reg ste	0X1FE0_0200-0X1FE0_0300	256Byte

The LPC Boot address space is the address space that the processor first accesses when the system starts. When the PCI_CONFIG [0] pin is When pulling down, the address of 0xBFC00000 is automatically routed to LPC. This address space supports LPC Memory or Firmware Memory access type. The type of access issued at system startup is controlled by the LPC_ROM_INTEL pin. LPC_ROM_INTEL LPC Firmware Memory access is issued when the pin is pulled up, LPC Memory is issued when the LPC_ROM_INTEL pin is pulled down Type of access.

The LPC Memory address space is the address space accessed by the system with Memory / Firmware Memory. LPC controller

Which type of memory access is issued is determined by the configuration register LPC_MEM_IS_FWH of the LPC controller. The processor sends

Address translation to this address space can be performed. The converted address is controlled by the configuration register of the LPC controller

LPC_MEM_TRANS setting.

The processor's access to the LPC I / O address space is sent to the LPC bus according to the LPC I / O access type. Address is address
The space is 16 bits lower.

There are three 32-bit registers in the LPC controller configuration register. The meaning of the configuration register is shown in Table 11-5:

Table 11-5 LPC Configuration Register Meaning

106

Page 111

Godson ${\bf 3A3000}$ / ${\bf 3B3000}$ Processor User Manual • Volume 1

Bit field	Field name	Access reset value d	escription
		REG0	
REG0 [31:31]	SIRQ_EN	Read and @rite	SIRQ enable control
REG0 [23:16]	LPC_MEM_TRANS	Read and Write	LPC Mem Yao y space address translation control
REG0 [15: 0]	LPC_SYNC_TIMEOUT	Read and Write	LPC access timeout counter
		REG1	
REG1 [31:31]	LPC_MEM_IS_FWH	Read and Write	LPC Mem Yao yy space F y mwa y
			Mem 耀 y access type settings
REG1 [17: 0]	LPC_INT_EN	Read and Write	LPC SIRQ interrupt enable
		REG2	
REG2 [17: 0]	LPC_INT_SRC	Read and Write	LPC SIRQ interrupt source indication
		DEC2	

REG3 [17: 0] LPC_INT_CLEAR write 0 LPC SIRQ interrupt clear

11.3 UART controller

The UART controller has the following features

- Full-duplex asynchronous data reception / transmission
- Programmable data format
- 16-bit programmable clock counter
- Support receive timeout detection
- Multi-interrupt system with arbitration
- Only work in FIFO mode
- Compatible with NS16550A in registers and functions

The chip integrates two UART interfaces, the function registers are exactly the same, but the access base address is different.

The base address of the physical address of the UART0 register is 0x1FE001E0.

The base address of the physical address of the UART1 register is 0x1FE001E8.

107

Page 112

Godson ${\bf 3A3000}$ / ${\bf 3B3000}$ Processor User Manual • Volume 1

11.3.1 Data Register (**DAT**)

Chinese name: Data transfer register

Register bit width: [7:0]Offset: 0x00Reset value: 0x00

Bit field Bit field name Bit width access description

7: 0 Tx FIFO 8 W Data transfer register

11.3.2 Interrupt enable register (IER)

Chinese name: Interrupt enable register

Register bit width: [7:0]Offset: 0x01Reset value: 0x00

Bit field	Bit field name	Bit width	access	description
7: 4	Rese	4	RW	Keep
3	IME	1	RW	M Yao dem status interrupt enable '0'-off' '1'-open
2	ILE	1	RW	Receiver line status interrupt enable '0' – close '1' – open
1	ITxE	1	RW	Transfer save register is empty Interrupt enable '0' – close '1' – open
0	IRxE	1	RW	Receive valid data interrupt enable '0' – close '1' – open

11.3.3 Interrupt Identification Register (IIR)

Chinese name: Interrupt source register

Register bit width: [7: 0]

Offset: Reset value:	0x02 0xc1			
Bit field	Bit field name	Bit width	access	description
7: 4	Rese	4	R	Keep
3: 1	II	3	R	Interrupt source display bit, see the table below for details
0	INTp	1	R	Interrupt indication bit
			Interrupt co	antrol function table

108

Page 113

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

Bit 3	Bit 2	Bit 1	Priority interrupt type		Interrupt source	Interrupt reset control
0	1	1	1st	Receive line status	Parity, overflow, or frame error, or	r hifRead LSR
					Interrupt	
0	1	0	2nd	Received valid numl	peThe number of characters in the Fl	IFOIreachesmber of characters in FIFO
				according to	t 偡 gge 's level	The value of t gge
1	1	0	2nd	Receive timeout	There is at least one character in the	ne FREEOrd receive FIFO
					But within 4 character time	
					Operations, including read and wri	ite operations
0	0	1	3 tad	Transfer, save, depo	sitl ransfer save register is empty	Write data to THR or
				The device is empty		Multi IIR
0	0	0	4th	M Yao dem status	CTS, DSR, RI Yaoya DCD.	Read MSR

11.3.4 **FIFO** control register (**FCR**)

Chinese name: FIFO control register

Register bit width: [7:0]Offset: 0x02Reset value: 0xc0

Bit field	Bit field name	Bit width	access	description
7: 6	TL	2	W	Receive tFIFO value of interrupt request from FIFO
				'00' – 1 byte '01' – 4 bytes
				'10' – 8 bytes '11' – 14 bytes
5: 3	Rese	3	W	Keep
2	Txset	1	W	'1' Clear the content of transmit FIFO, reset its logic
1	Rxset	1	W	'1' Clear the content of the receive FIFO, reset its logic
0	Rese	1	W	Keen

11.3.5 Line Control Register (LCR)

Chinese name: Line control register

Register bit width: [7: 0]

Godson ${\bf 3A3000}$ / ${\bf 3B3000}$ Processor User Manual • Volume 1

Offset: Reset value	0x03 0x03			
Bit field	Bit field name	Bit width	access	description
7	dlab	1	RW	Divider latch access bit
				'1'-access to the operation divider latch
				'0'-access to normal operation register
6	bcb	1	RW	Interrupt control bit
				1 -At this time the output of the serial port is set to 0 (interrupted state).
				'0'-normal operation
5	spb	1	RW	Specify parity
				'0' – no parity bit specified
				'l' - transmission and check parity if LCR [4] bit is 1
				The bit is 0. If the LCR [4] bit is 0, transmit and check the parity
				The checkpoint is 1.
4	eps	1	RW	Parity bit selection
				'0' - There are an odd number of 1s in each character (including data and odd
				Even parity bit)
				'1' - there are an even number of 1s in each character
3	pe	1	RW	Parity bit enable
				'0' – no parity bit
				'l'-generate parity bit on output, judge odd on input
				Even parity
2	sb	1	RW	Define the number of generated stop bits
				'0' – 1 stop bit
				'1' – 1.5 stop bits when 5 characters long, others
				The length is 2 stop bits
1: 0	bec	2	RW	Set the number of digits for each character
				'00' – 5 digits '01' – 6 digits
110				
110				

Page 115

Godson **3A3000** / **3B3000** Processor User Manual • Volume 1

'10' - 7 digits '11' - 8 digits

Chinese name: M Yaodem control register

Register bit width: [7: 0]
Offset: 0x04
Reset value: 0x00

Bit field Bit field name Bit width access description
7: 5 Rese 3 W Keep
4 L Yaoyao p 1 W Loopback mode control bit

'0'-normal operation

'1' - Loopback mode. In loopback mode, TXD outputs a

Straight to 1, the output shift register is directly connected to the input shift register

器 中. The other connections are as follows.

 $\mathrm{DTR} \to \mathrm{DSR}$

 $RTS \rightarrow CTS$

 $Out1 \rightarrow RI$

 $\text{Out2} \rightarrow \text{DCD}$

DTR signal control bit

3 OUT2 1 W Connect to DCD input in loopback mode
2 OUT1 1 W Connect to RI input in loopback mode
1 RTSC 1 W RTS signal control bit

W

11.3.7 Line Status Register (LSR)

Chinese name: Line status register

DTRC

Register bit width: [7: 0]
Offset: 0x05
Reset value: 0x00

Bit field Bit field name Bit width access description

111

Page 116

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

7	ERROR	1	R	Error indication bit '1'-at least parity error, framing error or interruption
				The broken one. '0' – no errors
6	TE	1	R	Transmission is empty '1' – Both the transmission FIFO and the transmission shift register are empty, give
				Clear when the transmit FIFO writes data '0' – with data
5	TFE	1	R	Transmit FIFO bit empty representation bit 'I' – The current transmit FIFO is empty, write data to the transmit FIFO
				Time zero '0' – with data

4	ВІ	1	R	Interrupt interruption bit
				'1'-Start bit + data + parity bit + stop bit received
				Is 0, that is interrupted
				'0'-no interruption
3	FE	1	R	Frame error indication bit
				'1' - received data has no stop bit
				'0' – no errors
2	PE	1	R	Parity bit error indicates bit
				'1'-The current received data has a parity error
				'0' – no parity error
1	OE	1	R	Data overflow indication bit
				'1'-There is data overflow
				'0' – no overflow
0	DR	1	R	Receive data valid representation bit
				'0' – No data in FIFO

112

Page 117

Godson ${\bf 3A3000}$ / ${\bf 3B3000}$ Processor User Manual • Volume 1

'1' – There is data in the FIFO $\,$

When reading this register, LSR [4: 1] and LSR [7] are cleared, and LSR [6: 5] is writing data to the transmit FIFO Cleared according to the time, LSR [0] judges the receive FIFO.

11.3.8 **MODEM** status register (**MSR**)

Chinese name: M Yaodem Status Register

Register bit width: [7:0]Offset: 0x06Reset value: 0x00

reset value.				
Bit field	Bit field name	Bit width	access	description
7	CDCD	1	R	Inverse of DCD input value, or connect to Out2 in loopback mode
6	CRI	1	R	Inverse of RI input value, or connect to OUT1 in loopback mode
5	CDSR	1	R	Inverse of DSR input value, or connect to DTR in loopback mode
4	CCTS	1	R	Inverse of CTS input value, or connect to RTS in loopback mode
3	DDCD	1	R	DDCD indicator
2	TERI	1	R	RI edge detection. RI state changes from low to high
1	DDSR	1	R	DDSR indicator
0	DCTS	1	R	DCTS indicator

11.3.9 Frequency divider latch

Chinese name: Divider 1

Register bit width: [7: 0]
Offset: 0x00
Reset value: 0x00

Bit field Bit field name Bit width access description

7: 0 LSB 8 RW Store the lower 8 bits of the divider latch

Chinese name: Divider 2
Register bit width: [7: 0]
Offset: 0x01
Reset value: 0x00

Bit field Bit field name Bit width access description

113

Page 118

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

7: 0 MSB 8 RW Stores the upper 8 bits of the divider latch

11.4 SPI controller

The SPI controller has the following features:

- Full duplex synchronous serial data transmission
- Supports up to 4 variable-length byte transfers
- Main mode support
- Mode failure generates an error flag and issues an interrupt request
- Double buffer receiver
- Serial clock with programmable polarity and phase
- SPI can be controlled in wait mode
- Support boot from SPI

The physical address of the SPI controller register is 0x1FE00220.

Table 11-6 SPI controller address space distribution

Address name	Address range	size
SPI B Yaoyao	0X1FC0_0000-0X1FD0_0000	1MByte
SPI Mem Yao Yi	0X1D00_0000-0X1E00_0000	16MByte
SPI Reg ste	0X1FE0_0220-0X1FE0_0230	16Byte

The SPI Boot address space is the address space that the processor first accesses when the system starts. When the PCI_CONFIG [0] pin is

When pulling up, the address of 0xBFC00000 is automatically routed to the SPI.

The SPI Mem Yao space can also be directly accessed through the CPU's read request, its minimum 1M bytes and SPI BOOT space

overlapping.

11.4.1 Control Register (SPCR)

Chinese name: Control register

Register bit width: [7:0]Offset: 0x00Reset value: 0x10

Bit field Bit field name Bit width access description

7 Sp e 1 RW Interrupt output enable signal is high and effective 6 spe 1 RW System work enable signal is highly effective

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

5	Rese	1	RW	Keep
4	mst	1	RW	maste mode selection bit, this bit keeps 1
3	cp Yaol	1	RW	Clock polarity bit
2	cpha	1	RW	Clock phase bit 1 is the opposite phase, and 0 is the same
1: 0	sp	2	RW	sclk_yao crossover setting, need to be used with spe spe

11.4.2 Status Register (SPSR)

Chinese name: Status register
Register bit width: [7: 0]
Offset: 0x01
Reset value: 0x05

Bit field Bit field name Bit width access description RW Interrupt flag bit 1 indicates that there is an interrupt request, write 1 to clear wc Yaol RW Write register overflow flag bit is 1 indicates that it has overflowed, write 1 to clear 5.4 2 RW Rese Keep wffull RW Write register full flag 1 means full wfempty 2 1 RW Write register empty flag 1 means empty Yffull RW Read register full flag 1 means full Fempty RW Read register empty flag 1 means empty

11.4.3 Data Register (TxFIFO)

Chinese name: Data transfer register

Register bit width: [7:0] Offset: 0x02 Reset value: 0x00

Bit field Bit field name Bit width access description

7: 0 Tx FIFO 8 W Data transfer register

11.4.4 External register (SPER)

Chinese name: External register

Register bit width: [7: 0]

115

Page 120

Offset: 0x03 Reset value: 0x00

Bit field	Bit field na	ame	Bit v	width	acce	SS	descrip	tion				
7: 6	ent		2		RW		Send ar	interruj	ot request	signal aft	er how many bytes	are transferred
							00 – 1 t	oyte	01-2	bytes		
							10-3 by	rtes	11-3	B bytes		
5: 2	Rese		4		RW		Keep					
1: 0	sp		2		RW		Set the frequency division ratio together with Sp					
Frequency division factor:												
spre	00 00	00	00	01	01	01	01	10	10	10	10	
spr	00 01	10	11	00	01	10	11	00	01	10	11	
Frequency division factor 16 32 8 64 128 256 512 1024 2048 4096												

11.4.5 Parameter control register (SFC_PARAM)

Chinese name: SPI Flash parameter control register

Register bit width: [7:0] Offset: 0x04 Reset value: 0x21

Bit field Bit field name Bit width access clk_div RW Clock frequency division number selection (frequency division coefficient is the same as {spre, spr} combination) 3 dual_io RW 1 Use dual I / O mode with higher priority than fast read mode 2 fast_read RWUse quick read mode spi flash supports continuous address read mode RW burst_en 1 memory_en 1 RWspi flash read enable, when invalid, csn [0] can be controlled by software.

11.4.6 Chip Select Control Register (SFC_SOFTCS)

Chinese name: SPI Flash Chip Select Control Register

Register bit width: [7: 0]
Offset: 0x05
Reset value: 0x00

116

Page 121

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

Bit field		Bit field name	Bit width	access	description
7: 4	csn		4	RW	csn pin output value
3: 0	csen		4	RW	When it is 1, the corresponding cs line is controlled by 7: 4 bits

11.4.7 Timing control register (SFC_TIMING)

Chinese name: SPI Flash timing control register

Register bit width: [7:0] Offset: 0x06 Reset value: 0x03

Bit field Bit field name Bit width access description

7: 2 Reserved 6 RW Keep

The shortest invalid time of the chip select signal of SPI Flash, divided by frequency

Clock period T calculation

\$00:1T\$ 1: 0 \$tCSH\$ 2 \$RW\$

01: 2T

10: 4T

11: 8T

117

Page 122

Godson ${\bf 3A3000}$ / ${\bf 3B3000}$ Processor User Manual • Volume 1

11.5 IO controller configuration

The configuration register is mainly used to configure the address window, arbiter and GPIO controller of the PCI controller. Table 11-7

These registers are listed, and Table 11-8 gives a detailed description of the registers. The base address of this part of the register is 0x1FE00100.

Table 11-7 IO Control Register

address	register	Explanation
00	P YaonCfg	Power-on configuration
04	GenCfg	General configuration
08	Keep	
0C	Keep	
10	PCIMap	PCI mapping
14	PCIX_B dge_Cfg	PCI / X bridge related configuration
18	PCIMap_Cfg	PCI configuration read and write device address
1C	GPIO_Data	GPIO data
20	GPIO_EN	GPIO direction
twenty f	Cour Keep	
28	Keep	
2C	Keep	
30	Keep	

```
34
             Keep
38
             Keep
3C
             Keep
            Mem_W n_Base_L
40
                                                  Prefetch the lower 32 bits of the base address of the window
44
             Mem_W n_Base_H
                                                  Pre-fetch window base 32 higher bits
             Mem_W n_Mask_L
48
                                                  Prefetchable window mask lower 32 bits
4C
            Mem_W n_Mask_H
                                                  Pre-fetch window mask high 32 bits
            PCI_H t0_Sel_L
                                                  PCI window 0 controls the lower 32 bits
50
```

118

Page 123

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

54	PCI_H t0_Sel_H	PCI window 0 controls the upper 32 bits					
58	PCI_H t1_Sel_L	PCI Window 1 controls the lower 32 bits					
5C	PCI_H t1_Sel_H	PCI Window 1 controls the upper 32 bits					
60	PCI_H t2_Sel_L	PCI Window 2 controls the lower 32 bits					
64	PCI_H t2_Sel_H	PCI Window 2 controls the upper 32 bits					
68	PXA b_C耀nfg	PCIX arbiter configuration					
6C	PXA b_Status	PCIX arbiter status					
70							
74							
78							
7C							
80	Ch p C Yao nf g	Chip configuration register					
84							
88							
8C							
90	Ch p Sample	Chip sampling register					
Table 11-8 Register detailed description							

Bit field	Field name	access	Reset value	Explanation
CR00: P	Yao nCfg			
15: 0	pc x_bus_dev	Read only l	Yao_ad [7: 0]	In PCIX Agent mode, the total CPU usage Line, equipment number
15: 8	Keep	Read only l	Yao_ad [15: 8]	
23:16	p耀 n_pc _c耀 nf g	Read only p	c_c耀nfg	PCI_C Yao nf g pin value
31:24	Keep	Read only		
CR04: re	eserved			
31: 0	Keep	Read only 0	ı	
CR08: re	eserved			
31: 0	Keep	Read only 0	ı	
CR10: P	CIMap			
5: 0	t ans_1耀0	Read-write	0	PCI_Mem_L Yao 0 Window map address high 6 bits
11: 6	t ans_l耀1	Read-write	0	PCI_Mem_L Yao1 Window map address high 6 bits

Godson **3A3000** / **3B3000** Processor User Manual • Volume 1

17:12	t ans_1耀2	Read-write 0	PCI_Mem_L Yao 2 Window map address high 6 bits
31:18	Keep	Read only 0	
CR14: I	PCIX_B dge_Cfg		
5: 0	pc x_ gate	Read and write 6'h18	Threshold for sending data to DDR2 in PCIX mode
6	pc x_ 耀 _en	Read-write 0	Does the PCIX bridge allow write over read
31:18	Keep	Read only 0	
CR18: I	PCIMap_Cfg		
15: 0	dev_add	Read-write 0	The upper 16 bits of the AD line in PCI configuration
16	c 耀 nf_type	Read-write 0	Configure the type of read and write
31:17	Keep	Read only 0	
CR1C:	GPIO_Data		
15: 0	gp 耀 _ 耀 ut	Read-write 0	GPIO output data
31:16	gp Yao_n	Read-write 0	GPIO input data
CR20: 0	GPIO_EN		
15: 0	gp 耀 _en	Read and write FFFF	High is input, low output
31:16	Keep	Read only 0	
CR3C: 1	reserved		
31: 0	Keep	Read only 0	Keep
CR24, 2	C, 30, 34, 38: reserved		
See table 1	1-3		
CR50,5	4 / 58,5C / 60,64: PCI_H t * _Sel_ *		
0	Keep	Read only 0	
2: 1	pc _ mg_s ze	Read and write 2'b11	00: 32 bits; 10: 64 bits; others: invalid
3	p ef_en	Read-write 0	Prefetch enable
11: 4	Keep	Read only 0	
62:12	ba _mask	Read-write 0	Window size mask (high order 1, low order 0)
63	$bu \sim st_cap$	Read and write 1	Whether to allow burst transfer
CR68: I	PXA b_C 耀 nf g		
0	dev ce_en	Read and write 1	Permitted by external equipment
1	d sable_b 耀 ken	Read-write 0	Disable damaged master device
			The bus is docked to the default master
2	default_mas_en	Read and write 1	0: dock to the last master device
			1: dock to the default master device
5: 3	default_maste	Read-write 0	Bus docking default master device number
			Starting from no device requesting the bus to triggering the docking default
7: 6	pa k_delay	Read and write 2'b11	Delay in device behavior
			00: 0 cycles

10: 32 cycles 11: 128 cycles

15: 8	level	Read and write 8'h01	Equipment in the first level
			Mandatory priority device

23:16 ude_dev Read-write 0 The PCI device corresponding to the 1 bit can be obtained after the bus

To occupy the bus with continuous requests

31:13 Read only 0

CR6C: PXA b_Status

Keep

31:11

7: 0 b 耀 ken_maste Read only 0 Damaged master device (cleared when changing the disable policy)

10: 8 Last_maste Read only 0 Last master device using the bus Read only 0

CR80: Ch pc Yao nf g (see section 2.6)

CR90: Ch p Sample (see section 2.6)

CRA0: Ch p Sample (see section 2.6)

CRB0: PLL c Yao nf g (see section 2.6)

CRC0: PLL c Yao nf g (see section 2.6)

CRD0: C Yao Yi ec Yao nf g (see section 2.6)

121

Page 126

12 Chip Configuration Register List

Name	ADDR	R/W	Description (NULL means no effect)	default value
CPU_WIN0_BASE	0x3ff00000	RW	Base address of CPU window 0	0x0
CPU_WIN1_BASE	0x3ff00008	RW	Base address of CPU window 1	0x1000_0000
CPU_WIN2_BASE	0x3ff00010	RW	Base address of CPU window 2	0x1000_8000_0000
CPU_WIN3_BASE	0x3ff00018	RW	Base address of CPU window 3	0x0
CPU_WIN4_BASE	0x3ff00020	RW	Base address of CPU window 4	0x0
CPU_WIN5_BASE	0x3ff00028	RW	Base address of CPU window 5	0x0

CPU_WIN6_BASE	0x3ff00030	RW	Base address of CPU window 6	0x0
CPU_WIN7_BASE	0x3ff00038	RW	Base address of CPU window 7	0x0
CPU_WIN0_MASK	0x3ff00040	RW	Mask of CPU window 0	0xffff_ffff_f000_00
CPU_WIN1_MASK	0x3ff00048	RW	Mask of CPU window 1	0xffff_ffff_f000_00
CPU_WIN2_MASK	0x3ff00050	RW	Mask of CPU window 2	0xffff_ffff_f000_00
CPU_WIN3_MASK	0x3ff00058	RW	Mask of CPU window 3	0x0
CPU_WIN4_MASK	0x3ff00060	RW	Mask of CPU window 4	0x0
CPU_WIN5_MASK	0x3ff00068	RW	Mask of CPU window 5	0x0
CPU_WIN6_MASK	0x3ff00070	RW	Mask of CPU window 6	0x0
CPU_WIN7_MASK	0x3ff00078	RW	Mask of CPU window 7	0x0

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

CPU_WIN0_MMAP	0x3ff00080	RW	New base address of CPU window 0	0xf0
CPU_WIN1_MMAP	0x3ff00088	RW	New base address of CPU window 1	0x1000_00f2
CPU_WIN2_MMAP	0x3ff00090	RW	New base address of CPU window 2	0xf0
CPU_WIN3_MMAP	0x3ff00098	RW	New base address of CPU window 3	0x0
CPU_WIN4_MMAP	0x3ff000a0	RW	New base address of CPU window 4	0x0
CPU_WIN5_MMAP	0x3ff000a8	RW	New base address of CPU window 5	0x0
CPU_WIN6_MMAP	0x3ff000b0	RW	New base address of CPU window 6	0x0
CPU_WIN7_MMAP	0x3ff000b8	RW	New base address of CPU window 7	0x0
PCI_WIN0_BASE	0x3ff00100	RW	Base address of PCI window 0	0x8000_0000
PCI_WIN1_BASE	0x3ff00108	RW	Base address of PCI window 1	0x0
PCI_WIN2_BASE	0x3ff00110	RW	Base address of PCI window 2	0x0
PCI_WIN3_BASE	0x3ff00118	RW	Base address of PCI window 3	0x0
PCI_WIN4_BASE	0x3ff00120	RW	Base address of PCI window 4	0x0
PCI_WIN5_BASE	0x3ff00128	RW	Base address of PCI window 5	0x0
PCI_WIN6_BASE	0x3ff00130	RW	Base address of PCI window 6	0x0
PCI_WIN7_BASE	0x3ff00138	RW	Base address of PCI window 7	0x0
PCI_WIN0_MASK	0x3ff00140	RW	Mask of PCI window 0	0xffff_ffff_8000_00
PCI_WIN1_MASK	0x3ff00148	RW	Mask of PCI window 1	0x0
PCI_WIN2_MASK	0x3ff00150	RW	Mask of PCI window 2	0x0

123

Page 128

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

PCI_WIN3_MASK	0x3ff00158	RW	Mask of PCI window 3	0x0
PCI_WIN4_MASK	0x3ff00160	RW	Mask of PCI window 4	0x0
PCI WIN5 MASK	0x3ff00168	RW	Mask of PCI window 5	0x0

PCI_WIN6_MASK	0x3ff00170	RW	Mask of PCI window 6	0x0
PCI_WIN7_MASK	0x3ff00178	RW	Mask of PCI window 7	0x0
PCI_WIN0_MMAP	0x3ff00180	RW	New base address of PCI window 0	0xf0
PCI_WIN1_MMAP	0x3ff00188	RW	New base address for PCI window 1	0x0
PCI_WIN2_MMAP	0x3ff00190	RW	New base address for PCI window 2	0x0
PCI_WIN3_MMAP	0x3ff00198	RW	New base address for PCI window 3	0x0
PCI_WIN4_MMAP	0x3ff001a0	RW	New base address of PCI window 4	0x0
PCI_WIN5_MMAP	0x3ff001a8	RW	New base address of PCI window 5	0x0
PCI_WIN6_MMAP	0x3ff001b0	RW	New base address of PCI window 6	0x0
PCI_WIN7_MMAP	0x3ff001b8	RW	New base address for PCI window 7	0x0
Slock0_addr	0x3ff00200	RW	Lock address of lock window 0 ([63]: valid, [47: 0]: addr)	0x0
Slock1_addr	0x3ff00208	RW	Lock address of lock window 1 ([63]: valid, [47: 0]: addr)	0x0
Slock2_addr	0x3ff00210	RW	Lock address of lock window 2 ([63]: valid, [47: 0]: addr)	0x0
Slock3_addr	0x3ff00218	RW	Lock address of lock window 3 ([63]: valid, [47: 0]: addr)	0x0
Slock0_mask	0x3ff00240	RW	Lock window mask 0 ([47: 0]: mask)	0x0
Slock1_mask	0x3ff00248	RW	Lock window mask 1 ([47: 0]: mask)	0x0

124

Page 129

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

Slock2_mask	0x3ff00250	RW	Lock window mask number 2 ([47: 0]: mask)	0x0
Slock3_mask	0x3ff00258	RW	Lock window mask number 3 ([47: 0]: mask)	0x0
BARRIER_SET	0x3ff00300	WO	barrier value plus 1	
BARRIER_CLR	0x3ff00308	WO	barrier value minus 1	
BARRIER_REF	0x3ff00310	RW	barrier threshold	0x0
BARRIER_CTRL	0x3ff00318	RW	bit [0]: barrier value addition / subtraction enable / barrier interrupt enable	0x0
BARRIER_VEC	0x3ff00320	RO	Current barrier value	
			24: ccsd_en	
			19:16: ccsd_id	
			8: xrouter_en	
			5: x2_pci_rdinterleave	
			4: x2_cpu_rdinterleave	
CONFSIGNAL_CR	0x3ff00400	RW	3: 0: scid_sel	$0xffff_0000$
gs3_HPT	0x3ff00408	RO	Counter incremented by 1 every clock cycle	
MTX0_SRC_START_ADDR	0x3ff00600	RW		0x0
MTX0_DST_START_ADDR	0x3ff00608	RW		0x0
MTX0_ORI_LENTH	0x3ff00610	RW		0x0
MTX0_ORI_WIDTH	0x3ff00618	RW		0x0
MTX0_SRC_ROW_STRIDE	0x3ff00620	RW		0x0

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

MTX0_DST_ROW_STRIDE	0x3ff00628	RW
MTX0_TRANS_CTRL	0x3ff00630	RW
MTX1_SRC_START_ADDR	0x3ff00700	RW
MTX1_DST_START_ADDR	0x3ff00708	RW
MTX1_ORI_LENTH	0x3ff00710	RW
MTX1_ORI_WIDTH	0x3ff00718	RW
MTX1_SRC_ROW_STRIDE	0x3ff00720	RW
MTX1_DST_ROW_STRIDE	0x3ff00728	RW
MTX1_TRANS_CTRL	0x3ff00730	RW
SCache0_perfctrl0	0x3ff00800	RW
SCache0_perfcnt0	0x3ff00808	RO
SCache0_perfctrl1	0x3ff00810	RW
SCache0_perfcnt1	0x3ff00818	RO
SCache0_perfctrl2	0x3ff00820	RW
SCache0_perfcnt2	0x3ff00828	RO
SCache0_perfctrl3	0x3ff00830	RW
SCache0_perfcnt3	0x3ff00838	RO
SCache1_perfctrl0	0x3ff00900	RW
SCache1_perfcnt0	0x3ff00908	RO

126

Page 131

Godson **3A3000** / **3B3000** Processor User Manual • Volume 1

SCache1_perfctrl1	0x3ff00910	RW
SCache1_perfcnt1	0x3ff00918	RO
SCache1_perfctrl2	0x3ff00920	RW
SCache1_perfcnt2	0x3ff00928	RO
SCache1_perfctrl3	0x3ff00930	RW
SCache1_perfcnt3	0x3ff00938	RO
SCache2_perfctrl0	0x3ff00A00	RW
SCache2_perfcnt0	0x3ff00A08	RO
SCache2_perfctrl1	0x3ff00A10	RW
SCache2_perfcnt1	0x3ff00A18	RO
SCache2_perfctrl2	0x3ff00A20	RW
SCache2_perfcnt2	0x3ff00A28	RO
SCache2_perfctrl3	0x3ff00A30	RW
SCache2_perfcnt3	0x3ff00A38	RO
SCache3_perfctrl0	0x3ff00B00	RW
SCache3_perfcnt0	0x3ff00B08	RO
SCache3_perfctrl1	0x3ff00B10	RW
SCache3_perfcnt1	0x3ff00B18	RO

127

Page 132

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

SCache3_perfcnt2	0x3ff00B28	RO		
SCache3_perfctrl3	0x3ff00B30	RW		
SCache3_perfcnt3	0x3ff00B38	RO		
Core0_IPI_Status	0x3ff01000	RO	IPI_Status register of processor core 0	
Core0_IPI_Enalbe	0x3ff01004	RW	IPI_Enalbe register of processor core 0	0x0
Core0_IPI_Set	0x3ff01008	WO	IPI_Set register of processor core 0	
Core0_IPI_Clear	0x3ff0100c	WO	IPI_Clear register of processor core 0	
Core0_MailBox0	0x3ff01020	RW	IPI_MailBox0 register of processor core 0	0x0
Core0_MailBox1	0x3ff01028	RW	IPI_MailBox1 register of processor core 0	0x0
Core0_MailBox2	0x3ff01030	RW	IPI_MailBox2 register of processor core 0	0x0
Core0_MailBox3	0x3ff01038	RW	IPI_MailBox3 register of processor core 0	0x0
Core0_int_interval	0x3ff01060	RW		
Core0_int_compare	0x3ff01068	RW		
Core1_IPI_Status	0x3ff01100	RO	IPI_Status register of processor core 1	
Core1_IPI_Enalbe	0x3ff01104	RW	IPI_Enalbe register of processor core 1	0x0
Core1_IPI_Set	0x3ff01108	WO	IPI_Set register of processor core 1	
Core1_IPI_Clear	0x3ff0110c	WO	IPI_Clear register of processor core 1	
Core1_MailBox0	0x3ff01120	RW	IPI_MailBox0 register of processor core 1	0x0
Core1_MailBox1	0x3ff01128	RW	IPI_MailBox1 register of processor core 1	0x0

128

Page 133

Godson **3A3000** / **3B3000** Processor User Manual • Volume 1

Core1_MailBox2	0x3ff01130	RW	IPI_MailBox2 register of processor core 1	0x0
Core1_MailBox3	0x3ff01138	RW	IPI_MailBox3 register of processor core 1	0x0
Core1_int_interval	0x3ff01160	RW		
Core1_int_compare	0x3ff01168	RW		
Core2_IPI_Status	0x3ff01200	RO	IPI_Status register of processor core 2	
Core2_IPI_Enalbe	0x3ff01204	RW	IPI_Enalbe register of processor core 2	0x0
Core2_IPI_Set	0x3ff01208	WO	IPI_Set register of processor core 2	
Core2_IPI_Clear	0x3ff0120c	WO	IPI_Clear register of processor core 2	
Core2_MailBox0	0x3ff01220	RW	IPI_MailBox0 register of processor core 2	0x0
Core2_MailBox1	0x3ff01228	RW	IPI_MailBox1 register of processor core 2	0x0
Core2_MailBox2	0x3ff01230	RW	IPI_MailBox2 register of processor core 2	0x0

Core2_MailBox3	0x3ff01238	RW	IPI_MailBox3 register of processor core 2	0x0
Core2_int_interval	0x3ff01260	RW		
Core2_int_compare	0x3ff01268	RW		
Core3_IPI_Status	0x3ff01300	RO	IPI_Status register of processor core 3	
Core3_IPI_Enalbe	0x3ff01304	RW	IPI_Enalbe register of processor core 3	0x0
Core3_IPI_Set	0x3ff01308	wo	IPI_Set register of processor core 3	
Core3_IPI_Clear	0x3ff0130c	wo	IPI_Clear register of processor core 3	
Core3_MailBox0	0x3ff01320	RW	IPI_MailBox0 register of processor core 3	0x0

129

Page 134

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

Core3_MailBox1	0x3ff01328	RW	IPI_MailBox1 register of processor core 3	0x0
Core3_MailBox2	0x3ff01330	RW	IPI_MailBox2 register of processor core 3	0x0
Core3_MailBox3	0x3ff01338	RW	IPI_MailBox3 register of processor core 3	0x0
Core3_int_interval	0x3ff01360	RW		
Core3_int_compare	0x3ff01368	RW		
Int Entry [031]	0x3ff01400	RW	32 8-bit interrupt routing registers	0x0
Intisr	0x3ff01420	RO	32-bit interrupt status register	
Inten	0x3ff01424	RO	32-bit interrupt enable status register	
Intenset	0x3ff01428	WO	32-bit setting enable register	
Intenclr	0x3ff0142c	WO	32-bit clear enable register and pulse triggered interrupt	
Intpol	0x3ff01430	WO	useless	0x0
Intedge	0x3ff01434	WO	32-bit trigger mode register (1: pulse trigger; 0: level trigger)	0x0
CORE0_INTISR	0x3ff01440	RO	32-bit interrupt status routed to CORE0	
CORE1_INTISR	0x3ff01448	RO	32-bit interrupt status routed to CORE1	
CORE2_INTISR	0x3ff01450	RO	32-bit interrupt status routed to CORE2	
CORE3_INTISR	0x3ff01458	RO	32-bit interrupt status routed to CORE3	

130

Page 135

Godson ${\bf 3A3000}$ / ${\bf 3B3000}$ Processor User Manual • Volume 1

Temperature sensor high temperature interrupt control register

[7: 0]: Hi_gate0: high temperature threshold 0, an interrupt will be generated if this temperature is exceeded

[8: 8]: Hi_en0: High temperature interrupt enable 0

[11:10]: Hi_Sel0: Select the temperature sensor input source of high temperature interrupt

[23:16]: Hi_gate1: high temperature threshold 1, exceeding this temperature will generate an interrupt

[24:24]: Hi_en1: High temperature interrupt enable 1

[27:26]: Hi_Sel1: Select the temperature sensor input source for high temperature interrupt 1

[39:32]: Hi_gate2: High temperature threshold 2, above this temperature will generate an interrupt

[40:40]: Hi_en2: High temperature interrupt enable 2

[43:42]: Hi_Sel2: Select the temperature sensor input source for high temperature interrupt 2

[55:48]: Hi_gate3: High temperature threshold 3, exceeding this temperature will generate interrupt

[56:56]: Hi_en3: High temperature interrupt enable 3

0x3ff01460 RW [59:58]: Hi_Sel3: Select the temperature sensor input source for high temperature interrupt 3

131

 $Thsens_int_ctrl_Hi$

Page 136

Godson ${\bf 3A3000}$ / ${\bf 3B3000}$ Processor User Manual • Volume 1

			Temperature sensor low temperature interrupt control register
			[7: 0]: Lo_gate0: low temperature threshold 0, below this temperature will generate an interrupt
			[8: 8]: Lo_en0: Low temperature interrupt enable 0
			[11:10]: Lo_Sel0: Select the temperature sensor input source for low temperature interrupt 0
			[23:16]: Lo_gate1: low temperature threshold 1, below this temperature will generate an interrupt
			[24:24]: Lo_en1: Low temperature interrupt enable 1
			[27:26]: Lo_Sel1: Select the temperature sensor input source for low temperature interrupt 1
			[39:32]: Lo_gate2: Low temperature threshold 2, below this temperature will generate an interrupt
			[40:40]: Lo_en2: Low temperature interrupt enable 2
			[43:42]: Lo_Sel2: Select the temperature sensor input source for low temperature interrupt 2
			[55:48]: Lo_gate3: Low temperature threshold 3, below this temperature will generate an interrupt
			[56:56]: Lo_en3: Low temperature interrupt enable 3
Thsens_int_ctrl_Lo	0x3ff01468	RW	[59:58]: Lo_Sel3: Select temperature sensor input source for low temperature interrupt 3
			Interrupt status register, write any value to clear the interrupt
			[0]: High temperature interrupt trigger
Thsens_int_status / clr	0x3ff01470	RW	[1]: Low temperature interrupt trigger

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

Temperature sensor high-temperature down-frequency control register, four sets of setting priority from high to low

[7: 0]: Scale_gate0: High temperature threshold 0, frequency will be reduced if this temperature is exceeded

[8: 8]: Scale_en0: High temperature frequency reduction enable 0

[11:10]: Scale_Sel0: Select the temperature sensor input source of high temperature down-conversion 0

[14:12]: Scale_freq0: frequency division value when frequency is reduced

[23:16]: Scale_gate1: High temperature threshold 1, exceeding this temperature will reduce the frequency

[24:24]: Scale_en1: High temperature frequency reduction enable 1 $\,$

 $[27:26]: Scale_Sel1: Select \ the \ temperature \ sensor \ input \ source \ for \ high \ temperature \ down-conversion \ 1$

[30:28]: Scale_freq1: frequency division value when frequency is reduced

 $[39:32]: Scale_gate 2: High temperature threshold value 2, if this temperature is exceeded, frequency will be reduced a context of the cont$

[40:40]: Scale_en2: High temperature frequency reduction enable 2

 $[43:42]: Scale_Sel2: Select \ the \ temperature \ sensor \ input \ source \ for \ high \ temperature \ down-conversion \ 2$

[46:44]: Scale_freq2: frequency division value when frequency is reduced

[55:48]: Scale gate3: High temperature threshold 3, over this temperature will reduce the frequency

[56:56]: Scale_en3: High temperature frequency reduction enable 3

[59:58]: Scale_Sel3: Select the temperature sensor input source for high temperature down-conversion 3

Thsens_freq_scale

0x3ff01480

RW

[62:60]: Scale_freq3: Frequency division value when frequency is reduced

133

Page 138

Godson **3A3000** / **3B3000** Processor User Manual • Volume 1

			Debugging trigger condition enable
			[7: 0]: timer, trigger delay, set to 1 means to trigger immediately when the condition is met, set to 0 to prohibit touch
			Send, set to other values means that the number of beats delayed trigger after the condition is met +1
DFD_PARAM	0x3ff01500	RW	[15: 8]: trigger_en, trigger condition enable, corresponding to the enable control of 8 external trigger events
			Software trigger, sending a write operation to this address will cause a software trigger condition, making
DFD_TRIGGER	0x3ff01508	WO	Triggered after shooting
			COREO AXI interface AW trigger condition 0 setting
			[15: 0]: awid
			[19:16]: awlen
			[22:20]: awsize
			[24:23]: awburst
			[26:25]: awlock
			[30:27]: awcache
			[33:31]: awprot
			[37:34]: awemd
			[41:38]: awdirqid
			[43:42]: awstate
			[47:44]: swscseti
			[48]: awvalid
CORE0_AWCOND0	0x3ff01800	RW	[49]: awready

Godson ${\bf 3A3000}$ / ${\bf 3B3000}$ Processor User Manual • Volume 1

			CORE0 AXI interface AW trigger enable 0 is set, the highest bit is AW channel trigger enable
			[49: 0]: awmask
			[62]: awdata_en: trigger is allowed only when the wdata trigger condition of the same wid is met at the same time
			[63]: awchannel_en: enable trigger condition
			The trigger condition is
CORE0_AWMASK0	0x3ff01808	RW	$(AW_IN \& AWMASK) = (AWCOND \& AWMASK)$
			The trigger condition of AW must be satisfied by both COND0 and COND1
CORE0_AWCOND1	0x3ff01810	RW	[47: 0]: awaddr
CORE0_AWMASK1	0x3ff01818	RW	

135

Page 140

Godson **3A3000** / **3B3000** Processor User Manual • Volume 1

CORE0's AXI interface AR trigger condition, similar to AW [15: 0]: arid [19:16]: arlen [22:20]: arsize [24:23]: arburst [26:25]: arlock [30:27]: arcache [33:31]: arprot [37:34]: arcmd [47:38]: arcpuno [48]: arvalid [49]: arready

CORE0_ARCOND0

0x3ff01820

RW

CORE0's AXI interface AR trigger enable 0 is set, the highest bit is the AR channel trigger enable

[49: 0]: armask

[62]: ardata_en: trigger is allowed only when the rdata trigger condition of the same rid is met

CORE0_ARMASK0 0x3ff01828 RW [63]: archannel_en: enable trigger condition

CORE0_ARCOND1 0x3ff01830 RW [47: 0]: araddr

CORE0_ARMASK1 0x3ff01838 RW

136

Page 141

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

			CORE0's AXI interface W trigger condition, similar to AW
			[15: 0]: wid
			[31:16]: wstrb
			[32]: wlast
			[33]: wvalid
CORE0_WCOND0	0x3ff01840	RW	[34]: wready
			CORE0's AXI interface W trigger enable 0 setting, the highest bit is the W channel trigger enable
			[49: 0]: wmask
CORE0_WMASK0	0x3ff01848	RW	[63]: wchannel_en: Trigger condition enable, no need to set when awdata_en is valid
CORE0_WCOND1	0x3ff01850	RW	
CORE0_WMASK1	0x3ff01858	RW	
CORE0_WCOND2	0x3ff01860	RW	
CORE0_WMASK2	0x3ff01868	RW	
			COREO AXI interface B trigger condition, similar to AW
			[15: 0]: bid
			[17:16]: bresp
			[18]: bvalid
CORE0_BCOND0	0x3ff01870	RW	[19]: ready

137

Page 142

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

 $CORE0 \\ is AXI interface B trigger enable 0 setting, the highest bit is the B channel trigger enable$

[19: 0]: bmask

CORE0_BMASK0 0x3ff01878 RW [63]: bchannel_en

CORE0 AXI interface R trigger condition, similar to AW

[15: 0]: rid

[17:16]: rresp

[18]: rlast

[19]: rrequest

[21:20]: rstate [25:22]: rscseti

[26]: rvalid [27]: rready

RW

CORE0_RCOND0 0x3ff01880

CORE0's AXI interface R trigger enable 0 setting, the highest bit is the R channel trigger enable

[27: 0]: rmask

 CORE0_RMASK0
 0x3ff01888
 RW

 CORE0_RCOND1
 0x3ff01890
 RW

 CORE0_RMASK1
 0x3ff01898
 RW

 CORE0_RCOND2
 0x3ff018a0
 RW

 CORE0_RMASK2
 0x3ff018a8
 RW

[63]: rchannel_en

138

Page 143

Godson **3A3000** / **3B3000** Processor User Manual • Volume 1

			TUD0 configuration register 0
			[47: 0]: count_target
TUD0_CONF0	0x3ff018e0	RW	[55:48]: monitor_enable
			TUD0 configuration register 1
			[2: 0]: DCDL_sel_signal
			[5: 3]: DCDL_sel_clock
			[9: 6]: signal_sel
			[13:10]: clok_sel
			[20:14]: reading_sel
			[21]: counter_clock_sel
			[22]: sticky
			[23]: reset_g
			[24]: stop
			[25]: start
TUD0_CONF1	0x3ff018e8	RW	[26]: cg_en
TUD0_RESULT	0x3ff018f0	R	TUD0 result register
CORE1_AWCOND0	0x3ff01900	RW	CORE1 AXI interface AW trigger condition 0 setting

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

			CORE1 AXI interface AW trigger enable 0 is set, the highest bit is AW channel trigger enable
			The trigger condition is
CORE1_AWMASK0	0x3ff01908	RW	(AW_IN & AWMASK) == (AWCOND & AWMASK)
CORE1_AWCOND1	0x3ff01910	RW	The trigger condition of AW must be satisfied by both COND0 and COND1
CORE1_AWMASK1	0x3ff01918	RW	
CORE1_ARCOND0	0x3ff01920	RW	CORE1's AXI interface AR trigger condition, similar to AW
CORE1_ARMASK0	0x3ff01928	RW	
CORE1_ARCOND1	0x3ff01930	RW	
CORE1_ARMASK1	0x3ff01938	RW	
CORE1_WCOND0	0x3ff01940	RW	CORE1's AXI interface W trigger condition, similar to AW
CORE1_WMASK0	0x3ff01948	RW	
CORE1_WCOND1	0x3ff01950	RW	
CORE1_WMASK1	0x3ff01958	RW	
CORE1_WCOND2	0x3ff01960	RW	
CORE1_WMASK2	0x3ff01968	RW	
CORE1_BCOND0	0x3ff01970	RW	CORE1's AXI interface B trigger condition, similar to AW
CORE1_BMASK0	0x3ff01978	RW	
CORE1_RCOND0	0x3ff01980	RW	CORE1's AXI interface R trigger condition, similar to AW
CORE1_RMASK0	0x3ff01988	RW	

140

Page 145

CORE1_RCOND1	0x3ff01990	RW	
CORE1_RMASK1	0x3ff01998	RW	
CORE1_RCOND2	0x3ff019a0	RW	
CORE1_RMASK2	0x3ff019a8	RW	
			TUD1 configuration register 0
			[47: 0]: count_target
TUD1_CONF0	0x3ff019e0	RW	[55:48]: monitor_enable
			TUD0 configuration register 1
			[2: 0]: DCDL_sel_signal
			[5: 3]: DCDL_sel_clock
			[9: 6]: signal_sel
			[13:10]: clok_sel
			[20:14]: reading_sel
			[21]: counter_clock_sel
			[22]: sticky
			[23]: reset_g
			[24]: stop
			[25]: start
TUD1_CONF1	0x3ff019e8	RW	[26]: cg_en

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

TUD1_RESULT	0x3ff019f0	R	TUD1 result register
CORE2_AWCOND0	0x3ff01a00	RW	CORE2 AXI interface AW trigger condition 0 setting
			CORE2's AXI interface AW trigger enable 0 setting, the highest bit is AW channel trigger enable
			The trigger condition is
CORE2_AWMASK0	0x3ff01a08	RW	(AW_IN & AWMASK) == (AWCOND & AWMASK)
CORE2_AWCOND1	0x3ff01a10	RW	The trigger condition of AW must be satisfied by both COND0 and COND1
CORE2_AWMASK1	0x3ff01a18	RW	
CORE2_ARCOND0	0x3ff01a20	RW	CORE2's AXI interface AR trigger condition, similar to AW
CORE2_ARMASK0	0x3ff01a28	RW	
CORE2_ARCOND1	0x3ff01a30	RW	
CORE2_ARMASK1	0x3ff01a38	RW	
CORE2_WCOND0	0x3ff01a40	RW	CORE2's AXI interface W trigger condition, similar to AW
CORE2_WMASK0	0x3ff01a48	RW	
CORE2_WCOND1	0x3ff01a50	RW	
CORE2_WMASK1	0x3ff01a58	RW	
CORE2_WCOND2	0x3ff01a60	RW	
CORE2_WMASK2	0x3ff01a68	RW	
CORE2_BCOND0	0x3ff01a70	RW	CORE2 AXI interface B trigger condition, similar to AW

142

Page 147

CORE2_BMASK0	0x3ff01a78	RW	
CORE2_RCOND0	0x3ff01a80	RW	CORE2's AXI interface R trigger condition, similar to AW
CORE2_RMASK0	0x3ff01a88	RW	
CORE2_RCOND1	0x3ff01a90	RW	
CORE2_RMASK1	0x3ff01a98	RW	
CORE2_RCOND2	0x3ff01aa0	RW	
CORE2_RMASK2	0x3ff01aa8	RW	
			TUD2 configuration register 0
			[47: 0]: count_target
TUD2_CONF0	0x3ff01ae0	RW	[55:48]: monitor_enable

Page 148

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

			TUD0 configuration register 1
			[2: 0]: DCDL_sel_signal
			[5: 3]: DCDL_sel_clock
			[9: 6]: signal_sel
			[13:10]: clok_sel
			[20:14]: reading_sel
			[21]: counter_clock_sel
			[22]: sticky
			[23]: reset_g
			[24]: stop
			[25]: start
TUD2_CONF1	0x3ff01ae8	RW	[26]: cg_en
TUD2_RESULT	0x3ff01af0	R	TUD2 result register
CORE3_AWCOND0	0x3ff01b00	RW	CORE3 AXI interface AW trigger condition 0 setting
			CORE3 AXI interface AW trigger enable 0 is set, the highest bit is AW channel trigger enable
			The trigger condition is
CORE3_AWMASK0	0x3ff01b08	RW	(AW_IN & AWMASK) == (AWCOND & AWMASK)
CORE3_AWCOND1	0x3ff01b10	RW	The trigger condition of AW must be satisfied by both COND0 and COND1
CORE3_AWMASK1	0x3ff01b18	RW	
144			

Page 149

CORE3_ARCOND0	0x3ff01b20	RW	CORE3's AXI interface AR trigger condition, similar to AW
CORE3_ARMASK0	0x3ff01b28	RW	
CORE3_ARCOND1	0x3ff01b30	RW	
CORE3_ARMASK1	0x3ff01b38	RW	
CORE3_WCOND0	0x3ff01b40	RW	CORE3's AXI interface W trigger condition, similar to AW
CORE3 WMASK0	0x3ff01b48	RW	

CORE3_WCOND1	0x3ff01b50	RW	
CORE3_WMASK1	0x3ff01b58	RW	
CORE3_WCOND2	0x3ff01b60	RW	
CORE3_WMASK2	0x3ff01b68	RW	
CORE3_BCOND0	0x3ff01b70	RW	CORE3 AXI interface B trigger condition, similar to AW
CORE3_BMASK0	0x3ff01b78	RW	
CORE3_RCOND0	0x3ff01b80	RW	CORE3's AXI interface R trigger condition, similar to AW
CORE3_RMASK0	0x3ff01b88	RW	
CORE3_RCOND1	0x3ff01b90	RW	
CORE3_RMASK1	0x3ff01b98	RW	
CORE3_RCOND2	0x3ff01ba0	RW	
CORE3_RMASK2	0x3ff01ba8	RW	

Page 150

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

			TUD3 configuration register 0	
			[47: 0]: count_target	
TUD3_CONF0	0x3ff01be0	RW	[55:48]: monitor_enable	
			TUD0 configuration register 1	
			[2: 0]: DCDL_sel_signal	
			[5: 3]: DCDL_sel_clock	
			[9: 6]: signal_sel	
			[13:10]: clok_sel	
			[20:14]: reading_sel	
			[21]: counter_clock_sel	
			[22]: sticky	
			[23]: reset_g	
			[24]: stop	
			[25]: start	
TUD3_CONF1	0x3ff01be8	RW	[26]: cg_en	
TUD3_RESULT	0x3ff01bf0	R	TUD3 result register	
			TUD4 configuration register 0	
			[47: 0]: count_target	
TUD4_CONF0	0x3ff01ce0	RW	[55:48]: monitor_enable	

Page 151

TUD4 configuration register 1 [2: 0]: DCDL_sel_signal [5: 3]: DCDL_sel_clock [8: 6]: signal_sel [11: 9]: clock_sel [18:12]: reading_sel [19]: counter_clock_sel [20]: sticky [21]: reset_g [22]: stop [23]: start TUD4_CONF1 0x3ff01ce8 RW [24]: cg_en TUD4 result register TUD4_RESULT 0x3ff01cf0 R TUD5 configuration register 0 [47: 0]: count_target TUD5_CONF0 0x3ff01de0 RW [55:48]: monitor_enable

147

Page 152

			TUD5 configuration register 1
			[2: 0]: DCDL_sel_signal
			[5: 3]: DCDL_sel_clock
			[8: 6]: signal_sel
			[11: 9]: clock_sel
			[18:12]: reading_sel
			[19]: counter_clock_sel
			[20]: sticky
			[21]: reset_g
			[22]: stop
			[23]: start
TUD5_CONF1	0x3ff01de8	RW	[24]: cg_en
TUD5_RESULT	0x3ff01df0	R	TUD5 result register
HT0_AWCOND0	0x3ff01e00	RW	HT0 AXI interface AW trigger condition 0 setting
			HT0's AXI interface AW trigger enable 0 setting, the highest bit is AW channel trigger enable
			The trigger condition is
HT0_AWMASK0	0x3ff01e08	RW	(AW_IN & AWMASK) == (AWCOND & AWMASK)
HT0_AWCOND1	0x3ff01e10	RW	The trigger condition of AW must be satisfied by both COND0 and COND1
HT0_AWMASK1	0x3ff01e18	RW	

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

HT0_ARCOND0	0x3ff01e20	RW	HT0's AXI interface AR trigger condition, similar to AW
HT0_ARMASK0	0x3ff01e28	RW	
HT0_ARCOND1	0x3ff01e30	RW	
HT0_ARMASK1	0x3ff01e38	RW	
HT0_WCOND0	0x3ff01e40	RW	HT0's AXI interface W trigger condition, similar to AW
HT0_WMASK0	0x3ff01e48	RW	
HT0_WCOND1	0x3ff01e50	RW	
HT0_WMASK1	0x3ff01e58	RW	
HT0_WCOND2	0x3ff01e60	RW	
HT0_WMASK2	0x3ff01e68	RW	
HT0_BCOND0	0x3ff01e70	RW	HT0's AXI interface B trigger condition, similar to AW
HT0_BMASK0	0x3ff01e78	RW	
HT0_RCOND0	0x3ff01e80	RW	HT0's AXI interface R trigger condition, similar to AW
HT0_RMASK0	0x3ff01e88	RW	
HT0_RCOND1	0x3ff01e90	RW	
HT0_RMASK1	0x3ff01e98	RW	
HT0_RCOND2	0x3ff01ea0	RW	
HT0_RMASK2	0x3ff01ea8	RW	
HT1_AWCOND0	0x3ff01f00	RW	HT1 AXI interface AW trigger condition 0 setting

149

Page 154

			HT1's AXI interface AW trigger enable 0 setting, the highest bit is AW channel trigger enable
			The trigger condition is
HT1_AWMASK0	0x3ff01f08	RW	$(AW_IN \& AWMASK) == (AWCOND \& AWMASK)$
HT1_AWCOND1	0x3ff01f10	RW	The trigger condition of AW must be satisfied by both COND0 and COND1
HT1_AWMASK1	0x3ff01f18	RW	
HT1_ARCOND0	0x3ff01f20	RW	HT1's AXI interface AR trigger condition, similar to AW
HT1_ARMASK0	0x3ff01f28	RW	
HT1_ARCOND1	0x3ff01f30	RW	
HT1_ARMASK1	0x3ff01f38	RW	
HT1_WCOND0	0x3ff01f40	RW	HT1's AXI interface W trigger condition, similar to AW
HT1_WMASK0	0x3ff01f48	RW	
HT1_WCOND1	0x3ff01f50	RW	
HT1_WMASK1	0x3ff01f58	RW	
HT1_WCOND2	0x3ff01f60	RW	

HT1_WMASK2	0x3ff01f68	R

HT1_BCOND0 0x3ff01f70 RW HT1's AXI interface B trigger condition, similar to AW

HT1_BMASK0 0x3ff01f78 RW

HT1_RCOND0 0x3ff01f80 RW HT1's AXI interface R trigger condition, similar to AW

HT1_RMASK0 0x3ff01f88 RW

150

Page 155

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

HT1_RCOND1	0x3ff01f90	RW		
HT1_RMASK1	0x3ff01f98	RW		
HT1_RCOND2	0x3ff01fa0	RW		
HT1_RMASK2	0x3ff01fa8	RW		
CORE0_WIN0_BASE	0x3ff02000	RW	First-level crossbar address window	0x0
CORE0_WIN1_BASE	0x3ff02008	RW	First-level crossbar address window	0x0
CORE0_WIN2_BASE	0x3ff02010	RW	First-level crossbar address window	0x0
CORE0_WIN3_BASE	0x3ff02018	RW	First-level crossbar address window	0x0
CORE0_WIN4_BASE	0x3ff02020	RW	First-level crossbar address window	0x0
CORE0_WIN5_BASE	0x3ff02028	RW	First-level crossbar address window	0x0
CORE0_WIN6_BASE	0x3ff02030	RW	First-level crossbar address window	0x0
CORE0_WIN7_BASE	0x3ff02038	RW	First-level crossbar address window	0x0
CORE0_WIN0_MASK	0x3ff02040	RW	First-level crossbar address window	0x0
CORE0_WIN1_MASK	0x3ff02048	RW	First-level crossbar address window	0x0
CORE0_WIN2_MASK	0x3ff02050	RW	First-level crossbar address window	0x0
CORE0_WIN3_MASK	0x3ff02058	RW	First-level crossbar address window	0x0
CORE0_WIN4_MASK	0x3ff02060	RW	First-level crossbar address window	0x0
CORE0_WIN5_MASK	0x3ff02068	RW	First-level crossbar address window	0x0
CORE0_WIN6_MASK	0x3ff02070	RW	First-level crossbar address window	0x0

151

Page 156

CORE0_WIN7_MASK	0x3ff02078	RW	First-level crossbar address window	0x0
CORE0_WIN0_MMAP	0x3ff02080	RW	First-level crossbar address window	0x0
CORE0_WIN1_MMAP	0x3ff02088	RW	First-level crossbar address window	0x0
CORE0_WIN2_MMAP	0x3ff02090	RW	First-level crossbar address window	0x0
CORE0_WIN3_MMAP	0x3ff02098	RW	First-level crossbar address window	0x0
CORE0_WIN4_MMAP	0x3ff020a0	RW	First-level crossbar address window	0x0
CORE0 WIN5 MMAP	0x3ff020a8	RW	First-level crossbar address window	0x0

CORE0_WIN6_MMAP	0x3ff020b0	RW	First-level crossbar address window	0x0
CORE0_WIN7_MMAP	0x3ff020b8	RW	First-level crossbar address window	0x0
CORE1_WIN0_BASE	0x3ff02100	RW	First-level crossbar address window	0x0
CORE1_WIN1_BASE	0x3ff02108	RW	First-level crossbar address window	0x0
CORE1_WIN2_BASE	0x3ff02110	RW	First-level crossbar address window	0x0
CORE1_WIN3_BASE	0x3ff02118	RW	First-level crossbar address window	0x0
CORE1_WIN4_BASE	0x3ff02120	RW	First-level crossbar address window	0x0
CORE1_WIN5_BASE	0x3ff02128	RW	First-level crossbar address window	0x0
CORE1_WIN6_BASE	0x3ff02130	RW	First-level crossbar address window	0x0
CORE1_WIN7_BASE	0x3ff02138	RW	First-level crossbar address window	0x0
CORE1_WIN0_MASK	0x3ff02140	RW	First-level crossbar address window	0x0
CORE1_WIN1_MASK	0x3ff02148	RW	First-level crossbar address window	0x0

Page 157

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

0x3ff02150	RW	First-level crossbar address window	0x0
0x3ff02158	RW	First-level crossbar address window	0x0
0x3ff02160	RW	First-level crossbar address window	0x0
0x3ff02168	RW	First-level crossbar address window	0x0
0x3ff02170	RW	First-level crossbar address window	0x0
0x3ff02178	RW	First-level crossbar address window	0x0
0x3ff02180	RW	First-level crossbar address window	0x0
0x3ff02188	RW	First-level crossbar address window	0x0
0x3ff02190	RW	First-level crossbar address window	0x0
0x3ff02198	RW	First-level crossbar address window	0x0
0x3ff021a0	RW	First-level crossbar address window	0x0
0x3ff021a8	RW	First-level crossbar address window	0x0
0x3ff021b0	RW	First-level crossbar address window	0x0
0x3ff021b8	RW	First-level crossbar address window	0x0
0x3ff02200	RW	First-level crossbar address window	0x0
0x3ff02208	RW	First-level crossbar address window	0x0
0x3ff02210	RW	First-level crossbar address window	0x0
0x3ff02218	RW	First-level crossbar address window	0x0
0x3ff02220	RW	First-level crossbar address window	0x0
	0x3ff02158 0x3ff02160 0x3ff02168 0x3ff02170 0x3ff02178 0x3ff02178 0x3ff02180 0x3ff02188 0x3ff02190 0x3ff02190 0x3ff02198 0x3ff021b0 0x3ff021b0 0x3ff021b0 0x3ff02200 0x3ff02208 0x3ff02210 0x3ff02218	0x3ff02158 RW 0x3ff02160 RW 0x3ff02168 RW 0x3ff02170 RW 0x3ff02178 RW 0x3ff02180 RW 0x3ff02188 RW 0x3ff02190 RW 0x3ff02198 RW 0x3ff021a0 RW 0x3ff021a8 RW 0x3ff021b0 RW 0x3ff021b8 RW 0x3ff02200 RW 0x3ff02210 RW 0x3ff02210 RW	0x3ff02168 RW First-level crossbar address window 0x3ff02168 RW First-level crossbar address window 0x3ff02168 RW First-level crossbar address window 0x3ff02170 RW First-level crossbar address window 0x3ff02178 RW First-level crossbar address window 0x3ff02180 RW First-level crossbar address window 0x3ff02188 RW First-level crossbar address window 0x3ff02188 RW First-level crossbar address window 0x3ff02190 RW First-level crossbar address window 0x3ff02198 RW First-level crossbar address window 0x3ff021a0 RW First-level crossbar address window 0x3ff021a0 RW First-level crossbar address window 0x3ff021a0 RW First-level crossbar address window 0x3ff021b0 RW First-level crossbar address window 0x3ff021b0 RW First-level crossbar address window 0x3ff02100 RW First-level crossbar address window 0x3ff02200 RW First-level crossbar address window 0x3ff02200 RW First-level crossbar address window 0x3ff02210 RW First-level crossbar address window 0x3ff02210 RW First-level crossbar address window

CORE2_WIN5_BASE	0x3ff02228	RW	First-level crossbar address window	0x0
CORE2_WIN6_BASE	0x3ff02230	RW	First-level crossbar address window	0x0
CORE2_WIN7_BASE	0x3ff02238	RW	First-level crossbar address window	0x0
CORE2_WIN0_MASK	0x3ff02240	RW	First-level crossbar address window	0x0
CORE2_WIN1_MASK	0x3ff02248	RW	First-level crossbar address window	0x0
CORE2_WIN2_MASK	0x3ff02250	RW	First-level crossbar address window	0x0
CORE2_WIN3_MASK	0x3ff02258	RW	First-level crossbar address window	0x0
CORE2_WIN4_MASK	0x3ff02260	RW	First-level crossbar address window	0x0
CORE2_WIN5_MASK	0x3ff02268	RW	First-level crossbar address window	0x0
CORE2_WIN6_MASK	0x3ff02270	RW	First-level crossbar address window	0x0
CORE2_WIN7_MASK	0x3ff02278	RW	First-level crossbar address window	0x0
CORE2_WIN0_MMAP	0x3ff02280	RW	First-level crossbar address window	0x0
CORE2_WIN1_MMAP	0x3ff02288	RW	First-level crossbar address window	0x0
CORE2_WIN2_MMAP	0x3ff02290	RW	First-level crossbar address window	0x0
CORE2_WIN3_MMAP	0x3ff02298	RW	First-level crossbar address window	0x0
CORE2_WIN4_MMAP	0x3ff022a0	RW	First-level crossbar address window	0x0
CORE2_WIN5_MMAP	0x3ff022a8	RW	First-level crossbar address window	0x0
CORE2_WIN6_MMAP	0x3ff022b0	RW	First-level crossbar address window	0x0
CORE2_WIN7_MMAP	0x3ff022b8	RW	First-level crossbar address window	0x0

Page 159

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

CORE3_WIN0_BASE	0x3ff02300	RW	First-level crossbar address window	0x0
CORE3_WIN1_BASE	0x3ff02308	RW	First-level crossbar address window	0x0
CORE3_WIN2_BASE	0x3ff02310	RW	First-level crossbar address window	0x0
CORE3_WIN3_BASE	0x3ff02318	RW	First-level crossbar address window	0x0
CORE3_WIN4_BASE	0x3ff02320	RW	First-level crossbar address window	0x0
CORE3_WIN5_BASE	0x3ff02328	RW	First-level crossbar address window	0x0
CORE3_WIN6_BASE	0x3ff02330	RW	First-level crossbar address window	0x0
CORE3_WIN7_BASE	0x3ff02338	RW	First-level crossbar address window	0x0
CORE3_WIN0_MASK	0x3ff02340	RW	First-level crossbar address window	0x0
CORE3_WIN1_MASK	0x3ff02348	RW	First-level crossbar address window	0x0
CORE3_WIN2_MASK	0x3ff02350	RW	First-level crossbar address window	0x0
CORE3_WIN3_MASK	0x3ff02358	RW	First-level crossbar address window	0x0
CORE3_WIN4_MASK	0x3ff02360	RW	First-level crossbar address window	0x0
CORE3_WIN5_MASK	0x3ff02368	RW	First-level crossbar address window	0x0
CORE3_WIN6_MASK	0x3ff02370	RW	First-level crossbar address window	0x0
CORE3_WIN7_MASK	0x3ff02378	RW	First-level crossbar address window	0x0
CORE3_WIN0_MMAP	0x3ff02380	RW	First-level crossbar address window	0x0
CORE3_WIN1_MMAP	0x3ff02388	RW	First-level crossbar address window	0x0
CORE3_WIN2_MMAP	0x3ff02390	RW	First-level crossbar address window	0x0

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

CORE3_WIN3_MMAP	0x3ff02398	RW	First-level crossbar address window	0x0
CORE3_WIN4_MMAP	0x3ff023a0	RW	First-level crossbar address window	0x0
CORE3_WIN5_MMAP	0x3ff023a8	RW	First-level crossbar address window	0x0
CORE3_WIN6_MMAP	0x3ff023b0	RW	First-level crossbar address window	0x0
CORE3_WIN7_MMAP	0x3ff023b8	RW	First-level crossbar address window	0x0
EAST_WIN0_BASE	0x3ff02400	RW	First-level crossbar address window	0x0
EAST_WIN1_BASE	0x3ff02408	RW	First-level crossbar address window	0x0
EAST_WIN2_BASE	0x3ff02410	RW	First-level crossbar address window	0x0
EAST_WIN3_BASE	0x3ff02418	RW	First-level crossbar address window	0x0
EAST_WIN4_BASE	0x3ff02420	RW	First-level crossbar address window	0x0
EAST_WIN5_BASE	0x3ff02428	RW	First-level crossbar address window	0x0
EAST_WIN6_BASE	0x3ff02430	RW	First-level crossbar address window	0x0
EAST_WIN7_BASE	0x3ff02438	RW	First-level crossbar address window	0x0
EAST_WIN0_MASK	0x3ff02440	RW	First-level crossbar address window	0x0
EAST_WIN1_MASK	0x3ff02448	RW	First-level crossbar address window	0x0
EAST_WIN2_MASK	0x3ff02450	RW	First-level crossbar address window	0x0
EAST_WIN3_MASK	0x3ff02458	RW	First-level crossbar address window	0x0
EAST_WIN4_MASK	0x3ff02460	RW	First-level crossbar address window	0x0
EAST_WIN5_MASK	0x3ff02468	RW	First-level crossbar address window	0x0

156

Page 161

EAST_WIN6_MASK	0x3ff02470	RW	First-level crossbar address window	0x0
EAST_WIN7_MASK	0x3ff02478	RW	First-level crossbar address window	0x0
EAST_WIN0_MMAP	0x3ff02480	RW	First-level crossbar address window	0x0
EAST_WIN1_MMAP	0x3ff02488	RW	First-level crossbar address window	0x0
EAST_WIN2_MMAP	0x3ff02490	RW	First-level crossbar address window	0x0
EAST_WIN3_MMAP	0x3ff02498	RW	First-level crossbar address window	0x0
EAST_WIN4_MMAP	0x3ff024a0	RW	First-level crossbar address window	0x0
EAST_WIN5_MMAP	0x3ff024a8	RW	First-level crossbar address window	0x0
EAST_WIN6_MMAP	0x3ff024b0	RW	First-level crossbar address window	0x0
EAST_WIN7_MMAP	0x3ff024b8	RW	First-level crossbar address window	0x0
SOUTH_WIN0_BASE	0x3ff02500	RW	First-level crossbar address window	0x0
SOUTH_WIN1_BASE	0x3ff02508	RW	First-level crossbar address window	0x0
SOUTH_WIN2_BASE	0x3ff02510	RW	First-level crossbar address window	0x0
SOUTH_WIN3_BASE	0x3ff02518	RW	First-level crossbar address window	0x0
SOUTH_WIN4_BASE	0x3ff02520	RW	First-level crossbar address window	0x0

SOUTH_WIN5_BASE	0x3ff02528	RW	First-level crossbar address window	0x0
SOUTH_WIN6_BASE	0x3ff02530	RW	First-level crossbar address window	0x0
SOUTH_WIN7_BASE	0x3ff02538	RW	First-level crossbar address window	0x0
SOUTH_WIN0_MASK	0x3ff02540	RW	First-level crossbar address window	0x0

Page 162

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

SOUTH_WIN1_MASK	0x3ff02548	RW	First-level crossbar address window	0x0
SOUTH_WIN2_MASK	0x3ff02550	RW	First-level crossbar address window	0x0
SOUTH_WIN3_MASK	0x3ff02558	RW	First-level crossbar address window	0x0
SOUTH_WIN4_MASK	0x3ff02560	RW	First-level crossbar address window	0x0
SOUTH_WIN5_MASK	0x3ff02568	RW	First-level crossbar address window	0x0
SOUTH_WIN6_MASK	0x3ff02570	RW	First-level crossbar address window	0x0
SOUTH_WIN7_MASK	0x3ff02578	RW	First-level crossbar address window	0x0
SOUTH_WIN0_MMAP	0x3ff02580	RW	First-level crossbar address window	0x0
SOUTH_WIN1_MMAP	0x3ff02588	RW	First-level crossbar address window	0x0
SOUTH_WIN2_MMAP	0x3ff02590	RW	First-level crossbar address window	0x0
SOUTH_WIN3_MMAP	0x3ff02598	RW	First-level crossbar address window	0x0
SOUTH_WIN4_MMAP	0x3ff025a0	RW	First-level crossbar address window	0x0
SOUTH_WIN5_MMAP	0x3ff025a8	RW	First-level crossbar address window	0x0
SOUTH_WIN6_MMAP	0x3ff025b0	RW	First-level crossbar address window	0x0
SOUTH_WIN7_MMAP	0x3ff025b8	RW	First-level crossbar address window	0x0
WEST_WIN0_BASE	0x3ff02600	RW	First-level crossbar address window	0x0
WEST_WIN1_BASE	0x3ff02608	RW	First-level crossbar address window	0x0
WEST_WIN2_BASE	0x3ff02610	RW	First-level crossbar address window	0x0
WEST_WIN3_BASE	0x3ff02618	RW	First-level crossbar address window	0x0

158

Page 163

WEST_WIN4_BASE	0x3ff02620	RW	First-level crossbar address window	0x0
WEST_WIN5_BASE	0x3ff02628	RW	First-level crossbar address window	0x0
WEST_WIN6_BASE	0x3ff02630	RW	First-level crossbar address window	0x0
WEST_WIN7_BASE	0x3ff02638	RW	First-level crossbar address window	0x0
WEST_WIN0_MASK	0x3ff02640	RW	First-level crossbar address window	0x0
WEST_WIN1_MASK	0x3ff02648	RW	First-level crossbar address window	0x0
WEST WIN2 MASK	0x3ff02650	RW	First-level crossbar address window	0x0

Loongson	3A3000 /	3B3000	Processor	Heer	Manual

WEST_WIN3_MASK WEST_WIN4_MASK	0x3ff02658 0x3ff02660	RW RW	First-level crossbar address window First-level crossbar address window	0x0 0x0
WEST_WIN5_MASK	0x3ff02668	RW	First-level crossbar address window	0x0
WEST_WIN6_MASK	0x3ff02670	RW	First-level crossbar address window	0x0
WEST_WIN7_MASK	0x3ff02678	RW	First-level crossbar address window	0x0
WEST_WIN0_MMAP	0x3ff02680	RW	First-level crossbar address window	0x0
WEST_WIN1_MMAP	0x3ff02688	RW	First-level crossbar address window	0x0
WEST_WIN2_MMAP	0x3ff02690	RW	First-level crossbar address window	0x0
WEST_WIN3_MMAP	0x3ff02698	RW	First-level crossbar address window	0x0
WEST_WIN4_MMAP	0x3ff026a0	RW	First-level crossbar address window	0x0
WEST_WIN5_MMAP	0x3ff026a8	RW	First-level crossbar address window	0x0
WEST_WIN6_MMAP	0x3ff026b0	RW	First-level crossbar address window	0x0

Page 164

Godson ${\bf 3A3000}$ / ${\bf 3B3000}$ Processor User Manual • Volume 1

WEST_WIN7_MMAP	0x3ff026b8	RW	First-level crossbar address window	0x0
NORTH_WIN0_BASE	0x3ff02700	RW	First-level crossbar address window	0x0
NORTH_WIN1_BASE	0x3ff02708	RW	First-level crossbar address window	0x0
NORTH_WIN2_BASE	0x3ff02710	RW	First-level crossbar address window	0x0
NORTH_WIN3_BASE	0x3ff02718	RW	First-level crossbar address window	0x0
NORTH_WIN4_BASE	0x3ff02720	RW	First-level crossbar address window	0x0
NORTH_WIN5_BASE	0x3ff02728	RW	First-level crossbar address window	0x0
NORTH_WIN6_BASE	0x3ff02730	RW	First-level crossbar address window	0x0
NORTH_WIN7_BASE	0x3ff02738	RW	First-level crossbar address window	0x0
NORTH_WIN0_MASK	0x3ff02740	RW	First-level crossbar address window	0x0
NORTH_WIN1_MASK	0x3ff02748	RW	First-level crossbar address window	0x0
NORTH_WIN2_MASK	0x3ff02750	RW	First-level crossbar address window	0x0
NORTH_WIN3_MASK	0x3ff02758	RW	First-level crossbar address window	0x0
NORTH_WIN4_MASK	0x3ff02760	RW	First-level crossbar address window	0x0
NORTH_WIN5_MASK	0x3ff02768	RW	First-level crossbar address window	0x0
NORTH_WIN6_MASK	0x3ff02770	RW	First-level crossbar address window	0x0
NORTH_WIN7_MASK	0x3ff02778	RW	First-level crossbar address window	0x0
NORTH_WIN0_MMAP	0x3ff02780	RW	First-level crossbar address window	0x0
NORTH_WIN1_MMAP	0x3ff02788	RW	First-level crossbar address window	0x0

NORTH_WIN2_MMAP	0x3ff02790	RW	First-level crossbar address window	0x0
NORTH_WIN3_MMAP	0x3ff02798	RW	First-level crossbar address window	0x0
NORTH_WIN4_MMAP	0x3ff027a0	RW	First-level crossbar address window	0x0
NORTH_WIN5_MMAP	0x3ff027a8	RW	First-level crossbar address window	0x0
NORTH_WIN6_MMAP	0x3ff027b0	RW	First-level crossbar address window	0x0
NORTH WIN7 MMAP	0x3ff027b8	RW	First-level crossbar address window	0x0

Page 166

13 Software and Hardware Design Guidelines

 $Loongson\ 3A3000\ /\ 3B3000\ processor\ pins\ downward\ compatible\ with\ Loongson\ 3A1000\ processor,\ but\ the\ corresponding\ hardware\ and\ software\ needs$

Make some configuration changes to enable the original compatibility mode, or open some new features of Godson 3A 3000 / 3B 3000, and the sound of Godson 3A 2000 / 3B 3000 /

This chapter focuses on the software and hardware settings of the Loongson 3A3000 / 3B3000 processor compared with Loongson 3A1000 / 2000 the difference.

13.1 Hardware modification guide

- $1.\ The\ original\ CORE_PLL_AVDD\ and\ DDR_PLL_AVDD\ (2.5v)\ are\ now\ 1.8v.\ If\ you\ use\ the\ original\ 3A1000\ motherboard,$
 - These two power supplies need to be changed from 2.5v to 1.8v. And these pins on 3A2000 / 3B2000 (including HT0 / 1_PLL_AVDD) is NC, if you consider the compatibility with 3A2000 / 3B2000, these power supply voltages Modified to 1.8v, or adopt 1.8v / 2.5v configurable design;
- 2. The original MC0 / 1_COMP_REF_RES is changed to NC pin. If the original 3A motherboard is used, no modification is required; (Consistent with 3A2000)
- 3. The original HT0 / 1_PLL_REF is changed to NC pin. If you use the original 3A motherboard, you do n't need to modify it; (with 3A2000 Consistent)
- $\label{lem:model} \begin{tabular}{ll} 4. The original MC0 / 1_COMP_REF_GND is changed to MC0 / 1_A15. If you use the original 3A motherboard, you can Modified; but if connected to a memory module, it can support a larger capacity memory; (same as 3A2000) \\ \end{tabular}$

- 5. The function controlled by PCI_CONFIG [0] is changed to SPI startup enable. After setting to 1, it can be started from SPI FLASH. If make

 Use the original 3A motherboard, it needs to be set to 0, start from LPC FLASH; if the motherboard already has SPI FLASH, you can

 GPIO [0] as SPI_CS connection, and set PCI_CONFIG [0] to 1, start from SPI FLASH; (and 3A2000
 - Consistent)
- 6. The function controlled by PCI_CONFIG [7] is changed to forced HT1.0 mode. After setting it to 1, HT starts directly in 1.0 mode.
 - If you use a 3A780E motherboard, you currently need to set it to 1; if you use a 3A2H motherboard, no special settings are required; (and 3A2000 consistent)
- 7. For Godson 3A3000 / 3B3000A / B / C, CLKSEL [15:10] needs to be set to 6'b000000 or 6'b000001, and

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

Reconfigure the frequency using software in PMON;

- 8. CLKSEL [9: 5] needs to be set to 5'b01111; use PMON to set the memory frequency. For Godson 3A3000 / 3B3000A / B / C, PMON must use NODE clock to divide frequency when frequency configuration; 3A2000 consistent)
- 9. CLKSEL [4: 0] needs to be set to 5'b01111; use PMON to set the processor core frequency. For Godson 3A3000 / 3B3000A / B / C, PMON must use L2 PLL as the main clock when configuring the frequency; (and 3A2000 Consistent)
- 10. For the 3A2H motherboard, you need to remove the pull-up resistors on HT0 / 1_powerok and HT0 / 1_resetn; (the original pull-up

 The resistance of 300 ohms is not suitable for 3A and can also be removed) (same as 3A2000)

13.2 Frequency setting instructions

In order to be basically compatible with the frequency configuration of Godson 3A1000, the hardware frequency configuration range of Godson 3A3000 / 3B3000 is relatively

Narrow, in order to obtain a wider frequency range and better clock quality, it is mainly used in PMON in Godson 3A 3000 / 3B 3000 / 3

The software configuration method is the same as that of Godson 3B1500. Please refer to the PMON source code for the specific configuration method.

- $1. \ The \ frequency \ setting \ is \ completely \ set \ by \ the \ software, \ there \ is \ no \ need \ to \ modify \ CLKSEL \ when \ changing \ the \ frequency;$
- Stable working frequency of 1.25V core voltage: processor core frequency is set to 1400MHz, memory frequency is set to 700MHz,
 HT controller is set to 800MHz, HT bus 800MHz / 1600MHz;
- 3. For Godson 3A3000 / 3B3000A / B / C, NODE CLOCK must use L2 PLL as the main clock, DDR CLOCK The NODE clock must be used for frequency division;

13.3 PMON Change Guide

The following PMON changes are basically consistent with the 3A2000 / 3B2000 processor.

Godson 3A3000 / 3B3000 Processor User Manual • Volume 1

Because from the processor core, memory controller, HT controller to all levels of crossbar switches have been upgraded to varying degrees,

Therefore, compared with Loongson 3A1000, PMON needs to make some changes, mainly including the following necessary parts:

- $1.\ Remove\ the\ initialization\ operations\ of\ L1\ Deache,\ L1\ Icache,\ Veache,\ and\ L2\ Cache\ after\ power-on\ (hardware\ completion);$
- 2. After the CPU is powered on, close the Store Fill Buffer of all cores;
- 3. Immediately after the CPU is powered on, turn off the word write merge function of all cores;
- 4. If you need to maintain compatibility with 3A5, set the PRID hidden bit in the CP0 Diag register of all cores;
- 5. Modify the statements of jr rx and rx which are not register 31 in all assembly codes to jr \$ 31;
- $6.\ Use\ code\ similar\ to\ 3B1500\ to\ configure\ processor\ core,\ memory\ and\ node\ PLL;$
- 7. Use the memory controller configuration and parameter training code similar to 3B1500;
- 8. If HT works in 1.0 mode, HT can only work in 8-bit mode;
- 9. If an SPI controller is used, the base address is changed from 0xBFE001F0 to 0xBFE00220;

In addition to these necessary changes, the following changes can be made to enhance the PMON function:

- 1. Modify the delay delay of the buzzer to ensure that the user can hear the buzzer;
- 2. Add support to shut down the defective core clock;
- 3. Remove part of the workaround of the 3A5 to 2h bridge HT controller in the code (still retain some workaround);

13.4 Guidelines for kernel changes

The following kernel changes are basically the same as 3A2000 / 3B2000, but need to be added in the corresponding part of the kernel 164

Page 169

Loongson 3A3000 / 3B3000 Processor User Manual
1. Modify the Cache description structure in the kernel. Both VCache and SCache are connected by a 16-way group; (same as 3A2000)
$2. \ Modify \ the \ calculation \ method \ of \ the \ temperature \ sensor, \ the \ algorithm \ is: junction \ temperature = Thens_out \ *\ 731\ /\ 0x4000-273;$
3. Modify the configuration register address when shutting down the core; (same as 3A2000)
4. Change the operation of flashing ICache / DCache to flashing ICache / DCache / VCache; (same as 3A2000)
5. If an SPI controller is used, the base address is changed from 0xBFE001F0 to 0xBFE00220; (same as 3A2000)
6. Uncache DMA must be used, and the data consistency of Cache must be maintained by software; (consistent with 3A2000)
7. Add store fill buffer support: One is to add a SYNC before all Uncache requests to ensure
When the Uncache request occurs, the contents of the store fill buffer have been written back to the Cache; the second is that all
The unlock operation in the synchronous operation shared among different cores is implemented using LL / SC instructions. (Consistent with 3A2000)
8. Do not use the MSI function of the device. When you must use the MSI function, you need to transfer the data of the POST channel of the HT controller
Set the number of receive buffers to 1 and reconnect to the HT bus; (same as 3A2000)
9. Lock Cache operations cannot be used for DMA areas where hardware automatically maintains consistency. (Consistent with 3A2000)
Modifications that can also be used to improve performance are:
1. Increase support for FTLB; (consistent with 3A2000)
2. Add support for TLB fast refill; (consistent with 3A2000)

3. Add support for wait command; (consistent with 3A2000)

4. Add support for prefetch instructions; (consistent with 3A2000)

Page 170

Godson **3A3000** / **3B3000** Processor User Manual • Volume 1

5. Use DI / EI to implement interrupt return. But it should be noted that the [31: 4] returned by the EI instruction is a random value, which is different from the MIPS Differences. (Consistent with 3A2000)