Multi-core processor architecture, register description and system software programming guide

V1.5

Loongson Zhongke Technology Co., Ltd.

The copyright of this document belongs to Loongson Zhongke Technology Co., Ltd. and reserves all rights. Without written permission, any company and individual No one may publicize, reprint or otherwise distribute any part of this document to third parties. Otherwise, the law will be investigated Legal responsibility.

Disclaimer

This document only provides periodic information, and the content can be updated at any time according to the actual situation of the product without notice. Ruin The company does not assume any responsibility for direct or indirect losses caused by improper use of documents.

Loongson Zhongke Technology Co., Ltd.

Loongson Technology Corporation Limited Address: Building 2, Longxin Industrial Park, Zhongguancun Environmental Protection Technology Demonstration Park, Haidian District, Beijing Building No. 2, Loongson Industrial Park, Zhongguancun Environmental Protection Park, Haidian District, Beijing Telephone (Tel): 010-62546668 Fax: 010-62600826

Page 3

Reading guide

"Loongson 3A4000 Processor Register User Manual" introduces Loongson 3A4000 multi-core processor architecture and register description.

The chip system architecture, function and configuration of main modules, register list and bit fields are described in detail.

revise history					
Document update record		1	Document name:	Loongson 3A4000 processor register user manual	
			version number	V1.5	
			founder	Chip R & D Department	
		С	reation date	2019-12-20	
Update history					
Serial numbe#pdated version number update content			update content		
1	2018-05-08	V0.1	initial version		
2	2018-05-28	V0.2	Update various chip configuration registers		
3	2018-06-02	V0.3	Add frequency division control chapter, update GPIO, UART, I2C, SPI content		
4	2018-06-04	V0.4	Modify route		
5	2018-06-05	V0.5	Modify the memory controller section, add software clock system		
6			Add clock description; add GPIO interrupt description; add temperature status detection;		
	2018-06-13	V0.6	Add HT interrupt description; add 3A3000 compatible description; modify EXTIoi,		
			Support 8-node int	erconnection; modify the processor core description.	
7	2018-09-11	V0.7	Update the configu	ration register list and add some register field descriptions.	
8	2018-09-13	V0.8	Updated stable clock structure description.		

9	2018-10-26	V0.9	Update DDR section
10	2019-02-19	V1.0	Internal debug version
11	2019-05-29	V1.1	Update configuration register, temperature sensor, stable counter, expansion Interrupt, Scache interrupt, processor CPUCFG part description
12	2019-07-01	V1.2	Modified some statement errors
13	2019-09-11	V1.3	Chapter 4 adds some feature control instructions 11.1.1 Fix int_edge address offset
14	2019-10-11	V1.4	12.5 Correction of temperature sensor register description
15	2019-12-17	V1.5	Fix some format errors

Manual feedback: service@loongson.cn

You can also submit chip production to our company through the problem feedback website http://bugs.loongnix.org/

Godson 3A4000 processor register user manual directory

Problems in the use of products, and obtain technical support.

Page 6

table of Contents

1 Overview	1
1.1 Introduction to Loongson series processors	1
1.2 Introduction to Godson 3A4000	2
2 System Configuration and Control	<u>5</u>
2.1 Chip working mode	<u>5</u>
2.2 Description of control pins	<u>5</u>
3 Physical address space distribution	
3.1 Physical address space distribution between nodes	
3.2 Physical address space distribution within the node	
3.3 Address Routing Distribution and Configuration	
4 Chip Configuration Register	
4.1 Version register (0x0000)	
4.2 Chip characteristic register (0x0008)	
<u>4.3 Vendor name (0x0010)</u>	<u>17</u>
<u>4.4 Chip name (0x0020)</u>	
4.5 Function setting register (0x0180)	
4.6 Pin drive setting register (0x0188)	
4.7 Function sampling register (0x0190)	
4.8 Temperature sampling register (0x0198)	
4.9 Bias Configuration Register (0x01A0)	20
4.10 Frequency configuration register (0x01B0)	20
4.11 Processor core frequency division setting register (0x01D0)	twenty two
4.12 Processor core reset control register (0x01D8)	twenty three
4.13 Routing setting register (0x0400)	twenty three
4.14 Other function setting register (0x0420)	twenty four
4.15 Celsius temperature register (0x0428)	
4.16 SRAM adjustment register (0x0430)	
4.17 FUSE0 observation register (0x0460)	
4.18 FUSE1 observation register (0x0470)	

Ι

5.1 Introduction to Chip Module Clock	
5.2 Frequency division and enable control of processor core	
5.2.1 Access by address	
5.2.2 Configuration register instruction access	
5.3 Node clock frequency division and enable control	 . 29
5.3.1 Software settings	
5.3.2 Automatic hardware settings	
5.4 HT controller frequency division and enable control	 <u>81</u>
5.5 Stable Counter Frequency Division and Enable Control	 32
Software clock system	
6.1 Stable Counter	
6.1.1 Stable Timer configuration address	
6.1.2 Clock Control of Stable Counter	
6.1.3 Stable Counter Calibration	
6.2 Node Counter	
6.2.1 Access by address	
6.2.2 Configuration register instruction access	
6.3 Summary of Clock System	
GPIO control	
7.1 Output enable register (0x0500)	
7.2 Input Output Register (0x0508)	
7.3 Interrupt Control Register (0x0510)	
7.4 GPIO pin function multiplexing table	
7.5 GPIO interrupt control	
GS464V processor core	
8.1 Instruction set features implemented by 3A4000	 . 42
8.2 3A4000 Configuration Status Register Access	
Shared Cache (SCache)	
Interrupt and communication between processor cores	 50

Π

10.2 Configuration register instruction access	
11 I / O interruption	54
11.1 Traditional I / O Interrupt	
11.1.1 Access by address	<u> 56</u>
11.1.2 Configuration register instruction access	
11.2 Expansion I / O Interrupt	
11.2.1 Access by address	<u> 58</u>
11.2.2 Instruction access to configuration registers	<u> 61</u>
11.2.3 Extended IO interrupt trigger register	<u>61</u>

 		61	

11.2.4 Differences between extended IO interrupt handling and tradition	nal HT interru	upt handling	
12 Temperature sensor		<u> 63</u>	
12.1 Real-time temperature sampling			
12.2 High and low temperature interrupt trigger			
12.3 High temperature automatic frequency reduction setting			65
12.4 Temperature state detection and control		<u> 66</u>	
12.5 Control of temperature sensor	67	<u>'</u>	
13 DDR3 / 4 SDRAM controller configuration			
13.1 DDR3 / 4 SDRAM Controller Function Overview			
13.2 DDR3 / 4 SDRAM Read Operation Protocol			
13.3 DDR3 / 4 SDRAM Write Operation Protocol		<u></u>	
13.4 DDR3 / 4 SDRAM parameter configuration format		<u>71</u>	
13.4.1 Parameter list of memory controller			
13.5 Software Programming Guide			
13.5.1 Initialization	<u> 83</u>		
13.5.2 Control of reset pin			
13.5.3 Leveling	<u>35</u>		
13.5.4 Power control configuration process			
13.5.5 Initiate MRS commands separately		87	
13.5.6 Arbitrary operation control bus		88	
13.5.7 Self-loop test mode control			
13.5.8 ECC function usage control		2	

III

13.5.9 Observation of Error Status		89		
14 HyperTransport Controller	<u> 93</u>			
14.1 HyperTransport hardware setup and initialization			<u> 93</u>	
14.2 HyperTransport Protocol Support		<u>96</u>		
14.3 HyperTransport interrupt support				
14.3.1 PIC Interrupt		97		
14.3.2 Local Interrupt Handling		97		
14.3.3 Extended interrupt handling			<u> 98</u>	
14.4 HyperTransport Address Window				
14.4.1 HyperTransport Space	<u>98</u>			
14.4.2 Internal window configuration of HyperTransport controller				<u> 99</u>
14.5 Configuration Register			100	
14.5.1 Bridge Control	104			
14.5.2 Capability Registers	104			
14.5.3 Error Retry Control Register	107			
14.5.4 Retry Count Register	10	7		
14.5.5 Revision ID Register	108			
14.5.6 Interrupt Discovery & Configuration				
14.5.7 Interrupt Vector Register		<u>109</u>		

14.5.8 Interrupt Enable Register
14.5.9 Link Train Register
14.5.10 Receive Address Window Configuration Register
14.5.11 Configuration Space Conversion Register
14.5.12 POST address window configuration register
14.5.13 Prefetchable Address Window Configuration Register
14.5.14 UNCACHE Address Window Configuration Register
14.5.15 P2P Address Window Configuration Register
14.5.16 Controller Parameter Configuration Register
14.5.17 Receive Diagnostic Register
14.5.18 PHY Status Register
14.5.19 Command send buffer size register

IV

14.5.20 Data transmission buffer size register	
14.5.21 Send Buffer Debug Register	
14.5.22 Receive buffer initial register	133
14.5.23 Training 0 Timeout Short Timer Register	
14.5.24 Training 0 Time-out timer register	134
14.5.25 Training 1 Count Register	134
14.5.26 Training 2 Count Register	135
14.5.27 Training 3 Count Register	135
14.5.28 Software Frequency Configuration Register	
14.5.29 PHY Impedance Matching Control Register	
14.5.30 PHY Configuration Register	
14.5.31 Link Initialization Debug Register	
14.5.32 LDT debug register	
14.5.33 HT TX POST ID window configuration register	
14.5.34 External Interrupt Conversion Configuration	
14.6 Access method of HyperTransport bus configuration space	
14.7 HyperTransport Multiprocessor Support	
15 Low-speed IO controller configuration	
15.1 UART Controller	
15.1.1 Data Register (DAT)	147
15.1.2 Interrupt Enable Register (IER)	
15.1.3 Interrupt Identification Register (IIR)	
15.1.4 FIFO Control Register (FCR)	
15.1.5 Line Control Register (LCR)	
15.1.6 MODEM Control Register (MCR)	
15.1.7 Line Status Register (LSR)	
15.1.8 MODEM Status Register (MSR)	154
15.1.9 Receive FIFO count value (RFC)	154

V

15.1.10 Transmit FIFO count value (TFC) 15.1.11 Frequency Division Latch	
15.1.12 Use of newly added registers	<u>í</u>

Page 11

15.2 SPI Controller	
15.2.1 Control Register (SPCR)	
15.2.2 Status Register (SPSR)	158
15.2.3 Data Register (TxFIFO)	
15.2.4 External Register (SPER)	
15.2.5 Parameter control register (SFC_PARAM)	
15.2.6 Chip Select Control Register (SFC_SOFTCS)	
15.2.7 Timing Control Register (SFC_TIMING)	
15.2.8 Custom Control Register (CTRL)	
15.2.9 Custom Command Register (CMD)	
15.2.10 Custom Data Register 0 (BUF0)	161
15.2.11 Custom Data Register 1 (BUF1)	162
15.2.12 Custom timing register 0 (TIMER0)	
15.2.13 Custom Timing Register 1 (TIMER1)	
15.2.14 Custom Timing Register 2 (TIMER2)	
15.2.15 SPI two-wire four-wire user guide	
15.3 I2C Controller	
15.3.1 Lower Latch Register (PRERIo)	
15.3.2 Frequency divider latch high byte register (PRERhi)	
15.3.3 Control Register (CTR)	
15.3.4 Transmit Data Register (TXR)	
15.3.5 Receive Data Register (RXR)	
15.3.6 Command Control Register (CR)	
15.3.7 Status Register (SR)	
15.3.8 Slave Device Control Register (SLV_CTRL)	
16 3A3000 kernel compatibility	
16.1 Compatible with 3A3000 kernel	
16.1.1 Method for identifying processor characteristics	
16.1.2 Current kernel modification method	
16.2 New feature support	
16.2.1 Identification of processor characteristics	

VI

	16.2.2 Extended interrupt mode	
1	16.3 Configuration register instruction debugging support	

Page 13

Godson 3A4000 processor register user manual diagram directory

Figure catalog

Figure 1-1 Loongson No. 3 system structure	1	
Figure 1-2 Godson No. 3 node structure	2	
Figure 1-3 Godson 3A4000 chip structure		
Figure 6-1 Stable reset control when multiple chips are interconnected		35
Figure 8-1 GS464V structure diagram	42	
Figure 11-1 Loongson 3A4000 processor interrupt routing diagram	54	
Figure 13-1 DDR3 SDRAM read operation protocol	<u> 70</u>	

Figure 13-2 DDR3 SDRAM write operation protocol	<u> 71</u>
Figure 14-1 HT protocol configuration access in Loongson 3A4000	
Figure 14-2 Four-piece Loongson No. 3 interconnect structure	
Figure 14-3 Eight piece Loongson No. 3 interconnection structure	
Figure 14-4 Two-chip Loongson No. 3 8-bit interconnection structure	
Figure 14-5 Two-chip Loongson No. 3 16-bit interconnection structure	146

VIII

Page 14

Godson 3A4000 processor register user manual table list

Table directory

Table 2-1 Control pin description 5			
Table 3-1 Node-level system global address distribution		7_	
Table 3-2 Address distribution within the node			
Table 3-3 SCID_SEL address bit settings			
Table 3-4 Distribution of 44-bit physical addresses in nodes		8	
Table 3-5 The space access attributes corresponding to the MMAP field	<u></u>	9	
Table 3-6 Address Window Register Table	9		
Table 3-7 Correspondence between the slave device number and the module			<u>. 15</u>
Table 3-8 The space access attributes corresponding to the MMAP field	<u></u>	15	
Table 4-1 Version Register 17			
Table 4-2 Chip feature register 17			
Table 4-3 Vendor Name Register 18			
Table 4-4 Chip Name Register 18			
Table 4-5 Function Setting Register 18	<u>8</u>		
Table 4-6 Pin drive setting register 19			
Table 4-7 Function sampling register 1	<u>9</u>		

Table 4-8 Temperature sampling register		
Table 4-9 Bias Setting Register		
Table 4-10 Node clock software frequency multiplication setting register		twenty one
Table 4-11 Memory clock software frequency multiplication setting register		twenty one
Table 4-12 Processor core software frequency division setting register		twenty two
Table 4-13 Processor core software frequency division setting register		twenty three
Table 4-14 Chip Routing Setting Register	twenty three	
Table 4-15 Other function setting registers	twenty four	
Table 4-16 Temperature observation register		
Table 4-17 Processor core SRAM adjustment registers		
Table 4-18 FUSE Observation Register		
Table 4-19 FUSE Observation Register		
Table 5-1 Processor core software frequency division setting register		28

IX

Page 15

Table 5-2 Other function setting registers			
Table 5-3 Other function setting registers 29			
Table 5-4 Processor core private divider register 29			
Table 5-5 Function Setting Register 30			
Table 5-6 Other function setting registers 30			
Table 5-7 Description of high-temperature down-frequency control register		30	
Table 5-8 Function Setting Register			
Table 5-9 Other function setting registers 32			
Table 5-10 Other function setting registers			
Table 5-11 GPIO Output Enable Register 32			
Table 6-1 Address access method 33			
Table 6-2 Configuration register instruction access method	<u> 34</u>		
Table 6-3 Register meaning 34			
Table 6-4 Other function setting registers 34			
Table 6-5 Node counter register 36			
Table 7-1 Output enable register			
Table 7-2 Input and Output Registers 37			
Table 7-3 Interrupt Control Register 37			
Table 7-4 GPIO function reuse table 38			
Table 7-5 Interrupt Control Register 39			
Table 8-1 List of configuration information of instruction set functions implemented by 3A4000			<u> 43</u>
Table 8-2 List of Configuration Status Registers in the Core	46		
Table 9-1 Shared Cache Lock Window Register Configuration	<u> 48</u>		
Table 10-1 Inter-processor interrupt related registers and their functional descriptions			
Table 10-2 List of Internuclear Interrupts and Communication Registers of Processor Core 0		<u> 50</u>	
Table 10-3 List of Internuclear Interrupts and Communication Registers of Processor Core 1	<u></u>	51	
Table 10-4 List of Internuclear Interrupts and Communication Registers of Processor Core 2	<u></u>	<u> 51</u>	

Table 10-5 List of Internuclear Interrupts and Communication Registers of Processor Core 3	. 51
Table 10-6 List of interrupts and communication registers between current processor cores	52
Table 10-7 Communication Register between Processor Cores	
Table 11-1 Interrupt Control Register	

Х

Page 16

Table 11-2 IO Control Register Address	5 <u>6</u>
Table 11-3 Interrupt Routing Register Description	
Table 11-4 Interrupt Routing Register Address	<u>56</u>
Table 11-5 Processor core private interrupt status register	
Table 11-6 Other function setting registers	<u> 57</u>
Table 11-7 Extended IO interrupt enable register	
Table 11-8 Extended IO interrupt auto-rotation enable register	
Table 11-9 Extended IO Interrupt Status Register	
Table 11-10 Extended IO interrupt status register for each processor core	
Table 11-11 Interrupt pin routing register description	<u></u>
Table 11-12 Interrupt Routing Register Address	<u> 59</u>
Table 11-13 Interrupt target processor core routing register description	<u>60</u>
Table 11-14 Interrupt Target Processor Core Routing Register Address	
Table 11-15 Interrupt target node mapping mode configuration	
Table 11-16 Current processor core's extended IO interrupt status register	
Table 11-17 Extended IO interrupt trigger register	<u>61</u>
Table 12-1 Description of Temperature Sampling Register	
Table 12-2 Extended IO interrupt trigger register	
Table 12-3 High and low temperature interrupt register description	
Table 12-4 Description of High Temperature Down Frequency Control Register	
Table 12-5 Temperature state detection and control register description	
Table 12-6 Description of Temperature Sensor Configuration Register	
Table 12-7 Description of Temperature Sensor Data Register	
Table 12-8 Description of temperature sensor monitoring points	
Table 13-1 DDR3 / 4 Address Control Signal Multiplexing	
Table 13-2 List of visible parameters of the memory controller software	
Table 13-3 No. 0 Memory Controller Error Status Observation Register	
Table 13-4 No. 1 Memory Controller Error Status Observation Register	
Table 14-1 HyperTransport bus related pin signals	<u> 94</u>
Table 14-2 Commands that the HyperTransport receiver can receive	<u></u>
Table 14-3 Commands to be sent out in two modes	<u> 96</u>

Godson 3A4000 processor register user manual table list

Table 14-4 Other function setting registers	98	
Table 14-5 The default address window distribution of the four HyperTransport interfa	<u>ces</u>	<u> 98</u>
Table 14-6 Address window distribution inside HyperTransport interface of Loongson	No. 3 processor	<u> 99</u>
Table 14-7 Address window provided in HyperTransport interface of Loongson 3A400	<u>0 processor 99</u>	
Table 14-8 Definition of Bus Reset Control Register		
Table 14-9 Definition of Command, Capabilities Pointer, Capability ID Register		
Table 14-10 Link Config, Link Control register definition	105	
Table 14-11 Definition of Revision ID, Link Freq, Link Error, Link Freq Cap Registers	<u></u>	
Table 14-12 Definition of Feature Capability Register		
Table 14-13 Error Retry Control Register 107		
Table 14-14 Retry Count Register		
Table 14-15 Revision ID Register		
Table 14-16 Interrupt Capability Register Definition	108	
Table 14-17 Dataport register definition	<u>. 109</u>	
Table 14-18 IntrInfo register definition (1)	<u>109</u>	
Table 14-19 IntrInfo register definition (2)	<u>109</u>	
Table 14-20 HT Bus Interrupt Vector Register Definition (1)	<u>111</u>	
Table 14-21 HT Bus Interrupt Vector Register Definition (2)	<u>111</u>	
Table 14-22 Definition of HT bus interrupt vector register (3)		
Table 14-23 HT Bus Interrupt Vector Register Definition (4)	<u>111</u>	
Table 14-24 Definition of HT Bus Interrupt Vector Register (6)		
Table 14-25 Definition of HT Bus Interrupt Vector Register (7)		
Table 14-26 Definition of HT Bus Interrupt Vector Register (8)	112	
Table 14-27 Definition of HT Bus Interrupt Enable Register (1)		
Table 14-28 Definition of HT Bus Interrupt Enable Register (2)		
Table 14-29 Definition of HT Bus Interrupt Enable Register (3)		
Table 14-30 Definition of HT Bus Interrupt Enable Register (4)		
Table 14-31 Definition of HT Bus Interrupt Enable Register (5)		
Table 14-32 Definition of HT Bus Interrupt Enable Register (6)		
Table 14-33 Definition of HT Bus Interrupt Enable Register (7)	115	
Table 14-34 Definition of HT Bus Interrupt Enable Register (8)		

XII

Page 18

Table 14-35 Link Train Register 115
Table 14-36 HT Bus Receive Address Window 0 Enable (External Access) Register Definition
Table 14-37 HT Bus Receive Address Window 0 Base Address (External Access) Register Definition 117
Table 14-38 HT Bus Receive Address Window 1 Enable (External Access) Register Definition
Table 14-39 HT Bus Receive Address Window 1 Base Address (External Access) Register Definition
Table 14-40 HT Bus Receive Address Window 2 Enable (External Access) Register Definition
Table 14-41 HT Bus Receive Address Window 2 Base Address (External Access) Register Definition

F
Table 14-42 HT Bus Receive Address Window 3 Enable (External Access) Register Definition 118
Table 14-43 HT Bus Receive Address Window 3 Base Address (External Access) Register Definition
Table 14-44 HT Bus Receive Address Window 4 Enable (External Access) Register Definition
Table 14-45 HT Bus Receive Address Window 4 Base Address (External Access) Register Definition
Table 14-46 Definition of Extended Address Translation Register in Configuration Space
Table 14-47 Definition of Extended Address Translation Register
Table 14-48 HT Bus POST Address Window 0 Enable (Internal Access) 121
Table 14-49 HT Bus POST Address Window 0 Base Address (Internal Access) 121
Table 14-50 HT Bus POST Address Window 1 Enable (Internal Access) 121
Table 14-51 HT Bus POST Address Window 1 Base Address (Internal Access)
Table 14-52 HT Bus Prefetchable Address Window 0 Enable (Internal Access) 122
Table 14-53 HT Bus Prefetchable Address Window 0 Base Address (Internal Access) 122
Table 14-54 HT Bus Prefetchable Address Window 1 Enable (Internal Access) 123
Table 14-55 HT Bus Prefetchable Address Window 1 Base Address (Internal Access)
Table 14-56 HT Bus Uncache Address Window 0 Enable (Internal Access)
Table 14-57 HT Bus Uncache Address Window 0 Base Address (Internal Access)
Table 14-58 HT Bus Uncache Address Window 1 Enable (Internal Access)
Table 14-59 HT Bus Uncache Address Window 1 Base Address (Internal Access) 125
Table 14-60 HT Bus Uncache Address Window 2 Enable (Internal Access)
Table 14-61 HT Bus Uncache Address Window 2 Base Address (Internal Access)
Table 14-62 HT Bus Uncache Address Window 3 Enable (Internal Access)
Table 14-63 HT Bus Uncache Address Window 3 Base Address (Internal Access)
Table 14-64 Definition of HT Bus P2P Address Window 0 Enable (External Access) Register 126
Table 14-65 HT Bus P2P Address Window 0 Base Address (External Access) Register Definition 127
ХШ

Page 19

Table 14-66 Definition of HT Bus P2P Address Window 1 Enable (External Access) Regis	ster 127
Table 14-67 HT Bus P2P Address Window 1 Base Address (External Access) Register Det	finition 127
Table 14-68 Definition of Controller Parameter Configuration Register 0	
Table 14-69 Definition of Controller Parameter Configuration Register 1	
Table 14-70 Receive Diagnostic Register	<u>130</u>
Table 14-71 PHY Status Register	
Table 14-72 Command Send Buffer Size Register	
Table 14-73 Data transmission buffer size register	131
Table 14-74 Send Buffer Debug Register	2
Table 14-75 Initial Register of Receive Buffer	133
Table 14-76 Training 0 Timeout Short Timer Register	134
Table 14-77 Training 0 Timeout Long Count Register	134
Table 14-78 Training 1 Count Register 134	
Table 14-79 Training 2 Count Register 135	
Table 14-80 Training 3 Count Register 135	
Table 14-81 Software Frequency Configuration Register	

Table 14-82 Impedance Matching Control Register Table 14-83 PHY Configuration Register	
Table 14-84 Link Initialization Debug Register	
Table 14-85 LDT debug register 1	
Table 14-86 LDT debug register 2	
Table 14-87 LDT debug register 3	
Table 14-88 LDT debug register 4 140	
Table 14-89 LDT debug register 5	
Table 14-90 LDT Debug Register 5	
Table 14-91 HT TX POST ID WIN0	
Table 14-92 HT TX POST ID WIN1	
Table 14-93 HT TX POST ID WIN2	
Table 14-94 HT TX POST ID WIN3	<u>1</u>
Table 14-95 HT RX INT TRANS LO	12
Table 14-96 HT RX INT TRANS Hi	<u>42</u>

XIV

Page 20

Table 15-1 SPI Controller Address Space Distribution	
Table 16-1 Chip Feature Register	
Table 16-2 Manufacturer Name Register	
Table 16-3 Chip Name Register	<u>169</u>
Table 16-4 HT RX INT TRANS LO	
Table 16-5 HT RX INT TRANS Hi	
Table 16-6 Other function setting registers	
Table 16-7 Communication Registers between Processor Cores	

XV

Loongson 3A4000 processor register user manual

1 Overview

1.1 Introduction to Loongson series processors

Loongson processor mainly includes three series. Loongson No. 1 processor and its IP series are mainly for embedded applications.

Core 2 superscalar processor and its IP series are mainly for desktop applications, and Godson 3 multi-core processor series is mainly for service

Server and high-performance machine applications. According to the needs of the application, some of Loongson 2 can also face some high-end embedded

Yes, some low-end Loongson 3 can also be used for some desktop applications. The above three series are developed in parallel.

Loongson No. 3 multi-core series processor is based on a scalable multi-core interconnect architecture design, integrating multiple high-end on a single chip Performance processor core and a large number of level 2 caches, and also realize the interconnection of multiple chips through high-speed I / O interface to form a larger Modular system.

The scalable interconnection structure adopted by Loongson 3 is shown in Figure 1-1 below. Loongson No. 3 on-chip and multi-chip systems pass similar Of the interconnection ports are implemented in units of nodes, where each node consists of 8 * 8 crossbar switches, each The switch connects four processor cores and four shared caches, and connects the four directions of east (E) south (N) west (W) north (N) The other nodes are interconnected.

	P0 P1 P2 P3		
E S W N	8x8 switch	E S W N	
	L2 L2 L2 L2 (A)	(B)	(C)

Loongson No. 3 node and two-dimensional interconnection structure, (a) node structure, (b) 2 * 2 mesh network connected to 16 processors, (c) The 4 * 4 mesh network connects 64 processors.

Figure 1-1 Loongson No. 3 system structure

The structure of Loongson No. 3 node is shown in Figure 1-2 below. Each node has two levels of AXI crossbars connected to the processor and shared

Cache, memory controller and IO controller. Among them, the first level AXI crossbar switch (called X1 Switch, referred to as X1)

Connect the processor and shared cache. The second level crossbar switch (called X2 Switch, referred to as X2 for short) is connected to share Cache and Memory controller.

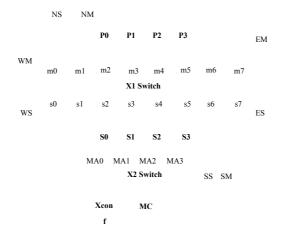


Figure 1-2 Loongson No. 3 node structure

In each node, up to 8 * 8 X1 crossbars are connected to four GS464 processor cores through four Master ports

(P0, P1, P2, P3 in the figure), connected to four interleave shared caches with four slave ports through four slave ports

Block (S0, S1, S2, S3 in the figure), connected to the four directions of east, south, west and north through four pairs of Master / Slave

Other nodes or IO nodes (EM / ES, SM / SS, WM / WS, NM / NS in the figure).

The X2 crossbar is connected to four shared caches through four Master ports, and one is connected to at least one Slave port Memory controller, at least one Slave port is connected to a crossbar configuration module (Xconf), which is used for Configure the X1 and X2 address windows of this node. You can also connect more memory controllers and IO ports as needed Wait.

1.2 Introduction to Godson 3A4000

Loongson 3A4000 is a quad-core Loongson processor, which is manufactured using 28nm process and has a stable operating frequency of 1.5-2.0GHz, the main technical features are as follows:

Four 64-bit super-scalar GS464V high-performance processor cores are integrated on-chip;

2

Page 23

- On-chip integrated 8MB split shared three-level cache (composed of 4 individual modules, each module has a capacity of 2MB);
- Maintain the cache consistency of multi-core and I / O DMA access through the directory protocol;
- Two 64-bit DDR3 / 4 controllers with ECC and 800MHz are integrated on-chip;
- Two 16-bit HyperTransport controllers (hereinafter referred to as HT) are integrated on-chip;
- Each 16-bit HT port is split into two 8-way HT ports for use;
- Integrate 2 I2C, 1 UART, 1 SPI, 16 GPIO interfaces on-chip.

The top structure design of Loongson 3A4000 is optimized on a large scale based on 3A2000 / 3A3000.

Go as follows:

- · Adjusted the on-chip interconnect structure, simplified the address routing, the interconnection between IO modules adopts RING structure;
- Optimized the bandwidth utilization and cross-chip delay of the HT controller;
- Optimized the structure of the memory controller, added support for the memory controller DDR4, and supported the memory slot to connect the accelerator card
- Standardize the configuration register space and access method, and introduce the CSR configuration register access mechanism;
- Optimized the structure of the interrupt controller and supported the vector interrupt hardware distribution mechanism
- Added 8-way interconnection support.

The overall architecture of Loongson 3A4000 chip is based on multi-level interconnection. The structure is shown in Figures 1-3 below.

Figure 1-3 Loongson 3A4000 chip structure

The first level interconnection uses a 5x5 crossbar switch to connect four GS464v cores (as the master device) and four shares

The Cache module (as a slave device) and an IO port are connected to the IO-RING. (IO port uses a Master and

A Slave).

3

Page 24

Loongson 3A4000 processor register user manual

The second level interconnection uses a 5x3 crossbar switch to connect 4 shared Cache modules (as the main device), two DDR3 / 4

The memory controller and an IO port are connected to IO-RING.

IO-RING contains 8 ports, the connection includes 4 HT controllers, MISC modules, SE modules and two stages are cross-connected

turn off. The two HT controllers (lo / hi) share the 16-bit HT bus, which is used as two 8-bit HT buses.

lo monopolizes the 16-bit HT bus. A DMA controller is integrated in the HT controller, and the DMA controller is responsible for the DMA control of the IO and

Responsible for maintaining consistency between slices.

The above interconnection structures all use separate data channels for reading and writing. The width of the data channel is 128 bits.

The same frequency of the core is used to provide high-speed on-chip data transmission. In addition, the first-level crossbar connects 4 processor cores with

The read data channel of scache is 256 bits to improve the read bandwidth of the on-chip processor core to access scache.

Page 25

4

Loongson 3A4000 processor register user manual

2 System configuration and control

2.1 Chip working mode

According to the structure of the system, Loongson 3A4000 mainly includes two working modes:

- Single chip mode. The system only contains one piece of Godson 3A4000, which is a symmetric multiprocessor system (SMP);
- Multi-chip interconnect mode. The system contains 2, 4, or 8 Loongson 3A4000, which communicate with each other through the HT port
 Connected to form a non-uniform memory multiprocessor system (CC-NUMA)

2.2 Description of control pins

The main control pins include DO_TEST, ICCC_EN, NODE_ID [2: 0], CLKSEL [9: 0],

CHIP_CONFIG [5: 0].

Table 2-1	Control pin	description
-----------	-------------	-------------

signal	Up and dow	n	effect	
DO_TEST		1'b1 means function	mode	
	pull up	1'b0 means test mode	e	
			ip consistent interconnect mode	
ICCC_EN	drop down	1'b0 means single ch	ip mode	
NODE_ID [2: 0]		Indicates the processor number in multi-chip consistent interconnect mode		
	HT clock control		HT clock control	
signal effect 1'b1: indicates that the HT PLL clock is controlled by CLKSEL [9: 4] CLKSEL [9] 1'b0: The initial frequency multiplication is 1 frequency multiplication, which can be reconfigure		effect		
		1'b1: indicates that the HT PLL clock is controlled by CLKSEL [9: 4]		
		1'b0: The initial frequency multiplication is 1 frequency multiplication, which can be reconfigured by software		
			Set	
			1'b1: indicates that the HT PLL uses the SYSCLK clock input	

CLKSEL [9:0]

CHIP_CONFIG [5: 0]

6

5

Loongson 3A4000 processor register user manual

CLUCEL 101		
CLKSEL [8]	1'b0: indicates that the HT PLL uses a differential clock input	
		2'b00 means the PHY clock frequency is 1.6GHz
		2'b01 indicates that the PHY clock frequency is 3.2GHz (the reference clock is
	CLKSEL [7: 6]	1.6GHz at 25MHz)
CLKSEL [5]	2'b10 means the PHY clock frequency is 1.2GHz	
	2'b11 means the PHY clock frequency is 2.4GHz	
	1'b1: indicates that the HT PLL clock is in bypass mode, directly	
	Use external input 100MHz / 25MHz reference clock	

Page 26

Loongson 3A4000 processor register user manual

CLKSEL [4] 1-Reference clock is 25MHz, 0-Reference clock is 100MHz

MEM clock control (clock frequency should be 1/2 of interface clock)

CLKSEL [3: 2]	Output frequency
2'b00	466MHz
2'b01	600MHz
2'b10	Software configuration (PLL clock multiplier 1.6-3.2GHz)
2'b11	SYSCLK (100MHz / 25MHz)

Main clock control (highest frequency of network and processor core)

CLKSEL [1:0]	Output frequency
2'b00	lGHz
2'b01	2GHz
2'b10	Software configuration (PLL clock multiplier 1.6-3.2GHz)
2'b11	SYSCLK (100MHz / 25MHz)
Chip configuration control	
CHIP_CONFIG [0] SE fun	ction enable
CHIP_CONFIG [1] Defaul	t HT Gen1 mode
CHIP_CONFIG [2] reserve	2d
CHIP_CONFIG [3] HT0 /	1-hi enters the consistency mode by default, which is used to support 8-way mutual
ever	1
CHIP_CONFIG [4] HT log	cic function interchange, HT0 / HT1 exchange
CHIP_CONFIG [5] On-chi	p clock debug enable (DCDL)

Page 27

Loongson **3A4000** processor register user manual

3 Physical address space distribution

The system physical address distribution of Loongson No. 3 series processors adopts a globally accessible hierarchical addressing design to

System development is compatible with expansion. The physical address width of the entire system is 48 bits. According to the upper 4 bits of the address, the entire address is empt Time is evenly distributed to 16 nodes, that is, each node is allocated 44-bit address space.

3.1 Distribution of physical address space between nodes

Loongson 3A4000 processor can directly use 2/4/8 3A4000 chips to connect directly to build CC-NUMA system, each core

The processor number of the chip is determined by the pin NODEID. The address space of each chip is distributed as follows:

Table 3-1 Node-level system global address distribution

Chip node number (NODEID)	Address [47:44] bits	starting address	End address
0	0	0x0000_0000_0000	0x0FFF_FFFF_FFFF
1	1	0x1000_0000_0000	0x1FFF_FFFF_FFFF
2	2	0x2000_0000_0000	0x2FFF_FFFF_FFFF
3	3	0x3000_0000_0000	0x3FFF_FFFF_FFFF
4	4	0x4000_0000_0000	0x4FFF_FFFF_FFFF
5	5	0x5000_0000_0000	0x5FFF_FFFF_FFFF
6	6	0x6000_0000_0000	0x6FFF_FFFF_FFFF
7	7	0x7000_0000_0000	0x7FFF_FFFF_FFFF

When the number of system nodes is less than 8 nodes, the nodemask field of the routing setting register (0x1fe00400) should be set, When a guess visit occurs, it is guaranteed that even if there is no physical node address, a response can be obtained. (2 channels: 0x1; 4 channels: 0x3)

3.2 Physical address space distribution within the node

Godson 3A4000 uses a single-node 4-core configuration, so Godson 3A4000 chip integrated DDR memory controller, HT

The corresponding addresses of the bus are contained in the 44-bit address space from 0x0 (inclusive) to 0x1000_0000_0000 (not included).

Within each node, the 44-bit address space is further divided among all devices connected within the node, only if the access type

When it is cached, the request will be routed to 4 shared cache modules. According to the different configuration of chip and system structure, such as

If a slave device is not connected to a port, the corresponding address space is reserved address space and access is not allowed. 7

Page 28

Loongson 3A4000 processor register user manual

The slave devices corresponding to the address space of the Loongson 3A4000 chip are as follows:

Table 3-2 Address distribution within the node

device Address [43:40] bits Start address in the node Node end address

MC0

4

MC1	5	0x500_0000_0000	0x5FF_FFFF_FFFF
SE	c	0xC00_0000_0000	0xCFF_FFFF_FFFF
HT0 Lo controller	a	0xA00_0000_0000	0xAFF_FFFF_FFFF
HT0 Hi controller	b	0xB00_0000_0000	0xBFF_FFFF_FFFF
HT1 Lo controller	e	0xE00_0000_0000	0xEFF_FFFF_FFFF
HT1 Hi controller	f	0xF00_0000_0000	0xFFF_FFFF_FFFF

Unlike the mapping relationship of direction ports, Loongson 3A4000 can decide to share based on the actual application access behavior Cache cross-addressing mode. The address space corresponding to the 4 shared Cache modules in the node is based on two of the address bits The bit selection bit is determined and can be dynamically modified by software. A configuration mail named SCID_SEL is set in the system Register to determine the address selection bits, as shown in the table below. By default, [7: 6] address hashing is used for distribution, That is, two bits of address [7: 6] determine the corresponding shared cache number. The register address is 0x3FF00400 or 0x1fe00400.

Table 3- 3 SCID_SEL address bit setting

SCID_SEL	Address bit selection	SCID_SEL	Address bit selection
4'h0	7: 6	4'h8	23:22
4'h1	9: 8	4'h9	25:24
4'h2	11:10	4'ha	27:26
4'h3	13:12	4'hb	29:28
4'h4	15:14	4'hc	31:30
4'h5	17:16	4'hd	33:32
4'h6	19:18	4'he	35:34
4'h7	21:20	4'hf	37:36

The default distribution of the internal 44-bit physical address of each node of Loongson 3A4000 processor is shown in the following table:

Access attribute

Table 3-4 44-bit physical address distribution in the node

Address range

destination

Page 29

8

Loongson 3A4000 processor register user manual

addr [43:40] == 4'ha	Local node, uncache	HT0_LO
addr [43:40] == 4'hb	Local node, uncache	HT0_HI
addr [43:40] == 4'hc	Local node, uncache	SE
addr [43:40] == 4'he	Local node, uncache	HT1_LO
addr [43:40] == 4'hf	Local node, uncache	HT1_HI
0x10000000-0x1fffffff, 0x3ff00000-0x3ff0ffff (can be closed)	Local node, uncache	MISC
Mc interleave is 0, and not the above address	Local node, uncache	MC0
Mc interleave is 1, and not the above address	Local node, uncache	MC1
Scache interleave is 0 (address bit selection determined by scid_sel)	Local node, cache	Scache0
Scache interleave is 1 (selection of address bits determined by scid_sel)	Local node, cache	Scache1
Scache interleave is 2 (address bit selection determined by scid_sel)	Local node, cache	Scache2
Scache interleave is 3 (selection of address bits determined by scid_sel)	Local node, cache	Scache3

3.3 Address routing distribution and configuration

The routing of Loongson 3A4000 is mainly realized through the system's two-level crossbar switch and IO-RING. The software can

The master port receives requests for routing configuration. Each master port has 8 address windows, which can be completed

Target routing in 8 address windows. Each address window is composed of three 64-bit registers BASE, MASK and MMAP,

BASE is aligned in K bytes; MASK adopts a format similar to the high bit of the netmask; the lower four bits of MMAP indicate the corresponding target

Slave port number, MMAP [4] means to allow instruction fetch, MMAP [5] means to allow block reading, MMAP [6] means to allow interleaving

Access is enabled, MMAP [7] means the window is enabled.

Table 3-5 The space access attributes corresponding to the MMAP field

[7]	[6]	[5]	[4]
Window enable	Allow interleaved access to SCACHE / memory	Block read	Allow fetching

Window hit formula: (IN_ADDR & MASK) == BASE

Since Loongson 3 uses fixed routing by default, the configuration window is closed when the power is turned on.

System software is required to enable and configure it.

After the SCACHE / memory interleaving access configuration is enabled, the slave number is only valid when it is 0 or 4. 0 means route to

SCACHE, and SCID_SEL decides how to interleave access in 4 SCACHEs. 4 means routing to memory, by

interleave_bit determines how to interleave access between 2 MCs.

The address window conversion register is shown in the table below.

Table 3- 6 Address window register table

Page 30

9

address	ragistar	address	register
0x3ff0_2000	register CORE0_WIN0_BASE	0x3ff0_2100	register CORE1_WIN0_BASE
0x3ff0 2008	CORE0 WIN1 BASE	0x3ff0 2108	CORE1 WIN1 BASE
0x3ff0 2010	CORE0 WIN2 BASE	0x3ff0 2110	CORE1 WIN2 BASE
0x3ff0_2018	CORE0_WIN3_BASE	0x3ff0_2118	CORE1_WIN2_BASE
0x3ff0 2020	CORE0 WIN4 BASE	0x3ff0 2120	CORE1 WIN4 BASE
0x3ff0 2028	CORE0 WIN5 BASE	0x3ff0 2128	CORE1 WIN5 BASE
0x3ff0_2020	CORE0_WIN6_BASE	0x3ff0 2130	CORE1_WIN6_BASE
0x3ff0 2038	CORE0 WIN7 BASE	0x3ff0 2138	CORE1 WIN7 BASE
0x3ff0_2040	CORE0_WIN0_MASK	0x3ff0 2140	CORE1_WIN0_MASK
0x3ff0_2048	CORE0_WIN1_MASK	0x3ff0_2148	CORE1_WIN1_MASK
0x3ff0_2050	CORE0 WIN2 MASK	0x3ff0_2150	CORE1 WIN2 MASK
0x3ff0_2058	CORE0_WIN2_MASK	0x3ff0_2158	CORE1_WIN2_MASK
0x3ff0 2060	CORE0 WIN4 MASK	0x3ff0 2160	CORE1 WIN4 MASK
0x3ff0_2068	CORE0_WIN4_MASK	0x3ff0_2168	CORE1_WIN5_MASK
0x3ff0 2070	CORE0_WIN5_MASK	0x3ff0_2170	CORE1_WIN5_MASK
—		-	
0x3ff0_2078	CORE0_WIN7_MASK	0x3ff0_2178	CORE1_WIN7_MASK
0x3ff0_2080	CORE0_WIN0_MMAP	0x3ff0_2180	CORE1_WIN0_MMAP
0x3ff0_2088	CORE0_WIN1_MMAP	0x3ff0_2188	CORE1_WIN1_MMAP
0x3ff0_2090	CORE0_WIN2_MMAP	0x3ff0_2190	CORE1_WIN2_MMAP
0x3ff0_2098	CORE0_WIN3_MMAP	0x3ff0_2198	CORE1_WIN3_MMAP
0x3ff0_20a0	CORE0_WIN4_MMAP	0x3ff0_21a0	CORE1_WIN4_MMAP
0x3ff0_20a8	CORE0_WIN5_MMAP	0x3ff0_21a8	CORE1_WIN5_MMAP
0x3ff0_20b0	CORE0_WIN6_MMAP	0x3ff0_21b0	CORE1_WIN6_MMAP
0x3ff0_20b8	CORE0_WIN7_MMAP	0x3ff0_21b8	CORE1_WIN7_MMAP
0x3ff0_2200	CORE2_WIN0_BASE	0x3ff0_2300	CORE3_WIN0_BASE
0x3ff0_2208	CORE2_WIN1_BASE	0x3ff0_2308	CORE3_WIN1_BASE
0x3ff0_2210	CORE2_WIN2_BASE	0x3ff0_2310	CORE3_WIN2_BASE
0x3ff0_2218	CORE2_WIN3_BASE	0x3ff0_2318	CORE3_WIN3_BASE

0x3ff0_2220	CORE2_WIN4_BASE	0x3ff0_2320	CORE3_WIN4_BASE
0x3ff0_2228	CORE2_WIN5_BASE	0x3ff0_2328	CORE3_WIN5_BASE
0x3ff0_2230	CORE2_WIN6_BASE	0x3ff0_2330	CORE3_WIN6_BASE
0x3ff0_2238	CORE2_WIN7_BASE	0x3ff0_2338	CORE3_WIN7_BASE
0x3ff0_2240	CORE2_WIN0_MASK	0x3ff0_2340	CORE3_WIN0_MASK
0x3ff0_2248	CORE2_WIN1_MASK	0x3ff0_2348	CORE3_WIN1_MASK
0x3ff0_2250	CORE2_WIN2_MASK	0x3ff0_2350	CORE3_WIN2_MASK
0x3ff0_2258	CORE2_WIN3_MASK	0x3ff0_2358	CORE3_WIN3_MASK
0x3ff0_2260	CORE2_WIN4_MASK	0x3ff0_2360	CORE3_WIN4_MASK

10

Page 31

0x3ff0_2268	CORE2_WIN5_MASK	0x3ff0_2368	CORE3_WIN5_MASK
0x3ff0_2270	CORE2_WIN6_MASK	0x3ff0_2370	CORE3_WIN6_MASK
0x3ff0_2278	CORE2_WIN7_MASK	0x3ff0_2378	CORE3_WIN7_MASK
0x3ff0_2280	CORE2_WIN0_MMAP	0x3ff0_2380	CORE3_WIN0_MMAP
0x3ff0_2288	CORE2_WIN1_MMAP	0x3ff0_2388	CORE3_WIN1_MMAP
0x3ff0_2290	CORE2_WIN2_MMAP	0x3ff0_2390	CORE3_WIN2_MMAP
0x3ff0_2298	CORE2_WIN3_MMAP	0x3ff0_2398	CORE3_WIN3_MMAP
0x3ff0_22a0	CORE2_WIN4_MMAP	0x3ff0_23a0	CORE3_WIN4_MMAP
0x3ff0_22a8	CORE2_WIN5_MMAP	0x3ff0_23a8	CORE3_WIN5_MMAP
0x3ff0_22b0	CORE2_WIN6_MMAP	0x3ff0_23b0	CORE3_WIN6_MMAP
0x3ff0_22b8	CORE2_WIN7_MMAP	0x3ff0_23b8	CORE3_WIN7_MMAP
0x3ff0_2400	SCACHE0_WIN0_BASE	0x3ff0_2500	SCACHE1_WIN0_BASE
0x3ff0_2408	SCACHE0_WIN1_BASE	0x3ff0_2508	SCACHE1_WIN1_BASE
0x3ff0_2410	SCACHE0_WIN2_BASE	0x3ff0_2510	SCACHE1_WIN2_BASE
0x3ff0_2418	SCACHE0_WIN3_BASE	0x3ff0_2518	SCACHE1_WIN3_BASE
0x3ff0_2420	SCACHE0_WIN4_BASE	0x3ff0_2520	SCACHE1_WIN4_BASE
0x3ff0_2428	SCACHE0_WIN5_BASE	0x3ff0_2528	SCACHE1_WIN5_BASE
0x3ff0_2430	SCACHE0_WIN6_BASE	0x3ff0_2530	SCACHE1_WIN6_BASE
0x3ff0_2438	SCACHE0_WIN7_BASE	0x3ff0_2538	SCACHE1_WIN7_BASE
0x3ff0_2440	SCACHE0_WIN0_MASK	0x3ff0_2540	SCACHE1_WIN0_MASK
0x3ff0_2448	SCACHE0_WIN1_MASK	0x3ff0_2548	SCACHE1_WIN1_MASK
0x3ff0_2450	SCACHE0_WIN2_MASK	0x3ff0_2550	SCACHE1_WIN2_MASK
0x3ff0_2458	SCACHE0_WIN3_MASK	0x3ff0_2558	SCACHE1_WIN3_MASK
0x3ff0_2460	SCACHE0_WIN4_MASK	0x3ff0_2560	SCACHE1_WIN4_MASK
0x3ff0_2468	SCACHE0_WIN5_MASK	0x3ff0_2568	SCACHE1_WIN5_MASK
0x3ff0_2470	SCACHE0_WIN6_MASK	0x3ff0_2570	SCACHE1_WIN6_MASK
0x3ff0_2478	SCACHE0_WIN7_MASK	0x3ff0_2578	SCACHE1_WIN7_MASK
0x3ff0_2480	SCACHE0_WIN0_MMAP	0x3ff0_2580	SCACHE1_WIN0_MMAP
0x3ff0_2488	SCACHE0_WIN1_MMAP	0x3ff0_2588	SCACHE1_WIN1_MMAP
0x3ff0_2490	SCACHE0_WIN2_MMAP	0x3ff0_2590	SCACHE1_WIN2_MMAP
0x3ff0_2498	SCACHE0_WIN3_MMAP	0x3ff0_2598	SCACHE1_WIN3_MMAP
0x3ff0_24a0	SCACHE0_WIN4_MMAP	0x3ff0_25a0	SCACHE1_WIN4_MMAP
0x3ff0_24a8	SCACHE0_WIN5_MMAP	0x3ff0_25a8	SCACHE1_WIN5_MMAP
0x3ff0_24b0	SCACHE0_WIN6_MMAP	0x3ff0_25b0	SCACHE1_WIN6_MMAP
0x3ff0_24b8	SCACHE0_WIN7_MMAP	0x3ff0_25b8	SCACHE1_WIN7_MMAP
0x3ff0_2600	SCACHE2_WIN0_BASE	0x3ff0_2700	SCACHE3_WIN0_BASE
0x3ff0_2608	SCACHE2_WIN1_BASE	0x3ff0_2708	SCACHE3_WIN1_BASE

Page 32

Loongson 3A4000 processor register user manual

0x3ff0_2610	SCACHE2_WIN2_BASE	0x3ff0_2710	SCACHE3_WIN2_BASE
0x3ff0_2618	SCACHE2_WIN3_BASE	0x3ff0_2718	SCACHE3_WIN3_BASE
0x3ff0_2620	SCACHE2_WIN4_BASE	0x3ff0_2720	SCACHE3_WIN4_BASE
0x3ff0_2628	SCACHE2_WIN5_BASE	0x3ff0_2728	SCACHE3_WIN5_BASE
0x3ff0_2630	SCACHE2_WIN6_BASE	0x3ff0_2730	SCACHE3_WIN6_BASE
0x3ff0_2638	SCACHE2_WIN7_BASE	0x3ff0_2738	SCACHE3_WIN7_BASE
0x3ff0_2640	SCACHE2_WIN0_MASK	0x3ff0_2740	SCACHE3_WIN0_MASK
0x3ff0_2648	SCACHE2_WIN1_MASK	0x3ff0_2748	SCACHE3_WIN1_MASK
0x3ff0_2650	SCACHE2_WIN2_MASK	0x3ff0_2750	SCACHE3_WIN2_MASK
0x3ff0_2658	SCACHE2_WIN3_MASK	0x3ff0_2758	SCACHE3_WIN3_MASK
0x3ff0_2660	SCACHE2_WIN4_MASK	0x3ff0_2760	SCACHE3_WIN4_MASK
0x3ff0_2668	SCACHE2_WIN5_MASK	0x3ff0_2768	SCACHE3_WIN5_MASK
0x3ff0_2670	SCACHE2_WIN6_MASK	0x3ff0_2770	SCACHE3_WIN6_MASK
0x3ff0_2678	SCACHE2_WIN7_MASK	0x3ff0_2778	SCACHE3_WIN7_MASK
0x3ff0_2680	SCACHE2_WIN0_MMAP	0x3ff0_2780	SCACHE3_WIN0_MMAP
0x3ff0_2688	SCACHE2_WIN1_MMAP	0x3ff0_2788	SCACHE3_WIN1_MMAP
0x3ff0_2690	SCACHE2_WIN2_MMAP	0x3ff0_2790	SCACHE3_WIN2_MMAP
0x3ff0_2698	SCACHE2_WIN3_MMAP	0x3ff0_2798	SCACHE3_WIN3_MMAP
0x3ff0_26a0	SCACHE2_WIN4_MMAP	0x3ff0_27a0	SCACHE3_WIN4_MMAP
0x3ff0_26a8	SCACHE2_WIN5_MMAP	0x3ff0_27a8	SCACHE3_WIN5_MMAP
0x3ff0_26b0	SCACHE2_WIN6_MMAP	0x3ff0_27b0	SCACHE3_WIN6_MMAP
0x3ff0_26b8	SCACHE2_WIN7_MMAP	0x3ff0_27b8	SCACHE3_WIN7_MMAP
-	-	0x3ff0_2900	IO_L2X_WIN0_BASE
-	-	0x3ff0_2908	IO_L2X_WIN1_BASE
-	-	0x3ff0_2910	IO_L2X_WIN2_BASE
-	-	0x3ff0_2918	IO_L2X_WIN3_BASE
-	-	0x3ff0_2920	IO_L2X_WIN4_BASE
-	-	0x3ff0_2928	IO_L2X_WIN5_BASE
-	-	0x3ff0_2930	IO_L2X_WIN6_BASE
-	-	0x3ff0_2938	IO_L2X_WIN7_BASE
-	-	0x3ff0_2940	IO_L2X_WIN0_MASK
-	-	0x3ff0_2948	IO_L2X_WIN1_MASK
-	-	0x3ff0_2950	IO_L2X_WIN2_MASK
-	-	0x3ff0_2958	IO_L2X_WIN3_MASK
-	-	0x3ff0_2960	IO_L2X_WIN4_MASK
-	-	0x3ff0_2968	IO_L2X_WIN5_MASK
-	-	0x3ff0_2970	IO_L2X_WIN6_MASK
-	-	0x3ff0_2978	IO_L2X_WIN7_MASK

12

-

Page 33

-	0x3ff0_2980	IO_L2X_WIN0_MMAP
-	0x3ff0_2988	IO_L2X_WIN1_MMAP
-	0x3ff0_2990	IO_L2X_WIN2_MMAP
-	0x3ff0_2998	IO_L2X_WIN3_MMAP

-	-	0x3ff0_29a0	IO_L2X_WIN4_MMAP
-	-	0x3ff0_29a8	IO_L2X_WIN5_MMAP
-	-	0x3ff0_29b0	IO_L2X_WIN6_MMAP
-	-	0x3ff0_29b8	IO_L2X_WIN7_MMAP
0x3ff0_2a00	HT0_LO_WIN0_BASE	0x3ff0_2b00	HT0_HI_WIN0_BASE
0x3ff0_2a08	HT0_LO_WIN1_BASE	0x3ff0_2b08	HT0_HI_WIN1_BASE
0x3ff0_2a10	HT0_LO_WIN2_BASE	0x3ff0_2b10	HT0_HI_WIN2_BASE
0x3ff0_2a18	HT0_LO_WIN3_BASE	0x3ff0_2b18	HT0_HI_WIN3_BASE
0x3ff0_2a20	HT0_LO_WIN4_BASE	0x3ff0_2b20	HT0_HI_WIN4_BASE
0x3ff0_2a28	HT0_LO_WIN5_BASE	0x3ff0_2b28	HT0_HI_WIN5_BASE
0x3ff0_2a30	HT0_LO_WIN6_BASE	0x3ff0_2b30	HT0_HI_WIN6_BASE
0x3ff0_2a38	HT0_LO_WIN7_BASE	0x3ff0_2b38	HT0_HI_WIN7_BASE
0x3ff0_2a40	HT0_LO_WIN0_MASK	0x3ff0_2b40	HT0_HI_WIN0_MASK
0x3ff0_2a48	HT0_LO_WIN1_MASK	0x3ff0_2b48	HT0_HI_WIN1_MASK
0x3ff0_2a50	HT0_LO_WIN2_MASK	0x3ff0_2b50	HT0_HI_WIN2_MASK
0x3ff0_2a58	HT0_LO_WIN3_MASK	0x3ff0_2b58	HT0_HI_WIN3_MASK
0x3ff0_2a60	HT0_LO_WIN4_MASK	0x3ff0_2b60	HT0_HI_WIN4_MASK
0x3ff0_2a68	HT0_LO_WIN5_MASK	0x3ff0_2b68	HT0_HI_WIN5_MASK
0x3ff0_2a70	HT0_LO_WIN6_MASK	0x3ff0_2b70	HT0_HI_WIN6_MASK
0x3ff0_2a78	HT0_LO_WIN7_MASK	0x3ff0_2b78	HT0_HI_WIN7_MASK
0x3ff0_2a80	HT0_LO_WIN0_MMAP	0x3ff0_2b80	HT0_HI_WIN0_MMAP
0x3ff0_2a88	HT0_LO_WIN1_MMAP	0x3ff0_2b88	HT0_HI_WIN1_MMAP
0x3ff0_2a90	HT0_LO_WIN2_MMAP	0x3ff0_2b90	HT0_HI_WIN2_MMAP
0x3ff0_2a98	HT0_LO_WIN3_MMAP	0x3ff0_2b98	HT0_HI_WIN3_MMAP
0x3ff0_2aa0	HT0_LO_WIN4_MMAP	0x3ff0_2ba0	HT0_HI_WIN4_MMAP
0x3ff0_2aa8	HT0_LO_WIN5_MMAP	0x3ff0_2ba8	HT0_HI_WIN5_MMAP
0x3ff0_2ab0	HT0_LO_WIN6_MMAP	0x3ff0_2bb0	HT0_HI_WIN6_MMAP
0x3ff0_2ab8	HT0_LO_WIN7_MMAP	0x3ff0_2bb8	HT0_HI_WIN7_MMAP
0x3ff0_2c00	SE_WIN0_BASE	0x3ff0_2d00	MISC_WIN0_BASE
0x3ff0_2c08	SE_WIN1_BASE	0x3ff0_2d08	MISC_WIN1_BASE
0x3ff0_2c10	SE_WIN2_BASE	0x3ff0_2d10	MISC_WIN2_BASE
0x3ff0_2c18	SE_WIN3_BASE	0x3ff0_2d18	MISC_WIN3_BASE
0x3ff0_2c20	SE_WIN4_BASE	0x3ff0_2d20	MISC_WIN4_BASE

13

Page 34

0x3ff0_2c28	SE_WIN5_BASE	0x3ff0_2d28	MISC_WIN5_BASE
0x3ff0_2c30	SE_WIN6_BASE	0x3ff0_2d30	MISC_WIN6_BASE
0x3ff0_2c38	SE_WIN7_BASE	0x3ff0_2d38	MISC_WIN7_BASE
0x3ff0_2c40	SE_WIN0_MASK	0x3ff0_2d40	MISC_WIN0_MASK
0x3ff0_2c48	SE_WIN1_MASK	0x3ff0_2d48	MISC_WIN1_MASK
0x3ff0_2c50	SE_WIN2_MASK	0x3ff0_2d50	MISC_WIN2_MASK
0x3ff0_2c58	SE_WIN3_MASK	0x3ff0_2d58	MISC_WIN3_MASK
0x3ff0_2c60	SE_WIN4_MASK	0x3ff0_2d60	MISC_WIN4_MASK
0x3ff0_2c68	SE_WIN5_MASK	0x3ff0_2d68	MISC_WIN5_MASK
0x3ff0_2c70	SE_WIN6_MASK	0x3ff0_2d70	MISC_WIN6_MASK
0x3ff0_2c78	SE_WIN7_MASK	0x3ff0_2d78	MISC_WIN7_MASK
0x3ff0_2c80	SE_WIN0_MMAP	0x3ff0_2d80	MISC_WIN0_MMAP
0x3ff0_2c88	SE_WIN1_MMAP	0x3ff0_2d88	MISC_WIN1_MMAP
0x3ff0_2c90	SE_WIN2_MMAP	0x3ff0_2d90	MISC_WIN2_MMAP
0x3ff0_2c98	SE_WIN3_MMAP	0x3ff0_2d98	MISC_WIN3_MMAP
0x3ff0_2ca0	SE_WIN4_MMAP	0x3ff0_2da0	MISC_WIN4_MMAP

	LOOIIGSOI	i bhilodo processe	of register user mu
0x3ff0_2ca8	SE_WIN5_MMAP	0x3ff0_2da8	MISC_WIN5_MMAP
0x3ff0_2cb0	SE_WIN6_MMAP	0x3ff0_2db0	MISC_WIN6_MMAP
0x3ff0_2cb8	SE_WIN7_MMAP	0x3ff0_2db8	MISC_WIN7_MMAP
0x3ff0_2e00	HT1_LO_WIN0_BASE	0x3ff0_2f00	HT1_HI_WIN0_BASE
0x3ff0_2e08	HT1_LO_WIN1_BASE	0x3ff0_2f08	HT1_HI_WIN1_BASE
0x3ff0_2e10	HT1_LO_WIN2_BASE	0x3ff0_2f10	HT1_HI_WIN2_BASE
0x3ff0_2e18	HT1_LO_WIN3_BASE	0x3ff0_2f18	HT1_HI_WIN3_BASE
0x3ff0_2e20	HT1_LO_WIN4_BASE	0x3ff0_2f20	HT1_HI_WIN4_BASE
0x3ff0_2e28	HT1_LO_WIN5_BASE	0x3ff0_2f28	HT1_HI_WIN5_BASE
0x3ff0_2e30	HT1_LO_WIN6_BASE	0x3ff0_2f30	HT1_HI_WIN6_BASE
0x3ff0_2e38	HT1_LO_WIN7_BASE	0x3ff0_2f38	HT1_HI_WIN7_BASE
0x3ff0_2e40	HT1_LO_WIN0_MASK	0x3ff0_2f40	HT1_HI_WIN0_MASK
0x3ff0_2e48	HT1_LO_WIN1_MASK	0x3ff0_2f48	HT1_HI_WIN1_MASK
0x3ff0_2e50	HT1_LO_WIN2_MASK	0x3ff0_2f50	HT1_HI_WIN2_MASK
0x3ff0_2e58	HT1_LO_WIN3_MASK	0x3ff0_2f58	HT1_HI_WIN3_MASK
0x3ff0_2e60	HT1_LO_WIN4_MASK	0x3ff0_2f60	HT1_HI_WIN4_MASK
0x3ff0_2e68	HT1_LO_WIN5_MASK	0x3ff0_2f68	HT1_HI_WIN5_MASK
0x3ff0_2e70	HT1_LO_WIN6_MASK	0x3ff0_2f70	HT1_HI_WIN6_MASK
0x3ff0_2e78	HT1_LO_WIN7_MASK	0x3ff0_2f78	HT1_HI_WIN7_MASK
0x3ff0_2e80	HT1_LO_WIN0_MMAP	0x3ff0_2f80	HT1_HI_WIN0_MMAP
0x3ff0_2e88	HT1_LO_WIN1_MMAP	0x3ff0_2f88	HT1_HI_WIN1_MMAP
0x3ff0_2e90	HT1_LO_WIN2_MMAP	0x3ff0_2f90	HT1_HI_WIN2_MMAP

14

Page 35

Loongson 3A4000 processor register user manual

0x3ff0_2e98	HT1_LO_WIN3_MMAP	0x3ff0_2f98	HT1_HI_WIN3_MMAP
0x3ff0_2ea0	HT1_LO_WIN4_MMAP	0x3ff0_2fa0	HT1_HI_WIN4_MMAP
0x3ff0_2ea8	HT1_LO_WIN5_MMAP	0x3ff0_2fa8	HT1_HI_WIN5_MMAP
0x3ff0_2eb0	HT1_LO_WIN6_MMAP	0x3ff0_2fb0	HT1_HI_WIN6_MMAP
0x3ff0_2eb8	HT1_LO_WIN7_MMAP	0x3ff0_2fb8	HT1_HI_WIN7_MMAP

The second level xbar is mainly connected to 2 memory controllers and IO-RING as slave devices, and is composed of 4 Scache (4, representing

0x3ff0_4xxx, the same below, 5, 6, 7) and IO-RING (9) as the main device for window mapping, these

The window configuration register (4, 5, 6, 7, 9) performs memory window configuration and address conversion.

Each address window is composed of three 64-bit registers BASE, MASK and MMAP, BASE is aligned with K bytes, MASK

Using a format similar to the high-order bit of the netmask, MMAP contains the converted address, routing and enable control bits,

As shown in the following table:

[47:10] [7:4] [3:0]

Address after conversionindow enable Slave number

Among them, the device corresponding to the slave device number is shown in the following table:

Table 3-7 Correspondence between the slave device number and the module

Slave number	Destination device
0-3	Scache0-3
4-5	MC0-1
a	HT0_lo
b	HT0_hi
c	SE
d	MISC

e HT1_lo

f HT1_hi

The meaning of the window enable bit is shown in the following table:

	Table 3-8 The space access attributes corresponding to the MMAP field				
[7]	[6]	[5] [4]			
Window enableAllow interleaved access to DDR, valid when the slave device number is 0, according tore and the slave device number is 0, according to the s					
Select bit configuration to route requests that hit the window address. The interleaving enable bit is required					
	Greater than 10				

eater than 10

It should be noted that the window configuration cannot perform address translation on Cache consistency requests, otherwise it is in the SCache

Will be inconsistent with the address of the first-level cache of the processor, resulting in incorrect maintenance of Cache consistency.

15

Page 36

Loongson **3A4000** processor register user manual

Window hit formula: (IN_ADDR & MASK) == BASE

New address conversion for that a ADDR = (IN_ADDR & ~ MASK) | {MMAP [63:10], 10'h0}

According to the default register configuration, after the chip is started, the address range of 0x0000000-0x0fffffff of the CPU

(256M) mapped to the address range of 0x0000000-0x0fffffff of DDR, 0x10000000-0x17ffffff mapping

Shot into the PCI_MEM space of the bridge, 0x18000000-0x19fffffff is mapped to the PCI_IO space of the bridge,

0x1a000000-0x1afffffff is mapped to the PCI configuration space (Type0) of the bridge, and 0x1b000000-0x1bffffff

The PCI configuration space (Type1) shot to the bridge, 0x40000000-0x7fffffff is mapped to the PCI_MEM space of the bridge.

The software can implement new address space routing and conversion by modifying the corresponding configuration registers.

In addition, when there is a read access to an illegal address due to CPU speculative execution, none of the eight address windows hit.

Random data will be returned to prevent the CPU from dying, etc.

Page 37

Loongson 3A4000 processor register user manual

4 Chip Configuration Register

The chip configuration register in Loongson 3A4000 provides a mechanism to read and write various functions of the chip. below

Details each configuration register.

The base address of each chip configuration register in this chapter is 0x1fe00000.

4.1 Version register (0x0000)

The base address is 0x1fe00000 and the offset address is 0x0000.

Table 4-1 Version Register					
Bit field	Field name	access	Reset value	description	
7: 0 Version		R	8'h10	Configuration register version number	

4.2 Chip feature register (0x0008)

This register identifies some software-related processor features for software to view before enabling specific functions. Registered The base address is 0x1fe00000 and the offset address is 0x0008.

Bit field Field name access Reset value description 0 Centigrade R I'b1 When it is 1, it means that CSR [0x428] is valid 1 Node counter R I'b1 When it is 1, it means that CSR [0x408] is valid 2 MSI R I'b1 When it is 1, it means MSI is available 3 EXT_IOI R I'b1 When it is 1, it means to enter through the CSR private address Send by IPI 4 IP1_percore R I'b1 When 1, it means that the CSR private address When 1, it means that the CSR private address When 1, it means that the CSR private address Whole frequency 6 Freq_scale R I'b0 When 1, it means that the dynamic crossover function is available 7 DVFS_v1 R I'b0 When 1, it means that the dynamic frequency modulation v1 is available 8 Tsensor R I'b0 When 1, it means the temperature sensor is available		Table 4- 2 Chip feature register						
1 Node counter R 1'b1 When it is 1, it means that CSR [0x408] is valid 2 MSI R 1'b1 When it is 1, it means MSI is available 3 EXT_IOI R 1'b1 When 1, it means MSI is available 4 IPI_percore R 1'b1 When it is 1, it means to enter through the CSR private address Send by IPI 5 Freq_percore R 1'b1 When 1, it means that the CSR private address Whole frequency 6 Freq_scale R 1'b0 When 1, it means that the dynamic crossover function is available 7 DVFS_v1 R 1'b0 When 1, it means that the dynamic frequency modulation v1 is available	Bit fiel	d	Field name	access I	Reset value	description		
2 MSI R 1'b1 When 1, it means MSI is available 3 EXT_IOI R 1'b1 When 1, it means EXT_IOI is available 4 IPI_percore R 1'b1 When 1, it means to enter through the CSR private address Send by IPI 5 Freq_percore R 1'b1 When 1, it means that the CSR private address Whole frequency 6 Freq_scale R 1'b0 When 1, it means that the dynamic crossover function is available 7 DVFS_v1 R 1'b0 When 1, it means that the dynamic frequency modulation v1 is available	0	Centigrade		R	1'b1	When it is 1, it means that CSR [0x428] is valid		
3 EXT_IOI R 1'b1 When 1, it means Not is available 4 IPI_percore R 1'b1 When it is 1, it means to enter through the CSR private address 5 Freq_percore R 1'b1 When 1, it means that the CSR private address 6 Freq_scale R 1'b0 When 1, it means that the dynamic crossover function is available 7 DVFS_v1 R 1'b0 When 1, it means that dynamic frequency modulation v1 is available	1	Node counter		R	1'b1	When it is 1, it means that CSR [0x408] is valid		
4 IPI_percore R I'b1 When it is 1, it means that the CSR private address 5 Freq_percore R I'b1 When 1, it means that the CSR private address 6 Freq_scale R I'b0 When 1, it means that the dynamic crossover function is available 7 DVFS_v1 R I'b0 When 1, it means that dynamic frequency modulation v1 is available	2	MSI		R	1'b1	When 1, it means MSI is available		
4 IPI_percore R 1'b1 Send by IPI 5 Freq_percore R 1'b1 When 1, it means that the CSR private address 6 Freq_scale R 1'b0 When 1, it means that the dynamic crossover function is available 7 DVFS_v1 R 1'b0 When 1, it means that dynamic frequency modulation v1 is available	3	EXT_IOI		R	1'b1	When 1, it means EXT_IOI is available		
Send by IPI 5 Freq_percore R 1'b1 When 1, it means that the CSR private address 6 Freq_scale R 1'b0 When 1, it means that the dynamic crossover function is available 7 DVFS_v1 R 1'b0 When 1, it means that dynamic frequency modulation v1 is available	4	IPI percore		R	1'51	When it is 1, it means to enter through the CSR private address		
5 Freq_percore R 1'b1 6 Freq_scale R 1'b0 7 DVFS_v1 R 1'b0 When 1, it means that dynamic frequency modulation v1 is available	-	II I_percore		ĸ	101	Send by IPI		
Whole frequency 6 Freq_scale 7 DVFS_v1 R 1'b0 When 1, it means that dynamic frequency modulation v1 is available	5	5 Frag paraora		R	1'51	When 1, it means that the CSR private address		
7 DVFS_v1 R 1'b0 When 1, it means that dynamic frequency modulation v1 is available	5	ried_percore		it i	101	Whole frequency		
when i, it means that dynamic requerty modulation of is available	6	Freq_scale		R	1'b0	When 1, it means that the dynamic crossover function is available		
8 Tsensor R 1'b0 When 1, it means the temperature sensor is available	7	DVFS_v1		R	1'b0	When 1, it means that dynamic frequency modulation v1 is available		
	8	Tsensor		R	1'b0	When 1, it means the temperature sensor is available		

4.3 Vendor name (0x0010)

This register is used to identify the name of the manufacturer. The base address is 0x1fe00000 and the offset address is 0x0010.

17

Loongson 3A4000 processor register user manual

Table 4- 3 Manufacturer Name Register

4.4 Chip name (0x0020)

This register is used to identify the chip name. The base address is 0x1fe00000 and the offset address is 0x0020.

Table 4- 4 Chip name register				
Bit field Field name	access	Reset value	description	
63: 0 ID	R	0x00003030_30344133 character string "3A40	00"	

4.5 Function setting register (0x0180)

The base address is 0x1fe00000 and the offset address is 0x0180.

Table 4- 5 Function Setting Register

Bit fiel	d Field name	access	Reset value	description
0		RW	1'b0	
1		RW	1'b0	
3: 2		RW	2'b0	Keep
4	MC0_disable_confspace	RW	1'b0	Whether to disable MC0 DDR configuration space
5	MC0_defult_confspace	RW	1'b1	Route all memory access to configuration space
6	MCA0 clock en	RW	1'b1	MCA0 clock enable
7	MC0_resetn	RW	1'b1	MC0 software reset (active low)
8	MC0_clken	RW	1'b1	Whether to enable MC0
9	MC1_disable_confspace	RW	1'b0	Whether to disable MC1 DDR configuration space
10	MC1_defult_confspace	RW	1'b1	Route all memory access to configuration space
11	MCA1 clock en	RW	1'b1	MCA1 clock enable
12	MC1_resetn	RW	1'b1	MC1 software reset (active low)
13	MC1_clken	RW	1'b1	Whether to enable MC1
26:24 H	T0_freq_scale_ctrl	RW	3'b011	HT controller divide by 0
27	HT0_clken	RW	1'b1	Whether to enable HT0
30:28 H	T1_freq_scale_ctrl	RW	3'b011	HT controller divided by 1
31	HT1_clken	RW	1'b1	Whether to enable HT1
42:40 N	lode_freq_ ctrl	RW	3'b111	Node crossover
43	-	RW	1'b1	
63:56 C	pu_version	R	2'h3B	CPU version

18

Page 39

Loongson **3A4000** processor register user manual

4.6 Pin drive setting register (0x0188)

The base address is 0x1fe00000 and the offset address is 0x0188.

Bit field	Field name	access	Reset value		description
31:0				(air)	
63:32 Pad1v8_ctrl		RW	32'h4f0000	1v8 pad control	

4.7 Function sampling register (0x0190)

The base address is 0x1fe00000 and the offset address is 0x0190.

Bit field	Field name	access	Reset value	description
31:0 Compcode_	core	R		
37:32 Chip_config		R	Motherboa	ard configuration control
47:38 Sys_clkseli		R	Onboard f	requency setting
55:48 Bad_ip_core		R	core7-core	e0 is bad
57:56 Bad_ip_ddr		R	Whether 2	DDR controllers are bad
61:60 Bad_ip_ht		R	Whether 2	HT controllers are bad

4.8 Temperature sampling register (0x0198)

The base address is 0x1fe00000 and the offset address is 0x0198.

Table 4-8 Temperature sampling register

Bit field	Field name	access	Reset value	description
15: 0		R		
19:16 Compe	ode_ok	R		
20 dote	st	R		
twenty onec	_en	R		
23:22		R		
twenty fohs	ens0_overflow	R	Tempera	ture sensor 0 overflow
25 Ths	ens1_overflow	R	Tempera	ture sensor 1 overflow
31:26				
47:32 Thsenso	D_out	R	Tempera	ture sensor 0 Celsius

19

Page 40

Loongson 3A4000 processor register user manual

		Knot point temperdegree= Thens0_out
		* 731 / 0x4000-273
		Temperature range -40 degrees - 125 degrees
		Temperature sensor 1 Celsius
63:48 Thsens1 out	R	Knot point temperdegree= Thens1_out
05.48 Thsens1_Out	К	* 731 / 0x4000-273
		Temperature range -40 degrees - 125 degrees

4.9 Bias Configuration Register (0x01A0)

The 3A4000 integrates a bias voltage generation module. The following registers are used to control these bias voltage modules. The base address is 0x1600000, the offset address is 0x1a0.

Table 4- 9 Bias Settin	ng Register
------------------------	-------------

Bit field	field name	access	Reset value	e description
0	BBGEN_enable	RW	0x0	Bias enable
1	BBMUX_first	RW	0x0	Set to switch voltage mode first
3: 2		RW	0x0	
7:4	BBGEN_feedback	RW	0x0	Disable BBGEN feedback signal
11:8	BBGEN_vbbp_val	RW	0x0	Setting value of Vbbp
15:12 B	BGEN_vbbn_val	RW	0x0	Setting value of Vbbn
17:16 B	BMUX_SEL_0	RW	0x0	BBMUX_SEL_0 setting value
19:18 B	BMUX_SEL_1	RW	0x0	BBMUX_SEL_1 setting value
21:20 B	BMUX_SEL_2	RW	0x0	BBMUX_SEL_2 setting value
23:22 B	BMUX_SEL_3	RW	0x0	BBMUX_SEL_3 setting value
31:24		RW	0x0	Keep

40:32 BBGEN_sm other -

4.10 Frequency configuration register (0x01B0)

The following sets of software frequency multiplication setting registers are used to set the CLKSEL to software control mode (refer to section 2.2 CLKSEL setting method), the working frequency of the chip's main clock and the memory controller clock. Among them, MEM CLOCK configuration pair According to the memory controller clock frequency, the bus operating frequency is 2 times the clock, and the bus operating rate is 4 times the clock; NODE CLOCK corresponds to the clock frequency of the processor core, on-chip network, and high-speed shared cache.

Each clock configuration generally has three parameters, DIV_REFC, DIV_LOOPC, DIV_OUT. The final clock frequency is

20

Page 41

Loongson 3A4000 processor register user manual

(Reference clock / DIV_REFC * DIV_LOOPC) / DIV_OUT.

In software control mode, the default clock frequency is the frequency of the external reference clock (100MHz or 25MHz)

To set the clock software during the processor startup. The process of setting each clock should follow the following methods:

- The other registers in the setting register except SEL_PLL_* and SOFT_SET_PLL, that is, these two The register is written as 0 during the setting process;
- 2) Other register values remain unchanged, set SOFT_SET_PLL to 1;
- 3) Wait for the lock signal LOCKED_* in the register to be 1;
- 4) Set SEL_PLL_* to 1, and the corresponding clock frequency will be switched to the frequency set by the software.

The following registers are the configuration registers of Main CLOCK. Main Clock is used to generate node clock and core clock

The highest operating frequency. The base address is 0x1fe00000 and the offset address is 0x1b0:

Table 4-10 Node clock software frequency multiplication setting register

Bit field	Field name	access	Reset value	description
				Clock output selection
0	SEL_PLL_NODE	RW	0x0	1: Node clock selects PLL output
				0: Node clock selection SYS CLOCK
1		RW	0x0	
2	SOFT_SET_PLL	RW	0x0	Allow software to set PLL
3	BYPASS_L1	RW	0x0	Bypass L1 PLL
15:4	-	RW	0x0	-
16	LOCKED_L1	R	0x0	Whether L1 PLL is locked
18:17-		R	0x0	-
19	PD_L1	RW	0x0	Turn off L1 PLL
25:20		RW	0x0	
31:26 L1	_DIV_REFC	RW	0x1	L1 PLL input parameters
40:32 L1	_DIV_LOOPC	RW	0x1	L1 PLL input parameters
41				
47:42 L1	_DIV_OUT	RW	0x1	L1 PLL input parameters
other	-	RW		Keep

Note: PLL ouput = (clk_ref / div_refc * div_loopc) / div_out.

The result of clk_ref / div_refc of PLL should be 25-50MHz, and the VCO frequency (inside the brackets in the above formula

Points) must be in the range 1.2GHz-3.2GHz. This requirement also applies to memory PLLs.

The following registers are the configuration registers of MEM CLOCK. The MEM CLOCK clock frequency should be configured to the final DDR total

1/2 of the line clock frequency. The base address is 0x1fe00000 and the offset address is 0x1c0:

twenty one

Page 42

Loongson 3A4000 processor register user manual

Bit field	Field name	access	Reset value	description
				Clock output selection
0	SEL_MEM_PLL	RW	0x0	1: MEM clock selects PLL output
				0: MEM clock selection SYS CLOCK
1	SOFT_SET_MEM_PLL	RW	0x0	Allow software to set MEM PLL
2	BYPASS_MEM_PLL	RW	0x0	Bypass MEM_PLL
5:3				
6	LOCKED_MEM_PLL	R	0x0	Whether MEM_PLL is locked
7	PD_MEM_PLL	RW	0x0	Turn off MEM PLL
				MEM PLL input parameters
13:8	MEM_PLL_DIV_REFC	RW	0x1	When selecting NODE clock (NODE_CLOCK_SEL
				When 1), it is used as frequency division input
23:14 M	EM_PLL_DIV_LOOPC	RW	0x41	MEM PLL input parameters
29:24 M	EM_PLL_DIV_OUT	RW	0x0	MEM PLL input parameters
20	NODE CLOCK SEL	DW	00	0: Use MEM_PLL as the MEM clock
30	NODE_CLOCK_SEL	RW	0x0	1: Use NODE_CLOCK as the crossover input
other		RW		Keep

4.11 Processor core frequency division setting register (0x01D0)

The following register is used for dynamic frequency division of the processor core. Use this register to set the frequency modulation of the processor core In order to complete the frequency conversion operation within 100ns, there is no other overhead. Base address is 0x1fe00000, offset address 0x01d0.

Table 4-12	Processor cor	e software	frequency	division	setting register	

Bit fiel	d Field name	access	Reset value	description
2:0	core0_freqctrl	RW	0x7	Core 0 division control value
3	core0_en	RW	0x1	Core 0 clock enable
6:4	core1_freqctrl	RW	0x7	Core 1 division control value
7	core1_en	RW	0x1	Core 1 clock enable
10:8	core2_freqctrl	RW	0x7	Core 2 divider control value
11	core2_en	RW	0x1	Core 2 clock enable
14:12 c	ore3_freqctrl	RW	0x7	Core 3 division control value
15	core3_en	RW	0x1	Core 3 clock enable
			Note:	The clock frequency value after
				Of (frequency division control

twenty two

4.12 Processor core reset control register (0x01D8)

The following registers are used to reset the processor core software. When reset is needed, first resetn the corresponding core to 0,

Set resetn_pre to 0, wait 500 microseconds, set resetn_pre to 1, then set resetn to 1 to complete the adjustment

Reset process. The base address of this register is 0x1fe00000 and the offset address is 0x01d8.

Table 4-13 Processor core software frequency division setting register

Bit field	Field name	access	Reset value	description
0	Core0_resetn_pre	RW	0x1	Core 0 reset auxiliary control
1	Core0_resetn	RW	0x1	Core 0 reset
2	Core1_resetn_pre	RW	0x1	Core 1 reset auxiliary control
3	Core1_resetn	RW	0x1	Core 1 reset
4	Core2_resetn_pre	RW	0x1	Core 2 reset auxiliary control
5	Core2_resetn	RW	0x1	Core 2 reset
6	Core3_resetn_pre	RW	0x1	Core 3 reset auxiliary control
7	Core3_resetn	RW	0x1	Core 3 reset

4.13 Routing setting register (0x0400)

The following registers are used to control some routing settings in the chip. Base address is 0x1 fe00000, offset address

0x0400.

Table 4-14 Chip Routing Setting Register

Bit field	Field name	access	Reset value	description
3:0	scid_sel	RW	0x0	Shared cache hash bit control
6: 4	Node mask	RW	0x7	Node mask to avoid guessing unused nodes
0.4	houe_mask	icii	OA7	Address is not responding
7		RW	0x0	Keep
8	xrouter_en	RW	0x0	HT1 inter-chip routing enable control
9	disable 0x3ff0	RW	0x0	Prohibit matching through the base address $0x3ff0_0000$
,				Register space routing
12	mcc_en	RW	0x0	MCC mode enable
19:16 ccs	sd_id	RW	0x0	
twenty	fæssd_en	RW	0x0	
31:30 mc	e_en	RW	0x3	Enable routing control of two MCs
37:32 int	erleave_bit	RW	0x0	Memory hash bit control
39	interleave_en	RW	0x0	Memory hash enable
43:40 ht	control	R		Ht related configuration pins

twenty three

Page 44

Loongson 3A4000 processor register user manual

47:44 ht_reg_disable

RW

Close ht space, used in consistency mode, Avoid routing HT space addresses to HT

4.14 Other function setting register (0x0420)

The following registers are used to control the on-chip partial function enable. The base address is 0x1fe00000 and the offset address is 0x0420.

Table 4-15 Other function setting registers

0x0

Bit field	Field name	access	Reset value	description
0	disable_jtag	RW	0x0	Completely disable the JTAG interface
1	disable_ejtag	RW	0x0	Disable EJTAG interface completely
2	disable_gs132	RW	0x0	Disable GS132 completely

		Loongs	on 3A4000	processor register user manual
3	disable_ejtag132	RW	0x0	Completely disable the GS132 EJTAG interface
4	Disable_antifuse0	RW	0x0	
5	Disable_antifuse1	RW	0x0	
6	Disable_ID	RW	0x0	
8	resetn_gs132	RW	0x0	GS132 reset control
9	sleeping_gs132	R	0x0	GS132 goes to sleep
10	soft_int_gs132	RW	0x0	GS132 Intercore Interrupt Register
15:12 c	ore_int_en_gs132	RW	0x0	GS132 corresponds to the IO interrupt enable of each core
18:16 fi	reqscale_gs132	RW	0x0	GS132 crossover control
19	clken_gs132	RW	0x0	GS132 clock enable
twent	y ostable_resetn	RW	0x0	Stable clock reset control
twent	y tfineqscale_percore	RW	0x0	Enable private FM register for each core
twent	y thileen_percore	RW	0x0	Enable clock enable for each core
27.24 0	onfbus timeout	RW	0x8	Configure bus timeout setting, actual time
27.240	olifous_uncout	IC W	0.00	To the power of 2
29:28 H	IT_softresetn	RW	0x3	HT controller software reset control
				FM mode selection for each core
35:32 fi	reqscale_mode_core	RW	0x0	0: (n + 1) / 8
				1: 1 / (n + 1)
36	freqscale_mode_node	RW	0x0	Node FM mode selection
37	freqscale_mode_gs132	RW	0x0	GS132 FM mode selection
39:38 fi	reqscale_mode_HT	RW	0x0	FM mode selection for each HT
40	freqscale_mode_stable	RW	0x0	Stable clock FM mode selection
46:44 fi	reqscale_stable	RW	0x0	Stable clock FM register
47	clken_stable	RW	0x0	Stable clock clock enable
48	EXT_INT_en	RW	0x0	Extended IO interrupt enable

twenty four

Page 45

Loongson 3A4000 processor register user manual

57:56 thsensor_sel	RW	0x0	Temperature sensor selection
62:60 Auto_scale	R	0x0	Automatic frequency modulation current value
63 Auto_scale_doing	R	0x0	Auto tuning is in effect flag

4.15 Celsius temperature register (0x0428)

The following registers are used to observe the value of the temperature sensor inside the chip. Base address is 0x1fe00000, offset address 0x0428. This register is only available when CSR [0x0008] [0] is valid.

Table 4-	16	Tem	nerature	observation	register
i uoie i	10	rem	peruture	observation	register

Bit field	Field name	access	F	Reset value	description
7:0	Centigrade temperature	RO	0x0	Celsius	
63: 8		RW	0x0		

4.16 SRAM adjustment register (0x0430)

The following registers are used to adjust the operating frequency of Sram inside the processor core. Base address is 0x1 fe00000, offset address

0x0430.

Table 4- 17 Processor core SRAM adjustment registers

Bit field	Field name	access	Reset value	description
31:0 sram_ctrl		RW	0x0	Sram configuration register in core
63:32		RW	0x0	

4.17 FUSE0 observation register (0x0460)

The following registers are used to observe the Fuse0 value visible in some software. Base address is 0x1fe00000, offset address

	Tal	ble 4- 18 FUS	E Observation Register	
Bit field	Field name	access	s Reset value	description
127: 0 Fuse_0		RW	0x0	
5				

Page 46

Loongson 3A4000 processor register user manual

4.18 FUSE1 observation register (0x0470)

Field name

The following registers are used to observe the Fuse1 value visible in some software. Base address is 0x1fe00000, offset address

0x0470.

Table 4- 19 FUSE observation register

Bit field 127: 0 Fuse_1 access Reset value
RW 0x0

description

26

Page 47

Loongson 3A4000 processor register user manual

5 Chip clock frequency division and enable control

Loongson 3A4000 can use a single external reference clock SYS_CLOCK. The generation of each clock can depend on

SYS_CLOCK, the following sections introduce these clocks separately.

Loongson 3A4000 has separate points for processor core, on-chip network and shared cache, HT controller and GS132 core

Frequency mechanism. Compared with the original frequency division mechanism of 3A3000, the version implemented in 3A4000 adds a new frequency division mode, which can Supports 1 / n frequency division value.

The base address of each chip configuration register in this chapter is 0x1fe00000.

5.1 Introduction to chip module clock

The chip reference clock SYS_CLOCK usually uses a 100MHz crystal input, or a 25MHz crystal input can also be used. Do not

The same crystal frequency needs to be selected by CLKSEL [4].

In addition to using SYS CLOCK, the reference clock of the HT PHY can also use the 200MHz differential reference input of each PHY.

Use CLKSEL [8] to select. When SYS CLOCK is selected as the reference clock and a 25MHz crystal oscillator input is used, HT

The PHY cannot work at 3.2GHz.

clock	Clock source	Frequency of	loub Cingsween @	bntilöhable contr	ol Clock description
Boot Clock	SYS_CLOCK	*1	not support	not support	SPI, UART, I2C controller clock
					SYS PLL output.
					Node Clock, Core Clock, HTcore
Main Clock	SYS PLL	PLL configur	ation support	not support	Clock, GS132 Clock clock source
					Mem Clock, Stable Clock optional
					Zhong Yuan
Node Clock Main Clock		*1	stand by	not support	On-chip network, shared cache, node clock,
		stand by		not support	HT controller clock source
Core0 Clock Ma	in Clock	*1	stand by	stand by	Core0 clock
Core1 Clock Ma	in Clock	*1	stand by	stand by	Core1 clock
Core2 Clock Ma	in Clock	*1	stand by	stand by	Core2 clock
Core3 Clock Ma	in Clock	*1	stand by	stand by	Core3 clock
HTcore0 Clock N	ode Clock	*1		- to 1 h	HT0 controller clock, software needs to ensure
THEORED CLOCK IN	oue clock	1	stand by	stand by	After the frequency is lower than 1GHz
HTcore1 Clock Node Clock		*1		- to d h	HT1 controller clock, software needs to ensure
III COLET CLOCK IN	ode Clock	1	stand by	stand by	After the frequency is lower than 1GHz
GS132 Clock M	ain Clock	*1	stand by	stand by	GS132 clock, the software needs to ensure the frequency division
GS132 Clock Main Clock		stand by		stand by	Below 1GHz

27

Stable Clock Main Clock		*1	stand by	stand by	Processor core constant counter clock	
Mem Clock	MEM PLL	PLL configuration support		stand by	Memory controller clock	
	Main Clock	/ 2, / 4, / 8 are not supported		stand by	Memory controller alternative clock	

5.2 Frequency division and enable control of processor core

There are multiple modes of processor core frequency division, one is access mode by address, and the other is processor configuration instruction access mode, the following Introduce separately. Each processor core can be controlled separately.

5.2.1 Access by address

Access mode by address is compatible with the 3A3000 processor, using the processor core software frequency division setting register, using the same

Address.

Use this register to set the frequency modulation of the processor core, you can complete the frequency conversion operation within 100ns, there is no other amount External expenses. The base address is 0x1fe00000 and the offset address is 0x01d0.

Bit fiel	d Field name	access	Reset value	description
2:0	core0_freqctrl	RW	0x7	Core 0 division control value
3	core0_en	RW	0x1	Core 0 clock enable
6:4	core1_freqctrl	RW	0x7	Core 1 division control value
7	core1_en	RW	0x1	Core 1 clock enable
10:8	core2_freqctrl	RW	0x7	Core 2 divider control value
11	core2_en	RW	0x1	Core 2 clock enable
14:12 c	pre3_freqctrl	RW	0x7	Core 3 division control value
15	core3_en	RW	0x1	Core 3 clock enable
			Note:	The clock frequency value after the software frequency division is equal to t
				Of (frequency division control value +1) / 8

Table 5-1 Processor core software frequency division setting register

In addition to the frequency division configuration compatible with the 3A3000 processor, the 3A4000 can also divide the

The frequency of the clock after the frequency is adjusted from the original "(frequency division control value +1) / 8" to "1 / (frequency division control value +1)" Send this

The register is located in "Other Function Setting Register". The base address is 0x1fe00000 and the offset address is 0x0420.

Table 5-2 Other function setting registers

Bit field	Field name	access	Reset value	description
				FM mode selection for each core
35:32 freqscale_1	mode_core	RW	0x0	0: (n + 1) / 8
				1: 1 / (n + 1)

28

Page 49

Loongson 3A4000 processor register user manual

5.2.2 Configuration register instruction access

In addition to the traditional access mode by address, 3A4000 also supports the use of configuration register instructions to configure private frequency division Register access.

It should be noted that the private divider configuration register control and the original processor core software divider setting register control

They are mutually exclusive, and only one of them can be used. The method of selection is to enter the corresponding bit

行控制。Line control. The base address of this register is 0x1fe00000 and the offset address is 0x0420.

В	it field	Field name	access	Reset value	description
t	wenty threascale_perc	ore	RW	0x0	Enable private FM register for each core
t	wenty thileen_percore		RW	0x0	Enable clock enable for each core

When freqscale_percore is set to 1, the freqscale bit pair in the private divider configuration register is used

Set the frequency division of your own clock (including freqscale_mode); when clken_percore is set to 1, make

Use the clken bit in the private divider configuration register to control the clock enable.

The configurator is defined as follows. The offset address is 0x1050.

Table 5- 4 Private Division Register of Processor Core

Bit field	Field name	access	Reset value	description
4	freqscale_mode	RW	0x0	Current processor core frequency division mode selection
3	clken	RW	0x0	Clock enable of current processor core
2:0	freqscale	RW	0x0	Current processor core frequency setting

5.3 Node clock frequency division and enable control

The node clock is the clock used by the on-chip network and shared cache. There are two different control modes. One is the software setting.

The second mode is the hardware automatic crossover setting.

The node clock does not support the complete shutdown function, so there is no corresponding clken control bit.

5.3.1 Software settings

The software setting method is compatible with the 3A3000 processor, use the function to set the node frequency division bit in the register, use the same

29

Page 50

Loongson 3A4000 processor register user manual

Address.

The base address of this register is 0x1fe00000, and the offset address is 0x0180.

	Table 5- 5 Function Setting Register				
Bit field	Field name	access	Reset value		description
42:40 Node0_freq_ ctrl		RW	3'b111	Node 0 frequency	division

Consistent with the frequency division control of the processor core, the node clock can also be set by the register to divide the clock frequency after the frequency division

The rate is adjusted from the original "(frequency division control value + 1) / 8" to "1 / (frequency division control value + 1)" This register is located in "Other

Function setting register ". The base address is 0x1fe00000 and the offset address is 0x0420.

	Table 5- 6 Other function setting registers						
Bit field	Field name	access	Reset value	descriptio			
36 freqsc	ale mode node	RW	0x0	Node FM mode selection			

5.3.2 Automatic hardware settings

In addition to the active setting by the software, the node clock also supports automatic frequency setting triggered by the temperature sensor.

Automatic crossover setting is set by the software for different temperatures in advance, when the temperature of the temperature sensor reaches the corresponding preset

Value, it will trigger the corresponding automatic crossover setting.

In order to ensure the operation of the chip in a high-temperature environment, you can set the high-frequency automatic frequency reduction, so that the chip exceeds

In the range, it actively divides the clock to achieve the effect of reducing the chip turnover rate.

For the high temperature frequency reduction function, there are 4 sets of control registers to set its behavior. Each set of registers contains the following four

Control bit

GATE: Set the threshold for high or low temperature. When the input temperature is higher than the high temperature threshold or lower than the low temperature threshold, i

Frequency division operation;

EN: enable control. The setting of this group of registers is valid after being set to 1;

SEL: Input temperature selection. Currently, there are four temperature sensors integrated in the 3A4000. This register is used for configuration selection.

The temperature of which sensor is used as input.

FREQ: frequency division number. When the frequency division operation is triggered, this frequency division number is also affected by freqscale_mode_node

Sound, when it is 0, adjust the frequency to (FREQ + 1) / 8 times the current clock frequency; when it is 1, adjust the frequency to

1 / (FREQ + 1) times the previous clock frequency.

The base address is 0x1fe00000 or 0x3ff00000.

Table 5-7 High-temperature frequency-reduction control register description

Loongson 3A4000 processor register user manual

30

register	address	control	Explanation
			Four sets of setting priority from high to low
			[7: 0]: Scale_gate0: High temperature threshold 0, frequency will be reduced if this temperature is exceeded
			[8: 8]: Scale_en0: High temperature frequency reduction enable 0
			[11:10]: Scale_Sel0: Select the temperature sensor input source of high temperature down-conversion 0
			[14:12]: Scale_freq0: frequency division value when frequency is reduced
			[23:16]: Scale_gate1: High temperature threshold 1, exceeding this temperature will reduce the frequency
			[24:24]: Scale_en1: High temperature frequency reduction enable 1
			[27:26]: Scale_Sel1: Select the temperature sensor input source for high temperature down-conversion 1
			[30:28]: Scale_freq1: frequency division value when frequency is reduced
			[39:32]: Scale_gate2: High temperature threshold value 2, if this temperature is exceeded, frequency will be reduced
			[40:40]: Scale_en2: High temperature frequency reduction enable 2
			[43:42]: Scale_Sel2: Select the temperature sensor input source for high temperature down-conversion 2
			[46:44]: Scale_freq2: frequency division value when frequency is reduced
			[55:48]: Scale_gate3: High temperature threshold 3, over this temperature will reduce the frequency
			[56:56]: Scale_en3: High temperature frequency reduction enable 3
High temperature down freq	uency control register		[59:58]: Scale_Sel3: Select the temperature sensor input source for high temperature down-conversion 3
Thsens_freq_scale	0x1480	RW	[62:60]: Scale_freq3: Frequency division value when frequency is reduced
			High bit of temperature sensor control register
			[7: 0] Scale_Hi_gate0 high 8 bits
			[15: 8] Scale_Hi_gate1 high 8 bits
			[23:16] Scale_Hi_gate2 high 8 bits
			[31:24] Scale_Hi_gate3 high 8 bits
			[39:32] Scale_Lo_gate0 high 8 bits
			[47:40] Scale_Lo_gate1 high 8 bits
			[55:48] Scale_Lo_gate2 high 8 bits
Thsens_freq_scale_up	0x1490	RW	[63:56] Scale_Lo_gate3 high 8 bits

5.4 HT controller frequency division and enable control

The frequency division mechanism of the HT controller is similar to others. Two HT controllers can be controlled separately. Use function to set up hosting Set the corresponding bit in the device. The base address is 0x1fe00000 and the offset address is 0x0180.

	Ta	Table 5-8 Function Setting Register					
Bit field	Field name	access	Reset val	ue descripti			
26:24 HT0_freq_	_scale_ctrl	RW	3'b111	HT controller divide by 0			

Whether to enable HT1

27

31

HT0_clken

30:28 HT1_freq_scale_ctrl

HT1_clken

Page 52

Loongson 3A4000 processor register user manual

Consistent with other frequency division control, the HT controller clock can also be set by the register to divide the clock frequency after frequency division The rate is adjusted from the original "(frequency division control value + 1) / 8" to "1 / (frequency division control value + 1)" This register is located in "Other Function setting register ". The base address is 0x1fe00000 and the offset address is 0x0420.

It should be noted that because the HT core clock is derived from the Node clock, it is also divided by the Node clock Impact.

Table 5- 9 Other function setting registers Bit field Field name access Reset value description 39:38 freqscale_mode_HT RW 0x0 FM controller FM mode selection

RW

1'b1

5.5 Stable Counter Frequency Division and Enable Control

The frequency division mechanism of Stable Counter is similar to others. Use other functions to set the corresponding bits in the register Settings. The base address is 0x1fe00000 and the offset address is 0x0420.

	Table 5-10 Other function setting registers						
Bit field	Field name	access	Reset value	description			
				Stable clock reset control			
twenty	stable_reset	RW	0x0	1: Set to reset state			
				0: release software reset			
40	freqscale_mode_stable	RW	0x0	Stable clock FM mode selection			
46:44 fr	eqscale_stable	RW	0x0	Stable clock FM register			
47	clken_stable	RW	0x0	Stable clock clock enable			

It should be noted that after stable_reset is set to 0, the software reset is only released. At this time, if

When GPIO_FUNC_en [13] is 1, the reset of the stable counter is also controlled by GPIO [13] (active low).

The base address of the GPIO output enable register is 0x1fe00000, and the offset address is 0x0500.

Table 5-11 GPIO output enable register

Bit field	Field name	access	Reset value	description
31: 0 GPIO_OEn		RW	32'hffffffff	GPIO output enable (active low)
63:32 GPIO_FUNC_E	n	RW	32'hffff0000 GI	PIO function enable (active low)

32

6 Software clock system

The Loongson 3A4000 processor defines a number of different levels of use for the clock used by the system software. processor

The core has traditional counter / compare registers, a new stable counter register, and chip-level

node counter register

The following describes the stable counter and node counter.

6.1 Stable Counter

A new constant clock source is introduced in Loongson 3A4000, which is called stable counter. Stable counter

The clock is different from the clock of the processor core itself, and it is also different from the node clock. It is an independent master clock.

Both the processor core clock and the node clock are derived from the main clock, but both can freely control the frequency division number (see the introduction in the previc

Shao), and the clock of the stable counter is also derived from the main clock, and can also be divided independently, not with other clocks

Frequency changes.

According to this clock source, a timer and a timer are implemented. Please refer to the timer and how to use the timer

Examine the relevant content of Chapter 13 (Timekeeping Equipment) of the Loongson 3A4000 Command System Manual. This chapter mainly introduces Stable couter Related registers.

6.1.1 Stable Timer configuration address

Use the Stable counter clock source to implement a monotonically increasing timer counter and a slave setting

Timer whose value decreases downwards; each processor core has its own independent Stable counter and Stable timer.

When the processor accesses the timer, it can only be accessed through special instructions such as rdhwr, DRDTIME, etc.

It can be accessed by load / store by address or by CSR configuration register instruction.

Table 6-1 Address access method

name	Offset address	Authori	ty description
Core0_timer_config 0x1060		RW	Processor core 0 timer configuration register
Core0_timer_ticks 0x1070		R	Remaining timer value of processor core 0
Core1_timer_config 0x1160		RW	Timer configuration register for processor core 1
Core1_timer_ticks 0x1170		R	Remaining timer value of processor core 1
Core2_timer_config 0x1260		RW	Processor core 2 timer configuration register
Core2_timer_ticks 0x1270		R	Remaining timer value of processor core 2
Core3_timer_config 0x1360		RW	Processor core 3 timer configuration register
Core3_timer_ticks 0x1370		R	Remaining timer value of processor core 3

33

Page 54

Loongson 3A4000 processor register user manual

Table 6-2 Configuration register instruction access method

name	Offset address	Authority	description
percore_timer_config	0x1060	RW	Timer configuration register of the current processor core
percore_timer_ticks	0x1070	R	Current timer value of the processor core

Table 6-3 Register meaning

Bit field Field name Access reset value description

timer_config

63 1 RW 0x1 Reset to 1, should be written as 1

62	Periodic R	W	0x0	Cycle counting is enabled. When this bit is 1, after the timer is reduced to 0, it is automatically reset to The value of the InitVal field in timer_config.
61	Enable	RW	0x0	Always enable. When this bit is 1, the timer will take effect.
47: 0	InitVal	RW	0x0	Initial value for countdown
timer_ticks				
63:48	0	R	0x0	0 value
47: 0	Ticks	R	0x0	Countdown remaining value. When in acyclic counting, the value will be
				Stay at 48'hffff ffff ffff.

6.1.2 Clock Control of Stable Counter

Stable counter uses the main clock, and can be divided by software frequency division control. .

The following is the clock control register of Stable counter. This register is located in other function setting register of the control chip

Device. The base address is 0x1fe00000 and the offset address is 0x0420.

Table 6-4 Other function setting registers

Bit field	l Field n	ame	access	Reset value	description
					Stable clock reset control
twenty	stable_reset		RW	0x0	1: Set to reset state
					0: release software reset
40	freqscale_mode_stabl	e	RW	0x0	Stable clock FM mode selection
46:44 fre	eqscale_stable		RW	0x0	Stable clock FM register
47	clken_stable		RW	0x0	Stable clock clock enable

After the BIOS configures the Stable counter clock source, the MCSR part in each processor core needs to be updated

Used to control the values of CPUCFG.0x4 and CPUCFG.0x5. According to the description in Section 8.1, CPUCFG.0x4 should be filled with The frequency of the crystal oscillator in Hz; CPUCFG.0x5 [31:16] should be filled with frequency division factor; CPUCFG.0x5 [15: 0] should be filled Multiplication factor. Filling in the latter two requires BIOS help to calculate, so that the result of CCFreq * CFM / CFD is equal to The actual frequency of the Stable Counter.

34

Page 55

Loongson 3A4000 processor register user manual

6.1.3 Stable Counter calibration

In the case of a single chip, the counter gap of each core is within 2 cycles, and no special calibration is required. In multi-chip love Under the circumstances, there will be large differences between different chips. A special software and hardware calibration mechanism is required to The counter difference is kept below 100ns.

First of all, in order to ensure that the main clock of each chip does not produce deviations during use, use the same crystal drive driver There is chip SYS_CLK.

Secondly, in order to ensure that the Stable counter of each chip starts timing at the same time, two hardware

The multiplexing function of one GPIO pin. Node 0 uses GPIO12 to output the reset signal, all other nodes (including node 0)

Use GPIO13 to input the reset signal (need to be configured as Stable counter function). Need to use buffer on the motherboard

The device ensures the reset timing (mainly the signal slope). The better the reset timing, the smaller the clock difference between different chips.

Before using the Stable counter, the software must reset the global Stable counter through GPIO12

Before resetting, ensure that the clock selection of each chip is the same, and the reset of each chip has been released. This job is usually

It is done by the BIOS. The connection scheme of the system is shown in the figure below.

Figure 6-1 Stable reset control when multiple chips are interconnected

6.2 Node Counter

The address of Node counter in Loongson 3A4000 is the same as that of 3A3000 and before, but avoids the original need

To correct the problem by software, you can also use the configuration register instruction to access. It is also important to note that with

35

Page 56

Loongson 3A4000 processor register user manual

3A3000 and the previous chip are the same, the counting frequency of Node counter is exactly the same as Node clock, if you want to make Using Node counter as the clock calculation basis, it is necessary to avoid frequency conversion of Node clock.

6.2.1 Access by address

The access by address mode is compatible with the 3A3000 processor and uses the same address for setting.

The base address of the configuration register is 0x1fe00000 or 0x3ff00000, as shown in the following table.

Table 6-5 Node counter register

 name
 Offset address
 Authority description

 Node counter
 0x0408
 R
 64-bit node clock count

6.2.2 Configuration register instruction access

Node counters are slightly different from other configuration registers when accessed using configuration register instructions. Node The use of counter requires that all processor cores access the same counter, rather than their respective on-chip counters (more At the time), each core is required to access the node counter of the same chip. Therefore, even in a multiplex system, each The chip accesses CSR [0x408] through the configuration register instruction, and all access the node counter on NODE 0.

Please refer to the processor core manual for the specific access address and register definition.

6.3 Summary of Clock System

Stable counter added in Loongson 3A4000 is more stable than node counter and CP0 counter

It has more advantages and will not change with the division of other clocks (node clock and core clock).

In terms of ease of use, the Stable counter is also more convenient to access, whether it is user mode or using the rdhwr command

Guest state can be obtained directly. Stable counter is the first choice of software reference clock system.

Node clock is more of a design that considers traditional compatibility and is a backup solution for a clock system.

7 GPIO control

36

Godson 3A4000 provides up to 32 GPIOs for system use, most of which are multiplexed with other functions. Send by Memory settings, you can also configure GPIO as an interrupt input function, and you can set its interrupt level. The base address of each chip configuration register in this chapter is 0x1fe00000.

7.1 Output enable register (0x0500)

The base address is 0x1fe00000 and the offset address is 0x0500.

Table 7-1 Output enable register

Bit field	Field name	access	Reset value	description
31: 0 GPIO_OEn		RW	32'hffffffff	GPIO output enable (active low)
63:32 GPIO_FUNC_	En	RW	32'hffff0000 GI	PIO function enable (active low)

7.2 Input Output Register (0x0508)

The base address is 0x1fe00000 and the offset address is 0x0508.

Table 7-2 Input Output Register

Bit field	Field name	access	Reset valu	e description
31: 0 GPIO_O		RW	32'h0	GPIO output settings
63:32 GPIO_I		RO	32'h0	GPIO input status

7.3 Interrupt control register (0x0510)

The base address is 0x1fe00000 and the offset address is 0x0510.

Table 7-3 Interrupt Control Register					
Bit field	Field name	access	Reset value	description	
				GPIO interrupt effective level setting	
31: 0 GPIO_INT_Pol		RW	32'h0	0-active low	
				1-Active high	
63:32 GPIO_INT_en		RW	32'h0	GPIO interrupt enable control, high effective	

37

7.4 GPIO pin function multiplexing table

The GPIO pins in 3A4000 are heavily multiplexed with other functions. The following list shows the pin functions of the chip function pins select.

It should be pointed out that GPIO00 - GPIO15 are GPIO functions when the chip is reset, and the default is the input state.

Does not drive IO.

And GPIO16 – GPIO31 are multiplexed control pins of HT, which is HT function at reset, in order to prevent internal logic To drive the corresponding IO, you can pull down the corresponding HT0 / 1_Hi / Lo_Hostmode pin. Although reset by default at this time It is an HT function, but it will not drive IO pins and will not affect external devices. It only needs to use GPIO function in software Before you can set the function to GPIO mode.

Table 7-4 GPIO function multiplexing table

GPIO register	Pin name	Reuse function	Default function
0	GPIO00	SPI_CSn1	GPIO
1	GPIO01	SPI_CSn2	GPIO
2	GPIO02	UART1_RXD	GPIO
3	GPIO03	UART1_TXD	GPIO
4	GPIO04	UART1_RTS	GPIO
5	GPIO05	UART1_CTS	GPIO
6	GPIO06	UART1_DTR	GPIO
7	GPIO07	UART1_DSR	GPIO
8	GPIO08	UART1_DCD	GPIO
9	GPIO09	UART1_RI	GPIO
10	GPIO10	-	GPIO
11	GPIO11	-	GPIO
12	GPIO12	-	GPIO
13	GPIO13	SCNT_RSTn	GPIO
14	GPIO14	PROCHOTn	GPIO
15	GPIO15	THERMTRIPn	GPIO
16	HT0_LO_POWEROK	GPIO16	HT0_LO_POWEROK
17	HT0_LO_RSTn	GPIO17	HT0_LO_RSTn
18	HT0_LO_LDT_REQn	GPIO18	HT0_LO_LDT_REQn
19	HT0_LO_LDT_STOPn	GPIO19	HT0_LO_LDT_STOPn
38			

Page 59

Loongson 3A4000 processor register user manual

20	HT0_HI_POWEROK	GPIO20	HT0_HI_POWEROK
twenty one	HT0_HI_RSTn	GPIO21	HT0_HI_RSTn
twenty two	HT0_HI_LDT_REQn	GPIO22	HT0_HI_LDT_REQn
twenty three	HT0_HI_LDT_STOPn	GPIO23	HT0_HI_LDT_STOPn
twenty four	HT1_LO_POWEROK	GPIO24	HT1_LO_POWEROK
25	HT1_LO_RSTn	GPIO25	HT1_LO_RSTn
26	HT1_LO_LDT_REQn	GPIO26	HT1_LO_LDT_REQn

27	HT1_LO_LDT_STOPn	GPIO27	HT1_LO_LDT_STOPn
28	HT1_HI_POWEROK	GPIO28	HT1_HI_POWEROK
29	HT1_HI_RSTn	GPIO29	HT1_HI_RSTn
30	HT1_HI_LDT_REQn	GPIO30	HT1_HI_LDT_REQn
31	HT1_HI_LDT_STOPn	GPIO31	HT1_HI_LDT_STOPn

7.5 GPIO interrupt control

All GPIO pins in 3A4000 can be used as interrupt inputs.

GPIO00, GPIO08, GPIO16, GPIO24 share interrupt line 0 of the interrupt controller. GPIO01, GPIO09, GPIO17, GPIO25 share interrupt line 1 of the interrupt controller. GPIO02, GPIO10, GPIO18, GPIO26 share interrupt line 2 of the interrupt controller. GPIO03, GPIO11, GPIO19, GPIO27 share interrupt line 3 of the interrupt controller. GPIO04, GPIO12, GPIO20, GPIO28 share interrupt line 4 of the interrupt controller. GPIO05, GPIO13, GPIO21, GPIO29 share interrupt line 5 of the interrupt controller. GPIO06, GPIO14, GPIO22, GPIO30 share interrupt line 6 of the interrupt controller. GPIO07, GPIO15, GPIO23, GPIO31 share interrupt line 7 of the interrupt controller.

The interrupt enable of each GPIO is controlled by the configuration register GPIO_INT_en, the interrupt level is controlled by GPIO_INT_POL,

The registers are as follows:

The base address is 0x1fe00000 and the offset address is 0x0510.

	Table 7- 5 Interrupt Control Register					
Bit field	Field name	access	Reset value	description		
31: 0 GPIO_INT_Pol		RW	32'h0	GPIO interrupt effective level setting 0-active low		

39

Page 60

Loongson 3A4000 processor register user manual

63:32 GPIO_INT_en

1-Active high 32'h0 GPIO interrupt enable control, high effective

When each interrupt line on the interrupt controller only enables one of the GPIO, you can use the edge trigger mode

RW

An interrupt (falling edge when POL is set to 0 and rising edge when it is 1) triggers an interrupt and records it in the interrupt controller.

Page 61

40

Loongson 3A4000 processor register user manual

8 GS464V processor core

GS464V is a four-launch 64-bit high-performance processor core. The processor core can be used as a single core for high-end embedded Applications and desktop applications can also be used as basic processor cores to form on-chip multi-core systems for server and high-performance applications use. Multiple GS464V cores in Loongson 3A4000 and shared Cache modules form one through AXI interconnection network Multi-core structure of distributed shared on-chip last-level cache. The main features of GS464V are as follows:

- MIPS64 compatible, support Godson extended instruction set;
- · Four-shot superscalar structure, four fixed points, two vectors, and two memory access components
- · Each vector component has a width of 256bit, and each component supports up to 8 double 32-bit floating point multiply-add operations;
- The memory access unit supports 256-bit memory access, the virtual address is 64 bits, and the physical address is 48 bits;
- · Support register renaming, dynamic scheduling, branch prediction and other out-of-order execution technologies;
- 64 fully connected items plus 2048 items connected by 8-way group, a total of 2112 TLB, 64 instruction TLB, variable page size small;
- The size of the first-level instruction cache and data cache are 64KB, and the 4-way group is connected;
- Victim Cache is a private secondary cache with a size of 256KB and connected by 16 channels;
- Support Non-blocking access and Load-Speculation and other access optimization technologies;
- Support Cache consistency protocol, can be used for on-chip multi-core processor;
- · The first-level cache implements parity check, and the second-level and on-chip last-level cache implements ECC check;
- Support the standard EJTAG debugging standard, which is convenient for hardware and software debugging;

The structure of GS464V is shown in the figure below.

Page 62

41

Loongson 3A4000 processor register user manual

Figure 8-1 GS464V structure diagram

8.1 Instruction set features implemented by 3A4000

Loongson 3A4000 implements Loongson instruction set functions and features, in addition to the methods defined in the MIPS specification.

Recognition can also be dynamically confirmed through the Godson instruction set attribute recognition mechanism.

Loongson 3A4000 recommended software uses Loongson's custom CPUCFG instruction to identify Loongson instruction set attributes (through The way of executing RDCSR to read related CSR can also obtain general information, but RDCSR can only be in the system state carried out).

The CPUCFG instruction is a user mode instruction, and its usage mode is CPUCFG rd, rs, in which the source operand rs register Register number of the configuration information word to be accessed, the returned configuration word information is written to the rd register, each configuration letter The information word contains up to 32 bits of configuration information. For example, the configuration word No. 1 contains the Loongson instruction set involving MIPS compati Related information, where bit 0 indicates whether the hardware floating-point coprocessor is supported, then this configuration information is expressed as CPUCFG.0x1.FP [bit0], where 0x1 indicates that the font size of the configuration information word is 1, and FP indicates this configuration information field

The mnemonic name is called FP, and bit0 means that MSA1 is in the 0th bit of the configuration word. If you need more configuration information Bit expression, then its position information will be written in the form of bitAA: BB, indicating from the AA bit to the BB bit Consecutive (AA-BB + 1) bits.

The following table gives a list of configuration information of the instruction set functions implemented by 3A4000. The last column "possible value" means that from this

It is possible to read the value in this register, but it does not mean that this value is read from the 3A4000 processor. Specific reading

Value, please refer to the actual hardware execution result of the instruction readout, and follow the actual readout value for subsequent software

Judgment, try not to directly determine whether a 3A4000 chip supports or does not support a certain function according to the content of the last column of this table can.

Deposit	Bit field	Field name	description	Possible values
Device nu		r leid name	description	Possible values
0x0	31:0	PRId	CP0.PRId	32'h14_8001
	0	FP	Equivalent to CP0.Config1.FP [bit0]	1'b1
	3:1	FPRev	Loongson FPU floating point operation follows the spe	cification number
	4	MMI	1 means the Loongson multimedia instruction extension	1'b1 is realized
	5			
	6			
	7			
	8			
	9	LSX1	1 means support Loongson SIMD expansion I	1'b1
	10	LSX2	1 means support Loongson SIMD extension II	1'b1
	11	LASX	1 means support Loongson advanced SIMD extension	1'b1
0x1	12			
	13			
	14			
	15	CNT64	1 means CP0.Count is 64 bits	1'b1
	16	LSLDR0	1 means load to R0 is equivalent to prefetch function	1'b1
	17	LSPREF	1 means PREF instruction has prefetch effect	1'b1
	18	LSPREFX	1 means PREF instruction has prefetch effect	1'b1
	19	LSSYNCI	1 means the SYNCI instruction is implemented as a ser	ialized Astruction
	20	LSUCA	1 means support partial CACHE in user mode instruction	1'b1
	twenty one	LLSYNC	1 means add SYNC 0 instruction before LL	1'b0

Table 8- 1 List of Configuration Information of Instruction Set Functions Realized by 3A4000

43

Page 64

Loongson 3A4000 processor register user manual

		1 means that the branch between LL and SC needs to		
twenty two	TGTSYNC	Jump target	1'b0	
		Add SYNC 0 instruction		
twenty three	LLEXC	1 means it supports the function of LL instruction to initiate an exclusive request		
		can		
		1 indicates that the support directory is LL / SC exclusive relations \ensuremath{LL}	equest increase	
twenty four	SCRAND	Random delay	1'b1	

4/29/2020	4/	29/	/20)20
-----------	----	-----	-----	-----

			Loongson 3A4000 processor register user manual
			Late function
	25	MUALP	1 means support unaligned memory access function 1'b1
	26	KMUALEn	1 means that the non-aligned memory access function is enabled in the non-user state 1'b0 Opened
	27	ITLBT	1 means ITLB is software transparent 1'b1
			1 means to allow access with (D) MFC0 in user mode
	28	LSUPERF	ask 1'b1
			Performance Counter
	29	SFBP	1 means support Store Fill Buffer function 1'b1
	30	CDMAP	1 means support Cache DMA function 1'b1
	0	LEXT1	A value of 1 indicates that Loongson Universal Extension I is Theplemented
	1	LEXT2	A value of 1 indicates that Loongson Universal Extension II Hamplemented
	2	LEXT3	1 means Loongson Universal Extension III 1'b1
	3 LSPW 1 indicates that the Loongson page table t		1 indicates that the Loongson page table traversal instruction the dension is implemented
	4	LBT1	A value of 1 indicates that the Godson binary translation acceleration extension I is implemented $$1^{\prime}b1$$ version
	5	LBT2	A value of 1 means that the accelerated translation of Godson's binary translation is realized 1'b1 II version
	6	LBT3	A value of 1 means that the accelerated translation of Godson's binary translation is realized I'b1 III version
0x2	7	LBTMMU	A value of 1 indicates that Godson's binary translation address translation is implemented 1'b1 Acceleration mechanism
	8	LPMP	1 indicates that the Loongson performance counter is implemented, at this time I'b1 CP0.config1.PC [bit4] must be 1
	11:9	LPMRev	Loongson performance counter implementation version number2
	13	LPIXU	1 means support to enable Longxin position-independent in user mode 1'b1
	14	LPIXNU	1 means support to enable Godson position in non-user mode 1'b1
	15	LVZP	A value of 1 indicates that Loongson's virtualization extensional implemented
	18:16	LVZRev	Version Number of Godson Virtualization Specification 3 th 2
	19	LGFTP	A value of 1 means that a global constant frequency timing device is implemented
44			

Page 65

Loongson 3A4000 processor register user manual

	22:20	LGFTPRev	Version number of the global constant frequency timing de-	vii:162
	twenty three	LLFTP	1 means local constant frequency timing equipment is imple	enhilontted
	26:24	LLFTPRev	The version number of the local constant frequency timing	dð∜hæe
	27	LCSRP	1 means the Loongson control status register is supported	1'b1
	28	LDISBLIKELY	1 means to support the function of disabling like branch ins	trlibtion
	0	LCAMP	1 means the hardware lookup table function is implemented	1'b1
	3:1	LCAMRev	The version number of the hardware lookup table function	3'h2
0x3	11:4	LCAMNUM	Number of hardware lookup table entries -1	8'h3f
	19:12	LCAMKW	Hardware lookup table Key field bit width -1	8'h2f
	27:20	LCAMVW	Hardware lookup table Data field bit width -1	8'h3f
0x4	31:0	CCFreq	Processor core crystal frequency in Hz	N / A
0x5	15:0	CFM	Processor core multiplication factor	N / A
0x5	31:16	CFD	Processor core frequency division factor	N / A
0x6	31:0	Safe	Godson safety extended parameters	N / A
	0	GCCAEQRP	A value of 1 means that Guest CCA is supported and only F	Root decides
0x7	0	OCCALQKI	Function of	101
0.47	1	1 UCAWINP	1 means support non-cache acceleration attribute by address	s window 1'b1
	1		Configuration function	

8.2 3A4000 Configuration Status Register Access

3A4000 supports configuration status register space access, CSR uses a new independent addressing space for access,

Called CSR space, it does not overlap with the existing register space, memory space and EJTAG dseg space.

CSR uses the customized RDCSR and WRCSR instructions for read and write access. The use of RDCSR is

RDCSR rd, rs, where the source operand rs register stores the address of the accessed CSR, the contents of the CSR read back are written

Into the rd register. WRCSR is used in WRCSR rd, rs, where the source operand rs register is stored with access

Ask the address of the CSR, and store the value of the CSR in the source operand rd register. RDCSR and WRCSR are only allowed in

Run in core mode.

The RDCSR / WRCSR instruction can replace the original address mapping configuration register, that is, 0x1fe00000 and

0x3ff00000 space. For the specific access method, please refer to the relevant chapters.

In addition, the core supports a set of CSR registers, which are unique to each processor core.

under. The following registers cannot be accessed using 0x3ff00000 and 0x1fe00000 spaces.

45

Page 66

$Loongson \ \mathbf{3A4000} \ processor \ register \ user \ manual$

Table 8-2 List of Configuration Status Registers in the Core

name	address	description
GFTOffset	0xfffffffffffffffffff	Offset of fixed frequency timer in Guest mode
TimerID	0xfffffffffffffffff	ID number of local fixed frequency timer
CSRffe8	0xffffffffffffffe8	Adjust the parameters, see "Godson 3A4000 Command System" for details
		manual"
ucacc_win0_lo	0xfffffffffffffffffffffff	Low bit of non-cache acceleration window 0
ucacc_win1_lo	0xfffffffffffffffffffffffffff	Low bit of non-cache acceleration window 1
ucacc_win2_lo	0xfffffffffffee8	Low bit of non-cache acceleration window 2
ucacc_win3_lo	0xfffffffffffee0	Low bit of non-cache acceleration window 3
ucacc_win0_hi	0xffffffffffffeb8	High bit of non-cache acceleration window 0
ucacc_win1_hi	0xffffffffffffeb0	High bit of non-cache acceleration window 1
ucacc_win2_hi	0xffffffffffffea8	High bit of non-cache acceleration window 2
ucacc_win3_hi	0xfffffffffffffea0	High bit of non-cache acceleration window 3
MCSRWG	0xfffffffffff0000	MCSR write control

9 Shared Cache (SCache)

The SCache module is a three-level cache shared by all processor cores within the Loongson 3A4000 processor. SCache module

The main features include:

46

- Using 128-bit AXI interface.
- 16 items Cache access queue.
- Keywords first.
- Support Cache consistency protocol through the directory.
- It can be used for on-chip multi-core structure, and can also be directly connected with single processor IP.
- The 16-way group connection structure is adopted.
- Support ECC check.
- Support DMA consistent read and write and prefetch reading.
- Support 16 kinds of shared cache hashes.
- · Support sharing cache by window lock.
- Ensure that read data returns atomicity.

Shared Cache module includes shared Cache management module scachemanage and shared Cache access module

scacheaccess. The Scachemanage module is responsible for processor access requests from the processor and DMA, and shared cache

The TAG, directory and data are stored in the scacheaccess module. In order to reduce power consumption, Cache TAG,

The directory and data can be accessed separately. The shared Cache status bit and w bit are stored with the TAG, and the TAG is stored in the TAG RAM In, the directory is stored in DIR RAM, and the data is stored in DATA RAM. Invalid request to access shared cache and read at the same time Get out the TAGs and directories of all roads, and select the directories according to TAG, and read the data according to the hits. Replace request, re The fill request and write back request only operate the TAG, directory and data along the way.

In order to improve the performance of some specific computing tasks, the shared cache adds a lock mechanism. Shares that fall in the locked area

The Cache block will be locked, so it will not be replaced by the shared Cache (unless the 16-way shared Cache is locked

Piece). Through the chip configuration register space, four groups of lock window registers in the shared Cache module can be dynamically configured

However, it must be ensured that one of the 16 shared caches is not locked. In addition, when the shared cache receives the DMA write request

When the time is required, if the written area is hit and locked in the shared cache, the DMA write will be directly written to the shared cache Instead of memory.

Page 68

Loongson 3A4000 processor register user manual

Table 9-1 Shared Cache Lock Window Register Configuration

name	address	Bit field	description
Slock0_valid	0x3ff00200	[63:63] L	ock window 0 valid bits
Slock0_addr	0x3ff00200	[47: 0]	No. 0 lock window lock address
Slock0_mask	0x3ff00240	[47: 0]	Lock window mask 0
Slock1_valid	0x3ff00208	[63:63] L	ock window 1 valid bit
Slock1_addr	0x3ff00208	[47: 0]	Lock address of No. 1 lock window
Slock1_mask	0x3ff00248	[47: 0]	Lock window mask number 1
Slock2_valid	0x3ff00210	[63:63] L	ock window 2 valid bits
Slock2_addr	0x3ff00210	[47: 0]	Lock address of No. 2 lock window
Slock2_mask	0x3ff00250	[47: 0]	Lock window mask number 2
Slock3_valid	0x3ff00218	[63:63] L	ock window 3 valid bits
Slock3_addr	0x3ff00218	[47: 0]	Lock address of No. 3 lock window
Slock3_mask	0x3ff00258	[47: 0]	Lock window mask number 3

For example, when an address addr makes slock0_valid && ((addr & slock0_mask) ==

(slock0_addr & slock0_mask)) is 1, this address is locked by the lock window 0.

The four scache use the same configuration register, the base address is 0x1fe00000, and the offset address is 0x0280.

Table 9- 2 Shared Cache Configuration Register (SC_CONFIG)

Bit fie	ld	Field name	access	Reset value	description
0	LRU en		RW	1'b1	Scache LRU replacement algorithm is enabled
16	Prefetch En		RW	1'b1	Scache prefetch function is enabled
					When scache prefetch crosses the configured size
					Stop prefetching when address range
		6.1 E			0-4KB
22.20 1	D			W 3'hl	1-16KB
22:201	Prefetch config		ĸw		2-64KB
					3 – 1MB
					7-Unrestricted
					(Note: Valid when SCID_SEL == 0)
					scache prefetch step
					0-reserved
	Prefetch lookahead			1 - 0x100	
26-241		DW		2 - 0x200	
20:24 1		la	RW	3'h2	3 - 0x300
				4 - 0x400	
				5 - 0x500	
					6 - 0x600

48

Page 69

Loongson 3A4000 processor register user manual

			7 – 0x700
			(Note: Valid when SCID_SEL == 0)
			SC instruction blocks the number of clock cycles of dirq
			0 – 1 cycle (nonstall)
			1 – 16-31 cycle random
30:28 Sc stall dirq cycle	RW	3'h2	2 – 32-63 cycle random

31

MCC storefill en

Loongson 3A4000 processor register user manual

		3- 64-127 cycle random
		4-128-255 cycle random
		Other-invalid value
RW	1'b0	MCC storefill function is enabled

49

Loongson 3A4000 processor register user manual

10 Inter-processor interrupt and communication

Godson 3A4000 implements 8 inter-core interrupt registers (IPI) for each processor core to support multi-core BIOS boot

Interrupt and communication between processor cores when the mobile and operating system are running.

Godson 3A4000 supports two different access methods, one is the address access module compatible with 3A3000 and other processors

The other is to support direct private access to the processor register space. The following chapters explain separately.

10.1 Access by address mode

name

For Loongson 3A4000, the following registers can be accessed using the base address 0x3ff0_0000 or 0x1fe0_0000

ask. Among them, the base address 0x3ff0_0000 can be carried out through the disable_0x3ff0 control bit in the routing setting register shut down. For detailed register descriptions and addresses, see Table 10-1 to Table 10-5.

Table 10-1 Inter-processor interrupt related registers and their functional description

IPI_Status	R	32-bit status register, if any bit is set and the corresponding bit is enabled, the
		The processor core INT4 interrupt line is set.
IPI_Enable	RW	32-bit enable register to control whether the corresponding interrupt bit is valid
IPI_Set	W	32 position register, write 1 to the corresponding bit, the corresponding STATUS register
		Bit is set
IPI_Clear	W	32-bit clear register, write 1 to the corresponding bit, the corresponding STATUS register
		Bit cleared 0
MailBox0	RW	Cache register, used to transfer parameters at startup, according to 64 or 32 bit
		Uncache access.
MailBox01	RW	Cache register, used to transfer parameters at startup, according to 64 or 32 bit
		Uncache access.
MailBox02	RW	Cache register, used to transfer parameters at startup, according to 64 or 32 bit
		Uncache access.
MailBox03	RW	Cache register, used to transfer parameters at startup, according to 64 or 32 bit
		Uncache access.

The registers and functions of the interruption between Loongson 3A4000 and the processor core are described as follows:

Table 10- List of Internuclear Interrupt and Communication Registers of No. 2 Processor Core

name	Offset address	Authority	description
Core0_IPI_Status	0x1000	R	IPI_Status register of processor core 0

50

Page 71

Loongson 3A4000 processor register user manual

Core0_IPI_Enalbe	0x1004	RW	IPI_Enalbe register of processor core 0
Core0_IPI_Set	0x1008	W	IPI_Set register of processor core 0
Core0_IPI_Clear	0x100c	W	IPI_Clear register of processor core 0
Core0_MailBox0	0x1020	RW	IPI_MailBox0 register of processor core 0
Core0_MailBox1	0x1028	RW	IPI_MailBox1 register of processor core 0
Core0_MailBox2	0x1030	RW	IPI_MailBox2 register of processor core 0
Core0_MailBox3	0x1038	RW	IPI_MailBox3 register of processor core 0

Table 10-3 List of Inter-Core Interrupts and Communication Registers for Processor No. 1

name	Offset address	Authority	description
Core1_IPI_Status	0x1100	R	IPI_Status register of processor core 1
Core1_IPI_Enalbe	0x1104	RW	IPI_Enalbe register of processor core 1
Core1_IPI_Set	0x1108	W	IPI_Set register of processor core 1
Core1_IPI_Clear	0x110c	W	IPI_Clear register of processor core 1
Core1_MailBox0	0x1120	R	IPI_MailBox0 register of processor core 1
Core1_MailBox1	0x1128	RW	IPI_MailBox1 register of processor core 1
Core1_MailBox2	0x1130	W	IPI_MailBox2 register of processor core 1
Core1_MailBox3	0x1138	W	IPI_MailBox3 register of processor core 1

Table 10- 4 List of Internuclear Interrupts and Communication Registers of Processor Core 2

name	Offset address	Authority	y description
Core2_IPI_Status	0x1200	R	IPI_Status register of processor core 2
Core2_IPI_Enalbe	0x1204	RW	IPI_Enalbe register of processor core 2
Core2_IPI_Set	0x1208	W	IPI_Set register of processor core 2
Core2_IPI_Clear	0x120c	W	IPI_Clear register of processor core 2
Core2_MailBox0	0x1220	R	IPI_MailBox0 register of processor core 2
Core2_MailBox1	0x1228	RW	IPI_MailBox1 register of processor core 2
Core2_MailBox2	0x1230	W	IPI_MailBox2 register of processor core 2

Core2_MailBox3

Loongson 3A4000 processor register user manual W

IPI_MailBox3 register of processor core 2

Table 10- 5 List of Inter-Core Interrupts and Communication Registers of Processor Core 3

name	Offset address	Authority	description
Core3_IPI_Status	0x1300	R	IPI_Status register of processor core 3
Core3_IPI_Enalbe	0x1304	RW	IPI_Enalbe register of processor core 3
Core3_IPI_Set	0x1308	W	IPI_Set register of processor core 3
Core3_IPI_Clear	0x130c	W	IPI_Clear register of processor core 3

0x1238

51

Page 72

Loongson 3A4000 processor register user manual

Core3_MailBox0	0x1320	R	IPI_MailBox0 register of processor core 3
Core3_MailBox1	0x1328	RW	IPI_MailBox1 register of processor core 3
Core3_MailBox2	0x1330	W	IPI_MailBox2 register of processor core 3
Core3_MailBox3	0x1338	W	IPI_MailBox3 register of processor core 3

Listed above are the inter-core interrupt related messages for a single-node multiprocessor system composed of a single Loongson 3A4000 chip

Memory list. When using multiple Loongson 3A4000 interconnects to form a multi-node CC-NUMA system, the pairs of nodes in each chip

It should be a system global node number. The IPI register address of the processor core in the node is based on the above table and the base of the node

The addresses are in a fixed offset relationship. For example, the IPI_Status address of processor core 0 in node 0 is 0x3ff01000, and 1

The address of processor 0 at the node is 0x10003ff01000, and so on.

10.2 Configuration register instruction access

In Loongson 3A4000, there is a new register access instruction for processor core, which can be configured through private space Register access. In order to use the inter-core interrupt register more conveniently, in this mode

Yi made some adjustments.

Table 10-6 List of interrupts a	nd communication registers	s between current processor cores

name	Offset address	Authority	/ description
perCore_IPI_Status	0x1000	R	IPI_Status register of the current processor core
perCore_IPI_Enalbe 0x10	04	RW	IPI_Enalbe register of the current processor core
perCore_IPI_Set	0x1008	W	IPI_Set register of the current processor core
perCore_IPI_Clear	0x100c	W	IPI_Clear register of the current processor core
perCore_MailBox0	0x1020	RW	IPI_MailBox0 register of the current processor core
perCore_MailBox1	0x1028	RW	IPI_MailBox1 register of the current processor core
perCore_MailBox2	0x1030	RW	IPI_MailBox2 register of the current processor core
perCore_MailBox3	0x1038	RW	IPI_MailBox3 register of the current processor core

In order to send inter-core interrupt requests and MailBox communication to other cores, access is made through the following registers.

Table 10-7 Communication Register between Processor Cores

name	Offset address	Authority	description
IPI_Send	0x1040	WO	32-bit interrupt distribution register
			[31] Wait for completion flag, set to 1 to wait for interrupt to take effect
			[30:26] Reserved
			[25:16] processor core number
			[15: 5] reserved
			[4: 0] Interrupt vector number, corresponding to the vector in IPI_Status

Page 73

Loongson 3A4000 processor register user manual

Mail_Send	0x1048	WO	64-bit MailBox cache register				
			[63:32] MailBox data				
			[31] Wait for completion flag, when set to 1, it will wait for write to take effect				
			[30:26] Reserved				
			[25:16] processor core number				
			[15: 5] reserved				
			[4: 2] MailBox number				
			0-MailBox0 lower 32 bits				
			1-MailBox0 high 32 bits				
			2-MailBox1 lower 32 bits				
			3-MailBox1 high 32 bits				
			4-MailBox2 lower 32 bits				
			5-MailBox2 high 32 bits				
			6-MailBox3 lower 32 bits				
			7-MailBox4 high 32 bits				
			[1: 0] Reserved				
FREQ_Send	0x1058	WO	32-bit frequency enable register				
			[31] Wait for completion flag, when set to 1, it will wait for the setting to take effect				
			[30:26] Reserved				
			[25:16] processor core number				
			[15: 5] reserved				
			[4: 0] Write to the corresponding processor core private frequency configuration register.				
			CSR [0x1050]				
It should be rate	d that gings the Ma	il Condra-					
it should be note	It should be noted that since the Mail_Send register can only send 32-bit data at a time, when sending 64-bit data						

Must be split into two transmissions. Therefore, the target core needs to pass other software means while waiting for the content of Mail_Box

To ensure the integrity of the transmission. For example, after sending Mail_Box data, an inter-core interrupt indicates that it has been sent

to make.

53

Page 74

Loongson 3A4000 processor register user manual

The controller is compatible; the second is the newly added extended IO interrupt mode, which is used to support the interrupt cross-chip and dynamic distribution functions of the H The two interrupt methods are introduced below.

11.1 Traditional I / O interrupt

The traditional interrupt of Loongson 3A4000 chip supports 32 interrupt sources and is managed in a unified manner, as shown in Figure 7-1 below.

Any IO interrupt source can be configured to enable, trigger, and be routed to the target processor core interrupt

foot. Traditional interrupts do not support cross-chip distribution of interrupts, and can only interrupt processor cores within the same processor chip.

Figure 11-1 Loongson 3A4000 processor interrupt routing diagram

54

Page 75

Loongson 3A4000 processor register user manual

Interrupt related configuration registers are used to control the corresponding interrupt lines in the form of bits.

See the table below for sexual configuration.

The interrupt enable (Enable) configuration has three registers: Intenset, Intenclr and Inten. Intenset

Set the interrupt enable, and the interrupt corresponding to the write 1 bit in the Intenset register is enabled. Intenclr clears interrupt enable,

The interrupt corresponding to the bit written to 1 in the Intencir register is cleared. The Inten register reads the current status of each interrupt enable.

The edge-triggered interrupt signal is selected by the Intedge configuration register. Writing 1 means edge triggering, and writing 0 means power.

Flat trigger. The interrupt handler can clear the interrupt record through the corresponding bit of Intenclr.

Clear interrupt enable.

Table 11- 1 Interrupt Control Register

Bit field	Access properties / default						
	Intedge	Inten	Intenset	Intenclr	Interrupt source		
0	RW / 0	R / 0	RW / 0	RW / 0	GPIO24 / 16/8/0 / SC0		
1	RW / 0	R / 0	RW / 0	RW / 0	GPIO25 / 17/9/1 / SC1		

/2020			Loor	ngson 3A4000	processor	register user manual
	2	RW / 0	R / 0	RW / 0	RW / 0	GPIO26 / 18/10/2 / SC
						2
	3	RW / 0	R / 0	RW / 0	RW / 0	GPIO27 / 19/11/3 / SC
						3
	4	RW / 0	R / 0	RW / 0	RW / 0	GPIO28 / 20/12/4
	5	RW / 0	R / 0	RW / 0	RW / 0	GPIO29 / 21/13/5
	6	RW / 0	R / 0	RW / 0	RW / 0	GPIO30 / 22/14/6
	7	RW / 0	R / 0	RW / 0	RW / 0	GPIO31 / 23/15/7
	8	RW / 0	R / 0	RW / 0	RW / 0	I2C0
	9	RW / 0	R / 0	RW / 0	RW / 0	I2C1
	10	RW / 0	R / 0	RW / 0	RW / 0	UART0
	11	RW / 0	R / 0	RW / 0	RW / 0	MC0
	12	RW / 0	R / 0	RW / 0	RW / 0	MC1
	13	RW / 0	R / 0	RW / 0	RW / 0	SPI
	14	RW / 0	R / 0	RW / 0	RW / 0	Thsens
	15	RW / 0	R / 0	RW / 0	RW / 0	UART1
	23: 16	RW / 0	R / 0	RW / 0	RW / 0	HT0 [7: 0]
	31: 24	RW / 0	R / 0	RW / 0	RW / 0	HT1 [7:0]

Similar to the inter-core interrupt, the base address of the IO interrupt can also be accessed using 0x1 fe00000 or 0x3 ff00000,

It can also be accessed through special register configuration instructions of the processor core.

55

Page 76

4/29/

Loongson 3A4000 processor register user manual

11.1.1 Access by address

This access method is compatible with the access method of 3A3000 and other processors. The base address can be 0x1fe00000 or 0x3ff00000. The base address of 0x3ff00000 can be entered through the disable_0x3ff0 control bit in the routing configuration register Line is disabled

name	Offset address	description
Intisr	0x1420	32-bit interrupt status register
Inten	0x1424	32-bit interrupt enable status register
Intenset	0x1428	32-bit setting enable register
Intenclr	0x142c	32-bit clear enable register
Intedge	0x1434	32-bit trigger mode register
CORE0_INTISR	0x1440	32-bit interrupt status routed to CORE0
CORE1_INTISR	0x1448	32-bit interrupt status routed to CORE1
CORE2_INTISR	0x1450	32-bit interrupt status routed to CORE2
CORE3_INTISR	0x1458	32-bit interrupt status routed to CORE3

Four cores are integrated in Loongson 3A4000. The above 32-bit interrupt sources can be selected through software configuration.

The interrupted target processor core. Further, the interrupt source can be routed to any of the processor core interrupts INT0 to INT3

One is IP2 to IP5 corresponding to CP0_Status. Each of the 32 I / O interrupt sources corresponds to an 8-bit route

Controller, its format and address are shown in Table 11-3 and Table 11-4. The routing register is routed in a vector way

Select, such as 0x48 to route to INT2 of processor 3.

Table 11- 3 Interrupt Routing Register Description

Bit field

7:4 Routed processor core interrupt pin vector number

Table 11-4 Interrupt Routing Register Address

name	Offset address	description	name	Offset address	description
Entry0	0x1400	GPIO24 / 16/8/0	Entry16 0x	1410	HT0-int0
Entry1	0x1401	GPIO25 / 17/9/1	Entry17 0x	1411	HT0-int1
Entry2	0x1402	GPIO26 / 18/10/2	Entry18 0x	1412	HT0-int2
Entry3	0x1403	GPIO27 / 19/11/3	Entry19 0x	1413	HT0-int3

56

Page 77

Loongson 3A4000 processor register user manual

Entry4	0x1404	GPIO28 / 20/12/4	Entry20 0x1414	HT0-int4
Entry5	0x1405	GPIO29 / 21/13/5	Entry21 0x1415	HT0-int5
Entry6	0x1406	GPIO30 / 22/14/6	Entry22 0x1416	HT0-int6
Entry7	0x1407	GPIO31 / 23/15/7	Entry23 0x1417	HT0-int7
Entry8	0x1408	I2C0	Entry24 0x1418	HT1-int0
Entry9	0x1409	I2C1	Entry25 0x1419	HT1-int1
Entry10 0x140a		UART0	Entry26 0x141a	HT1-int2
Entry11	0x140b	MC0	Entry27 0x141b	HT1-int3
Entry12 0x140c		MC1	Entry28 0x141c	HT1-int4
Entry13 0x140d		SPI	Entry29 0x141d	HT1-int5
Entry14 0x140e		Thsens	Entry30 0x141e	HT1-int6
Entry15 0x140f		UART1	Entry31 0x141f	HT1-int7

11.1.2 Configuration register instruction access

In Godson 3A4000, the configuration register instruction can also be used to access configuration

Memory for access. The offset address used by the instruction is the same as that accessed by address. In addition, for the convenience of users

In use, a dedicated private interrupt status register is set for each core's different current interrupt status, as shown in the following table.

Table 11-5 F	rocessor core	nrivate i	interrunt	status register

name	Offset address	description
perCore_INTISR	0x1010	32-bit interrupt status routed to the current processor core

11.2 Extended I / O interrupt

In addition to being compatible with the original traditional IO interrupt method, 3A4000 began to support extended I / O interrupts, which were used to connect the HT bus The 256-bit interrupt is directly distributed to each processor core, instead of forwarding through the HT interrupt line, and the IO interrupt is improved Use flexibility.

Before the kernel uses the extended IO interrupt, it is necessary to enable the corresponding bit in the "other function setting register". The register The base address is 0x1fe00000 and the offset address is 0x0420.

Table 11-6 Other function setting registers

Page 78

Loongson 3A4000 processor register user manual

Bit field		Field name	access	Reset	value	description
48	EXT_INT_en		RW	0x0	Extende	d IO interrupt enable

In the extended IO interrupt mode, the HT interrupt can directly perform cross-chip forwarding and rotation distribution operations. Current version This can support up to 256 extended interrupt vectors.

11.2.1 Access by address

The following are the related extended IO interrupt registers. Like other configuration registers, the base address can be used 0x1fe00000 or 0x3ff00000 can also be accessed through the special register configuration instructions of the processor core.

Table 11-7 Extended IO interrupt enable register

name	Offset address	description
EXT_IOIen [63: 0]	0x1600	Extended IO interrupt [63: 0] interrupt enable configuration
EXT_IOIen [127: 64]	0x1608	Extended IO interrupt [127: 64] interrupt enable configuration
EXT_IOIen [191: 128]	0x1610	Extended IO interrupt [191: 128] interrupt enable configuration
EXT_IOIen [255: 192]	0x1618	Extended IO interrupt [255: 192] interrupt enable configuration

Table 11- 8 Extended IO interrupt auto-rotation enable register

name	Offset address	description
EXT_IOIbounce [63: 0]	0x1680	Automatic rotation enable configuration of extended IO interrupt [63: 0]
EXT_IOIbounce [127: 64]	0x1688	Automatic rotation enable configuration of extended IO interrupt [127: 64]
EXT_IOIbounce [191: 128]	0x1690	Automatic rotation enable configuration of extended IO interrupt [191: 128]
EXT_IOIbounce [255: 192]	0x1698	Automatic rotation enable configuration of extended IO interrupt [255: 192]

Table 11-9 Extended IO Interrupt Status Register

name	Offset address	description
EXT_IOIsr [63: 0]	0x1700	Interrupt status of extended IO interrupt [63: 0]
EXT_IOIsr [127: 64]	0x1708	Interrupt status of extended IO interrupt [127: 64]
EXT_IOIsr [191: 128]	0x1710	Interrupt status of extended IO interrupt [191: 128]
EXT_IOIsr [255: 192]	0x1718	Interrupt status of extended IO interrupt [255: 192]

Table 11-10 Extended IO interrupt status registers for each processor core

name

Offset address description

58

Page 79

Loongson 3A4000 processor register user manual

 CORE0_EXT_IOIsr [63: 0]
 0x1800
 Interrupt status of the extended IO interrupt [63: 0] routed to processor core 0

 CORE0_EXT_IOIsr [127: 64]
 0x1808
 Interrupt status of the extended IO interrupt [127: 64] routed to processor core 0

Loongson 3A4000 processor register user manual

	L	Jongson JA4000 processor register user manual
CORE0_EXT_IOIsr [191: 128]	0x1810	Interrupt status of the extended IO interrupt [191: 128] routed to processor core 0
CORE0_EXT_IOIsr [255: 192]	0x1818	Interrupt status of the extended IO interrupt [255: 192] routed to processor core 0
CORE1_EXT_IOIsr [63: 0]	0x1900	Interrupt status of the extended IO interrupt [63: 0] routed to processor core 1
CORE1_EXT_IOIsr [127: 64]	0x1908	Interrupt status routed to processor core 1's extended IO interrupt [127: 64]
CORE1_EXT_IOIsr [191: 128]	0x1910	Interrupt status routed to processor core 1's extended IO interrupt [191: 128]
CORE1_EXT_IOIsr [255: 192]	0x1918	Interrupt status of the extended IO interrupt [255: 192] routed to processor core 1
CORE2_EXT_IOIsr [63: 0]	0x1A00	Interrupt status of the extended IO interrupt [63: 0] routed to processor core 2
CORE2_EXT_IOIsr [127: 64]	0x1A08	Interrupt status routed to processor core 2's extended IO interrupt [127: 64]
CORE2_EXT_IOIsr [191: 128]	0x1A10	Interrupt status routed to processor core 2's extended IO interrupt [191: 128]
CORE2_EXT_IOIsr [255: 192]	0x1A18	Interrupt status routed to processor core 2's extended IO interrupt [255: 192]
CORE3_EXT_IOIsr [63: 0]	0x1B00	Interrupt status routed to processor core 3's extended IO interrupt [63: 0]
CORE3_EXT_IOIsr [127: 64]	0x1B08	Interrupt status of the extended IO interrupt [127: 64] routed to processor core 3
CORE3_EXT_IOIsr [191: 128]	0x1B10	Interrupt status routed to processor core 3's extended IO interrupt [191: 128]
CORE3_EXT_IOIsr [255: 192]	0x1B18	Interrupt status routed to processor core 3's extended IO interrupt [255: 192]

Similar to the traditional IO interrupt, the 256-bit interrupt source of the extended IO interrupt can also be selected by software configuration for the desired interrupt Target processor core.

However, the interrupt source cannot be individually routed to any one of the processor core interrupts INT0 to INT3, but instead The INT interrupt routing is performed in groups to interrupt the IP2 to IP5 corresponding to CP0_Status. The following is to match by group Set interrupt pin routing register.

Table 11- 11 Interrupt pin routing register description

Bit field	Explanation
3:0	Routed processor core interrupt pin vector number
7:4	Keep

Table 11- 12 Interrupt Routing Register Address

name	Offset address	description
EXT_IOImap0	0x14C0	EXT_IOI [31: 0] pin routing
EXT_IOImap1	0x14C1	EXT_IOI [63:32] pin routing
EXT_IOImap2	0x14C2	EXT_IOI [95:64] pin routing
EXT_IOImap3	0x14C3	EXT_IOI [127: 96] pin routing

59

Page 80

Loongson 3A4000 processor register user manual

EXT_IOImap4	0x14C4	EXT_IOI [159: 128] pin routing
EXT_IOImap5	0x14C5	EXT_IOI [191: 160] pin routing
EXT_IOImap6	0x14C6	EXT_IOI [223: 192] pin routing
EXT_IOImap7	0x14C7	EXT_IOI [255: 224] pin routing

Each interrupt source also corresponds to an 8-bit routing controller. Its format and address are shown in Table 11-13 and Table below.

11-14. Among them, [7: 4] is used to select the true node routing vector in Table 11-5. Routing register vector

Route selection, such as 0x48 to mark the route to the No. 3 processor core of the node pointed to by EXT_IOI_node_type4.

Table 11- 13 Interrupt target processor core routing register description

Bit field Explanation

3:0 Routed processor core vector number

7:4 Route node mapping method selection (such as the configuration method in Table 11-15)

It should be noted that when the round-robin distribution mode is used (the corresponding EXT_IOIbounce is 1), the

Rotate on the full mapping mode of the processor core number. The setting of EXT_IOIBounce should be after the related route mapping configuration.

When the fixed distribution mode is used (the corresponding EXT_IOIbounce is 0), only one bitmap node is allowed

Bit is 1, or all 0s, corresponding to local trigger.

Table 11- 14 Interrupt Target Processor Core Routing Register Address

name	Offset address	description
EXT_IOImap_Core0	0x1C00	EXT_IOI [0] processor core routing
EXT_IOImap_Core1	0x1C01	EXT_IOI [1] processor core routing
EXT_IOImap_Core2	0x1C02	EXT_IOI [2] processor core routing
EXT_IOImap_Core254	0x1CFE	EXT_IOI [254] processor core routing
EXT_IOImap_Core255	0x1CFF	EXT_IOI [255] processor core routing

Table 11-15 Interrupt target node mapping mode configuration

name	Offset address	description
EXT_IOI_node_type0	0x14A0	16 nodes mapping vector 0 (software configuration)
EXT_IOI_node_type1	0x14A2	16 nodes mapping vector 1 (software configuration)
EXT_IOI_node_type2	0x14A4	16 nodes mapping vector 2 (software configuration)
EXT_IOI_node_type15	0x14BE	16 nodes mapping vector 15 (software configuration)

60

Page 81

Loongson 3A4000 processor register user manual

11.2.2 Configuration register instruction access

When using the configuration register instructions of the processor core to access, the biggest difference is the interrupt status Register access becomes private access, each core only needs to send a query request to the same address to get The interrupted state of the core.

Table 11-16 Current processor core's extended IO interrupt status register

name	Offset address	description
perCore_EXT_IOIsr [63: 0]	0x1800	Interrupt status of the extended IO interrupt [63: 0] routed to the current processor core
perCore_EXT_IOIsr [127: 64]	0x1808	Interrupt status of the extended IO interrupt [127: 64] routed to the current processor core
perCore_EXT_IOIsr [191: 128] 0x18	10	Interrupt status of the extended IO interrupt [191: 128] routed to the current processor core
perCore_EXT_IOIsr [255: 192] 0x18	18	Interrupt status of the extended IO interrupt [255: 192] routed to the current processor core

11.2.3 Extended IO interrupt trigger register

In order to support the dynamic distribution of extended IO interrupts, an extended IO interrupt trigger register is added to the configuration register

It is used to set the corresponding IO interrupt. You can usually use this register to debug or test interrupts.

The description of this register is as follows:

Table 11- 17 Extended IO interrupt trigger register

	0.00 . 1.1	A 14 15 14 15 15 15	
name	Offset address	Authority description	

EXT_IOI_send	0x1140	wo	Extended IO interrupt setting register
			[7: 0] Interrupt vector set as desired

11.2.4 Differences between extended IO interrupt processing and traditional HT interrupt processing

In the traditional HT interrupt processing method, the HT interrupt is processed internally by the HT controller and directly mapped to the HT configuration register. 256 interrupt vectors in the memory, and then 4 or 8 interrupts are generated by grouping 256 interrupt vectors, and then routed to each The same processor core. Because the traditional interrupt line connection is used, the cross-chip interrupt cannot be directly generated, so all HT IO Interrupts can only be handled directly by a single chip. On the other hand, the interruption of hardware distribution on chip is only the final 4 One or eight interrupts are used as a unit and cannot be processed bit by bit, which leads to the problem that hardware interrupt distribution is not useful. Extended IO interrupt mode, HT interrupt is directly processed by the HT controller to the interrupt controller of the chip, and the interrupt control

The controller can directly get the 256-bit interrupt instead of the previous 4 or 8 interrupts. Each of these 256-bit interrupts can be independently

61

Page 82

Loongson 3A4000 processor register user manual

Independent routing, independent distribution, and can achieve cross-chip distribution and rotation.

After using the extended IO interrupt, the software processing is slightly different from using the traditional HT interrupt.

In traditional HT interrupt processing, the core directly goes to the interrupt vector of the HT controller (generally 0x90000efdfb000080)

Search on the computer, and then process it bit by bit, no matter how the routing mode is configured, it is directly read to the HT controller All interruptions.

After using the extended IO interrupt, the kernel directly reads the extended IO status register (configuration space 0x1800)

Processing in the off state, each core will only read and process its own interrupt state, and there will be no interference between different cores

Disturb

Page 83

Loongson 3A4000 processor register user manual

12 Temperature sensor

12.1 Real-time temperature sampling

Loongson 3A4000 internally integrates two temperature sensors, which can be performed through the sampling register starting at 0x1FE00198 Observation, at the same time, can use the flexible high and low temperature interrupt alarm or automatic frequency modulation function to control. Temperature sensor in The corresponding bits of the sampling register are as follows (base address is 0x1FE00000, offset address is 0x0198):

Temperature		

Bit field	Field name	access	Reset value	description
twenty fibhusens0	_overflow	R	Temper	rature sensor 0 overflow
25 Thsens1	_overflow	R	Temper	rature sensor 1 overflow
			Temper	ature sensor 0 Celsius
47:32 Thsens0 ou		R	Knot p	oint temperdegree= Thens0_out
47.32 Thsenso_ot	ut	K	* 731 /	0x4000-273
			Temper	rature range -40 degrees - 125 degrees
			Temper	ature sensor 1 Celsius
65:49 Theorem 1		R	Knot p	ooint temperdegnee= Thens1_out
65:48 Thsens1_ou	ut	ĸ	-* 731 /	0x4000-273
			Temper	ature range -40 degrees - 125 degrees

Through the setting of the control register, it is possible to achieve interruptions above the preset temperature, interruptions below the preset temperature and high temperature. Automatic frequency reduction function.

In addition, you can also use the newly added Celsius temperature register to directly read the current Celsius temperature. This register is the same

You can use 0x1FE00000 or 0x3FF00000 as the base address of the read operation to access, you can also use the configuration register

The instruction performs direct access and the offset address is 0x0428. The register is described as follows:

Table 12-2 Extended IO interrupt trigger register

Thsens_Temperature 0x0428	3	R	Temperature sensor Celsius
name	Offset address	Authority	description

12.2 High and low temperature interrupt trigger

For the high and low temperature interrupt alarm function, there are 4 groups of control registers to set their thresholds. Each set of register packets

Contains the following three control bits:

GATE: Set the threshold or high or low temperature. When the input temperature is higher than the high temperature threshold or lower than the low temperature threshold, i

63

EN: interrupt enable control. The setting of this group of registers is valid after being set to 1;

SEL: Input temperature selection. Currently 3A4000 integrates two temperature sensors, this register is used for configuration selection

The temperature of which sensor is used as input. You can use 0 or 1.

The high temperature interrupt control register contains 4 sets of setting bits for controlling high temperature interrupt trigger;

The device contains 4 sets of setting bits for controlling low temperature interrupt trigger. There is also a set of registers used to display the interrupt status, divided

Do not correspond to high temperature interrupt and low temperature interrupt, any write operation to this register will clear the interrupt status.

The specific description of these registers is as follows, and the base address is 0x1fe00000 or 0x3ff00000:

Table 12-3 High and low temperature interrupt register description

register	address	control	Explanation
			[7: 0]: Hi_gate0: high temperature threshold 0, an interrupt will be generated if this temperature is exceeded
			[8: 8]: Hi_en0: High temperature interrupt enable 0
			[11:10]: Hi_Sel0: Select the temperature sensor input source of high temperature interrupt
			[23:16]: Hi_gate1: high temperature threshold 1, exceeding this temperature will generate an interrupt
			[24:24]: Hi_en1: High temperature interrupt enable 1
			[27:26]: Hi_Sel1: Select the temperature sensor input source for high temperature interrupt 1
			[39:32]: Hi_gate2: High temperature threshold 2, above this temperature will generate an interrupt
			[40:40]: Hi_en2: High temperature interrupt enable 2
			[43:42]: Hi_Sel2: Select the temperature sensor input source for high temperature interrupt 2
			[55:48]: Hi_gate3: High temperature threshold 3, exceeding this temperature will generate interrupt
High temperature inter	rupt control register		[56:56]: Hi_en3: High temperature interrupt enable 3
Thsens_int_ctrl_Hi	0x1460	RW	[59:58]: Hi_Sel3: Select the temperature sensor input source for high temperature interrupt 3
			[7: 0]: Lo_gate0: low temperature threshold 0, below this temperature will generate an interrupt
			[8: 8]: Lo_en0: Low temperature interrupt enable 0
			[11:10]: Lo_Sel0: Select the temperature sensor input source for low temperature interrupt 0
			[23:16]: Lo_gate1: low temperature threshold 1, below this temperature will generate an interrupt
			[24:24]: Lo_en1: Low temperature interrupt enable 1
			[27:26]: Lo_Sel1: Select the temperature sensor input source for low temperature interrupt 1
			[39:32]: Lo_gate2: Low temperature threshold 2, below this temperature will generate an interrupt
			[40:40]: Lo_en2: Low temperature interrupt enable 2
			[43:42]: Lo_Sel2: Select the temperature sensor input source for low temperature interrupt 2
			[55:48]: Lo_gate3: Low temperature threshold 3, below this temperature will generate an interrupt
Low temperature inter-	rupt control register		[56:56]: Lo_en3: Low temperature interrupt enable 3
Thsens_int_ctrl_Lo	0x1468	RW	[59:58]: Lo_Sel3: Select temperature sensor input source for low temperature interrupt 3
			Interrupt status register, write any value to clear the interrupt
Interrupt status register	r		[0]: High temperature interrupt trigger
Thsens_int_status / clr	0x1470	RW	[1]: Low temperature interrupt trigger

64

Page 85

Loongson 3A4000 processor register user manual

12.3 High temperature automatic frequency reduction setting

In order to ensure the operation of the chip in a high-temperature environment, you can set the high-frequency automatic frequency reduction, so that the chip exceeds

In the range, it actively divides the clock to achieve the effect of reducing the chip turnover rate.

For the high temperature frequency reduction function, there are 4 sets of control registers to set its behavior. Each set of registers contains the following four

Control bit:

GATE: Set the threshold for high or low temperature. When the input temperature is higher than the high temperature threshold or lower than the low temperature threshold, i Frequency division operation;

EN: enable control. The setting of this group of registers is valid after being set to 1;

SEL: Input temperature selection. Currently, there are four temperature sensors integrated in the 3A4000. This register is used for configuration selection.

FREQ: frequency division number. When the frequency division operation is triggered, the preset FREQ is used to divide the clock. The frequency division mode is affected I

Control of freqscale_mode_node.

The base address is 0x1fe00000 or 0x3ff00000.

Table 12- 4 Description of the high-temperature down-frequen	cy control register
--	---------------------

	register	address	control	Explanation
				Four sets of setting priority from high to low
			[7: 0]: Scale_gate0: High temperature threshold 0, frequency will be reduced if this temperature is exceeded	
			[8: 8]: Scale_en0: High temperature frequency reduction enable 0	
			[11:10]: Scale_Sel0: Select the temperature sensor input source of high temperature down-conversion 0	
				[14:12]: Scale_freq0: frequency division value when frequency is reduced
				[23:16]: Scale_gate1: High temperature threshold 1, exceeding this temperature will reduce the frequency
				[24:24]: Scale_en1: High temperature frequency reduction enable 1
				[27:26]: Scale_Sel1: Select the temperature sensor input source for high temperature down-conversion 1
				[30:28]: Scale_freq1: frequency division value when frequency is reduced
				[39:32]: Scale_gate2: High temperature threshold value 2, if this temperature is exceeded, frequency will be reduced
				[40:40]: Scale_en2: High temperature frequency reduction enable 2
				[43:42]: Scale_Sel2: Select the temperature sensor input source for high temperature down-conversion 2
				[46:44]: Scale_freq2: frequency division value when frequency is reduced
			[55:48]: Scale_gate3: High temperature threshold 3, over this temperature will reduce the frequency	
			[56:56]: Scale_en3: High temperature frequency reduction enable 3	
	High temperature down frequency control register			[59:58]: Scale_Sel3: Select the temperature sensor input source for high temperature down-conversion 3
	Thsens_freq_scale	0x1480	RW	[62:60]: Scale_freq3: Frequency division value when frequency is reduced

65

Page 86

Loongson 3A4000 processor register user manual

			High bit of temperature sensor control register
			[7: 0] Scale_Hi_gate0 high 8 bits
			[15: 8] Scale_Hi_gate1 high 8 bits
			[23:16] Scale_Hi_gate2 high 8 bits
			[31:24] Scale_Hi_gate3 high 8 bits
			[39:32] Scale_Lo_gate0 high 8 bits
			[47:40] Scale_Lo_gate1 high 8 bits
			[55:48] Scale_Lo_gate2 high 8 bits
Thsens_freq_scale_up	0x1490	RW	[63:56] Scale_Lo_gate3 high 8 bits

12.4 Temperature state detection and control

The pins PROCHOTn and THERMTRIPn are used for temperature status detection and control. These two signals are respectively connected to GPIO14 and GPIO15 multiplexing. PROCHOTn can be used as both input and output, THERMTRIPn only has the output function.

When PROCHOTn is used as an input, the chip is controlled by an external temperature detection circuit, and the external temperature detection circuit needs to be reduced

You can set PROCHOTn to 0 when the chip temperature is reached. After the chip receives this low level, it will take frequency reduction measures and divide the frequency

The value is set by the register prochotn_freq_scale. When PROCHOTn is used as output, the chip can output high temperature interruption,

Select one of the four interrupts set in the high-temperature interrupt control register as the external through the prochotn_o_sel register

High temperature interruptions issued.

THERMTRIPn as the output, which is controlled by the chip from the high temperature interrupt control register through the thermotripn_o_sel register Select one of the 4 set interrupts as the external high temperature interrupt.

Although THERMTRIPn and PROCHOTn are externally interrupted by high temperature, THERMTRIPn is more urgent

PROCHOTn is higher. When PROCHOTn is set, the external temperature control circuit can also take certain measures, such as increasing the wind

Fan speed. When THERMTRIPn is set, the external power supply control circuit should directly take emergency power-off measures.

The specific control registers are as follows:

Table 12-5 Temperature status detection and control register description

register	address	control	Explanation
			[0: 0]: prochotn_oe PROCHOTn pin output enable control, 0 is output,
			1 is input
			[5: 4]: prochotn_o_sel PROCHOTn high temperature interrupt output selection
Temperature status detection and control			[10: 8]: prochotn_freq_scale: frequency division when PROCHOTn input is valid
Register			value
Thsens_hi_ctrl	0x1498	RW	$[17:16]: thermotripn_o_sel\ THERMTRIPn\ high\ temperature\ interrupt\ output\ selection$

66

Page 87

Loongson 3A4000 processor register user manual

12.5 Control of temperature sensors

There are 4 temperature sensors integrated in the 3A4000, and temperature / voltage monitoring can be adjusted through register configuration. It can also directly observe the output content of each temperature sensor for debugging. (Base address is 0x1FE00000, the offset address of the temperature sensor configuration register is $0x01580 + vtsensor_id << 4$, temperature sensor The offset address of the data register is $0x01588 + vtsensor_id << 4$)

Table 12- 6 Temperature sensor configuration register description

Bit field	Field name	access	Reset value	description
				Enable temperature sensor configuration, if set, can
				By thsens_mode and thsens_cluster
0	Thsens_trigger	RW	0	Select monitoring mode and monitoring point; 0 is silent
				Recognize the temperature monitoring mode, and the monitoring point by
				temp_cluster configuration.
2	Thsens_mode	RW	0	0: temperature mode; 1: voltage mode
				Monitoring frequency:
3	Thsens_datarate	RW	0	$0-10\sim 20 Hz$
		RW		$1-325\sim 650 Hz$
6: 4	Thsens cluster		0	Sensor monitoring point configuration: 0 is local monitoring
0.4	Tilsens_cluster			Point, $1 \sim 7$ is the remote monitoring point
				Enable temperature sensor output, replace
				Thsns0_out and CSR [0x198]
8	Temp_valid	RW	0	Thsens0_overflow is the temperature
				Sensor temperature monitoring value.
11:9	Temp cluster	RW	0	Temperature sensor output monitoring point selection,
11.9	remp_clusici		U	Thsens_trigger is invalid when enabled

Table 12-7 Temperature sensor data register description

Bit field		Field name	access		Reset value	description
3	Out mode		R	0		Sensor configuration monitoring mode
5	Out_mode		ĸ	0		0: temperature mode; 1: voltage mode
6:4	Out_cluster		R	0		Sensor configuration monitoring point
7	Overflow		R	0		Sensor monitoring value overflow
29:16 D	ata		R	0		Monitoring value read by sensor

67

Page 88

Loongson 3A4000 processor register user manual

Voltage = data * 1.226 / 0x1000

The configuration of the monitoring point is as follows

Table 12-8 Description of temperature sensor monitoring points

sensor	Cluster	Monitoring points	Sensor Cl	uster	Monitoring points
	0	Reserved		0	Reserved
	1	Core0 monitoring point 0		1	Core2 monitoring point 0
	2	Core0 monitoring point 1		2	Core2 monitoring point 1
0	3	Core0 monitoring point 2	2	3	Scache2
0	4	Core0 monitoring point 3		4	Mc1-phy monitoring point 0
	5	SCache0		5	Mc0-phy monitoring point 0
	6	HT0		6	Mc0-ctrl
	7		7	Reserved	
	0	Reserved		0	Reserved
	1	Core1 monitoring point 0		1	Core3 monitoring point 2
	2	Core1 monitoring point 1		2	Core3 monitoring point 3
1	3	Core1 monitoring point 2	3	3	Scache3
1	4	SCache1	3	4	Mc0-phy monitoring point 1
	5	L1X		5	Mc1-phy monitoring point 1
	6	HT1		6	Mc1-ctrl
	7	NOC-VERT		7	L2X

68

13 DDR3 / 4 SDRAM controller configuration

The design of the integrated memory controller inside Loongson 3A4000 processor complies with the DDR3 / 4 SDRAM industry standard (JESD79-3 and JESD79-4). In the Godson 3A4000 processor, all memory read / write operations implemented are observed The provisions of JESD79-3 and JESD79-4.

13.1 Overview of DDR3 / 4 SDRAM controller functions

Loongson 3A4000 processor supports DDP and 3DS packaging modes. DDP supports a maximum of 8 CS (by 8 DDR3 / DDR4 SDRAM chip select signal, that is, 4 double-sided memory modules Chip select signal implementation, that is, 32 logical RANK). A total of 22-bit address bus (ie: 18-bit row and column address bus, 2-bit logical bank bus and 2-bit logical bank group bus, in which the row and column address bus and RASn, CASn and Wen Reuse).

Loongson 3A4000 processor can adjust DDR3 / 4 controller parameters when choosing different memory chip types Set up for support. Among them, the maximum supported chip select (CS_n) is 8, the number of logical RANK (CHIP ID) is 8, and the line The number of addresses (ROW) is 18, the number of column addresses (COL) is 12, the number of logical body selection (BANK) is 2 (DDR4) or 3 (DDR3) The number of BANK groups is 2 (DDR4 only). Among them, the pins of DDR3 and DDR4 have multiplexing relationship, see The following table. Further multiplexing relationship CS n can be equipped with the Chip ID, refer to the specific 13 is <u>4</u> bar.

-			
PAD name	DDR3	DDR4	
DDR_ACTn	DDR_A15	DDR_ACTn	
DDR_RASn	DDR_RASn	DDR_RASn / DDR_A16	
DDR_CASn	DDR_CASn	DDR_CASn / DDR_A15	
DDR_WEn	DDR_WEn	DDR_WEn / DDR_A14	
DDR_BG [1]	DDR_A14	DDR_BG1	
DDR_BG [0]	DDR_BA [2]	DDR_BG0	

Table 13- 1 DDR3 / 4 Address Control Signal Multiplexing

The physical address of the memory request sent by the CPU can be mapped to many different addresses according to different configurations inside the controller Shoot.

The memory control circuit integrated in the Loongson 3A4000 processor only accepts memory reads from the processor or external devices.

Write request, in all memory read / write operations, the memory control circuit is in slave state.

The memory controller in Loongson 3A4000 processor has the following characteristics:

- Full pipeline operation of commands and read and write data on the interface;
- Memory commands are merged and sorted to improve overall bandwidth;

69

Page 90

Loongson 3A4000 processor register user manual

- The configuration register read-write port can modify the basic parameters of the memory device;
- Built-in dynamic delay compensation circuit (DCC) for reliable data transmission and reception
- ECC function can detect 1-bit and 2-bit errors on the data path, and can detect 1-bit errors

Carry out automatic error correction;

- Support DDR3 / 4 SDRAM, and parameter configuration support x4, x8, x16 particles;
- Controller and PHY frequency ratio 1/2;
- Support data transmission rate range of 800Mbps-3200Mbps.

13.2 DDR3 / 4 SDRAM read operation protocol

The protocol of DDR3 SDRAM read operation is shown in Figure 13-1. In the figure, the command (Command, abbreviated as CMD) is composed of CAS_n and WE_n are composed of 3 signals. For read operations, $RAS_n = 1$, $CAS_n = 0$, $WE_n = 1$.

Figure 13- 1 DDR3 SDRAM read operation protocol

In the figure above, Cas Latency (CL) = 5, Read Latency (RL) = 5, Burst Length = 8.

The DDR4 SDRAM read operation protocol is similar. In the figure, the command CMD is composed of 4 ACT_n, RAS_n, CAS_n and WE_n

Signal composition. For read operations, $ACT_n = 1$, $RAS_n = 1$, $CAS_n = 0$, $WE_n = 1$.

13.3 DDR3 / 4 SDRAM write operation protocol

The protocol of DDR3 SDRAM write operation is shown in Figure 13-2. In the figure, the command CMD consists of RAS_n, CAS_n and WE_n It consists of 3 signals. For write operations, RAS_n = 1, CAS_n = 0, WE_n = 0. In addition, unlike read operations, write operations

DQM can be used to identify the data mask of the write operation, that is, the number of bytes to be written. DQM is synchronized with the DQS signal in the figure.

Page 91

Loongson 3A4000 processor register user manual

Figure 13- 2 DDR3 SDRAM write operation protocol

In the figure above, Cas Latency (CL) = 5, Wead Latency (WL) = 5, Burst Length = 8.

The DDR4 SDRAM write operation protocol is similar. In the figure, the command CMD is composed of 4 ACT_n, RAS_n, CAS_n and WE_n

Signal composition. For read operations, $ACT_n = 1$, $RAS_n = 1$, $CAS_n = 0$, $WE_n = 0$.

13.4 DDR3 / 4 SDRAM parameter configuration format

13.4.1 Parameter list of the memory controller

Table 13- 2 List of visible parameters of the memory controller software

Offset	63:55	55:48	47:40	39:32	31:24	23:16	15:8	7:0
--------	-------	-------	-------	-------	-------	-------	------	-----

4/29/2020			Loongson 3	A4000 processo	or register us	er manual	
0x0008 0x0010		x4_mode	ddr3_mode			capability (RD) dram_init (RD)	init_start
0x0018							
0x0020						preamble2	rdfifo_valid
0x0028	rdfifo_empty (R	D)			Overflow (RD)		
0x0030	dll_value (RD)	dll_init_done (RD)) dll_lock_mode	dll_bypass	dll_adjj_cnt	dll_increment	dll_start_point
0x0038			dll_dbl_fix			$dll_close_disable$	dll_ck
0x0040			dbl_ctrl_ckca				dll_dbl_ckca
0x0048 pll_ctrl_o	kca			pll_lock_ckca (RD)	dll_lock_ckca (RD)	clken_ckca	clksel_ckca
0x0050			dbl_ctrl_ds_0				dll_dbl_ds_0
0x0058 pll_ctrl_	ls_0			pll_lock_ds_0 (RD)	$dll_lock_ds_0~(RD)$	clken_ds_0	clksel_ds_0
0x0060			dbl_ctrl_ds_1				dll_dbl_ds_1
0x0068 pll_ctrl_	ls_1			pll_lock_ds_1 (RD)	$dll_lock_ds_1 \ (RD)$	clken_ds_1	clksel_ds_1
0x0070			dbl_ctrl_ds_2				dll_dbl_ds_2
0x0078 pll_ctrl_	ls_2			pll_lock_ds_2 (RD)	$dll_lock_ds_2~(RD)$	clken_ds_2	clksel_ds_2
0x0080			dbl_ctrl_ds_3				dll_dbl_ds_3

71

Page 92

0x0088	pll_ctrl_ds_3				$pll_lock_ds_3~(RD)$	$dll_lock_ds_3~(RD)$	clken_ds_3	clksel_ds_3
0x0090				dbl_ctrl_ds_4				dll_dbl_ds_4
0x0098	pll_ctrl_ds_4				$pll_lock_ds_4~(RD)$	$dll_lock_ds_4~(RD)$	clken_ds_4	clksel_ds_4
0x00a0				dbl_ctrl_ds_5				dll_dbl_ds_5
0x00a8	pll_ctrl_ds_5				$pll_lock_ds_5~(RD)$	$dll_lock_ds_5~(RD)$	clken_ds_5	clksel_ds_5
0x00b0				dbl_ctrl_ds_6				dll_dbl_ds_6
0x00b8	pll_ctrl_ds_6				$pll_lock_ds_6~(RD)$	$dll_lock_ds_6~(RD)$	clken_ds_6	clksel_ds_6
0x00c0				dbl_ctrl_ds_7				dll_dbl_ds_7
0x00c8	pll_ctrl_ds_7				$pll_lock_ds_7(RD)$	$dll_lock_ds_7~(RD)$	clken_ds_7	clksel_ds_7
0x00d0				dbl_ctrl_ds_8				dll_dbl_ds_8
0x00d8	pll_ctrl_ds_8				$pll_lock_ds_8~(RD)$	$dll_lock_ds_8~(RD)$	clken_ds_8	clksel_ds_8
0x00e0			vrefclk_inv	vref_sample		vref_num	vref_dly	dll_vref
0x0100					dll_1xdly_0	dll_1xgen_0	dll_wrdqs_0	dll_wrdq_0
0x0108						dll_gate_0	dll_rddqs1_0	dll_rddqs0_0
0x0110	rdodt_ctrl_0	rdgate_len_0	rdgate_mode_0	rdgate_ctrl_0			dqs_oe_ctrl_0	dq_oe_ctrl_0
0x0118						dly_2x_0	redge_sel_0	rddqs_phase_0 (RD)
0x0120	w_bdly0_0 [31:28]	w_bdly0_0 [27:24]	w_bdly0_0 [23:20]	w_bdly0_0 [19:16]	w_bdly0_0 [15:12]	w_bdly0_0 [11: 8]	w_bdly0_0 [7: 4]	w_bdly0_0 [3: 0]
0x0128		w_bdly0_0 [59:56]	w_bdly0_0 [55:52]	w_bdly0_0 [51:48]	w_bdly0_0 [47:44]	w_bdly0_0 [43:40]	w_bdly0_0 [39:36]	w_bdly0_0 [35:32]
0x0130	w_bdly1_0 [24:21]	w_bdly1_0 [20:18]	w_bdly1_0 [17:15]	w_bdly1_0 [14:12]	w_bdly1_0 [11: 9]	w_bdly1_0 [8: 6]	w_bdly1_0 [5: 3]	w_bdly1_0 [2: 0]
0x0138								w_bdly1_0 [27:26]
0x0140							rg_bdly_0 [7: 4]	rg_bdly_0 [3: 0]
0x0148								
0x0150	rdqsp_bdly_0 [31:28]]rdqsp_bdly_0 [27: twenty four]	rdqsp_bdly_0 [23: 20]	rdqsp_bdly_0 [19:16]	rdqsp_bdly_0 [15:12]] rdqsp_bdly_0 [11: 8]	rdqsp_bdly_0 [7: 4]rdqsp_bdly_0 [3: 0]
0x0158								rdqsp_bdly_0 [35:32]
0x0160	rdqsn_bdly_0 [31:28]]rdqsn_bdly_0 [27: twenty four]	rdqsn_bdly_0 [23: 20]	rdqsn_bdly_0 [19:16]	rdqsn_bdly_0 [15:12] rdqsn_bdly_0 [11: 8]	rdqsn_bdly_0 [7: 4]rdqsn_bdly_0 [3: 0]
0x0168								rdqsn_bdly_0 [35:32]
0x0170	rdq_bdly_0 [24:21]	rdq_bdly_0 [20:18]] rdq_bdly_0 [17:15]]rdq_bdly_0 [14:12]	rdq_bdly_0 [11: 9]	rdq_bdly_0 [8: 6]	rdq_bdly_0 [5: 3]	rdq_bdly_0 [2: 0]
0x0178								rdq_bdly_0 [27:26]
0x0180					dll_1xdly_1	dll_1xgen_1	dll_wrdqs_1	dll_wrdq_1
0x0188						dll_gate_1	dll_rddqs1_1	dll_rddqs0_1
0x0190	rdodt_ctrl_1	rdgate_len_1	rdgate_mode_1	rdgate_ctrl_1			dqs_oe_ctrl_1	dq_oe_ctrl_1
0x0198						dly_2x_1	redge_sel_1	rddqs_phase_1 (RD)
0x01a0	w_bdly0_1 [31:28]	w_bdly0_1 [27:24]	w_bdly0_1 [23:20]	w_bdly0_1 [19:16]	w_bdly0_1 [15:12]	w_bdly0_1 [11: 8]	w_bdly0_1 [7: 4]	w_bdly0_1 [3: 0]
0x01a8		w_bdly0_1 [59:56]	w_bdly0_1 [55:52]	w_bdly0_1 [51:48]	w_bdly0_1 [47:44]	w_bdly0_1 [43:40]	w_bdly0_1 [39:36]	w_bdly0_1 [35:32]

```
4/29/2020
```

0x01b0 0x01b8	w_bdly1_1 [24:21]	w_bdly1_1 [20:18] w_bdly1_1 [17:15] w_bdly1_1 [14:12]	w_bdly1_1 [11: 9]	w_bdly1_1 [8: 6]	w_bdly1_1 [5: 3]	w_bdly1_1 [2: 0] w_bdly1_1 [27:26]
0x01c0					rg_bdly_1 [7: 4]	rg_bdly_1 [3: 0]

72

Page 93

Loongson 3A4000 processor register user manual

0x01c8								
0x01d0	rdasp bdly 1 [31:28	Irdasp bdly 1 [27·	rdasp bdly 1 [23·	rdqsp_bdly_1 [19:16]	rdasp bdly 1 [15:12]rdasp bdlv 1 [11:8]	l rdasp bdly 1 [7·4	Irdasp bdly 1 [3:0]
		twenty four]	20]].e4eb_eee) [[1.adob7.a.27.fo.o1
0x01d8			1					rdqsp_bdly_1 [35:32]
0x01e0	rdasn bdly 1 [31:28	Irdasn bdly 1[27·	rdasn bdly 1 [23·	rdqsn_bdly_1 [19:16]	rdasn bdly 1 [15:12]rdasn bdlv 1[11:8]	l rdasn bdlv 1[7·4	
		twenty four]	20]]	[1. ador-0 and - (a. a)
0x01e8		<i>.</i>						rdqsn_bdly_1 [35:32]
0x01f0	rdq_bdly_1 [24:21]	rda bdlv 1 [20:18]rda bdlv 1[17:15]rda bdlv 1 [14:12]	rdq bdly 1 [11:9]	rdq bdly 1 [8:6]	rdq_bdly_1 [5: 3]	
0x01f8			1 <u></u>	1.47.497.6.4.1			<u>-</u>	rdq_bdly_1 [27:26]
0x0200					dll_1xdly_2	dll_1xgen_2	dll_wrdqs_2	dll_wrdq_2
0x0208						dll_gate_2	dll_rddqs1_2	dll_rddqs0_2
0x0210	rdodt_ctrl_2	rdgate_len_2	rdgate_mode_2	rdgate_ctrl_2			dqs_oe_ctrl_2	dq_oe_ctrl_2
0x0218						dly_2x_2	redge_sel_2	rddqs_phase_2 (RD)
0x0220	w bdly0 2 [31:28]	w bdly0 2 [27:24]] w bdly0 2 [23:20]] w bdly0 2 [19:16]	w bdly0 2 [15:12]	w bdly0 2 [11:8]	w bdly0 2 [7: 4]	w bdly0 2 [3: 0]
0x0228		w_bdly0_2 [59:56]] w_bdly0_2 [55:52] w_bdly0_2 [51:48]	w_bdly0_2 [47:44]	w_bdly0_2 [43:40]	w_bdly0_2 [39:36]] w_bdly0_2 [35:32]
0x0230	w_bdly1_2 [24:21]	w_bdly1_2 [20:18]] w_bdly1_2 [17:15] w_bdly1_2 [14:12]	w_bdly1_2 [11: 9]	w_bdly1_2 [8: 6]	w_bdly1_2 [5: 3]	w_bdly1_2 [2: 0]
0x0238								w_bdly1_2 [27:26]
0x0240							rg_bdly_2 [7: 4]	rg_bdly_2 [3: 0]
0x0248								
0x0250	rdqsp_bdly_2 [31:28]rdqsp_bdly_2 [27:	rdqsp_bdly_2 [23:	rdqsp_bdly_2 [19:16]	rdqsp_bdly_2 [15:12] rdqsp_bdly_2 [11: 8]	rdqsp_bdly_2 [7: 4]rdqsp_bdly_2 [3: 0]
		twenty four]	20]					
0x0258								rdqsp_bdly_2 [35:32]
0x0260	rdqsn_bdly_2 [31:28]rdqsn_bdly_2 [27:	rdqsn_bdly_2 [23:	rdqsn_bdly_2 [19:16]	rdqsn_bdly_2 [15:12] rdqsn_bdly_2 [11: 8]	rdqsn_bdly_2 [7: 4]rdqsn_bdly_2 [3: 0]
		twenty four]	20]					
0x0268								rdqsn_bdly_2 [35:32]
0x0270	rdq_bdly_2 [24:21]	rdq_bdly_2 [20:18] rdq_bdly_2 [17:15]rdq_bdly_2 [14:12]	rdq_bdly_2 [11: 9]	rdq_bdly_2 [8: 6]	rdq_bdly_2 [5: 3]	rdq_bdly_2 [2: 0]
0x0278								rdq_bdly_2 [27:26]
0x0280					dll_1xdly_3	dll_1xgen_3	dll_wrdqs_3	dll_wrdq_3
0x0288						dll_gate_3	dll_rddqs1_3	dll_rddqs0_3
0x0290	rdodt_ctrl_3	rdgate_len_3	rdgate_mode_3	rdgate_ctrl_3			dqs_oe_ctrl_3	dq_oe_ctrl_3
0x0298						dly_2x_3	redge_sel_3	rddqs_phase_3 (RD)
0x02a0	w_bdly0_3 [31:28]	w_bdly0_3 [27:24]] w_bdly0_3 [23:20]] w_bdly0_3 [19:16]	w_bdly0_3 [15:12]	w_bdly0_3 [11: 8]	w_bdly0_3 [7: 4]	w_bdly0_3 [3: 0]
0x02a8		w_bdly0_3 [59:56]] w_bdly0_3 [55:52] w_bdly0_3 [51:48]	w_bdly0_3 [47:44]	w_bdly0_3 [43:40]	w_bdly0_3 [39:36]] w_bdly0_3 [35:32]
0x02b0	w_bdly1_3 [24:21]	w_bdly1_3 [20:18]] w_bdly1_3 [17:15] w_bdly1_3 [14:12]	w_bdly1_3 [11: 9]	w_bdly1_3 [8: 6]	w_bdly1_3 [5: 3]	w_bdly1_3 [2: 0]
0x02b8								w_bdly1_3 [27:26]
0x02c0							rg_bdly_3 [7: 4]	rg_bdly_3 [3: 0]
0x02c8								
0x02d0	rdqsp_bdly_3 [31:28]rdqsp_bdly_3 [27:	rdqsp_bdly_3 [23:	rdqsp_bdly_3 [19:16]	rdqsp_bdly_3 [15:12] rdqsp_bdly_3 [11: 8]	rdqsp_bdly_3 [7: 4]rdqsp_bdly_3 [3: 0]
		twenty four]	20]					
0x02d8								rdqsp_bdly_3 [35:32]

73

0x02e0	rdqsn_bdly_3 [31:28	3]rdqsn_bdly_3 [27: twenty four]	rdqsn_bdly_3 [23: rdqsn_bdly_3 [19:16] 20]	rdqsn_bdly_3 [15:12] rdqsn_bdly_3 [11: 8]	rdqsn_bdly_3 [7: 4	l]rdqsn_bdly_3 [3: 0]
0x02e8							rdqsn_bdly_3 [35:32]
0x02f0	rdq_bdly_3 [24:21]	rdq_bdly_3 [20:18	3] rdq_bdly_3 [17:15] rdq_bdly_3 [14:12]	rdq_bdly_3 [11: 9]	rdq_bdly_3 [8: 6]	rdq_bdly_3 [5: 3]	rdq_bdly_3 [2: 0]
0x02f8							rdq_bdly_3 [27:26]
0x0300				dll_1xdly_4	dll_1xgen_4	dll_wrdqs_4	dll_wrdq_4
0x0308					dll_gate_4	dll_rddqs1_4	dll_rddqs0_4
0x0310	rdodt_ctrl_4	rdgate_len_4	rdgate_mode_4 rdgate_ctrl_4			dqs_oe_ctrl_4	dq_oe_ctrl_4
0x0318					dly_2x_4	redge_sel_4	rddqs_phase_4 (RD)
0x0320	w_bdly0_4 [31:28]	w_bdly0_4 [27:24]] w_bdly0_4 [23:20] w_bdly0_4 [19:16]	w_bdly0_4 [15:12]	w_bdly0_4 [11: 8]	w_bdly0_4 [7: 4]	w_bdly0_4 [3: 0]
0x0328		w_bdly0_4 [59:56]] w_bdly0_4 [55:52] w_bdly0_4 [51:48]	w_bdly0_4 [47:44]	w_bdly0_4 [43:40]	w_bdly0_4 [39:36] w_bdly0_4 [35:32]
0x0330	w_bdly1_4 [24:21]	w_bdly1_4 [20:18]] w_bdly1_4 [17:15] w_bdly1_4 [14:12]	w_bdly1_4 [11: 9]	w_bdly1_4 [8: 6]	w_bdly1_4 [5: 3]	w_bdly1_4 [2: 0]
0x0338							w_bdly1_4 [27:26]
0x0340						rg_bdly_4 [7: 4]	rg_bdly_4 [3: 0]
0x0348							
0x0350	rdqsp_bdly_4 [31:28] rdqsp_bdly_4 [27: twenty four]	rdqsp_bdly_4 [23: rdqsp_bdly_4 [19:16] 20]	rdqsp_bdly_4 [15:12] rdqsp_bdly_4 [11: 8]	rdqsp_bdly_4 [7: 4	l]rdqsp_bdly_4 [3: 0]
0x0358							rdqsp_bdly_4 [35:32]
0x0360	rdqsn_bdly_4 [31:28] rdqsn_bdly_4 [27: twenty four]	rdqsn_bdly_4 [23: rdqsn_bdly_4 [19:16] 20]	rdqsn_bdly_4 [15:12] rdqsn_bdly_4 [11: 8]	rdqsn_bdly_4 [7: 4	l]rdqsn_bdly_4 [3: 0]
0x0368							rdqsn_bdly_4 [35:32]
0x0368 0x0370	rdq_bdly_4 [24:21]	rdq_bdly_4 [20:18	;] rdq_bdly_4 [17:15] rdq_bdly_4 [14:12]	rdq_bdly_4 [11: 9]	rdq_bdly_4 [8: 6]	rdq_bdly_4 [5: 3]	
	rdq_bdly_4 [24:21]	rdq_bdly_4 [20:18	3] rdq_bdly_4 [17:15] rdq_bdly_4 [14:12]	rdq_bdly_4 [11: 9]	rdq_bdly_4 [8: 6]	rdq_bdly_4 [5: 3]	
0x0370	rdq_bdly_4 [24:21]	rdq_bdly_4 [20:18	;] rdq_bdly_4 [17:15] rdq_bdly_4 [14:12]	rdq_bdly_4 [11: 9] dll_1xdly_5	rdq_bdly_4 [8: 6] dll_1xgen_5	rdq_bdly_4 [5: 3] dll_wrdqs_5	rdq_bdly_4 [2: 0]
0x0370 0x0378	rdq_bdly_4 [24:21]	rdq_bdly_4 [20:18	;] rdq_bdly_4 [17:15] rdq_bdly_4 [14:12]				rdq_bdly_4 [2: 0] rdq_bdly_4 [27:26]
0x0370 0x0378 0x0380	rdq_bdly_4 [24:21] rdodt_ctrl_5	rdq_bdly_4 [20:18 rdgate_len_5	i] rdq_bdiy_4 [17:15] rdq_bdiy_4 [14:12] rdgate_mode_5 rdgate_ctrl_5		dll_1xgen_5	dll_wrdqs_5	rdq_bdly_4 [2: 0] rdq_bdly_4 [27:26] dll_wrdq_5
0x0370 0x0378 0x0380 0x0388					dll_1xgen_5	dll_wrdqs_5 dll_rddqs1_5	rdq_bdly_4 [2: 0] rdq_bdly_4 [27:26] dll_wrdq_5 dll_rddqs0_5
0x0370 0x0378 0x0380 0x0388 0x0390		rdgate_len_5			dll_1xgen_5 dll_gate_5	dll_wrdqs_5 dll_rddqs1_5 dqs_oe_ctrl_5	rdq_bdly_4 [2: 0] rdq_bdly_4 [27:26] dll_wrdq_5 dll_rddqs0_5 dq_oe_ctrl_5 rddqs_phase_5 (RD)
0x0370 0x0378 0x0380 0x0388 0x0390 0x0398	rdodt_ctrl_5	rdgate_len_5 w_bdly0_5 [27:24	rdgate_mode_5 rdgate_ctrl_5	dll_1xdly_5	dll_1xgen_5 dll_gate_5 dly_2x_5	dll_wrdqs_5 dll_rddqs1_5 dqs_oe_ctrl_5 redge_sel_5 w_bdly0_5 [7: 4]	rdq_bdly_4 [2: 0] rdq_bdly_4 [27:26] dll_wrdq_5 dll_rddqs0_5 dq_oe_ctrl_5 rddqs_phase_5 (RD)
0x0370 0x0378 0x0380 0x0388 0x0390 0x0398 0x03a0	rdodt_ctrl_5 w_bdly0_5 [31:28]	rdgate_len_5 w_bdly0_5 [27:24 w_bdly0_5 [59:56	rdgate_mode_5 rdgate_ctrl_5] w_bdly0_5 [23:20] w_bdly0_5 [19:16]	dll_1xdly_5 w_bdly0_5 [15:12]	dll_1xgen_5 dll_gate_5 dly_2x_5 w_bdly0_5 [11: 8]	dll_wrdqs_5 dll_rddqs1_5 dqs_oe_ctrl_5 redge_sel_5 w_bdly0_5 [7: 4]	rdq_bdly_4 [2: 0] rdq_bdly_4 [27:26] dll_wrdq_5 dll_rddqs0_5 dq_oe_ctrl_5 rddqs_phase_5 (RD) w_bdly0_5 [3: 0]]w_bdly0_5 [35:32]
0x0370 0x0378 0x0380 0x0388 0x0390 0x0398 0x03a0 0x03a8	rdodt_ctrl_5 w_bdly0_5 [31:28]	rdgate_len_5 w_bdly0_5 [27:24 w_bdly0_5 [59:56	rdgate_mode_5 rdgate_ctrl_5] w_bdly0_5 [23:20] w_bdly0_5 [19:16]] w_bdly0_5 [55:52] w_bdly0_5 [51:48]	dll_1xdly_5 w_bdly0_5 [15:12] w_bdly0_5 [47:44]	dll_1xgen_5 dll_gate_5 dly_2x_5 w_bdly0_5 [11: 8] w_bdly0_5 [43:40]	dll_wrdqs_5 dll_rddqs1_5 dqs_oe_ctrl_5 redge_sel_5 w_bdly0_5 [7: 4] w_bdly0_5 [39:36	rdq_bdly_4 [2: 0] rdq_bdly_4 [27:26] dll_wrdq_5 dll_rddqs0_5 dq_oe_ctrl_5 rddqs_phase_5 (RD) w_bdly0_5 [3: 0]]w_bdly0_5 [35:32]
0x0370 0x0378 0x0380 0x0388 0x0390 0x0398 0x03a0 0x03a8 0x03b0	rdodt_ctrl_5 w_bdly0_5 [31:28]	rdgate_len_5 w_bdly0_5 [27:24 w_bdly0_5 [59:56	rdgate_mode_5 rdgate_ctrl_5] w_bdly0_5 [23:20] w_bdly0_5 [19:16]] w_bdly0_5 [55:52] w_bdly0_5 [51:48]	dll_1xdly_5 w_bdly0_5 [15:12] w_bdly0_5 [47:44]	dll_1xgen_5 dll_gate_5 dly_2x_5 w_bdly0_5 [11: 8] w_bdly0_5 [43:40]	dll_wrdqs_5 dll_rddqs1_5 dqs_oe_ctrl_5 redge_sel_5 w_bdly0_5 [7: 4] w_bdly0_5 [39:36	rdq_bdly_4 [2: 0] rdq_bdly_4 [27:26] dll_wrdq_5 dll_rddqs0_5 dq_oe_ctrl_5 rddqs_phase_5 (RD) w_bdly0_5 [3: 0]]w_bdly0_5 [35:32] w_bdly1_5 [2: 0]
0x0370 0x0378 0x0380 0x0390 0x0390 0x0398 0x03a0 0x03a8 0x03b0 0x03b0	rdodt_ctrl_5 w_bdly0_5 [31:28]	rdgate_len_5 w_bdly0_5 [27:24 w_bdly0_5 [59:56	rdgate_mode_5 rdgate_ctrl_5] w_bdly0_5 [23:20] w_bdly0_5 [19:16]] w_bdly0_5 [55:52] w_bdly0_5 [51:48]	dll_1xdly_5 w_bdly0_5 [15:12] w_bdly0_5 [47:44]	dll_1xgen_5 dll_gate_5 dly_2x_5 w_bdly0_5 [11: 8] w_bdly0_5 [43:40]	dll_wrdqs_5 dll_rddqs1_5 dqs_oe_ctrl_5 redge_sel_5 w_bdly0_5 [7: 4] w_bdly0_5 [39:36 w_bdly1_5 [5: 3]	rdq_bdly_4 [2: 0] rdq_bdly_4 [27:26] dll_wrdq_5 dll_rddqs0_5 dq_oe_ctrl_5 rddqs_phase_5 (RD) w_bdly0_5 [3: 0]]w_bdly0_5 [35:32] w_bdly1_5 [2: 0] w_bdly1_5 [27:26]
0x0370 0x0378 0x0380 0x0390 0x0390 0x0398 0x0300 0x03a8 0x03b0 0x03b8 0x03b8	rdodt_ctrl_5 w_bdly0_5 [31:28] w_bdly1_5 [24:21]	rdgate_len_5 w_bdly0_5 [27:24 w_bdly0_5 [59:56] w_bdly1_5 [20:18]	rdgate_mode_5 rdgate_ctrl_5] w_bdly0_5 [23:20] w_bdly0_5 [19:16]] w_bdly0_5 [55:52] w_bdly0_5 [51:48]	dll_1xdly_5 w_bdly0_5 [15:12] w_bdly0_5 [47:44] w_bdly1_5 [11: 9]	dll_1xgen_5 dll_gate_5 dly_2x_5 w_bdly0_5 [11: 8] w_bdly0_5 [43:40] w_bdly1_5 [8: 6]	dll_wrdqs_5 dll_rddqs1_5 dqs_oe_ctrl_5 redge_sel_5 w_bdly0_5 [7: 4] w_bdly1_5 [5: 3] rg_bdly_5 [7: 4]	rdq_bdly_4 [2: 0] rdq_bdly_4 [27:26] dll_wrdq_5 dll_rddqs0_5 dq_oe_ctrl_5 rddqs_phase_5 (RD) w_bdly0_5 [3: 0] w_bdly0_5 [35:32] w_bdly1_5 [27:26] rg_bdly_5 [3: 0]
0x0370 0x0378 0x0380 0x0388 0x0390 0x0398 0x03a0 0x03a8 0x03b0 0x03b8 0x03c0 0x03c8	rdodt_ctrl_5 w_bdly0_5 [31:28] w_bdly1_5 [24:21]	rdgate_len_5 w_bdly0_5 [27:24 w_bdly0_5 [59:56 w_bdly1_5 [20:18, }	rdgate_mode_5 rdgate_ctrl_5] w_bdly0_5 [23:20] w_bdly0_5 [19:16]] w_bdly0_5 [55:52] w_bdly0_5 [51:48]] w_bdly1_5 [17:15] w_bdly1_5 [14:12] rdqsp_bdly_5 [23: rdqsp_bdly_5 [19:16]	dll_1xdly_5 w_bdly0_5 [15:12] w_bdly0_5 [47:44] w_bdly1_5 [11: 9]	dll_1xgen_5 dll_gate_5 dly_2x_5 w_bdly0_5 [11: 8] w_bdly0_5 [43:40] w_bdly1_5 [8: 6]	dll_wrdqs_5 dll_rddqs1_5 dqs_oe_ctrl_5 redge_sel_5 w_bdly0_5 [7: 4] w_bdly1_5 [5: 3] rg_bdly_5 [7: 4]	rdq_bdly_4 [2: 0] rdq_bdly_4 [27:26] dll_wrdq_5 dll_rddqs0_5 dq_oe_ctrl_5 rddqs_phase_5 (RD) w_bdly0_5 [3: 0] w_bdly0_5 [35:32] w_bdly1_5 [27:26] rg_bdly_5 [3: 0]
0x0370 0x0378 0x0380 0x0388 0x0390 0x0398 0x03a0 0x03a8 0x03b0 0x03b8 0x03c0 0x03c8 0x03c0	rdodt_ctrl_5 w_bdly0_5 [31:28] w_bdly1_5 [24:21] rdqsp_bdly_5 [31:28	rdgate_len_5 w_bdly0_5 [27:24, w_bdly0_5 [59:56 w_bdly1_5 [20:18 8]rdqsp_bdly_5 [27: twenty four]	rdgate_mode_5 rdgate_ctrl_5] w_bdly0_5 [23:20] w_bdly0_5 [19:16]] w_bdly0_5 [55:52] w_bdly0_5 [51:48]] w_bdly1_5 [17:15] w_bdly1_5 [14:12] rdqsp_bdly_5 [23: rdqsp_bdly_5 [19:16]	dll_1xdly_5 w_bdly0_5 [15:12] w_bdly0_5 [47:44] w_bdly1_5 [11: 9] rdqsp_bdly_5 [15:12	dll_1xgen_5 dll_gate_5 dly_2x_5 w_bdly0_5 [11: 8] w_bdly0_5 [43:40] w_bdly1_5 [8: 6]	dll_wrdqs_5 dll_rddqs1_5 dqs_oe_ctrl_5 redge_sel_5 w_bdly0_5 [7: 4] w_bdly1_5 [5: 3] rg_bdly_5 [7: 4]	rdq_bdly_4 [2: 0] rdq_bdly_4 [2: 2] dll_wrdq_5 dll_rddqs0_5 dq_oe_ctrl_5 rddqs_phase_5 (RD) w_bdly0_5 [3: 0] Jw_bdly0_5 [35:32] w_bdly1_5 [2: 0] w_bdly1_5 [2: 2] rg_bdly_5 [3: 0] t]rdqsp_bdly_5 [3: 0]
0x0370 0x0378 0x0380 0x0388 0x0390 0x0388 0x03a0 0x03a8 0x03b0 0x03b8 0x03c0 0x03c8 0x03d8	rdodt_ctrl_5 w_bdly0_5 [31:28] w_bdly1_5 [24:21] rdqsp_bdly_5 [31:28	rdgate_len_5 w_bdly0_5 [27:24 w_bdly0_5 [59:56 w_bdly1_5 [20:18 8] rdqsp_bdly_5 [27: twenty four] 8] rdqsn_bdly_5 [27:	rdgate_mode_5 rdgate_ctrl_5] w_bdly0_5 [23:20] w_bdly0_5 [19:16]] w_bdly0_5 [55:52] w_bdly0_5 [51:48]] w_bdly1_5 [17:15] w_bdly1_5 [14:12] rdqsp_bdly_5 [23: rdqsp_bdly_5 [19:16] 20] rdqsn_bdly_5 [23: rdqsn_bdly_5 [19:16]	dll_1xdly_5 w_bdly0_5 [15:12] w_bdly0_5 [47:44] w_bdly1_5 [11: 9] rdqsp_bdly_5 [15:12	dll_1xgen_5 dll_gate_5 dly_2x_5 w_bdly0_5 [11: 8] w_bdly0_5 [43:40] w_bdly1_5 [8: 6]	dll_wrdqs_5 dll_rddqs1_5 dqs_oe_ctrl_5 redge_sel_5 w_bdly0_5 [7: 4] w_bdly1_5 [5: 3] rg_bdly_5 [7: 4]	rdq_bdly_4 [2: 0] rdq_bdly_4 [2: 0] rdq_bdly_4 [27:26] dll_wrdq_5 dll_rddqs0_5 dq_oe_ctrl_5 rddqs_phase_5 (RD) w_bdly0_5 [3: 0] w_bdly0_5 [35:32] w_bdly1_5 [2: 0] w_bdly1_5 [2: 2] rg_bdly_5 [3: 0]

74

Page 95

0x03f8								rdq_bdly_5 [27:26]
0x0400					dll_1xdly_6	dll_1xgen_6	dll_wrdqs_6	dll_wrdq_6
0x0408						dll_gate_6	dll_rddqs1_6	dll_rddqs0_6
0x0410	rdodt_ctrl_6	rdgate_len_6	rdgate_mode_6	rdgate_ctrl_6			dqs_oe_ctrl_6	dq_oe_ctrl_6
0x0418						dly_2x_6	redge_sel_6	rddqs_phase_6 (RD)
0x0420	w_bdly0_6 [31:28]	w_bdly0_6 [27:24]	w_bdly0_6 [23:20] w_bdly0_6 [19:16]	w_bdly0_6 [15:12]	w_bdly0_6 [11: 8]	w_bdly0_6 [7: 4]	w_bdly0_6 [3: 0]
0x0428		w_bdly0_6 [59:56]	w_bdly0_6 [55:52] w_bdly0_6 [51:48]	w_bdly0_6 [47:44]	w_bdly0_6 [43:40]	w_bdly0_6 [39:36]	w_bdly0_6 [35:32]
0x0430	w_bdly1_6 [24:21]	w_bdly1_6 [20:18]	w_bdly1_6 [17:15] w_bdly1_6 [14:12]	w_bdly1_6 [11: 9]	w_bdly1_6 [8: 6]	w_bdly1_6 [5: 3]	w_bdly1_6 [2: 0]
0x0438								w_bdly1_6 [27:26]
0x0440							rg_bdly_6 [7: 4]	rg_bdly_6 [3: 0]

0x0448 0x0450	rdqsp_bdly_6 [31:28]rdqsp_bdly_6 [27: twenty four]	rdqsp_bdly_6 [23: 20]	rdqsp_bdly_6 [19:16]	rdqsp_bdly_6 [15:12]] rdqsp_bdly_6 [11: 8]	rdqsp_bdly_6 [7: 4]rdqsp_bdly_6 [3: 0]
0x0458								rdqsp_bdly_6 [35:32]
0x0460	rdqsn_bdly_6 [31:28	rdqsn_bdly_6 [27:	rdqsn_bdly_6 [23:	rdqsn_bdly_6 [19:16]	rdqsn_bdly_6 [15:12]] rdqsn_bdly_6 [11: 8]	rdqsn_bdly_6 [7: 4]rdqsn_bdly_6 [3: 0]
		twenty four]	20]					
0x0468								rdqsn_bdly_6 [35:32]
0x0470	rdq_bdly_6 [24:21]	rdq_bdly_6 [20:18]] rdq_bdly_6 [17:15]rdq_bdly_6 [14:12]	rdq_bdly_6 [11: 9]	rdq_bdly_6 [8: 6]	rdq_bdly_6 [5: 3]	rdq_bdly_6 [2: 0]
0x0478								rdq_bdly_6 [27:26]
0x0480					dll_1xdly_7	dll_1xgen_7	dll_wrdqs_7	dll_wrdq_7
0x0488						dll_gate_7	dll_rddqs1_7	dll_rddqs0_7
0x0490	rdodt_ctrl_7	rdgate_len_7	rdgate_mode_7	rdgate_ctrl_7			dqs_oe_ctrl_7	dq_oe_ctrl_7
0x0498						dly_2x_7	redge_sel_7	rddqs_phase_7 (RD)
0x04a0	w_bdly0_7 [31:28]	w_bdly0_7 [27:24]	w_bdly0_7 [23:20]] w_bdly0_7 [19:16]	w_bdly0_7 [15:12]	w_bdly0_7 [11: 8]	w_bdly0_7 [7: 4]	w_bdly0_7 [3: 0]
0x04a8		w_bdly0_7 [59:56]	w_bdly0_7 [55:52]] w_bdly0_7 [51:48]	w_bdly0_7 [47:44]	w_bdly0_7 [43:40]	w_bdly0_7 [39:36]	w_bdly0_7 [35:32]
0x04b0	w_bdly1_7 [24:21]	w_bdly1_7 [20:18]	w_bdly1_7 [17:15]] w_bdly1_7 [14:12]	w_bdly1_7 [11: 9]	w_bdly1_7 [8: 6]	w_bdly1_7 [5: 3]	w_bdly1_7 [2: 0]
0x04b8								w_bdly1_7 [27:26]
0x04c0							rg_bdly_7 [7: 4]	rg_bdly_7 [3: 0]
0x04c8								
0x04d0	rdqsp_bdly_7 [31:28	rdqsp_bdly_7 [27:	rdqsp_bdly_7 [23:	rdqsp_bdly_7 [19:16]	rdqsp_bdly_7 [15:12]] rdqsp_bdly_7 [11: 8]	rdqsp_bdly_7 [7: 4]rdqsp_bdly_7 [3: 0]
		twenty four]	20]					
0x04d8								rdqsp_bdly_7 [35:32]
0x04e0	rdqsn_bdly_7 [31:28	rdqsn_bdly_7 [27:	rdqsn_bdly_7 [23:	rdqsn_bdly_7 [19:16]	rdqsn_bdly_7 [15:12]] rdqsn_bdly_7 [11: 8]	rdqsn_bdly_7 [7: 4]rdqsn_bdly_7 [3: 0]
		twenty four]	20]					
0x04e8								rdqsn_bdly_7 [35:32]
0x04f0	rdq_bdly_7 [24:21]	rdq_bdly_7 [20:18]] rdq_bdly_7 [17:15]rdq_bdly_7 [14:12]	rdq_bdly_7 [11: 9]	rdq_bdly_7 [8: 6]	rdq_bdly_7 [5: 3]	rdq_bdly_7 [2: 0]
0x04f8								rdq_bdly_7 [27:26]
0x0500					dll_1xdly_8	dll_1xgen_8	dll_wrdqs_8	dll_wrdq_8
0x0508						dll_gate_8	dll_rddqs1_8	dll_rddqs0_8
0x0510	rdodt_ctrl_8	rdgate_len_8	rdgate_mode_8	rdgate_ctrl_8			dqs_oe_ctrl_8	dq_oe_ctrl_8

75

Page 96

0x0518						dly_2x_8	redge_sel_8	rddqs_phase_8 (RD)
0x0520	w_bdly0_8 [31:28]	w_bdly0_8 [27:24] w_bdly0_8 [23:20] w_bdly0_8 [19:16]	w_bdly0_8 [15:12]	w_bdly0_8 [11: 8]	w_bdly0_8 [7: 4]	w_bdly0_8 [3: 0]
0x0528		w_bdly0_8 [59:56] w_bdly0_8 [55:52] w_bdly0_8 [51:48]	w_bdly0_8 [47:44]	w_bdly0_8 [43:40]	w_bdly0_8 [39:36]] w_bdly0_8 [35:32]
0x0530	w_bdly1_8 [24:21]	w_bdly1_8 [20:18] w_bdly1_8 [17:15] w_bdly1_8 [14:12]	w_bdly1_8 [11: 9]	w_bdly1_8 [8: 6]	w_bdly1_8 [5: 3]	w_bdly1_8 [2: 0]
0x0538								w_bdly1_8 [27:26]
0x0540							rg_bdly_8 [7: 4]	rg_bdly_8 [3: 0]
0x0548								
0x0550	rdqsp_bdly_8 [31:28]rdqsp_bdly_8 [27:	rdqsp_bdly_8 [23:	rdqsp_bdly_8 [19:16]	rdqsp_bdly_8 [15:12]] rdqsp_bdly_8 [11: 8]	rdqsp_bdly_8 [7: 4]rdqsp_bdly_8 [3: 0]
		twenty four]	20]					
0x0558								rdqsp_bdly_8 [35:32]
0x0560	rdqsn_bdly_8 [31:28]rdqsn_bdly_8 [27:	rdqsn_bdly_8 [23:	rdqsn_bdly_8 [19:16]	rdqsn_bdly_8 [15:12]] rdqsn_bdly_8 [11: 8]	rdqsn_bdly_8 [7: 4]rdqsn_bdly_8 [3: 0]
		twenty four]	20]					
0x0568								rdqsn_bdly_8 [35:32]
0x0570	rdq_bdly_8 [24:21]	rdq_bdly_8 [20:18] rdq_bdly_8 [17:15	5]rdq_bdly_8 [14:12]	rdq_bdly_8 [11: 9]	rdq_bdly_8 [8: 6]	rdq_bdly_8 [5: 3]	rdq_bdly_8 [2: 0]
0x0578								rdq_bdly_8 [27:26]
0x0700					leveling_cs	tLVL_DELAY	leveling_req (WR)	leveling_mode
0x0708							leveling_done (RD	leveling_ready (RD)
)	
0x0710	leveling_resp_7	leveling_resp_6	leveling_resp_5	leveling_resp_4	leveling_resp_3	leveling_resp_2	leveling_resp_1	leveling_resp_0
0x0718								leveling_resp_8
0x0720								

4/29/202	0			Loongson 3	A4000 process	or register u	ser manual	
0x0800	dfe_ctrl_ds	pad_ctrl_ds				pad_ctrl_ck		
0x0808		pad_reset_po	pad_oplen_ca	pad_opdly_ca		pad_ctrl_ca		
0x0810	vref_ctrl_ds_3		vref_ctrl_ds_2		vref_ctrl_ds_1		vref_ctrl_ds_0	
0x0818	vref_ctrl_ds_7		vref_ctrl_ds_6		vref_ctrl_ds_5		vref_ctrl_ds_4	
0x0820							vref_ctrl_ds_8	
0x0828								
0x0830			pad_comp_o (RD)			pad_comp_i	
0x0838								
CTL								
0x1000		tRP	tWLDQSEN	tMOD	tXPR		tCKE	tRESET
0x1008								tODTL
0x1010	tREFretention				tRFC		tREF	
0x1018	tCKESR	tXSRD	tXS		tRFC_dlr			tREF_IDLE
0x1020					tRDPDEN	tCPDED	tXPDLL	tXP
0x1028					tZQperiod	tZQCL	tZQCS	tZQ_CMD
0x1040	tRCD	tRRD_S_slr	tRRD_L_slr	tRRD_dlr				tRAS_min
	76							

76

Page 97

0x1048				tRTP	tWR_CRC_DM	tWR	tFAW_slr	tFAW
0x1050	tWTR_S_CRC_DM	tWTR_L_CRC_E	tWTR_S	tWTR		tCCD_dlr	tCCD_S_slr	tCCD_L_slr
		М						
0x1058								
0x1060			tPHY_WRLAT	tWL		tRDDATA	tPHY_RDLAT	tRL
0x1068				tCAL				tPL
0x1070			tW2P_sameba	tW2W_sameba	tW2R_sameba	tR2P_sameba	tR2W_sameba	tR2R_sameba
0x1078			tW2P_samebg	tW2W_samebg	tW2R_samebg	tR2P_samebg	tR2W_samebg	tR2R_samebg
0x1080			tW2P_samec	tW2W_samec	tW2R_samec	tR2P_samec	tR2W_samec	tR2R_samec
0x1088								
0x1090			tW2P_samecs	tW2W_samecs	tW2R_samecs	tR2P_samecs	tR2W_samecs	tR2R_samecs
0x1098				tW2W_diffes	tW2R_diffes		tR2W_diffes	tR2R_diffes
0x1100			cs_ref	cs_resync	cs_zqcl	cs_zq	cs_mrs	cs_enable
0x1108	cke_map				cs_map			
0x1110				cs2cid				cid_map
0x1118								
0x1120	mrs_done (RD)	mrs_req (WR)	pre_all_done (RD)) pre_all_req (WR)	cmd_cmd	status_cmd (RD)	cmd_req (WR)	command_mode
0x1128	cmd_cke	cmd_a			cmd_ba	cmd_bg	cmd_c	cmd_cs
0x1130								cmd_pda
0x1138						cmd_dq0		
0x1140	mr_3_cs_0		$mr_2_cs_0$		mr_1_cs_0		$mr_0_cs_0$	
0x1148	mr_3_cs_1		$mr_2_cs_1$		mr_1_cs_1		$mr_0_cs_1$	
0x1150	mr_3_cs_2		$mr_2_cs_2$		mr_1_cs_2		$mr_0_cs_2$	
0x1158	mr_3_cs_3		mr_2_cs_3		mr_1_cs_3		mr_0_cs_3	
0x1160	mr_3_cs_4		mr_2_cs_4		mr_1_cs_4		mr_0_cs_4	
0x1168	mr_3_cs_5		mr_2_cs_5		mr_1_cs_5		mr_0_cs_5	
0x1170	mr_3_cs_6		mr_2_cs_6		mr_1_cs_6		mr_0_cs_6	
0x1178	mr_3_cs_7		mr_2_cs_7		mr_1_cs_7		$mr_0_cs_7$	
0x1180	$mr_3_cs_0_ddr4$		$mr_2_cs_0_ddr4$		$mr_1_cs_0_ddr4$		$mr_0_cs_0_ddr4$	
0x1188			$mr_6_cs_0_ddr4$		mr_5_cs_0_ddr4		$mr_4_cs_0_ddr4$	
0x1190	mr_3_cs_1_ddr4		$mr_2_cs_1_ddr4$		mr_1_cs_1_ddr4		$mr_0_cs_1_ddr4$	
0x1198			mr_6_cs_1_ddr4		mr_5_cs_1_ddr4		$mr_4_cs_1_ddr4$	
0x11a0	mr_3_cs_2_ddr4		mr_2_cs_2_ddr4		mr_1_cs_2_ddr4		mr_0_cs_2_ddr4	
0 11 0							man 4 ag 2 ddn4	
0x11a8			mr_6_cs_2_ddr4		mr_5_cs_2_ddr4		mr_4_cs_2_ddr4	
0x11a8 0x11b0	mr_3_cs_3_ddr4		mr_6_cs_2_ddr4 mr_2_cs_3_ddr4		mr_5_cs_2_ddr4 mr_1_cs_3_ddr4		mr_0_cs_3_ddr4	

4/29/2020

Loongson 3A4000 processor register user manual

0x11b8	mr_6_cs_3_ddr4	mr_5_cs_3_ddr4	mr_4_cs_3_ddr4
0x11c0 mr_3_cs_4_ddr4	mr_2_cs_4_ddr4	mr_1_cs_4_ddr4	mr_0_cs_4_ddr4
0x11c8	mr_6_cs_4_ddr4	mr_5_cs_4_ddr4	mr_4_cs_4_ddr4
0x11d0 mr_3_cs_5_ddr4	mr_2_cs_5_ddr4	mr_1_cs_5_ddr4	mr_0_cs_5_ddr4

77

Page 98

Loongson 3A4000 processor register user manual

0x11d8			mr 6 as 5 ddr4		mr 5 as 5 ddr4		mr 1 as 5 ddr1	
0x11u8 0x11e0	mr_3_cs_6_ddr4		mr_6_cs_5_ddr4 mr_2_cs_6_ddr4		mr_5_cs_5_ddr4 mr_1_cs_6_ddr4		mr_4_cs_5_ddr4 mr_0_cs_6_ddr4	
0x11e8	III_5_cs_6_ddl4		mr_6_cs_6_ddr4		mr_5_cs_6_ddr4		mr_4_cs_6_ddr4	
0x11f0	mr_3_cs_7_ddr4		mr_2_cs_7_ddr4		mr_1_cs_7_ddr4		mr_0_cs_7_ddr4	
0x11f8	III_5_05_7_0014		mr_6_cs_7_ddr4		mr_5_cs_7_ddr4		mr_4_cs_7_ddr4	
0x1110			nc16_map	nc	channel_width	ba_xor_row_offset	addr_new	cs_place
0x1208			h			bg_xor_row_offset		addr_mirror
0x1210	addr_base_1				addr_base_0	0_ 1_ 1.		
0x1218								
0x1220	addr_mask_1				addr_mask_0			
0x1228								
0x1230			cs_diff	c_diff	bg_diff	ba_diff	row_diff	col_diff
0x1238				CF_confbus_timeout				
0x1240	WRQthreshold	tRDQidle	wr_pkc_num	rwq_rb	retry	no_dead_inorder	placement_en	stb_en / pbuf
0x1248								tRWGNTidle
0x1250							rfifo_age	
0x1258	prior_age3		prior_age2		prior_age1		prior_age0	
0x1260	retry_cnt (RD)					rbuffer_max (RD)	rdfifo_depth	stat_en
0x1268								
0x1280	aw_512_align		rd_before_wr	ecc_enable		int_vector (RD)	int_trigger (RD)	int_enable
0x1288								
0x1290						int_cnt_fatal (RD)	int_cnt_err (RD)	
0x1298	ecc_cnt_cs_7 (RD)			ecc_cnt_cs_4 (RD)	ecc_cnt_cs_3 (RD)	ecc_cnt_cs_2 (RD)		ecc_cnt_cs_0 (RD)
0=12=0	ana data dir (BD)	D))	N)	ana anda 64 (BD)
0x12a0	ecc_data_dir (RD))	ecc_code_256 (RE))				ecc_code_64 (RD)
0x12a8	ecc_addr (RD))						
0x12a0	ecc_data [63: 0] (RD)						
0x12b0	ecc_data [03: 0] (RD							
0x12c0	ecc_data [191: 128] (
0x12c8	ecc_data [255: 192] (
0x1300							ref_num	ref_sch_en
0x1308							- Status_sref (RD)	srefresh_req
							,	
0x1340	hardware_pd_7	hardware_pd_6	hardware_pd_5	hardware_pd_4	hardware_pd_3	hardware_pd_2	hardware_pd_1	hardware_pd_0
0x1348	power_sta_7 (RD)	power_sta_6 (RD	power_sta_5 (RD)	power_sta_4 (RD)	power_sta_3 (RD)	power_sta_2 (RD)	power_sta_1 (RD)	power_sta_0 (RD)
)						
0x1350	selfref_age		slowpd_age		fastpd_age		active_age	

78

Loongson **3A4000** processor register user manual

0x1358								A ao aton
0x1358	tCONF_IDLE			power_up	tLPMC_IDLE			Age_step
	ICONT_IDEE				ILFMC_IDEE			
 0x1380								zq_overlap
0x1380								zq_stat_en
0x1300	zq_cnt_1 (RD)				zq_cnt_0 (RD)			zq_stat_en
0x1398	zq_cnt_3 (RD)				$zq_ent_0 (RD)$ $zq_ent_2 (RD)$			
0x1390	zq_cnt_5 (RD)				zq_ent_2 (RD) zq_ent_4 (RD)			
0x13a8	zq_cnt_6 (RD)				zq_ent_4 (RD) zq_ent_6 (RD)			
	zq_ent_0 (RD)							
 0x13c0					odt_wr_cs_map			
0x13c0					out_wi_es_map		odt_wr_length	odt_wr_delay
0x13d0					odt_rd_cs_map		out_wi_longui	out_wi_dolay
0x13d8					out_tu_to_inup		odt_rd_length	odt_rd_delay
							out_ru_rengu	out_ru_uotuy
 0x1400				tRESYNC_length	tRESYNC_delay	tRESYNC_shift	tRESYNC_max	tRESYNC_min
				utils i i i e i gui	action into_actualy	debo inte_sint	uccorrite_max	uuborrite_nim
 0x1440					pre_predict		tm_cmdq_num	burst_length
0x1448					r _r			ca_timing
0x1450						wr / rd_dbi_en	ca_par_en	crc_en
0x1458							tCA_PAR	- tWR_CRC
0x1460	bit_map_7	bit_map_6	bit_map_5	bit_map_6	bit_map_3	bit_map_2	_ bit_map_1	bit_map_0
0x1468	bit_map_15	bit_map_14	bit_map_13	bit_map_12	bit_map_11	bit_map_10	bit_map_9	bit_map_8
0x1470							bit_map_17	bit_map_16
0x1478								bitmap_mirror
0x1480				alertn_misc (RD)			alertn_cnt	alertn_clr
0x1488	alertn_addr (RD)							
0x1500	win0_base							
0x1508	win1_base							
0x1510	win2_base							
0x1518	win3_base							
0x1520	win4_base							
0x1528	win5_base							
0x1530	win6_base							
0x1538	win7_base							

Page 100

0x1580 win0_mask 0x1588 win1_mask 0x1590 win2_mask

79

0x1598	win3_mask
0x15a0	win4_mask
0x15a8	win5_mask
0x15b0	win6_mask
0x15b8	win7_mask
	_
0x1600	win0_mmap
0x1608	win1_mmap
0x1610	win2_mmap

4/29/2020

4/23/2020)	LUUIIgSUII J	A4000 processor register u	sei manuai	
0x1618	win3_mmap				
0x1620	win4_mmap				
0x1628	win5_mmap				
0x1630	win6_mmap				
0x1638	win7_mmap				
0x1700				acc_hp	acc_en
0x1708	acc_fake_b		acc_fake_a		
0x1710					
0x1718					
0x1720	addr_base_acc_1		addr_base_acc_0		
0x1728					
0x1730	addr_mask_acc_1		addr_mask_acc_0		
0x1738					
MON					
0x2000					cmd_monitor
0x2008					
0x2010	cmd_fbck [63: 0] (RD)				
0x2018	cmd_fbck [127: 64] (RD)				
0x2020			rw_switch_cnt (RD)		
0x2100					scheduler_mon
0x2108					
0x2110	sch_cmd_num (RD)				
0x2118	ba_conflict_all (RD)				
0x2120	ba_conflict_last1 (RD)				
0x2128	ba_conflict_last2 (RD)				
0x2130	ba_conflict_last3 (RD)				
0x2138	ba_conflict_last4 (RD)				
0x2140	ba_conflict_last5 (RD)				
0x2148	ba_conflict_last6 (RD)				

80

Page 101

0x	2150	ba_conflict_last7 (RD)
0x	2158	ba_conflict_last8 (RD)
0x	2160	rd_conflict (RD)	
0x	2168	wr_conflict (RD)	
0x.	2170	rtw_conflict (RD)	
0x.	2178	wtr_conflict (RD)	
0x.	2180	rd_conflict_last1 (RD)
0x.	2188	wr_conflict_last1 (RD))
0x.	2190	rtw_conflict_last1 (RI	D)
0x.	2198	wtr_conflict_last1 (RI	D)
0x.	21a0	wr_rd_turnaround (RI	D)
0x.	21a8	cs_turnaround (RD)	
0x.	21b0	bg_conflict (RD)	
0x.	2300		
0x.	2308		
0x.	2310		sm_rank
0x.	2318		sm_rank
0x.	2320		sm_rank
0x.	2328		sm_rank
0x	2330		sm rank

 0x2300 0x2308			sm_leveling	sm_init
0x2310	sm_rank_03	sm_rank_02	sm_rank_01	sm_rank_00
0x2318	sm_rank_07	sm_rank_06	sm_rank_05	sm_rank_04
0x2320	sm_rank_11	sm_rank_10	sm_rank_09	sm_rank_08
0x2328	sm_rank_15	sm_rank_14	sm_rank_13	sm_rank_12
0x2330	sm_rank_19	sm_rank_18	sm_rank_17	sm_rank_16

4/29/202	0	Loon	gson 3A4000 processo	or register	user manual	
0x2338 0x2340	sm_rank_23 sm_rank_27	sm_rank_22 sm_rank_26		sm_rank_21 sm_rank_25		sm_rank_20 sm_rank_24
0x2348	sm_rank_31	sm_rank_30		sm_rank_29		sm_rank_28
TST						
0x3000				lpbk_mode	lpbk_start	lpbk_en
0x3008	lpbk_correct (RD)		lpbk_counter (RD)			lpbk_error (RD)
0x3010	lpbk_data_en [63: 0]					
0x3018						lpbk_data_en [71:64]
0x3020					lpbk_data_mask	en
0x3028						
0x3030	Lpbk_dat_w0 [63: 0]					
0x3038	Lpbk_dat_w0 [127: 64]					
0x3040	Lpbk_dat_w1 [63: 0]					
0x3048	Lpbk_dat_w1 [127: 64]					
0x3050	lpbk_ecc_mask_	lpbk_dat_mask_w0			lpbk_ecc_w0	
	w0					
0x3058	lpbk_ecc_mask_	lpbk_dat_mask_w1			lpbk_ecc_w1	
	w1					
	81					

0x3060							prbs_23
0x3068					prbs_init		
0x3100				fix_data_pattern_ind	bus_width	page_size	test_engine_en
				ex			
0x3108		cs_diff_tst	c_diff_tst	bg_diff_tst	ba_diff_tst	row_diff_tst	col_diff_tst
0x3120	addr_base_tst						
0x3128							
0x3130	user_data_pattern						
0x3138							
0x3140	valid_bits [63: 0]						
0x3148							valid_bits [71:64]
0x3150	ctrl [63: 0]						
0x3158	ctrl [127: 64]						
0x3160	obs [63: 0] (RD)						
0x3168	obs [127: 64] (RD)						
0x3170	obs [191: 128] (RD)						
0x3178	obs [255: 192] (RD)						
0x3180	obs [319: 256] (RD)						
0x3188	obs [383: 320] (RD)						
0x3190	obs [447: 384] (RD)						
0x3198	obs [511: 448] (RD)						
0x31a0	obs [575: 512] (RD)						
0x31a8	obs [639: 576] (RD)						
0x31b0				obs [671: 640] (RD)			
0x3200							
0x3208							
0x3220	tud_i0						
0x3228	tud_i1						
0x3230	tud_o (RD)						
0x3300	tst_300						
0x3308	tst_308						

0x3310	tst_310
0x3318	tst_318
0x3320	tst_320
0x3328	tst_328
0x3330	tst_330
0x3338	tst_338

82

Loongson 3A4000 processor register user manual

Page 103

Loongson 3A4000 processor register user manual

0x3340	tst_340
0x3348	tst_348
0x3350	tst_350
0x3358	tst_358
0x3360	tst_360
0x3368	tst_368
0x3370	tst_370
0x3378	tst_378

13.5 Software Programming Guide

13.5.1 Initial operation

The initialization operation is started when the software writes 0x2 to the register Init_start (0x010). Set Init_start

Before the signal, all other registers must be set to the correct values.

The DRAM initialization process of software and hardware cooperation is as follows:

(1) Set pm_clk_sel_ckca and pm_clk_sel_ds

(2) Set pm_phy_init_start to 1 to start initializing PHY

(3) Wait for the DLL main control module to lock, that is, pm_dll_init_done is 1

(4) Wait for $pm_dll_lock_*$ or $pm_pll_lock_*$ of all clock generation modules to become 1

(5) Enable all pm_clken_ *

(6) Set pm init start to 1, the memory controller starts to initialize

(7) Wait for the memory controller to initialize, that is, the value of pm_dram_init is the same as pm_cs_enable.

13.5.2 Control of reset pin

In order to control the reset pin more easily in the state of STR, etc., you can register through pad_reset_po (0x808)

The device performs special reset pin (DDR_RESETn) control. There are two main control modes:

(1) In general mode, reset_ctrl [1: 0] == 2'b00. In this mode, the reset signal pin behaves as a

Compatible with general control modes. Connect DDR_RESETn directly to the corresponding pin on the memory slot on the motherboard. lead The behavior of the feet is:

- When not powered: the pin status is low;
- At power-on: the pin status is low;

Loongson 3A4000 processor register user manual

- When the controller starts to initialize, the pin state is high;
- During normal operation, the pin status is high.

The timing is shown below:

(2) Reverse mode, reset_ctrl [1:0] = 2b10. In this mode, the reset signal pin is in memory

In actual control, the effective level is opposite to the general control mode. So on the motherboard

DDR_RESETn is connected to the corresponding pin on the memory slot through an inverter. The behavior of the pins is:

- When not powered: the pin status is low;
- At power-on: the pin status is low;
- When the controller starts to configure: the pin state is high;
- When the controller starts to initialize: the pin state is low;
- Normal operation: The pin state is low.

The timing is shown below:

(3) Reset inhibit mode, pm_pad_reset_o [1: 0] == 2'b01. In this mode, the reset signal pin is at

During the whole memory working period, keep low level. Therefore, the motherboard needs to pass DDR_RESETn through the inverter and internal The corresponding pins on the storage slot are connected. The behavior of the pins is:

84

Page 105

Loongson 3A4000 processor register user manual

Always low

The timing is shown below:

By the combination of the latter two reset modes, it can be realized directly using the reset signal of the memory controller STR control. When the entire system is started from the shutdown state, use the method in (2) to use the memory module to reset normally and start working. When the system recovers from the STR, use the method in (3) to reconfigure the memory module so that Under the condition of destroying the original state of the memory module, it restarts to work normally.

13.5.3 Leveling

Leveling operation is in DDR3 / 4, which is used to intelligently configure the phase relationship between various signals in read and write operations of the memory controlle Department of operation. Usually it includes Write Leveling, Read Leveling and Gate Leveling. In this controller Among them, only Write Leveling and Gate Leveling are implemented, Read Leveling is not implemented, the software needs to pass Judging the correctness of reading and writing to achieve the functions completed by Read Leveling. In addition to DQS operating during Leveling In addition to the phase and GATE phase, you can also calculate the write DQ phase and read DQ phase based on these last confirmed phases. Configuration method. In addition, this design also supports the bit-deskew function, which is used to compensate for different bits in a dataslice Time delay difference.

13.5.3.1 Write Leveling

Write Leveling is used to configure the phase relationship between writing DQS and clock. Software programming needs to refer to the following steps.
(1) Complete the controller initialization, see the previous section;
(2) Set Dll_wrdqs_x (x = 0... 8) to 0x20;
(3) Set Dll_wrdq_x (x = 0... 8) to 0x0;
(4) Set Lvl mode to 2'b01;

85

Page 106

Loongson 3A4000 processor register user manual

(5) Sampling the Lvl_ready register, if it is 1, it indicates that the Write Leveling request can be started;(6) Set Lvl_req to 1;

(7) Sampling the Lvl done register, if it is 1, it means that a Write Leveling request is completed;

(8) Sampling the Lvl_resp_x register, if it is 0, the corresponding Dll_wrdq_x [6: 0] and

dll_1xdly [6: 0] increases by 1 and repeats 5-7 until Lvl_resp_x is 1, then turns to 9;

If it is 1, increase the corresponding Dll_wrdq_x [6: 0] and dll_1xdly [6: 0] by 1 and repeat 5-7

Until Lvl_resp_x is 0, and then continue to the corresponding Dll_wrdq_x [6: 0] and dll_1xdly [6: 0]

Increase by 1 and repeat 5-7 until Lvl_resp_x is 1, then turn to 9.

(9) Decrease the value of Dll_wrdq_x and dll_1xdly by 0x40, then the value of Dll_wrdq_x and dll_1xdly will be It should be the correct setting value.

(10) Set pm_dly_2x according to the DIMM type, and the value of pm_dly_2x corresponding to the particle on the right side of the 0x0 boundary increases Add 0x010101.

(11) Set Lvl_mode (0x700) to 2'b00 to exit Write Leveling mode.

13.5.3.2 Gate Leveling

Gate Leveling is used to configure the timing of the sampling and reading DQS window in the controller. For software programming, refer to the following steps

Step.

(1) Complete the controller initialization, see the previous section;

(2) Complete Write Leveling, see the previous section;

- (3) Set Dll_gate_x (x = 0... 8) to 0;
- (4) Set Lvl_mode to 2'b10;
- (5) Sampling the Lvl_ready register, if it is 1, it means that the Gate Leveling request can be started;
- (6) Set Lvl_req to 1;
- (7) Sampling the Lvl_done register, if it is 1, it means that a Gate Leveling request is completed;
- (8) Sampling Lvl_resp_x [0] register. If the first sampling finds that Lvl_resp_x [0] is 1, it will correspond Dll_gate_x [6: 0] increases by 1 and repeats 6-8 until the sampling result is 0, otherwise the next step
- (9) If the sampling result is 0, increase the corresponding Dll_gate_x [6: 0] by 1 and repeat 6-9; if it is 1, it means that the Gate Leveling operation has been successful;
- (10) Set pm_rdedge_sel according to the value of pm_rddqs_phase
- (11) Decrease Dll_gate_x ($x = 0 \dots 8$) by 0x20;
- (12) After the adjustment, perform two Lvl_req operations, and observe Lvl_resp_x [7: 5] and
- The value of Lvl_resp_x [4: 2] changes. If each increase is Burst_length / 2, then proceed to step 13;
- If it is not 4, you may need to add or subtract one to Rd_oe_begin_x, if it is greater than
- $Burst_length \ / \ 2, \ it \ may \ be \ necessary \ to \ fine-tune \ the \ value \ of \ Dll_gate_x;$
- (13) Set Lvl_mode (0x700) to 2'b00 to exit Gate Leveling mode;
- (14) At this point, the Gate Leveling operation ends.

13.5.4 Power control configuration process

First you need to set pm_pad_ctrl_ca [0] to 1 and wait for the memory initialization to complete before setting

86

Page 107

Loongson 3A4000 processor register user manual

pm_pad_ctrl_ca [0] is 0. This function can only be used when CAL Mode is enabled in DDR4 mode.

13.5.5 Initiating MRS commands separately

In DDR3 mode, the order of MRS commands issued by the memory controller to the memory are: MR2_CS0, MR2_CS1, MR2_CS2, MR2_CS3, MR2_CS4, MR2_CS5, MR2_CS6, MR2_CS7, MR3_CS0, MR3_CS1, MR3_CS2, MR3_CS3, MR3_CS4, MR3_CS5, MR3_CS6, MR3_CS7, MR1_CS0, MR1_CS1, MR1_CS2, MR1_CS3, MR1_CS4, MR1_CS5, MR1_CS6, MR1_CS7, MR0_CS0, MR1_CS1, MR1_CS2, MR1_CS3, MR0_CS4, MR0_CS5, MR0_CS6, MR0_CS7. In addition, for DDR4 mode, the order of MRS commands issued by the memory controller to the memory are: MR3_CS0, MR3_CS1, MR3_CS2, MR3_CS3, MR3_CS4, MR3_CS5, MR3_CS6, MR3_CS7, MR6_CS0, MR6_CS1, MR6_CS2, MR6_CS3, MR6_CS4, MR6_CS5, MR6_CS6, MR6_CS7 MR5_CS0, MR5_CS1, MR5_CS2, MR5_CS3, MR5_CS4, MR5_CS5, MR6_CS6, MR6_CS7 MR4_CS0, MR1_CS1, MR1_CS2, MR1_CS3, MR4_CS4, MR4_CS5, MR4_CS6, MR4_CS7 MR1_CS0, MR1_CS1, MR1_CS2, MR1_CS3, MR1_CS4, MR1_CS5, MR1_CS6, MR2_CS7, MR1_CS0, MR1_CS1, MR1_CS2, MR1_CS3, MR1_CS4, MR1_CS5, MR1_CS6, MR1_CS7, MR0_CS0, MR1_CS1, MR1_CS2, MR1_CS3, MR0_CS4, MR0_CS5, MR0_CS6, MR0_CS7, MR0_CS0, MR1_CS1, MR1_CS2, MR1_CS3, MR1_CS4, MR1_CS5, MR1_CS6, MR1_CS7, MR0_CS0, MR1_CS1, MR1_CS2, MR1_CS3, MR0_CS4, MR0_CS5, MR0_CS6, MR0_CS7.

Among them, whether the MRS command corresponding to CS is valid or not is determined by Cs_mrs, and only the corresponding chip select on Cs_mrs

Is valid, the MRS command will be issued to the DRAM. The corresponding value of each MR is determined by the register Mr * _cs *

set. These values are also used for MRS commands when initializing memory.

The specific operations are as follows:

- (1) Set the registers Cs_mrs (0x1101) and Mr * _cs * (0x1140 0x11f8) to the correct values;
- (2) Set Command_mode (0x0x1120) to 1 to make the controller enter the command sending mode;
- (3) Sampling Status_cmd (0x1122), if it is 1, it means that the controller has entered the command sending mode, you can

Go to the next step, if it is 0, you need to continue to wait;

(4) Write Mrs_req (0x1126) to 1 and send MRS command to DRAM;

(5) Sampling Mrs_done (0x1127), if it is 1, it means that the MRS command has been sent and can be exited,

If it is 0, you need to continue to wait;

(6) Set Command_mode (0x1120) to 0 to make the controller exit the command sending mode.

87

Page 108

Loongson 3A4000 processor register user manual

13.5.6 Any operation control bus

The memory controller can send any command combination to the DRAM through the command sending mode, and the software can set Cmd cs,

Cmd_cmd, Cmd_ba, Cmd_a (0x1128), issued to the DRAM in the command transmission mode.

The specific operations are as follows:

- (1) Set the registers Cmd_cs, Cmd_cmd, Cmd_ba, Cmd_a (0x1128) to the correct values;
- (2) Set Command_mode (0x1120) to 1 to make the controller enter the command sending mode;
- (3) Sampling Status_cmd (0x1122), if it is 1, it means that the controller has entered the command sending mode, you can

Go to the next step, if it is 0, you need to continue to wait;

- (4) Write Cmd_req (0x1121) to 1 to send commands to DRAM;
- (5) Set Command_mode (0x1120) to 0 to make the controller exit the command sending mode.

13.5.7 Self-loop test mode control

The self-loop test mode can be used in test mode or normal function mode respectively.

The device implements two independent control interfaces, one for direct control by the test port in the test mode, and the other

Used for configuration enable test by register configuration module in normal function mode.

The multiplexing of these two sets of interfaces is controlled by the port test_phy. When test_phy is valid, the controller 's

The test_* port is controlled, and the self-test at this time is completely controlled by the hardware; when test_phy is invalid, use software programming

The parameters of pm_* are controlled. The specific signal meaning of using the test port can refer to the same name part in the register parameter

Minute

The two sets of interfaces are basically the same in terms of control parameters, only the access point is different. Here is the introduction of software programming

Control Method. The specific operations are as follows:

- (1) Set all the parameters of the memory controller correctly;
- (2) Follow the initialization process to wait for the clock to reset and stabilize;
- (3) Set the register Lpbk_en to 1;
- (4) Set the register Lpbk_start to 1; this time the self-loop test officially begins.
- (5) So far, since the loop test has started, the software needs to constantly check whether there is an error as follows:
- (6) Sampling register Lpbk_error, if this value is 1, it means that an error occurred

 $Lpbk_*$ and other observation registers are used to observe the error data and correct data of the first error;

A value of 0 means that no data errors have occurred

13.5.8 ECC function usage control

The ECC function is only available in 64-bit mode.

Ecc_enable includes the following 2 control bits:

Ecc_enable [0] controls whether the ECC function is enabled. Only when this valid bit is set, the ECC function will be enabled.

Ecc_enable [1] controls whether an error is reported through the read response path inside the processor, so that two ECC bits appear

Wrong read access can immediately lead to abnormal processor cores.

In addition, ECC errors can also be notified to the processor core through interrupts. This interrupt is entered via Int_enable

行控制。Line control. The interrupt includes two vectors, Int_vector [0] indicates that an ECC error (including 1 bit error and 2 bit error) occurs,

Int_vecotr [1] indicates that two ECC errors have occurred. Int_vector is cleared by writing 1 to the corresponding bit.

13.5.9 Error status observation

After an error occurs in the memory controller, you can access the corresponding system configuration register to obtain the corresponding error information and

Simple debugging operation. The register base address is 0x1fe00000 or 0x3ff00000, the configuration register can also be used

The instruction accesses the register and its corresponding bits as follows.

Table 13-3 No. 0 Memory Controlle	r Error Status Observation Register
-----------------------------------	-------------------------------------

register	Offset address	control	Explanation		
			No. 0 memory controller ECC setting register		
			[5: 0]: MC0 int_enable, interrupt enable		
			[8]: MC0 int_trigger, interrupt trigger configuration		
ECC setting of memory controller 0			[21:16]: MC0 int_vector (RO), interrupt vector (read only)		
register			[33:32]: MC0 ecc_enable, ECC related functions are enabled		
Mc0_ecc_set	0x0600	RW	[40]: MC0 rd_before_wr, enable after read and write function		
	0x0608	RW	Keep		
			No. 0 memory controller ECC count register		
			[7: 0]: MC0 int_cnt, configure the threshold for the number of interrupts triggered by ECC check		
			[15: 8]: MC0 int_cnt_err (RO), statistics of the number of errors in one bit of ECC check		
Memory controller 0 ECC count			(Read only)		
register			[23:16]: MC0 int_cnt_fatal (RO), ECC check two-digit error count system		
Mc0_ecc_cnt	0x0610	RW	Meter (read only)		

89

Page 110

Loongson 3A4000 processor register user manual

No. 0 memory controller ECC error count register [7: 0]: MC0 ecc_cnt_cs_0, CS0 ECC check error count [15: 8]: MC0 ecc_cnt_cs_1, CS1 ECC check error count [23:16]: MC0 ecc_cnt_cs_2, CS2 ECC check error count [31:24]: MC0 ecc_cnt_cs_3, statistics on the number of ECC check errors in CS3 [39:32]: MC0 ecc_cnt es 4, statistics on the number of ECC check errors in CS4 4/29/2020

		Lo	oongson 3A4000 processor register user manual
No. 0 memory controller	No. 0 memory controller ECC error		[47:40]: MC0 ecc_cnt_cs_5, CS5 ECC check error count
Statistics register			[55:48]: MC0 ecc_cnt_cs_6, statistics of the number of ECC check errors in CS6
Mc0_ecc_cs_cnt	0x0618	RO	[63:56]: MC0 ecc_cnt_cs_7, CS7 count of ECC check errors
			No. 0 memory controller ECC check code register
			[7: 0]: MC0 ecc_code_64, ECC check code for 64-bit ECC check,
			Disabled when the memory directory function is enabled
			[41:32]: MC0 ecc_code_256, ECC check during 256-bit ECC check
			Code, valid when the memory directory function is enabled
			[52:48]: MC0 ecc_code_dir, ECC check code of memory directory, only use
No. 0 memory controller	ECC check		Effective when memory directory function is available
Code register			[60:56]: MC0 ecc_data_dir, memory directory ECC data, only enabled
Mc0_ecc_code	0x0620	RO	Effective when the memory directory function
No. 0 memory controller	ECC error		
Address register			No. 0 memory controller ECC error address register
Mc0_ecc_addr	0x0628	RO	[63: 0]: MC0 ecc_addr, ECC check error address information
No. 0 memory controller	ECC error		No. 0 memory controller ECC error data register 0
Data register 0			[63: 0]: Mc0_ecc_data0, data information when ECC check error occurs, 64 bits
Mc0_ecc_data0	0x0630	RO	Data in ECC mode, data in 256-bit ECC mode [63: 0]
No. 0 memory controller	ECC error		No. 0 memory controller ECC error data register 1
Data register 1			[63: 0]: Mc0_ecc_data1, data information when ECC check error occurs, 256 bits
Mc0_ecc_data1	0x0638	RO	Data in ECC mode [127: 64]
No. 0 memory controller	ECC error		No. 0 memory controller ECC error data register 2
Data register 2			[63: 0]: Mc0_ecc_data2, data information when ECC check error occurs, 256 bits
Mc0_ecc_data2	0x0640	RO	Data in ECC mode [191: 128]
No. 0 memory controller	ECC error		No. 0 memory controller ECC error data register 3
Data register 3			[63: 0]: Mc0_ecc_data3, data information when ECC check error occurs, 256 bits
Mc0_ecc_data3	0x0648	RO	Data in ECC mode [255: 192]

Table 13-4 No. 1 memory controller error status observation register

control Explanation

register

address

90

Page 111

			Memory controller 1 ECC setting register	
			[5: 0]: MC1 int_enable, interrupt enable	
			[8]: MC1 int_trigger, interrupt trigger configuration	
Memory controller 1 ECC settings			[21:16]: MC1 int_vector (RO), interrupt vector (read only)	
register			[33:32]: MC1 ecc_enable, ECC related function enable	
Mc1_ecc_set	0x0700	RW	[40]: MC1 rd_before_wr, enable after read and write function	
	0x0708	RW	Keep	
			Memory controller 1 ECC count register	
			[7: 0]: MC1 int_cnt, configure the threshold for the number of interrupts triggered by ECC check	
			[15: 8]: MC1 int_cnt_err (RO), statistics of the number of errors in one bit of ECC check	
Memory controller 1 ECC	count		(Read only)	
register			[23:16]: MC1 int_cnt_fatal (RO), ECC check two-digit error count system	
Mc1_ecc_cnt	0x0710	RW	Meter (read only)	
			No. 1 memory controller ECC error count register	
			[7: 0]: MC1 ecc_cnt_cs_0, CS0 ECC check error count	
			[15: 8]: MC1 ecc_cnt_cs_1, statistics on the number of ECC check errors in CS1	
			[23:16]: MC1 ecc_cnt_cs_2, CS2 ECC check error count	
			[31:24]: MC1 ecc_cnt_cs_3, CS3 ECC check error count	
			[39:32]: MC1 ecc_cnt_cs_4, CS4 ECC check error count	

4/29/2020

No. 1 memory controller ECC error			[47:40]: MC1 ecc_cnt_cs_5, CS5 ECC check error count		
Statistics register			[55:48]: MC1 ecc_cnt_cs_6, statistics of the number of ECC check errors in CS6		
Mc1_ecc_cs_cnt	0x0718	RO	[63:56]: MC1 ecc_cnt_cs_7, CS7 ECC check error count		
			No. 1 memory controller ECC check code register		
			[7: 0]: MC1 ecc_code_64, ECC check code for 64-bit ECC check,		
			Disabled when the memory directory function is enabled		
			[41:32]: MC1 ecc_code_256, ECC check when 256-bit ECC check		
			Code, valid when the memory directory function is enabled		
			[52:48]: MC1 ecc_code_dir, ECC check code of memory directory, only use		
No. 1 memory controller ECC	Ccheck		Effective when memory directory function is available		
Code register			[60:56]: MC1 ecc_data_dir, memory directory ECC data, only enabled		
Mc1_ecc_code	0x0720	RO	Effective when the memory directory function		
No. 1 memory controller ECC	C error				
Address register			No. 1 memory controller ECC error address register		
Mc1_ecc_addr	0x0728	RO	[63: 0]: MC1 ecc_addr, ECC check error address information		
No. 1 memory controller ECC error			No. 1 memory controller ECC error data register 0		
Data register 0			[63: 0]: Mc1_ecc_data0, data information when ECC check error occurs, 64 bits		

Loongson 3A4000 processor register user manual

Mc1_ecc_data1

No. 1 memory controller ECC error

Mc1_ecc_data0

Data register 1

0x0730

0x0738

RO

RO

91

Page 112

Loongson 3A4000 processor register user manual

Data in ECC mode, data in 256-bit ECC mode [63: 0]

[63: 0]: Mc1_ecc_data1, data information when ECC check error occurs, 256 bits

No. 1 memory controller ECC error data register 1

Data in ECC mode [127: 64]

No. 1 memory controller ECC error			No. 1 memory controller ECC error data register 2	
Data register 2			[63: 0]: Mc1_ecc_data2, data information when ECC check error occurs, 256 bits	
Mc1_ecc_data2 0x0740 RO		RO	Data in ECC mode [191: 128]	
No. 1 memory controller ECC error			No. 1 memory controller ECC error data register 3	
Data register 3			[63: 0]: Mc1_ecc_data3, data information when ECC check error occurs, 256 bits	
Mc1_ecc_data3	0x0748	RO	Data in ECC mode [255: 192]	

92

Page 113

Loongson 3A4000 processor register user manual

14 HyperTransport controller

In Loongson 3A4000, the HyperTransport bus is used to connect external devices and interconnect multiple chips. Used outside

When setting up the connection, the user program can freely choose whether to support IO Cache consistency (through the address window Uncache

Settings, see Section 14.5.14 for details): When configured to support Cache consistency mode, IO device access to internal DMA is

Cache layer is transparent, that is, the consistency is automatically maintained by the hardware, without the need for software to maintain through the program Cache instruction;

When the HyperTransport bus is used for multi-chip interconnection, the HT0 controller (the initial address is 0x0C00_0000_0000 -

0x0DFF FFFF FFFF) can support the consistent transmission of Cache between chips through pin configuration, and the HT1 controller (initial address

0x0E00_0000-0x0FFF_FFFF_FFFF can be configured to support the maintenance of Cache consistency between slices through software configuration,

See Section 14.7 for details. In the 8-chip interconnect structure, the consistency mode of the HT1_HI controller is passed through the pins in CHIP_CONFIG

To configure

The HyperTransport controller supports up to two-way 16-bit width and 2.4GHz operating frequency. At the beginning of the system automatically

After initializing the connection, the user program can modify the corresponding configuration register in the protocol to achieve the width and running frequency.

Change the rate and re-initialize, see section 14.1 for the specific method.

The main features of Loongson 3A4000 HyperTransport controller are as follows:

- Support HT1.0 / HT3.0 protocol
- Support 200/400/800/1600/2000 / 2400MHz operating frequency
- The controller frequency is up to 1GHz
- HT1.0 supports 8-bit width
- HT3.0 supports 8/16 bit width
- \bullet Each HT controller (HT0 / HT1) can be configured as two 8-bit HT controllers
- The direction of bus control signals (including PowerOK, Rstn, LDT_Stopn) can be configured
- Peripheral DMA space Cache / Uncache can be configured
- It can be configured as Cache consistency mode when used for multi-chip interconnection

14.1 HyperTransport hardware setup and initialization

HyperTransport bus is composed of transmission signal bus and control signal pins, etc. The following table gives

HyperTransport bus related pins and their functional description.

Loongson 3A4000 processor register user manual

	Table 14-1 Hyper7	Fransport bus related pin signals
Pin	name	description
HT0_8x2	Bus width configuration	1: Configure the 16-bit HyperTransport bus as two independent 8-bit buses,
		Controlled by two independent controllers, the address space is divided into
		$HT0_Lo: address [40] = 0;$
		$HT0_Hi: address [40] = 1;$
		0: Use the 16-bit HyperTransport bus as a 16-bit bus, by
		HT0_Lo control, the address space is the address of HT0_Lo, namely address [40]
		= 0; HT0_Hi all signals are invalid.
HT0_Lo_mode	Master mode	1: Set HT0_Lo as the master mode, in this mode, the bus control signal, etc.
		Driven by HT0_Lo, these control signals include HT0_Lo_Powerok,
		HT0_Lo_Rstn, HT0_Lo_Ldt_Stopn. In this mode, these controls
		The control signal can also be bidirectionally driven. At the same time this pin determines (negative) registration
		The initial value of the device "Act as Slave", when this register is 0,
		The Bridge bit in the packet on the HyperTransport bus is 1, otherwise it is 0.
		In addition, when this register is 0, if the HyperTransport bus
		When the requested address does not hit the receiving window of the controller, it will be regarded as P2P.
		Seek to send back to the bus again, if this register is 1, there is no hit, then make
		Respond to bad requests.
		0: Set HT0_Lo to slave mode, in this mode, bus control signals, etc.
		Driven by the opposite device, these control signals include HT0_Lo_Powerok,
		HT0_Lo_Rstn, HT0_Lo_Ldt_Stopn. In this mode, these controls
		The control signal is driven by the other device. If it is not driven correctly, the
		Does not work correctly.
HT0_Lo_Powerok	Bus Powerok	HyperTransport bus Powerok signal,
		When HT0_Lo_Mode is 1, it is controlled by HT0_Lo;
		When HT0_Lo_Mode is 0, it is controlled by the opposite device.
HT0_Lo_Rstn	Bus Rstn	HyperTransport bus Rstn signal,
		When HT0_Lo_Mode is 1, it is controlled by HT0_Lo;
		When HT0_Lo_Mode is 0, it is controlled by the opposite device.
HT0_Lo_Ldt_Stopn	Bus Ldt_Stopn	HyperTransport bus Ldt_Stopn signal,
		When HT0_Lo_Mode is 1, it is controlled by HT0_Lo;
		When HT0_Lo_Mode is 0, it is controlled by the opposite device.
HT0_Lo_Ldt_Reqn	Bus Ldt_Reqn	HyperTransport bus Ldt_Reqn signal,
HT0_Hi_mode	Master mode	1: Set HT0_Hi to master mode, in this mode, bus control signals, etc.
		Driven by HT0_Hi, these control signals include HT0_Hi_Powerok,
		HT0_Hi_Rstn, HT0_Hi_Ldt_Stopn. In this mode, these controls
		The control signal can also be bidirectionally driven. At the same time this pin determines (negative) registration
		The initial value of the device "Act as Slave", when this register is 0,
		The Bridge bit in the packet on the HyperTransport bus is 1, otherwise it is 0.
		In addition, when this register is 0, if the HyperTransport bus
		When the requested address does not hit the receiving window of the controller, it will be regarded as P2P.
		Seek to send back to the bus again, if this register is 1, there is no hit, then make
0.4		

94

Page 115

Loongson 3A4000 processor register user manual

Respond to bad requests.

0: Set HT0_Hi to slave mode, in this mode, bus control signals, etc.

Driven by the counterpart device, these control signals include HT0_Hi_Powerok, HT0_Hi_Rstn, HT0_Hi_Ldt_Stopn. In this mode, these controls

		Loongson 3A4000 processor register user manual
		The control signal is driven by the other device. If it is not driven correctly, the Does not work correctly.
HT0_Hi_Powerok	Bus Powerok	HyperTransport bus Powerok signal,
		When HT0_Lo_Mode is 1, it is controlled by HT0_Hi;
		When HT0_Lo_Mode is 0, it is controlled by the opposite device.
		When HT0_8x2 is 1, control the upper 8-bit bus;
		When HT0_8x2 is 0, it is invalid.
HT0_Hi_Rstn	Bus Rstn	HyperTransport bus Rstn signal,
		When HT0_Lo_Mode is 1, it is controlled by HT0_Hi;
		When HT0_Lo_Mode is 0, it is controlled by the opposite device.
		When HT0_8x2 is 1, control the upper 8-bit bus;
		When HT0_8x2 is 0, it is invalid.
HT0_Hi_Ldt_Stopn	Bus Ldt_Stopn	HyperTransport bus Ldt_Stopn signal,
		When HT0_Lo_Mode is 1, it is controlled by HT0_Hi;
		When HT0_Lo_Mode is 0, it is controlled by the opposite device.
		When HT0_8x2 is 1, control the upper 8-bit bus;
		When HT0_8x2 is 0, it is invalid.
HT0_Hi_Ldt_Reqn	Bus Ldt_Reqn	HyperTransport bus Ldt_Reqn signal,
		When HT0_8x2 is 1, control the upper 8-bit bus;
		When HT0_8x2 is 0, it is invalid.
HT0_Rx_CLKp [1: 0]	CLK [1:0]	HyperTransport bus CLK signal
HT0_Rx_CLKn [1: 0]		When HT0_8x2 is 1, CLK [1] is controlled by HT0_Hi
HT0_Tx_CLKp [1:0]		CLK [0] is controlled by HT0_Lo
HT0_Tx_CLKp [1:0]		When HT0_8x2 is 0, CLK [1: 0] is controlled by HT0_Lo
HT0_Rx_CTLp [1:0]	CTL [1:0]	HyperTransport bus CTL signal
HT0_Rx_CTLn [1:0]		When HT0_8x2 is 1, CTL [1] is controlled by HT0_Hi
HT0_Tx_CTLp [1: 0]		CTL [0] is controlled by HT0_Lo
HT0_Tx_CTLn [1: 0]		When HT0_8x2 is 0, CTL [1] is invalid
		CTL [0] is controlled by HT0_Lo
HT0_Rx_CADp [15: 0]	CAD [15: 0]	HyperTransport bus CAD signal
HT0_Rx_CADn [15: 0]		When HT0_8x2 is 1, CAD [15: 8] is controlled by HT0_Hi
HT0_Tx_CADp [15: 0]		CAD [7: 0] is controlled by HT0_Lo
HT0_Tx_CADn [15: 0]		When HT0_8x2 is 0, CAD [15: 0] is controlled by HT0_Lo

The initialization of HyperTransport starts automatically after each reset is completed, and the HyperTransport bus after a cold start

It will automatically work at the lowest frequency (200MHz) and the smallest width (8bit), and try to initiate a bus initialization handshake. initialization

Whether it is in the completed state can be read from the register "Init Complete" (see Section 14.5.2). After initialization,

The width of the bus can be read from the registers "Link Width Out" and "Link Width In" (see Section 14.5.2).

95

Page 116

Loongson 3A4000 processor register user manual

After initialization, the user can rewrite the registers "Link Width Out", "Link Width In" and "Link Freq ", at the same time, you need to configure the corresponding register of the other device. After the configuration is completed, you need to warm reset the bus or pass The "HT_Ldt_Stopn" signal performs a reinitialization operation so that the rewritten value of the register takes effect. Reinitialize After completion, the HyperTransport bus will work at the new frequency and width. It should be noted that HyperTransport The configuration of the device at the end needs to be one-to-one correspondence, otherwise the HyperTransport interface will not work properly.

14.2 HyperTransport protocol support

Godson 3A4000's HyperTransport bus supports most commands in the 1.03 / 3.0 protocol, and is

Some extended instructions have been added to the extended consistency protocol that supports multi-chip interconnects. In the above two modes,

The commands that the HyperTransport receiver can receive are shown in the following table. It should be noted that HyperTransport is not supported

Table 14- 2 Commands that the HyperTransport receiver can receive

	Table 14-2 Commands that the Hyper Hansport receiver can receive				
coding	aisle	command	Standard mode	Extension (consistency)	
000000	-	NOP	Empty package or flow con	trol	
000001	NPC	FLUSH	No operation		
x01xxx	NPC	Write	bit 5: 0-Nonposted	bit 5: Must be 1, POSTED	
	or		1-Posted		
	PC		bit 2: 0 – Byte	bit 2: 0 – Byte	
			1 –	1 – Doubleword	
			Doubleword	bit 1: Don't Care	
			bit 1: Don't Care	bit 0: must be 1	
			bit 0: Don't Care		
01xxxx	NPC	Read	bit 3: Don't Care	bit 3: Don't Care	
			bit 2: 0 – Byte	bit 2: 0 – Byte	
			1 –	1 – Doubleword	
			Doubleword	bit 1: Don't Care	
			bit 1: Don't Care	bit 0: must be 1	
			bit 0: Don't Care		
110000	R	RdRespons	Read operation returns		
		e			
110011	R	TgtDone	Write operation returns		
110100	PC	WrCoherent		Write command extension	
110101	PC	WrAddr		Write address extension	
111000	R	RespCohere		Read response extension	
		nt		*	
111001	NPC	RdCoherent		Read command extension	
111010	PC	Broadcast	No operation		
111011	NPC	RdAddr		Read address extension	
111100	PC	FENCE	Guaranteed order relationsh	nip	
111111	-	Sync / Error	Sync / Error	*	
		-	-		

For the sending end, the commands sent out in the two modes are shown in the following table.

Table 14- 3 Commands to be sent out in two modes

96

Page 117

Loongson 3A4000 processor register user manual

coding	aisle	command	Standard mode	Extension (consistency)
000000	-	NOP	Empty package or flow control	
	NPC		bit 5: 0-Nonposted 1-Posted	bit 5: Must be 1, POSTED
x01x0x	or	Write	bit 2: 0 – Byte	bit 2: 0 – Byte
	PC		1 – Doubleword bit 0: must be 0	1 – Doubleword bit 0: must be 1
010x0x	NPC	Read	bit 2: 0 – Byte 1 – Doubleword	bit 2: 0 – Byte 1 – Doubleword
010X0X	NPC	Reau	bit 0: Don't Care	bit 0: must be 1
110000	R	RdResponse	Read operation returns	
110011	R	TgtDone	Write operation returns	
110100	PC	WrCoherent		Write command extension
110101	PC	WrAddr		Write address extension
111000	R	RespCoherent		Read response extension
111001	NPC	RdCoherent		Read command extension
111011	NPC	RdAddr		Read address extension
111111	-	Sync / Error	Will only forward	

14.3 HyperTransport interrupt support

The HyperTransport controller provides 256 interrupt vectors, which can support Fix, Arbiter and other types of interrupts.

However, there is no support for hardware automatic EOI. For the above two supported types of interrupts, the controller

Will be automatically written into the interrupt register, and interrupt the system interrupt controller according to the setting of the interrupt mask register

know. For the specific interrupt control, please refer to the description of the interrupt control register in Section 14.5.7.

14.3.1 PIC Interrupt

The controller provides special support for PIC interrupts to speed up this type of interrupt processing.

A typical PIC interrupt is completed by the following steps: ① The PIC controller sends a PIC interrupt request to the system; ② The system

Send the interrupt vector query to the PIC controller; ③ The PIC controller sends the interrupt vector number to the system; ④ The system clears the PIC controller

The corresponding interrupt on the controller. Only after the above four steps are completed, the PIC controller will issue the next interrupt to the system. for

Loongson 3A4000 HyperTransport controller will automatically process the first 3 steps and write the PIC interrupt vector

Corresponding position in 256 interrupt vectors. After processing the interrupt, the software system needs to perform step 4 processing, namely

Issue a clear interrupt to the PIC controller. After that, the process of the next interrupt is started.

14.3.2 Local interrupt handling

In the traditional interrupt processing mode, all interrupts are stored by the interrupt vector inside the HT controller, and then passed

The interrupt line of the HT controller is connected to the interrupt router on the chip for distribution. In this case, the HT interrupt is only limited by 97

Page 118

Loongson 3A4000 processor register user manual

There are several connection methods to interrupt the CPU core, and can not be distributed across slices. The usage scenarios are relatively limited.

In this HT interrupt mode, when performing interrupt processing, the interrupt router on the chip is transparent to the software, and the kernel directly

Go to the interrupt vector of the HT controller (generally 0x90000efdfb000080), and then process it bit by bit,

At this time, no matter how the routing mode is configured, all interrupts on the HT controller are directly read.

14.3.3 Extended interrupt handling

The extended IO interrupt implemented in 3A4000 can greatly increase the flexibility of interrupt distribution and interrupt processing.

In the interrupt extension mode of HT, other interrupts than PIC interrupts are directly written to the chip interrupt router.

On the added extended interrupt register, routing or distribution is performed according to the related configuration of the extended interrupt register.

After using the extended IO interrupt, when performing interrupt processing, the HT controller is transparent to the software, and the core goes directly to the extended IO

The status register (configuration space 0x1800) reads the interrupt status for processing.

When the power is off and processed, no interference will occur between different cores.

The interrupt forwarding is performed on the HT controller by enabling the external interrupt conversion configuration register. As described in 14.5.34,

Software needs to set HT_int_trans to the target address of the extended IO interrupt trigger register. This register in 3A4000

The address is 0x1fe01140, or 0x10000_00001140.

Before the kernel uses extended interrupt processing, it is necessary to enable the corresponding bit in the "other function setting register". The register The base address is 0x1fe00000 and the offset address is 0x0420.

Table 14- 4 Other function setting registers

Bit field	Field name	access	Reset value	e description
51:48 EXT_INT_en		RW	0x0	Extended IO interrupt enable

14.4 HyperTransport address window

14.4.1 HyperTransport space

In the Loongson 3A4000 processor, the default address windows of the four HyperTransport interfaces are as follows:

Table 14- 5 Address window distribution of the default 4 HyperTransport interfaces

Base address	End address	size	definition
0x0A00_0000_0000	0x0AFF_FFFF_FFFF	1 Tbytes	HT0_LO window
0x0B00_0000_0000	0x0BFF_FFFF_FFFF	1 Tbytes	HT0_HI window
0x0E00_0000_0000	0x0EFF_FFFF_FFFF	1 Tbytes	HT1_LO window
0x0F00_0000_0000	0x0FFF_FFFF_FFFF	1 Tbytes	HT1_HI window

Loongson 3A4000 processor register user manual

By default (not configured separately for the system address window), the software

HyperTransport interface to access, in addition, the software can also configure the address window on the crossbar

Implement access to it with other address spaces (see section 3.3 for details). 40 inside each HyperTransport interface

The address window distribution of the bit address space is shown in the following table.

Table 14- 6 Address window distribution inside the HyperTransport int	terface of Loongson 3 processor
---	---------------------------------

Base address	End address	size	definition
0x00_0000_0000	0xFC_FFFF_FFFF	1012 Gbytes	MEM space
0xFD_0000_0000	0xFD_F7FF_FFFF	3968 Mbytes	Keep
0xFD_F800_0000	0xFD_F8FF_FFFF	16 Mbytes	Interrupt
0xFD_F900_0000	0xFD_F90F_FFFF	1 Mbyte	PIC interrupt response
0xFD_F910_0000	0xFD_F91F_FFFF	1 Mbyte	system message
0xFD_F920_0000	0xFD_FAFF_FFFF	30 Mbytes	Keep
0xFD_FB00_0000	0xFD_FBFF_FFFF	16 Mbytes	HT controller configuration space
0xFD_FC00_0000	0xFD_FDFF_FFFF	32 Mbytes	I / O space
0xFD_FE00_0000	0xFD_FFFF_FFFF	32 Mbytes	HT bus configuration space
0xFE_0000_0000	0xFF_FFFF_FFFF	8 Gbytes	Keep

14.4.2 Internal window configuration of HyperTransport controller

The HyperTransport interface of Loongson 3A4000 processor provides a variety of rich address windows for users.

The functions and functions of these address windows are described in the following table.

Table 14-7 Address window provided in HyperTransport interface of Loongson 3A4000 processor

Address window Number of windowsept bus		effect	Remarks
Receive window (See window configaration 14.5.10)	HyperTransport	Determine whether to r HyperTransport Visits sent on the bus ask.	When in main bridge mode (ie configuration register Act_as_slave is 0), only falling Access in these address windows will be included The local bus responds, other visits will be effinit it is P2P access and send it back HyperTransport bus; in the design When in standby mode (that is, in the configuration register act_as_slave is 1), only falls on Access in these address windows will be internal Received and processed by the bus, other access will be Will return an error according to the agreement.
Post window (See window configuration Section 14.5.12)	Internal bus		External write visits that fall in these address spaces information will be as Post Write. reflect Write: HyperTransport protocol In this kind of write access does not need to wait for writing In response, that is, the controller sends to the bus After this write access will enter the processor Row write access complete response.

99

Page 120

Loongson 3A4000 processor register user manual

When the processor cores are executed out of order, the total Issue some guess read access or fetch Access, this access for some IO space Determine whether to röteisworong. By default, this

(See window configuration 14.5.13)	Internal bus	Department 's Cache a Fetch access.	aceAessess to the HT controller will return directly without Visit the HyperTransport bus ask. Through these windows you can enable This type of access to the HyperTransport bus ask.
Uncache window (See window config4ration 14.5.14)	HyperTransport	Determine whether to HyperTransport Access operations on t For internal Uncache access	IO inside Loongson 3A4000 processor DMA access, by default will be used as Cache access is judged by SCache Whether the break hits, thereby maintaining its IO consistency hSbasal information. And through the configuration of these windows, You can make access hits in these windows to Uncache way to directly access memory, Without maintaining its IO compliance letter through hardware interest.

14.5 Configuration Register

The configuration register module is mainly used to control the configuration register access from the AXI SLAVE terminal or the HT RECEIVER terminal.

Ask for requests, perform external interrupt processing, and save a large number of software-visible configurations for controlling various working modes of the system register.

First, the access and storage of configuration registers used to control various behaviors of the HT controller are in this module

The access offset address is 0xFD_FB00_0000 to 0xFD_FBFF_FFFF on the HT controller side. All software in the HT controller

	0x00	Device ID	Vendor ID	
	0x04	Status	Command	
	0x08	Class Code	Revision ID	
	0x0c	BIST Header Type	Latency Timer Cache Line Size	
	0x10			
	0x14			
Enable	0x18			
Enable	0x1c			
	0x20			
	0x24			
	0x28	Card	bus CIS Pointer	
	0x2c	Subsystem ID	Subsystem Vendor ID	
	0x30	Expansion	ROM Enable Address	
	0x34	Reserved	Capabilities Pointer	

The visible registers of the software are shown in the following table:

100

Page 121

	0.20			D			
	0x38			Re	served		
	0x3c	Bridge	Bridge Control		terrupt Pin	Interrupt Line	
	0x40		Command		apabilities Pointer	Capability ID	
	0x44	Link (Config 0		Link Control 0		
	0x48	Link Config 1			Link Control 1		
G . A	0x4C	Linkl	FreqCap0		ink Error0 / Link Freq	Revision ID	
Cap 0				0			
PRI	PRI 0x50	Linkl	LinkFreqCap1		ink Error1 / Link Freq	Feature	
		Linu requipt		1		. culure	
	0x54	Error	Handling	Er	numeration		
	0,0,0,4	Enor	landing	Scratchpad			
	0x58	Reserved		М	lem Limit Upper	Mem Enable Upper	
C 1	0x60	Capability Type	Reserved	Ca	apability Pointer	Capabiliter ID	
Cap 1	0x64	Status 1	Control 1	St	atus 0	Control 0	

Retry	0x68	Retry Count 1 Retry Count 0			try Count 0			
CAP 3	0x6C	Capability Type	Revision ID Capability Pointer Capabilit		Capabiliter ID			
	0x70	Capability Type	Index	Capability Pointer	Capabiliter ID			
CAP 4	0x74			Dataport				
Interrupt	0x78			IntrInfo [31: 0]				
	0x7C			IntrInfo [63:32]				
	0x80			INT Vector [31: 0]				
	0x84			INT Vector [63:32]				
	0x88			INT Vector [95:64]				
	0x8C	INT Vector [127: 96]						
	0x90	INT Vector [159: 128]						
	0x94	INT Vector [191: 160]						
	0x98	INT Vector [223: 192]						
Int Vector	0x9C	INT Vector [255: 224]						
int vector	0xA0	INT Enable [31: 0]						
	0xA4	INT Enable [63:32]						
	0xA8			INT Enable [95:64]				
	0xAC			INT Enable [127: 96]				
	0xB0			INT Enable [159: 128]				
	0xB4			INT Enable [191: 160]				
	0xB8	INT Enable [223: 192]						
	0xBC			INT Enable [255: 224]				
CAP 5	0xC0	Capability Type	Cap Enum / Ind	ex Capability Pointer	Capabiliter ID			

101

Page 122

Gen3	0xC4	Global Link Training
	0xC8	Transmitter Configuration 0
	0xCC	Receiver Configuration 0
	0xD0	Link Training 0
	0xD4	Frequency Extension
	0xD8	Transmitter Configuration 1
	0xDC	Receiver Configuration 1
	0xE0	Link Training 1
	0xE4	BIST Control

	0x100	Device ID		Vendor ID		
	0x104	Status		Command		
	0x108		Class Code		Revision ID	
	0x10c	BIST H	eader Type	Latency Timer	Cache Line Size	
	0x110					
	0x114					
	0x118 0x11c					
Enable						
Enable	0x120					
	0x124					
	0x128		Cardb	us CIS Pointer		
	0x12c	Subsystem ID		Subsystem Ve	endor ID	
	0x130		Expansion F	sion ROM Enable Address		
	0x134	Re	eserved	Capabilities	Pointer	
	0x138			Reserved		
	0x13c	Bridge Control	Interrupt Pin	n Interrupt Li	ne	

	0x140	HT RX Enable 0
	0x144	HT RX Mask 0
	0x148	HT RX Enable 1
	0x14C	HT RX Mask 1
Receive	0x150	HT RX Enable 2
Windows	0x154	HT RX Mask 2
	0x158	HT RX Enable 3
	0x15C	HT RX Mask 3
	0x160	HT RX Enable 4
	0x164	HT RX Mask 4
Header Trans	0x168	HT RX Header Trans

102

Page 123

	0x16C	HT RX EXT Header Trans
	0x170	HT TX Post Enable 0
Post	0x174	HT TX Post Mask 0
Windows	0x178	HT TX Post Enable 1
	0x17C	HT TX Post Mask 1
	0x180	HT TX Prefetchable Enable 0
Prefetchable	0x184	HT TX Prefetchable Mask 0
Windows	0x188	HT TX Prefetchable Enable 1
	0x18C	HT TX Prefetchable Mask 1
	0x190	HT RX Uncache Enable 0
	0x194	HT RX Uncache Mask 0
	0x198	HT RX Uncache Enable 1
Uncache	0x19C	HT RX Uncache Mask 1
Windows	0x1A0	HT RX Uncache Enable 2
	0x1A4	HT RX Uncache Mask 2
	0x1A8	HT RX Uncache Enable 3
	0x1AC	HT RX Uncache Mask 3
	0x1B0	HT RX P2P Enable 0
P2P	0x1B4	HT RX P2P Mask 0
Windows	0x1B8	HT RX P2P Enable 1
	0x1BC	HT RX P2P Mask 1
	0x1C0	APP Configuration 0
APP	0x1C4	APP Configuration 1
Config	0x1C8	RX Bus Value
	0x1CC	PHY status
	0x1D0	TX Buffer 0
Buffer	0x1D4	TX Buffer 1 / Rx buffer hi
Buffer	0x1D8	TX Buffer turning
	0x1DC	RX Buffer lo
	0x1E0	Training 0 Counter Short
	0x1E4	Training 0 Counter Long
Training	0x1E8	Training 1 Counter
	0x1EC	Training 2 Counter
	0x1F0	Training 3 Counter
PLL	0x1F4	PLL Configuration
	0x1F8	IO Configuration
PHY	0x1FC	PHY Configuration

Loongson 3A4000 processor register user manual

	0x240	HT3 DEBUG 0
	0x244	HT3 DEBUG 1
	0x248	HT3 DEBUG 2
DEBUG	0x24C	HT3 DEBUG 3
	0x250	HT3 DEBUG 4
	0x254	HT3 DEBUG 5
	0x258	HT3 DEBUG 6
	0x260	HT TX POST ID WIN0
	0x264	HT TX POST ID WIN1
POST ID WINDOWS	0x268	HT TX POST ID WIN2
	0x26C	HT TX POST ID WIN3
POST ID WINDOWS	0x270	INT TRANS WIN lo
	0x274	INT TRANS WIN hi

The specific meaning of each register is shown in the following section:

14.5.1 Bridge Control

Offset: Reset val name:	ue:	0x3C 0x00000000 Bus Reset Cor	ntrol			
			Table 14	4- 8 Bus Res	et Contr	ol Register Definition
Bit field	Bit field	name	Bit wid	th reset value	Visit de	escription
31:23	Reserve	d	9	0x0		Keep
twenty tw	voReset		1	0x0	R / W	Bus reset control: 0-> 1: Set HT_RSTn to 0, reset the bus 1-> 0: HT_RSTn is set to 1, the bus is reset
21:0	Reserve	d	twenty	tvØxx0		Keep

14.5.2 Capability Registers

Offset:	0x40
Reset value:	0x20010008
name:	Command, Capabilities Pointer, Capability ID

Table 14-9 Command, Capabilities Pointer, Capability ID register definition

104

4/29/2020

Loongson 3A4000 processor register user manual

			L	loongson a	5A4000 p	processor register user manual
	31:29	Slave / Pri	3	0x0	R	Command format is HOST / Sec
	28:26	Reserved	2	0x0	R	Keep
	25:21	Unit Count	5	0x0	$\mathbf{R} \ / \ \mathbf{W}$	Provided to the software for recording the current number of units
						In HOST mode: can be used to record the number of IDs used
20:16	20:16	Unit ID	5	0x0		In SLAVE mode: record your own Unit ID
	20.10		0			HOST / SLAVE mode is sent by act_as_slave
						Register control
	15:08	Capabilities Pointer	8	0x60	R	Next Cap register offset address
	7: 0	Capability ID	8	0x08	R	HyperTransport capability ID

Offset:	0x44
Reset value:	0x00112000

name: Link Config, Link Control

Table 14-10 Link Config, Link Control register definition

Bit field	Bit field name	Bit width	Reset value	access	description
					Sender width
30:28					The value after cold reset is the maximum width of the current connection
	Link Width Out	3	0x0	R/W	Degrees, the value written to this register will be
	Link width Out	5	0.00	K / W	Effective after reset or HT Disconnect
					000: 8-bit mode
					001: 16-bit mode
27	Reserved	1	0x0		Keep
					Receiver width
26:24	Link Width In	3	0x0	R / W	The value after cold reset is the maximum width of the current connection
20.24		5			Degrees, the value written to this register will be
					Effective after reset or HT Disconnect
twenty three	ee Dw Fc out	1	0x0	R	The sender does not support double-word flow control
22:20	Max Link Width out	3	0x1	R	The maximum width of the sending end of the HT bus: 16bits
19	Dw Fc In	1	0x0	R	The receiver does not support double-word flow control
18:16	Max Link Width In	3	0x1	R	Maximum width of HT bus receiving end: 16bits
15:14	Reserved	2	0x0		Keep
	LDTSTOP #				When the HT bus enters the HT Disconnect state
13	LD1310F#	1	01	R / W	, Whether to turn off HT PHY
15	Tristate Enable	1	0x1	K / W	1: Close
					0: do not close
12:10	Reserved	3	0x0		Keep

105

Page 126

Loongson 3A4000 processor register user manual

9	CRC Error (hi)	1	0x0	$\mathbf{R} \ / \ \mathbf{W}$	CRC error in the upper 8 bits
8	CRC Error (lo)	1	0x0	\mathbf{R} / \mathbf{W}	CRC error in the lower 8 bits
					HT PHY shutdown control
					When in 16-bit bus operating mode
7	Trans off	1	0x0	$\mathbf{R} \ / \ \mathbf{W}$	1: Turn off high / low 8-bit HT PHY
					0: enable low 8-bit HT PHY, high 8-bit HT
					PHY is controlled by bit 0
6	End of Chain	0	0x0	R	HT bus end
5	Init Complete	1	0x0	R	Whether the HT bus initialization is completed
4	Link Fail	1	0x0	R	Indicates connection failure
3:2	Reserved	2	0x0		Keep
1	CRC Flood Enable	1	0x0	$\mathbf{R} \ / \ \mathbf{W}$	Whether to flood the HT bus when a CRC error occurs
					When using the 16-bit HT bus to run the 8-bit protocol,
					High 8-bit PHV shutdown control

High 8-bit PHY shutdown control

0 Trans off (hi)

1

0x0

R / W

1: Turn off the upper 8-bit HT PHY

0: enable high 8-bit HT PHY

Offset:	0x4C				
Reset value	: 0x80250023				
name:		Link Freq, Lii	nk Error, Link	Freq Cap	
,	Table 14-11 Definition	on of Revision	ID, Link Freq	l, Link Err	or, Link Freq Cap register
Bit field	Bit field name	Bit width	Reset value	access	description
					Supported HT bus frequency, according to the design of external PLL
					Settings produce different values (when using software to configure the F
31:16	Link Freq Cap	16	0x0000	R	(0x1F4), this bit is meaningless)
51.10	Link Fieq Cap	10	0,0000	ĸ	{3.2G, 2.6G, 2.4G, 2.2G, 2.0G, 1.8G, 1.6G,
					1.4G, 1.2G, 1.0G, 800M, 600M, 500M, 400
					M, 300M, 200M}
15:14	Reserved	2	0x0		Keep
13	Over Flow Error	1	0x0	R	HT bus packet overflow
12	Protocol Error	1	0x0	R / W	Protocol error, refers to unrecognized received on the HT bus
12	FIOLOCOI EITOI	1	0X0	K/W	command
					HT bus operating frequency, after writing the value of this register
					Will be the next warm reset or HT Disconnect
11:8	Link Freq	4	0x0	R / W	After the entry into force, the set value and Link Freq Cap bit
11. 0	Link Fieq	4	0.00	K/W	Corresponding
					(When using software to configure the PLL (0x1F4), the
					Bit meaningless)
	Revision ID		0x60		

106

Page 127

Loongson 3A4000 processor register user manual

Offset:		0x50						
Reset val	ue:	0x00000002						
name:		Feature Capability						
			Table 14-12 Feature Capability register definition					
Bit field Bit field 1		name Bit width reset value			Visit d	escription		
31: 9	Reserved		twenty the			Keep		
8	Extended Register 1			0x0	R	No		
7:4	7:4 Reserved		3	0x0		Keep		
3	Extende	d CTL Time 1		0x0	R	No need		

3	Extended CTL Time 1		0x0	R	No need
2	CRC Test Mode	1	0x0	R	not support
1	LDTSTOP #	1	0x1	R	Support LDTSTOP #
0	Isochronous Mode 1		0x0	R	not support

14.5.3 Error Retry Control Register

Used to enable error retransmission in HyerTransport 3.0 mode, configure the maximum number of Short Retry, display

Whether the Retry counter rolls over.					
Offset:	0x64				
Reset value:	0x00000000				
name:	Error Retry Control Register				

-13 Error Retry Control Register	
----------------------------------	--

			-	-	
Bit field	Bit field name	Bit width	Reset value	access	description
31:10	Reserved	twenty two	0x0	R	Keep
9	Retry Count Rollover	1	0x0	R	Retry counter count rollover
8	Reserved	1	0x0	R	Keep
7: 6	Short Retry Attempts	2	0x0	\mathbf{R} / \mathbf{W}	Maximum number of Short Retry allowed
5:1	Reserved	5	0x0	R	
0	Link Retry Enable	1	0x0	R / W	Error reconnect function enable control

14.5.4 Retry Count Register

Used for error retransmission count in HyerTransport 3.0 mode.

107

Page 128

Loongson 3A4000 processor register user manual

Offset:		0x68						
Reset val	ue:	0x0000000						
name:		Retry Count register						
			Т	able 14-14 R	etry Co	unt Register		
Bit field Bit field name		name	Bit wid	th reset value	Visit de	escription		
31:16 Reserved		16	0x0	R	Keep			
15:0 Retry Co		ount	16	0x0	R	Retry count		

14.5.5 Revision ID register

It is used to configure the controller version and configure it to a new version number, which takes effect through Warm Reset.

Offset:	0x6C
Reset value:	0x00200000
name:	RevisionID register

Table 14-15 Revision ID Register

Bit field	Bit field name	Bit wid	th reset value	Visit de	escription
31:24	Reserved	8	0x0	R	Keep
23:16	Revision ID	8	0x20	R / W	Revision ID control register 0x20: HyperTransport 1.00 0x60: HyperTransport 3.00
15:0	Reserved	16	0x0	R	Keep

14.5.6 Interrupt Discovery & Configuration

Offset:	0x70
Reset value:	0x80000008
name:	Interrupt Capability

Table 14- 16 Interrupt Capability Register Definition

Bit field	Bit field name	Bit width reset value		Visit de	scription
31:24	Capabilities Pointer 8		0x80	R	Interrupt discovery and configuration block
23:16	Index	8	0x0	R / W R	lead register offset address
15:8	Capabilities Pointer 8		0x0	R	Capabilities Pointer
7: 0	Capability ID	8	0x08	R	Hypertransport Capablity ID

108

Page 129

Loongson 3A4000 processor register user manual

Offset: Reset val name:	lue:	0x74 0x00000000 Dataport				
nume.		Dumport				
			Т	able 14- 17 E	Dataport	register definition
Bit field	Bit fiel	d name	Bit wi	dth reset value	Visit d	escription
31:0	Datapo	rt	32	0x0	R / W	When the previous register Index is 0x10, this register is read and written
						The result is the 0xa8 register, otherwise 0xac
Offset:		0x78				
Reset val	lue:	0xF8000000				
name:		IntrInfo [31: 0	0]			
			Tab	le 14- 18 Intrl	nfo reg	ister definition (1)
Bit field	Bit fiel	d norma	Ditwi	dth reset value	Vioit d	againtian
31:24	IntrInfo	o [31:24]	8	0xF8	R	Keep
23: 2	IntrInfo	[23:2]	twenty	/ tv0ac0	R / W]	IntrInfo [23: 2], when the PIC interrupt is issued, the value of IntrInfo
						Used to represent interrupt vector
1:0	Reserve	ed	2	0x0	R	Keep
Offset:		0x7c				
Reset val	lue:	0x00000000				
name:		IntrInfo [63:3	2]			
			Tab	le 14- 19 Intrl	nfo reg	ister definition (2)
Bit field	Bit fiel	d name	Bit wi	dth reset value	Visit d	escription
31:0	IntrInfo	63:32]	32	0x0	R	Keep

14.5.7 Interrupt Vector Register

A total of 256 interrupt vector registers, including the direct mapping of Fix, Arbiter and PIC interrupts on the HT bus Up to this 256 interrupt vectors, other interrupts such as SMI, NMI, INIT, INTA, INTB, INTC, INTD can To map to any 8-bit interrupt vector through [28:24] of register 0x50, the mapping sequence is {INTD, INTC, INTB, INTA, 1'b0, INIT, NMI, SMI}. At this time, the corresponding value of the interrupt vector is {Interrupt Index, Internal vector [2: 0]}.

By default, 256-bit interrupts can be distributed to 4-bit interrupt lines. When not using high 8-bit HT controller interrupt 109

, You can also distribute 256-bit interrupt to 8-bit interrupt line by setting ht_int_8bit.

The 256 interrupt vectors are mapped to different interrupt lines according to the different register configuration of the interrupt routing mode selection, with

The body mapping method is:

Number of interrupstops0			1	2	3	4	5	6	7
4	1	[X]	[X+64]	[X+128]	[X + 192]	-	-	-	-
X = [63: 0]	2	[2X] [2	2X + 1]	[2X+128] [2X + 129]-		-	-	-
	4	[4X] [4	4X + 1]	[4X+2]	[4X+3]	-	-	-	-
8	1	[X]	[Y]	[X+64]	[Y+64]	[X+128]	[Y + 128]	[X + 192]	[Y+192]
X = [31: 0]	2	[2X] [2	2Y]	[2X+1]	[2Y+1]	[2X + 128]	[2Y + 128] [2X	+ 129] [2Y + 1	29]
Y = [63:32]	4	[4X] [4	4X + 32] [4X	+ 1]	[4X + 33]	[4X + 2]	[4X + 34]	[4X+3]	[4X + 35]

Taking the 4-bit interrupt line as an example, the different mapping methods are as follows.

ht int stripe 1:

[0,1,2,3 63] Corresponding to interrupt line 0 / HT HI Corresponding to interrupt line 4
[64,65,66,67 ... 127] Corresponding to interrupt line 1 / HT HI Corresponding to interrupt line 5
[128,129,130,131 ... 191] Corresponding to interrupt line 2 / HT HI Corresponding to interrupt line 6
[192,193,194,195 ... 255] corresponds to interrupt line 3 / HT HI corresponds to interrupt line 7

ht_int_stripe_2:

[0,2,4,6 126] Corresponding to interrupt line 0 / HT HI Corresponding to interrupt line 4
[1,3,5,7 ... 127] corresponds to interrupt line 1 / HT HI corresponds to interrupt line 5
[128,130,132,134 ... 254] Corresponding to interrupt line 2 / HT HI Corresponding to interrupt line 6
[129,131,133,135 ... 255] corresponds to interrupt line 3 / HT HI corresponds to interrupt line 7

ht_int_stripe_4:

[0,4,8,12 ... 252] corresponds to interrupt line 0 / HT HI corresponds to interrupt line 4 [1,5,9,13 ... 253] corresponds to interrupt line 1 / HT HI corresponds to interrupt line 5 [2,6,10,14 ... 254] corresponds to interrupt line 2 / HT HI corresponds to interrupt line 6 [3,7,11,15 ... 255] corresponds to interrupt line 3 / HT HI corresponds to interrupt line 7

110

Page 131

Loongson 3A4000 processor register user manual

The following description of the interrupt vector corresponds to ht_int_stripe_1, and the other two methods can be obtained from the above description.

Offset:		0x80							
Reset val	ue:	0x00000000							
name:		HT bus interrupt vector register [31: 0]							
	Table 14- 20 HT Bus Interrupt Vector Register Definition (1)								
Bit field	Bit field	name	Bit wid	th reset value	Visit de	escription			
31:0	Interrupt	_case	32	0x0	R / W	HT bus interrupt vector register [31: 0],			
	[31:0]					Corresponding to interrupt line 0 / HT HI Corresponding to interrupt line 4 $$			

Offset:		0x84								
Reset val	ue:	0x00000000								
name:		HT Bus Interr	upt Vec	tor Register [[63:32]					
Bit field 31: 0	Bit field Interrup [63:32]	name		21 HT Bus In Ith reset value 0x0		Vector Register Definition (2) escription HT bus interrupt vector register [63:32], Corresponding to interrupt line 0 / HT HI Corresponding to interrupt line 4				
Offset:		0x88								
Reset val	ue:	0x00000000								
name:		HT Bus Intern	upt Vec	tor Register [95:64]					
	Table 14- 22 HT Bus Interrupt Vector Register Definition (3)									
Bit field	Bit field Interrup			lth reset value		escription HT bus interrupt vector register [95:64],				
31:0	[95:64]		32 0x0		R / W	Corresponding to interrupt line 1 / HT HI Corresponding to interrupt line 5				
Offset: Reset val name:	ue:	0x8c 0x00000000 HT bus interr	upt vecto	or register [12	27: 96]					
		Ta	ble 14- 2	3 HT Bus In	terrupt V	Vector Register Definition (4)				
Bit field 31: 0	Bit field Interrup [127: 96	t_case	Bit wid	th reset value 0x0	Visit de R / W	escription HT bus interrupt vector register [127: 96], Corresponding to interrupt line 1 / HT HI Corresponding to interrupt line 5				
Offset:		0x90								
111										

Reset valu name:	ue:	0x00000000 HT bus interru	ipt vecto	or register [15	59: 128]				
		Tat	ole 14-3	1 HT bus inte	errupt ve	ector register definition (5)			
Bit field 31: 0	Bit field Interrup [159: 12	t_case	Bit wid	th reset value 0x0	Visit de R / W	escription HT bus interrupt vector register [159: 128], Corresponding to interrupt line 2 / HT HI Corresponding to interrupt line 6			
Offset:		0x94							
Reset value	ue:	0x00000000							
name:		HT Bus Interr	upt Vect	or Register [191: 16	0]			
	Table 14- 24 HT Bus Interrupt Vector Register Definition (6)								
Bit field	Bit field	name Bit width reset value		Visit de	escription				
31:0	Interrup	t_case	32 0x0		R/W	HT bus interrupt vector register [191: 160],			
	[191: 16	0]				Corresponding to interrupt line 2 / HT HI Corresponding to interrupt line 6			
Offset:		0x98							
Reset value	ue:	0x00000000							
name:		HT Bus Interr	upt Vect	or Register [223: 192	2]			
	Table 14- 25 HT bus interrupt vector register definition (7)								
Bit field	Bit field	name	Bit wid	th reset value	Visit de	A.			
31:0	Interrup	t_case	32	0x0	R / W	HT bus interrupt vector register [223: 192],			
	[223: 19	2]				Corresponding to interrupt line 3 / HT HI Corresponding to interrupt line 7			

Offset:		0x9c							
Reset value	ue:	0x0000000							
name:		HT Bus Interrupt Vector Register [255: 224]							
	Table 14- 26 HT bus interrupt vector register definition (8)								
Bit field	Bit field	name	Bit width reset value Visit			description			
31:0	Interrupt_case		32	0x0	R/W	HT bus interrupt vector register [255: 224],			
	[255: 22	4]				Corresponding to interrupt line 3 / HT HI Corresponding to interrupt line 7			

14.5.8 Interrupt enable register

A total of 256 interrupt enable registers correspond to the interrupt vector registers. Set to 1 to enable the corresponding interrupt, set to 0

It is an interrupt mask.

112

Page 133

Loongson 3A4000 processor register user manual

The 256 interrupt vectors are mapped to different interrupt lines according to the different register configuration of the interrupt routing mode selection, with

The body mapping method is:

ht_int_stripe_1:

[0,1,2,3 63] Corresponding to interrupt line 0 / HT HI Corresponding to interrupt line 4

[64,65,66,67 ... 127] Corresponding to interrupt line 1 / HT HI Corresponding to interrupt line 5

[128,129,130,131 ... 191] Corresponding to interrupt line 2 / HT HI Corresponding to interrupt line 6

[192,193,194,195 ... 255] corresponds to interrupt line 3 / HT HI corresponds to interrupt line 7

ht int stripe 2:

[0,2,4,6 126] Corresponding to interrupt line 0 / HT HI Corresponding to interrupt line 4

[1,3,5,7 ... 127] corresponds to interrupt line 1 / HT HI corresponds to interrupt line 5

[128,130,132,134 ... 254] Corresponding to interrupt line 2 / HT HI Corresponding to interrupt line 6

[129,131,133,135 ... 255] corresponds to interrupt line 3 / HT HI corresponds to interrupt line 7

ht_int_stripe_4:

[0,4,8,12 ... 252] corresponds to interrupt line 0 / HT HI corresponds to interrupt line 4

[1,5,9,13 ... 253] corresponds to interrupt line 1 / HT HI corresponds to interrupt line 5

[2,6,10,14 ... 254] corresponds to interrupt line 2 / HT HI corresponds to interrupt line 6

[3,7,11,15 ... 255] corresponds to interrupt line 3 / HT HI corresponds to interrupt line 7

The following description of the interrupt vector corresponds to ht_int_stripe_1, and the other two methods can be obtained from the above description.

Offset:		0xa0								
Reset value	ue:	: 0x0000000								
name:		HT bus interrupt enable register [31: 0]								
	Table 14- 27 Definition of HT Bus Interrupt Enable Register (1)									
Bit field	Bit field	name	Bit wid	th reset value	Visit de	scription				
31:0	Interrupt	_mask	32	0x0	R / W	HT bus interrupt enable register [31: 0],				
	[31:0]	31:0]				Corresponding to interrupt line 0 / HT HI Corresponding to interrupt line 4				

Offset:	0xa4
Reset value:	0x0000000
name:	HT bus interrupt enable register [63:32]
113	

Loongson 3A4000 processor register user manual

Table 14- 28 Definition of HT Bus Interrupt Enable Register (2)				
Bit field 31: 0	Bit field name Interrupt_mask [63:32]	Bit width reset v 32 0x0	value Visit de R/W	scription HT bus interrupt enable register [63:32], Corresponding to interrupt line 0 / HT HI Corresponding to interrupt line 4
Offset: Reset val name:		upt enable registe	er [95:64]	
Bit field 31: 0		ble 14- 29 Defini Bit widthReset 32 0x0		us Interrupt Enable Register (3) description HT bus interrupt enable register [95:64], Corresponding to interrupt line 1 / HT HI Corresponding to interrupt line 5
Offset:0xacReset value:0x00000000name:HT bus interrupt enable register [127: 96]				
Table 14- 30 HT Bus Interrupt Enable Register Definition (4)				
Bit field	d Bit field name	Bit widthReset	value access	description
31:0	Interrupt_mask [127: 96]	32 0x0	R / W	HT bus interrupt enable register [127: 96], Corresponding to interrupt line 1 / HT HI Corresponding to interrupt line 5
Offset: 0xb0 Reset value: 0x00000000 name: HT bus interrup		upt enable registe	er [159: 128]	
Table 14- 31 Definition of HT bus interrupt enable register (5)				
Bit field 31: 0	Bit field name Interrupt_mask [159: 128]	Bit width reset w 32 0x0	value Visit de R/W	scription HT bus interrupt enable register [159: 128], Corresponding to interrupt line 2 / HT HI Corresponding to interrupt line 6
Offset: Reset val name:	HT bus interr	upt enable registe ble 14- 32 Defini Bit width reset v	tion of HT B	us Interrupt Enable Register (6)

114

Loongson 3A4000 processor register user manual

Bit field 31: 0	Bit field Interrup [191: 16	t_mask	Bit wid	th reset value 0x0	Visit de R / W	HT bus interrupt enable register [191: 160], Corresponding to interrupt line 2 / HT HI Corresponding to interrupt line 6
Offset: Reset val name:	ue:	0xb8 0x00000000 HT bus intern Tal				nable register definition (7)
Bit field 31: 0	Bit field Interrup [223: 19	t_mask	Bit wid	th reset value 0x0	Visit de R / W	Scription HT bus interrupt enable register [223: 192], Corresponding to interrupt line 3 / HT HI Corresponding to interrupt line 7
Offset:		0xbc				
Reset val	ue:	0x00000000				
name:		HT bus interru	upt enabl	e register [2:	55: 224]	
	Table 14- 34 Definition of HT Bus Interrupt Enable Register (8)					
Bit field 31: 0	Bit field Interrup [255: 22	t_mask	Bit wid	th reset value 0x0	Visit de R / W	escription HT bus interrupt enable register [255: 224], Corresponding to interrupt line 3 / HT HI Corresponding to interrupt line 7

14.5.9 Link Train Register

HyperTransport 3.0 link initialization and link training control register.

Offset:	0xD0
Reset value:	0x00000070
name:	Link Train Register

Table 14- 35 Link Train Register

Bit field Bit field name		Bit width reset value access description					
31:23	Reserved		9	0x0	R	Keep	
22:21 Tra	22:21 Transmitter LS select 2 0x0 R / W		The sender is in the Disconnected or Inactive state Link status: 2'b00 LS1 2'b10 LS0 2'b10 LS2 2'b11 LS3				
14	Dsiable Throttling	Cmd	1	0x0	R / W	In HyperTransport 3.0 mode, any 4 by default Only one Non-info CMD can appear in consecutive DWS; 1'b0 Enable Cmd Throttling 1'b1 Disable Cmd Throttling	

115

Page 136

13:10	Reserved	4	0x0	R	Keep
8: 7	Receiver LS select	2	0x0	R / W	The receiver is in Disconnected or Inactive state Link status: 2'b00 LS1 2'b01 LS0 2'b10 LS2 2'b11 LS3
6: 4	Long Retry Count	3	0x7	\mathbf{R} / \mathbf{W}	Long Retry
3	Scrambling Enable	1	0x0	R / W	Whether to enable Scramble 0: Disable Scramble 1: enable Scramble
2	8B10B Enable	1	0x0	R / W	Whether to enable 8B10B 0: Disable 8B10B

1	AC	1	0x0	R	1: enable 8B10B Whether AC mode is detected 0: AC mode is not detected 1: AC mode detected
0	Reserved	1	0x0	R	Keep

14.5.10 Receive Address Window Configuration Register

The address window hit formula in the HT controller is as follows:

hit = (BASE & MASK) == (ADDR & MASK)

 $addr_out_trans = TRANS_EN? \ TRANS \mid ADDR \ \& \sim MASK: \ ADDR$

addr_out = Multi_node_en?

addr_out_trans [39:37], addr_out_trans [43:40], 3'b0, addr_out [36: 0]:

addr_out_trans;

It should be noted that when configuring the address window register, the high bit of MASK should be all 1, and the low bit should be all 0.0 in MASK

The actual number of bits indicates the size of the address window.

The address in the receive address window is the address received on the HT bus. The HT address falling within the P2P window will be regarded as P2P

The command is forwarded back to the HT bus, and the HT address that falls within the normal receive window and is not in the P2P window will be sent to the CPU.

The command at its address will be forwarded back to the HT bus as a P2P command.

Offset:	0x140
Reset value:	0x0000000
name:	HT bus receive address window 0 enable (external access)
	Table 14- 36 HT Bus Receive Address Window 0 Enable (External Access) Register Definition

116

Page 137

				Loo	ongson 3A4000 processor register user manual
Bit field	Bit field name	e	Bit w	idth reset va	lue Visit description
31	ht_rx_image0	_en	1	0x0	R / W HT bus receives address window 0, enable signal
30	ht_rx_image0	_trans_en	1	0x0	R / W HT bus receives address window 0, mapping enable signal
29	ht_rx_image0	_multi_node_en 1		0x0	R / W HT bus receive address window 0, multi-node address mapping is enabled
					Convert [39:37] of the address to [46:44]
28	ht_rx_image0	_conf_hit_en	1	0x0	R / W HT bus receive address window 0, protocol address hit enable
					Must be set to 0
25: 0	ht_rx_image0	_trans [49:24]	26	0x0	R / W HT bus receive address window 0, the mapped address [49:24]
Offset: 0x144					
	eset value:	0x00000000			
na	ime:	HT bus receive add	łress wi	ndow 0 bas	e address (external access)
		Table 14- 37 HT Bus	Receiv	e Address	Window 0 Base Address (External Access) Register Definition
Bit fie	ld Bit field n	ame	Bit wi	dth reset valu	ue Visit description
31:16	ht_rx_ima	16_uge0_base [39:24]		0x0	R / W HT bus receive address window 0, address base address [39:24]
15: 0	ht_rx_ima	nge0_mask [39:24] 16		0x0	R/WHT bus receive address window 0, address masked [39:24]
0	ffset:	0x148			
	eset value:	0x00000000			
	me:		lress wi	ndow 1 ena	ble (external access)
					· /

Table 14- 38 HT Bus Receive Address Window 1 Enable (External Access) Register Definition

Bit field	l Bit field name		Bit wid	th reset value	Visit description	
31	ht_rx_image1_	en	1	0x0	R / W HT bus receives address window 1, enable signal	
30	ht_rx_image1_	trans_en	1	0x0	R/W HT bus receives address window 1, map enable signal	
29	ht_rx_image1_	multi_node_en	1	0x0	R/WHT bus receive address window 1, multi-node address mapping is enabled	
					Convert [39:37] of the address to [46:44]	
28	ht_rx_image1_	conf_hit_en	1	0x0	R/WHT bus receive address window 1, protocol address hit enable	
					Must be set to 0	
25: 0	ht_rx_image1_	trans [49:24]	26	0x0	R/WHT bus receive address window 1, the mapped address [49:24]	
0	ffset:	0x14c				
R	eset value:	0x00000000				
na	name: HT bus receive address window 1 base address (external access)					
	Table 14- 39 HT Bus Receive Address Window 1 Base Address (External Access) Register Definition					

117

Page 138

Loongson 3A4000 processor register user manual

d Bit field nam	ne	Bit wid	th reset value	Visit description
ht_rx_image	e1_base [39:24] 16		0x0	R/WHT bus receive address window 1, address base address [39:24]
ht_rx_image	e1_mask [39:24] 16		0x0	R / W HT bus receive address window 1, address masked [39:24]
G ₁ = 4.	0-150			
		ress wir	ndow 2 enabl	e (external access)
1	Table 14- 40 HT Bus	Receive	e Address W	indow 2 Enable (External Access) Register Definition
Bit field name		Bit w	idth reset valu	e Visit description
ht_rx_image2_	en	1	0x0	R / W HT bus receives address window 2, enable signal
ht_rx_image2_	trans_en	1	0x0	R / W HT bus receives address window 2, map enable signal
ht_rx_image2_	multi_node_en 1		0x0	R/WHT bus receive address window 2, multi-node address mapping is enabled
				Convert [39:37] of the address to [46:44]
ht_rx_image2_	conf_hit_en	1	0x0	R / W HT bus receive address window 2, protocol address hit enable
				Must be set to 0
ht_rx_image2_	trans [49:24]	26	0x0	R/WHT bus receive address window 2, the mapped address [49:24]
		ress wir	dow 2 base	address (external access)
ne.	III bus receive add	iress wit	luow 2 base	
]	Table 14- 41 HT Bus	Receive	e Address W	indow 2 Base Address (External Access) Register Definition
d Bit field nam	ne	Bit wid	th reset value	Visit description
ht_rx_image	2_base [39:24] 16		0x0	R/WHT bus receive address window 2, address base address [39:24]
ht_rx_image	2_mask [39:24] 16		0x0	R / W HT bus receive address window 2, address masked [39:24]
			1. 2. 11	
ne.	n i bus receive add	ress wir	idow 3 enabl	e (external access)
	ht_rx_image ht_rx_image fset: set value: ne: Bit field name ht_rx_image2_ ht_rx_image3_ ht_rx_imag	set value: 0x00000000 me: HT bus receive add Table 14- 40 HT Bus Bit field name ht_rx_image2_en ht_rx_image2_trans_en ht_rx_image2_trans[49:24] fset: 0x154 set value: 0x0000000 me: HT bus receive add Table 14- 41 HT Bus d Bit field name ht_rx_image2_base [39:24] 16 ht_rx_image2_mask [39:24] 16 fset: 0x158 set value: 0x0000000	ht_rx_image1_base [39:24] 16 ht_rx_image1_mask [39:24] 16 fset: 0x150 set value: 0x0000000 ne: HT bus receive address wir Table 14- 40 HT Bus Receive Bit field name Bit w ht_rx_image2_en 1 ht_rx_image2_trans_en 1 ht_rx_image2_conf_hit_en 1 ht_rx_image2_trans [49:24] 26 fset: 0x154 set value: 0x0000000 ne: HT bus receive address wir Table 14- 41 HT Bus Receive d Bit field name ht_rx_image2_base [39:24] 16 ht_rx_image2_mask [39:24] 16 ht_rx_image2_mask [39:24] 16 fset: 0x158 fset: 0x158 fset: 0x158	ht_rx_image1_base [39:24] 16 $0x0$ ht_rx_image1_mask [39:24] 16 $0x0$ fset: $0x150$ set value: $0x0000000$ ne:HT bus receive address window 2 enableTable 14- 40 HT Bus Receive Address WBit field nameBit width reset valueht_rx_image2_en1 $0x0$ ht_rx_image2_trans_en1 $0x0$ ht_rx_image2_trans [49:24]26 $0x0$ fset: $0x154$ set value:fset: $0x154$ set value:set value: $0x0000000$ ne:HT bus receive address window 2 base 1fset: $0x154$ set value: $0x0000000$ ne:HT bus receive address window 2 base 1fset: $0x154$ set value: $0x0$ ht_rx_image2_base [39:24] 16 $0x0$ ht_rx_image2_mask [39:24] 16 $0x0$ fset: $0x158$ fs

Table 14- 42 HT Bus Receive Address Window 3 Enable (External Access) Register Definition

1	0x0	D / 1	WIIT	huo no osirios	addraaa	mindom 2	anable signal
1	UXU	K/	wнi	bus receives	address	window 3.	enable signal

31	ht_rx_image3_en	1	0x0	$R \ / \ W \ HT$ bus receives address window 3, enable signal
30	ht_rx_image3_trans_en	1	0x0	R / W HT bus receives address window 3, mapping enable signal

118

Page 139

$Loongson \ \mathbf{3A4000} \ processor \ register \ user \ manual$

Bit fie	ld Bit field nam	ne	Bit w	idth reset valu	ue Visit description
29	ht_rx_image	3_multi_node_en 1		0x0	R / W HT bus receive address window 3, multi-node address mapping is enabled
					Convert [39:37] of the address to [46:44]
28	ht rx image	3_conf_hit_en	1	0x0	R / W HT bus receive address window 3, protocol address hit enable
					Must be set to 0
25: 0	ht_rx_image	3_trans [49:24]	26	0x0	R / W HT bus receive address window 3, the mapped address [49:24]
(Offset:	0x15C			
I	Reset value:	0x00000000			
r	name:	HT bus receive add	dress wit	ndow 3 base	address (external access)
		Table 14- 43 HT Bus	s Receiv	e Address W	/indow 3 Base Address (External Access) Register Definition
Bit f	ïeld Bit field 1	name	Bit wie	dth reset valu	e Visit description
31:1	6 ht_rx_im	age3_base [39:24] 16		0x0	R/WHT bus receive address window 3, address base address [39:24]
15: 0) ht_rx_im	age3_mask [39:24] 16		0x0	R/W HT bus receive address window 3, address masked [39:24]
I	Offset: Reset value: name:	0x160 0x00000000 HT bus receive add	dress wit	ndow 4 is en	abled (external access)
		Table 14- 44 HT Bu	s Receiv	e Address W	/indow 4 Enable (External Access) Register Definition
Bit fie	ld Bit field nam	ne	Bit w	idth reset valu	ue Visit description
31	ht_rx_image	4_en	1	0x0	R / W HT bus receives address window 4, enable signal
30	ht_rx_image	4_trans_en	1	0x0	R / W HT bus receives address window 4, map enable signal
29	ht_rx_image	4_multi_node_en 1		0x0	R / W HT bus receive address window 4, multi-node address mapping is enabled
					Convert [39:37] of the address to [46:44]
28	ht_rx_image	4_conf_hit_en	1	0x0	R/WHT bus receive address window 4, protocol address hit enable
					Must be set to 0
25: 0	ht_rx_image	4_trans [49:24]	26	0x0	R/WHT bus receive address window 4, the mapped address [49:24]
(Offset:	0x164			
I	Reset value:	0x00000000			
r	name:	HT bus receive add	dress wi	ndow 4 base	address (external access)
		Table 14- 45 HT Bu	s Receiv	e Address W	/indow 4 Base Address (External Access) Register Definition

Bit field Bit field name

Bit width reset value Visit description

Bit field	Bit field name	Bit width reset value	Visit description
31:16	ht_rx_image4_base [39:24] 16	0x0	R/WHT bus receive address window 4, address base address [39:24]
15:0	ht_rx_image4_mask [39:24] 16	0x0	R / W HT bus receive address window 4, address masked [39:24]

14.5.11 Configuration Space Conversion Register

Used to perform various conversions on the HT configuration space.

Offset: Reset valu	0x168 lue: 0x0000000							
name:	Configuration space extended address translation							
	Table 14-46 Definition of Extended Address Translation Register in Configuration Space							
Bit field	Bit fie	ld name	Bit width	Reset value	access	description		
						Convert the configuration space (0xFD_FE000000)		
31	ht rv	header trans ext	1	0x1	R / W	After the address1 flag bit is adjusted by 24 bits		
51	III_IX_	neuder_nuns_ext		0X1	107 10	Up to 28 bits for space with EXT HEADER		
						Unite		
30 ht rx		header trans en	1	0x1	R/W	Enable configuration space (0xFD_FE000000)		
50	<u>_</u>	includei_inclus_on	•	0X1	10, 11	High-order address ([39:24]) conversion		
29: 0	ht rv	header trans [53:24]	30	0xFE00	R / W	High address after configuration space conversion [53:24]		
27.0	III_IX_	ieudei_iruns [55:24]	50			(Only [53:25] is available)		
Offset:		0x16C						
Reset valu	e:	0x00000000						
name:		Extended Address Translati	ion					
		Table 14-4	47 Definitio	on of Extended	Address T	ranslation Register		
Bit field	Bit fie	ld name	Bit widt	h Reset value	access	description		
						Enable expansion configuration space		
30	ht_rx_	ext_header_trans_en	1	0x0	\mathbf{R} / \mathbf{W}	(0xFE_00000000) high address		
						([39:28]) Conversion		
29: 0	ht ry	ext header trans [53:24] 30		0x0	R/W	High address after conversion of extended configuration space		
29.0 Int_ix_ext_neader_trans [55.24] 50				0.00	IX / W	[53:24] (actually only [53:29] is available)		

14.5.12 POST address window configuration register

For the address window hit formula, see section 14.5.10.

120

Page 141

Loongson 3A4000 processor register user manual

The address in this window is the address received on the AXI bus. All write accesses that fall in this window will be immediately in AXI B The channel returns and is sent to the HT bus in the format of the POST WRITE command. Instead of writing requests in this window, NONPOST WRITE is sent to the HT bus, and waits for the HT bus to respond before returning to the AXI bus.

Offset:	0x170
Reset value:	0x0000000
name:	HT bus POST address window 0 enable (internal access)

T-11. 14 40 UT D DOCT	A 11	E 11. (L. ((A
Table 14-48 HT Bus POST	Address window u) Enable (Interna	Access

	1 able 14-48	HI Bus	POST Addre	sss window 0 Enable (internal Access)
Bit field	Bit field name	Bit wid	th reset value	Visit description
31	ht_post0_en	1	0x0	R / W HT bus POST address window 0, enable signal
30	ht_split0_en	1	0x0	R/WHT access unpacking enable (corresponding to external CPU core
				uncache ACC operation window)
29:23	Reserved	14	0x0	Keep
15:0	ht_post0_trans [39:24]	16	0x0	R/WHT bus POST address window 0, the translated address [39:24]
Offset: Reset v name:	value: 0x0000000	ldress w	indow 0 base	e address (internal access)
	Table 14-49	HT bus	POST addres	ss window 0 base address (internal access)
Bit field	Bit field name	Bit wid	th reset value	Visit description
31:16	ht_post0_base [39:24]	16	0x0	R / W HT bus POST address window 0, address base address [39:24]
15:0	ht_post0_mask [39:24]	16	0x0	R / W HT bus POST address window 0, address masked [39:24]
Offset: Reset v name:	ralue: 0x00000000 HT bus POST ad			ole (internal access)
	Table 14-50	HI Bus	POST Addre	ess Window 1 Enable (Internal Access)
Bit field	Bit field name	Bit wid	th reset value	Visit description
31	ht_post1_en	1	0x0	R / W HT bus POST address window 1, enable signal
30	ht_split1_en	1	0x0	R / W HT access unpacking enable (corresponding to external CPU core
				uncache ACC operation window)
29:16	Reserved	14	0x0	Keep
15:0	ht_post1_trans [39:24]	16	0x0	$R \ / \ W \ HT$ bus POST address window 1, the translated address [39:24]

Page 142

121

Loongson 3A4000 processor register user manual

Reset value: 0x00		0x17c 0x00000000 HT bus POST ad						
		Table 14-51 I	HT bus F	POST addres	s window 1 base address (internal access)			
Bit field	Bit field na	d name Bit width reset		h reset value	Visit description			
31:16	ht_post1_b	ase [39:24]	16	0x0	R/WHT bus POST address window 1, address base address [39:24]			
15:0	ht_post1_m	ask [39:24]	16	0x0	R / W HT bus POST address window 1, address masked [39:24]			

14.5.13 Prefetchable address window configuration register

For the address window hit formula, see section 14.5.10.

The address in this window is the address received on the AXI bus. Only the instruction fetch instructions and CACHE access that fall in this window

Is sent to the HT bus, other fetch instructions or CACHE access will not be sent to the HT bus, but will return immediately, if it is a read

Command, it will return the corresponding number of invalid read data.

Offset:	0x180
Reset value:	0x00000000

Loongson 3A4000 processor register user manual name HT bus can be prefetched address window 0 enabled (internal access) Table 14- 52 HT Bus Prefetchable Address Window 0 Enable (Internal Access) Bit field Bit field name Bit width reset value Visit description 31 ht_prefetch0_en 1 0x0 R / W HT bus can prefetch address window 0, enable signal 30:16 Reserved 15 0x0 Keep 15:0 ht_prefetch0_trans [39:24] 16 0x0 $R\,/\,W$ HT bus can prefetch the address window 0, the translated address [39:24]

Offset: 0x184									
Reset value: 0x0000000									
name: HT bus prefetchable		HT bus prefetchable	e address window 0 base address (internal access)						
		Table 14- 53 HT	Bus Pr	efetchable A	ddress Window 0 Base Address (Internal Access)				
Bit field	d Bit field name		Bit width reset value		Visit description				
31:16	ht_prefetch0_base [39:24]		16	0x0	R/WHT bus can pre-fetch address window 0, address base address [39:24]				
					Bit address				
15:0	ht_prefetch0_	_mask [39:24]	16	0x0	R / W HT bus can prefetch address window 0, address masked [39:24]				

122

Page 143

Loongson 3A4000	processor	register	user	manual
-----------------	-----------	----------	------	--------

Offs		0x188				
Rese	Reset value: 0x0000000					
nam	e:	HT bus prefetch a	ddress v	window 1 en	abled (internal access)	
		Table 14- 54 I	HT Bus	Prefetchable	Address Window 1 Enable (Internal Access)	
Bit field	Bit field nan	ne	Bit w	idth reset valu	e Visit description	
31	ht_prefetch1	_en	1	0x0	R/WHT bus can prefetch address window 1, enable signal	
30:16	Reserved		15	0x0	Keep	
15:0	ht_prefetch1	_trans [39:24]	16	0x0	R/WHT bus can pre-fetch the address window 1, the translated address	
					[39:24]	
Offs	at.	0x18c				
	et value:	0x0000000				
nam	e:	HT bus prefetch a	ddress v	window I ba	se address (internal access)	
		Table 14- 55 I	HT Bus	Prefetchable	Address Window 1 Base Address (Internal Access)	
Bit field Bit field name Bit width reset value		dth reset valu	e Visit description			
31:16	ht_prefetch1_	base [39:24]	16	0x0	R/WHT bus can prefetch address window 1, address base address [39:24]	
15: 0 ht_prefetch1_mask [39:24]		16	0x0	R/WHT bus can prefetch address window 1, address masked [39:24]		

14.5.14 UNCACHE address window configuration register

For the address window hit formula, see section 14.5.10.

The address in this window is the address received on the HT bus. Read and write commands that fall into this window address will not be sent to

SCACHE will not invalidate the first-level CACHE, but will be sent directly to memory or other address space.

That is, the read and write commands in the address window will not maintain the CACHE consistency of IO. This window is mainly aimed at some

CACHE hits operations that can improve memory access efficiency, such as video memory access.

Rese	et value: e:	0x00000000 HT bus Uncache address window 0 enable (internal access)
		Table 14- 56 HT Bus Uncache Address Window 0 Enable (Internal Access)
Bit field	Bit field name	e Bit width reset value Visit description

123

Page 144

Loongson 3A4000 processor register user manual

Die Cali	Bit field name		Di	4	when White description		
Bit field					value Visit description		
31	ht_uncache0_en		1	0x0	R / W HT bus uncache address window 0, enable signal		
30	ht_uncache0_	trans_en	1	0x0	R / W HT bus uncache address window 0, mapping enable signal		
29	ht_uncache0_	_multi_node_en	1	0x0	R/W HT bus uncache receive address window 0, multi-node ground		
					Address mapping enable		
28	ht_uncache0_	_conf_hit_en	1	0x0	R/W HT bus uncache receiving address window 0, protocol address		
					Hit enable		
25: 0	ht_uncache0_	trans [49:24]	26	0x0	R / W HT bus uncache address window 0, the translated address		
					[49:24]		
Off	fset:	0x194					
	set value:	0x0000000	11				
nar	ne:	HI bus Uncache a	adress v	window 0 ba	se address (internal access)		
		Table 14-57 HT	Bus Un	cache Addre	ess Window 0 Base Address (Internal Access)		
Bit field	Bit field name		Bit wid	lth reset value	visit description		
31:16 ht_uncache0_base [39:24] 16		16	0x0 R / W HT bus uncache address window 0, address base address				
15:0	ht_uncache0_m	nask [39:24]	16	0x0	R / W HT bus uncache address window 0, address masked [39:24]		
	fset: set value:	0x198 0x00000000					
nar			ddress v	window 1 is	enabled (internal access)		
		Table 14 59 HT	DucUn	anaha Addra	ess Window 1 Enable (Internal Access)		
		14-38 11	Bus OII	cache Auure	ss window i Enable (methal Access)		
Bit field	Bit field name	2	Bit	t width reset v	value Visit description		
31	ht_uncache1_	en	1	0x0	R / W HT bus uncache address window 1, enable signal		
30	ht_uncache1_	trans_en	1	0x0	R/WHT bus uncache address window 1, mapping enable signal		
29	ht_uncache1_	multi_node_en	1	0x0	R/WHT bus uncache receive address window 1, multi-node ground		
					Address mapping enable		
28	ht_uncache1_	_conf_hit_en	1	0x0	R / W HT bus uncache receive address window 1, protocol address		
					Hit enable		
25: 0	ht_uncache1_	trans [49:24]	26	0x0	R / W HT bus uncache address window 1, the translated address		
					[49:24]		
Off	fset:	0x19c					
Re	set value:	0x00000000					

124

Page 145

Loongson 3A4000 processor register user manual

		m 1, <i>44</i>								
		Table 14- 59	HT Bus U	ncache Add	ress Window 1 Base Address (Internal Access)					
Bit field	Bit field nam	e	Bit width reset value Visit description							
1:16	ht_uncache1_	base [39:24]	16 0x0		R / W HT bus uncache address window 1, address base address [39:24]					
15: 0 ht_uncache1_mask [39:24]		16	0x0	R / W HT bus uncache address window 1, address masked [39:24]						
	fset:	0x1A0								
	set value:	0x00000000								
nar	ne:	HI bus Uncach	e address	window 2 e	nable (internal access)					
		Table 14- 60	HT Bus U	ncache Add	lress Window 2 Enable (Internal Access)					
Bit field	Bit field nam	e	Bit	width reset	value Visit description					
1	ht_uncache2	_en	1	0x0	R / W HT bus uncache address window 2, enable signal					
30	ht_uncache2	_trans_en	1	0x0	R / W HT bus uncache address window 2, mapping enable signal					
29 ht_uncache2_multi_node_en		1	0x0	R / W HT bus uncache receive address window 2, multi-node address						
					Mapping enable					
28	ht_uncache2	_conf_hit_en	1	0x0	R / W HT bus uncache receive address window 2, protocol address comma					
					Enable					
25:0	ht uncache2	trans [49:24]	26	0x0	R / W HT bus uncache address window 2, the translated address					
		,			[49:24]					
Ofi	fset:	0x1A4								
	set value:	0x00000000								
nar	ne:	HT bus Uncach	e address	window 2 b	ase address (internal access)					
		Table 14- 61	HT Bus U	ncache Add	ress Window 2 Base Address (Internal Access)					
Bit field	Bit field nar	ne	Bit wi	idth reset val	ue Visit description					
31:16	ht_uncache2	_base [39:24]	16	0x0	R/WHT bus uncache address window 2, of the base address [39:24]					
15:0	ht_uncache2	_mask [39:24]	16	0x0	R/WHT bus uncache address window 2, address masked [39:24]					
Off	fset:	0x1A8								
Re	set value:	0x00000000								
nar	ne:	HT bus Uncach	e address	window 3 e	nable (internal access)					
		Table 14- 62	HT Bus U	ncache Add	ress Window 3 Enable (Internal Access)					
Dit Gald	Bit field nam		Dit	width socot	value Visit description					

125

Page 146

31	ht_uncache3_en	1	0x0	R / W HT bus uncache address window 3, enable signal
30	ht_uncache3_trans_en	1	0x0	R / W HT bus uncache address window 3, mapping enable signal
29	ht_uncache3_multi_node_en	1	0x0	R/WHT bus uncache receive address window 3, multi-node address
				Mapping enable
28	ht_uncache3_conf_hit_en	1	0x0	R/WHT bus uncache receive address window 3, protocol address command

R / W HT bus uncache address window 3, the translated address

25:0 ht_uncache3_trans [49:24]

[49:24]

Offset: 0x1AC						
	Res	set value:	0x00000000			
	name: HT bus Uncache address window					se address (internal access)
			Table 14- 63 HT	Bus Ur	ncache Addre	ess Window 3 Base Address (Internal Access)
	Bit field	Bit field name		Bit widt	h reset value	Visit description
	31:16	ht_uncache3_ba	ise [39:24]	16	0x0	R/WHT bus uncache address window 3, address base address [39:24]
	15:0	ht_uncache3_m	ask [39:24]	16	0x0	R / W HT bus uncache address window 3, address masked [39:24]

14.5.15 P2P Address Window Configuration Register

26

0x0

For the address window hit formula, see section 14.5.10.

The address in this window is the address received on the HT bus. The read and write commands at the address of this window are directly used as P2P

The command is forwarded back to the bus, which has the highest priority relative to the normal receive window and Uncache window.

Rese	Offset: 0x1B0 Reset value: 0x00000000 name: HT bus P2P addr Table 14-64 HT Bu				(external access) ow 0 Enable (External Access) Register Definition
Bit field	Bit field nam	e	Bit wi	dth reset value	Visit description
31	ht_rx_p2p0_	en	1	0x0	R / W HT bus P2P address window 0, enable signal
29: 0	ht_rx_p2p0_	trans [53:24]	30	0x0	R / W HT bus P2P address window 0, translated address [53:24]
Offs Rese	et: et value:	0x1B4 0x00000000			

126

Page 147

name	2:	HT bus P2P addres	s windo	w 0 base add	lress (external access)			
Table 14- 65 HT bus P2P address window 0 base address (external access) register definition								
Bit field	Bit field nan	ne	Bit wid	th reset value	Visit description			
31:16	ht_rx_p2p0_	base [39:24]	16	0x0	R/WHT bus P2P address window 1, address base address [39:24]			
15:0	ht_rx_p2p0_	mask [39:24]	16	0x0	R / W HT bus P2P address window 1, address masked [39:24]			
Offs	at	0x1B8						
	t value:	0x00000000						
name		HT bus P2P addres	s windo	w 1 enable (external access)			
	Т	able 14- 66 HT bus	P2P add	ress window	1 enable (external access) register definition			
Bit field	Bit field nan	ne	Bit wid	th reset value	Visit description			
31	ht_rx_p2p1_	en	1	0x0	R / W HT bus P2P address window 1, enable signal			
29: 0	ht_rx_p2p1_	trans [53:24]	30	0x0	R/WHT bus P2P address window 1, the translated address [53:24]			
0.00		0.100						
Offso		0x1BC						
Rese	t value:	0x00000000						
name	2:	HT bus P2P addres	s windo	w 1 base add	lress (external access)			

Table 14- 67 HT bus P2P address window 1 base address (external access) register definition

Bit field	Bit field name	Bit width reset value		Visit description	
31:16	ht_rx_p2p1_base [39:24]	16	0x0	R/WHT bus P2P address window 1, address base address [39:24]	
15:0	ht_rx_p2p1_mask [39:24]	16	0x0	R / W HT bus P2P address window 1, address masked [39:24]	

14.5.16 Controller parameter configuration register

Offset: Reset value: name:	APP CONFIG 0		Definition of	Controller	Parameter Configuration Register 0
Bit field	Bit field name	Bit width	Reset value	access	description
31:30	Reserved	1	0x0		Keep
29	Ldt Stop Gen	1	0x0	R/W	Put the bus into LDT DISCONNECT mode
27	Lui biop den		0110	10, 11	The correct method is: 0-> 1
28	Ldt Reg Gen	1	0x0	R/W	Wake up the HT bus from LDT DISCONNECT, set
20	Lut Key Sen	1	0.00	ic/ w	Set LDT_REQ_n

127

Page 148

					The correct way is to set 0 first and then set 0: 0-> 1
					In addition, it is also possible to issue read and write requests directly to the bus
					Automatic wake-up bus
27	rx sample en	1	0x0	R / W	Enable the cad and ctl of sampling input, send in
2,	in sumple en		0.10	10, 11	Display in memory for debugging
					For 32/64/128/256 bit MEM write access, whether to use
26	Dword Write	1	0x1	R / W	Use the Dword Write command format (in Byte Write mode)
					Writes are converted to 128-bit writes with MASK when received)
					Whether to use Dword for write access to configuration space
25	Dword Write cfg	1	0x1	\mathbf{R} / \mathbf{W}	Write command format (write in the Byte Write mode is received
					Will be converted to 128-bit write with MASK)
					For write access to IO space, whether to use Dword Write
twenty four	Dword Write IO	1	0x1	\mathbf{R} / \mathbf{W}	Command format (write in Byte Write mode will be transferred when received
					Change to 128-bit write with MASK)
transtru these	eaxi aw resize	1	0x0	RW	Whether to write to 128 bit with MASK and press Mask for size
twenty une	eaxi aw iesize	1	0x0	ic.v	Reset
twonty two	Coherent Mode	1	0x0	RW	Whether it is the processor consistency mode, the initial value is
twenty two	Coherent Wode	I	0.00	K W	ICCC_EN pin decision, effective after reset
twenty one	Coherent_split	1	0x0	RW	In consistency mode, all packets are split into 32 bytes for processing
20	Not Care Seqid	1	0x0	R / W	Whether the receiving end does not care about the HT order relationship
19:16	Fired Coold	4	0x0	R/W	When Not Axi2Seqid is valid, configure the HT bus to issue
19:16	Fixed Seqid	4	0x0	K/W	Seqid
15:12	Priority Nop	4	0x4	R / W	HT bus Nop flow control packet priority
11:8	Priority NPC	4	0x3	R / W	Non Post channel read and write priority
7:4	Priority RC	4	0x2	R / W	Response channel reading and writing priority
					Post channel read and write priority
					0x0: highest priority
2.0	D: : DC		0.1	D / W	0xF: lowest priority
3:0	Priority PC	4	0x1	R / W	The priority of each channel is changed according to time
					Increased priority strategy, the set of registers is used to configure each
					Channel's initial priority

Reset value	: 0x00904321				
name:	APP CONFIG1				
	Tab	le 14- 69 De	efinition of Co	ontroller Pa	arameter Configuration Register 1
Bit field	Bit field name	Bit width	Reset value	access	description
31	tx post split en	1	0x0	R / W	Enable the write and unpack function when the tx post ID window hits
51	tx post spin en	1	0.00	K/W	(All write requests that cross the 32-byte boundary will be split into

128

Page 149

Loongson **3A4000** processor register user manual

					Two consecutive write requests (byte write)
					Write the passPW of all issued Post channel requests
30	tx wr passPW pc	1	0x0	R / W	Bit set to 1
					Write all nonpost channel write requests
29	tx wr passPW npc	1	0x0	R / W	passPW bit is set to 1
28	tx rd passPW	1	0x0	R / W	Set the passPW bit of all issued read requests to 1
25				D (111	The sender stops when it encounters a write request with the same AXI ID
27	stop same id wr	1	0x0	R / W	Send until the previous request with the same ID returns
a .				D (111	The sender stops when it encounters a read request with the same AXI ID
26	stop same id rd	1	0x0	R / W	Send until the previous request with the same ID returns
25	Not axi2seqid wr	1	0x0	R / W	Prohibit write request AXI ID to seqid conversion, directly
25	Not axi2seqid wi	1	0x0	K / W	Use fixed seqid
twenty fou	r Not axi2seqid rd	1	0x0	R / W	Prohibit the read request AXI ID to seqid conversion, directly
twenty lou	i Not axizsequi lu	1	0.00	K/W	Use fixed seqid
23:22	Reserved	2	0x0	\mathbf{R} / \mathbf{W}	Keep
twenty one	e act as slave	1	0x1	$\mathbf{R} \ / \mathbf{W}$	Set SLAVE mode
20	Host hide	1	0x0	$\mathbf{R} \ / \mathbf{W}$	Forbid the receiver to access the configuration register space
					Used to control Rrequest transmission in consistency mode
					Random delay range
					000: 0 Delay
				R / W	001: Random delay 0-8
19:16	Rrequest delay	4	0x3		010: Random delay 8-15
19.10	Riequest delay				011: Random delay 16-31
					100: Random delay 32-63
					101: Random delay 64-127
					110: Random delay 128-255
					111: 0 Delay
15	Crc Int en	1	0x0	$\mathbf{R} \ / \ \mathbf{W}$	Enable interrupt transmission when CRC error
14:12	Crc Int route	3	0x0	$\mathbf{R} \ / \ \mathbf{W}$	Interrupt pin selection during CRC interrupt
11	Reserved				
10	ht int 8 bit	1	0x0	$\mathbf{R} \ / \mathbf{W}$	Use 8 interrupt lines
					Corresponding to 3 interrupt routing methods, see the detailed description in
					Break vector register
9: 8	ht_int_stripe	2	0x0	$\mathbf{R} \ / \ \mathbf{W}$	0x0: ht_int_stripe_1
					0x1: ht_int_stripe_2
					0x2: ht_int_stripe_4
					Redirect all interrupts other than the standard interrupt to
4: 0	Interrupt Index	5	0x0	R / W	Which interrupt vector (including SMI, NMI, INIT,
4.0	menupt muex		0.0	K/W	INTA, INTB, INTC, INTD)
					A total of 256 interrupt vectors, this register represents

129

The upper 5 bits of the interrupt vector, the internal interrupt vector is as follows: 000: SMI 001: NMI 010: INIT 011: Reservered 100: INTA 101: INTB 110: INTC 111: INTD

14.5.17 Receive Diagnostic Register

Offset:		0x1C8				
Reset v	alue:	0x00000000)			
name:		Receive Dia	gnostic l	Register		
				Table 14-	70 Rece	vive Diagnostic Register
Bit field	Bit field nan	ne	Bit widt	h reset value	Visit de	scription
31:16	rx_cad_phas	e_0	16	0x0	R / W s	ave the input CAD [15: 0] value obtained by sampling
15: 8	rx_ctl_catch		8	0x0	R / W	Save the sampled input ctl (0, 2, 4, 6) Four phases corresponding to CTL0 sampling (1, 3, 5, 7) Four phases corresponding to CTL1 sampling
7:0						

14.5.18 PHY Status Register

Used to observe the PHY related status, debug use

Offset: Reset value: name:	0x1CC 0x83308000 PHY status	register	e 14- 71 PHY	Status R	egister
Bit field 31:29	Bit field name Reserved	Bit width	Reset value 0x0	access R	description Keep
28	dll locked hi	1	0x0	R	1
27	dll locked lo	1	0x0	R	
26	cdr locked hi	1	0x0	R	
25	cdr locked lo	1	0x0	R	
twenty four	phase locked	1	0x0	R	

130

Page 151

23:20	phy state	4	0x0	R
19:17	tx training status	3	0x0	R
16:14	rx training status	3	0x0	R
13:8	Init done	6	0x0	R
7:0	Reserved	8		R

14.5.19 Command send buffer size register

The command sending buffer size register is used to observe the number of buffers available for each command channel at the sending end.

Offset:		0x1D0				
Reset value: 0x00000000						
name:		Command send buffer size register				
	Table 14-72 Command Send Buffer Size Register					
Bit field	Bit field	name	Bit wid	th reset value	Visit de	scription
31:24	B_CMD	_txbuffer	8	0x0	R	Number of B channel command buffers at the sending end
23:16	R_CMD	_txbuffer	8	0x0	R	Number of R channel command buffers at the sending end
15:8	NPC_CM	MD_txbuffer 8		0x0	R	Number of NPC channel command buffers at the sending end
7: 0	PC_CMI	D_txbuffer	8	0x0	R	Number of PC channel command buffers at the sending end

14.5.20 Data transmission buffer size register

The data transmission buffer size register is used to observe the number of buffers available for each data channel at the sending end.

Offset		0x1D4					
Reset	value:	0x00000000					
name		Data transmission	h buffer size regis	ster			
Table 14-73 Data transmission buffer size register							
Bit fi	eld E	Bit field name	Bit width	Reset value	access	description	
31	R	Reserved	1	0x0	R	Keep	
30) rx buffer r data [4]		1	0x0	R/W	Receive buffer read data initialization	
50	1.	x_bunci_i_data [4]	1	0.00	K/W	Bit [4] of information	
29	r	x_buffer_npc_data [4]	1	0x0	R/W	Receive buffer npc data buffer initial	
2)	1.	x_bunci_npc_uata [4]	1		K/W	Bit of information [4]	
28		x_buffer_pc_data [4]	1	0x0	R/W	Initialize the pc data buffer of the receive buffer	
20	1.		1	0.00	K / W	Bit [4] of information	
27	n	x_buffer_b_cmd [4]	1	0x0	R / W	Receive buffer bresponse command	
131							

Page 152

Loongson 3A4000 processor register user manual

					buffer initialization information bit [4]
26	rx buffer r cmd [4]	1	0x0	R / W	Receive buffer read command initialization
20	m_ound_i_onia [1]		0.10		Bit [4] of information
25	rx_buffer_npc_cmd [4]	1	0x0	R/W	Receive buffer npc command buffer initial
20			0.00	R/ W	Bit of information [4]
twenty fou	r rx buffer pc cmd [4]	1	0x0	R/W	Receive buffer pc command buffer initialization
twenty fou	a ix_buildi_pe_cilia [4]	1	0.00	K/W	Bit [4] of information
23:16	R_DATA_txbuffer	8	0x0	R	Number of R channel data buffers at the sending end
15:8	NPC_DATA_txbuffer	8	0x0	R	Number of NPC channel data buffers at the sending end
7: 0	PC_DATA_txbuffer	8	0x0	R	Number of PC channel data buffers at the sending end

14.5.21 Send buffer debug register

Send buffer debugging register is used to manually set the number of buffers at the sending end of the HT controller.

Reset value: name:	0x00000000 Send buffer debug	register	Ū		
		Table 14-	74 Send Buff	er Debug l	Register
Bit field	Bit field name	Bit width	Reset value	access	description
31	b_interleave	1	0x0	R / W	In consistency mode, enable interleaving of B channel with other channels transmission
30	nop_interleave	1	0x0	$\mathbf{R} \ / \ \mathbf{W}$	Enable interleaved transmission of flow control packets and other virtual channels
					Debugging symbols are cached on the sending end
29	Tx_neg	1	0x0	R / W	0: increase the corresponding number
					1: Reduce (number of corresponding registers + 1)
28	Tx buff adj en	1	0x0	R / W	Buffer debugging enable register on the sending end
28	TX_bull_auj_eli		0.0	IX / W	0-> 1: make the value of this register increase and decrease
					Increase and decrease the number of R channel data buffers at the sending end
27:24	R_DATA_txadj	4	0x0	R / W	When tx_neg is 0, increase R_DATA_txadj;
					When tx_neg is 1, reduce R_DATA_txadj + 1
					Number of data buffers at the sender's NPC channel
					When tx_neg is 0, increase NPC_DATA_txadj
23:20	NPC_DATA_txadj	4	0x0	R / W	Α
					When tx_neg is 1, reduce NPC_DATA_txadj + 1
					Pc
19:16	PC_DATA_txadj	4	0x0	R / W	Increase or decrease the number of PC channel data buffers at the sending end
132					

Page 153

Loongson 3A4000 processor register user manual

					When tx_neg is 0, add PC_DATA_txadj;
					When tx_neg is 1, reduce PC_DATA_txadj + 1
					Pc
					Number of increase and decrease of the command buffer of the B channel of the sending end
15:12	B_CMD_txadj	4	0x0	\mathbf{R} / \mathbf{W}	When tx_neg is 0, increase B_CMD_txadj;
					When tx_neg is 1, reduce B_CMD_txadj + 1
					Increase and decrease the number of R channel command buffers at the sending end
11:8	R_CMD_txadj	4	0x0	\mathbf{R} / \mathbf{W}	When tx_neg is 0, increase R_CMD_txadj;
					When tx_neg is 1, reduce R_CMD_txadj + 1
					Number of increase / decrease of NPC channel command / data buffer at the sending end
7:4	NPC_CMD_txadj	4	0x0	R/W	When tx_neg is 0, increase NPC_CMD_txadj;
7.4		4	0.00	K/W	When tx_neg is 1, reduce NPC_CMD_txadj + 1
					Pc
					Increase or decrease the number of PC channel command buffers at the sending end
3: 0	PC CMD txadj	4	0x0	R / W	When tx_neg is 0, increase PC_CMD_txadj;
5.0	re_emb_mag	4	0.00	R / W	When tx_neg is 1, reduce PC_CMD_txadj + 1
					Pc

14.5.22 Receive buffer initial register

	Offset:	0x1DC			
	Reset v	value: 0x0777888	8		
name: Receive buffer ini			ffer initia	alization cont	figuration register
			Т	able 14-75 F	Receive Buffer Initial Register
	Bit field	Bit field name	Bit wid	th reset value	Visit description
	27:24	rx_buffer_r_data	4	0x0	R / W Receive buffer read data buffer initialization information
	23:20	rx_buffer_npc_data 4		0x0	R / W receive buffer npc data buffer initialization information
	19:16	rx_buffer_pc_data	4	0x0	R/W receive buffer pc data buffer initialization information

15:12	rx_buffer_b_cmd	4	0x0	R / W receive buffer initialization command buffer initialization information
11:8	rx_buffer_r_cmd	4	0x0	R / W receive buffer read command initialization information
7:4	rx_buffer_npc_cmd 4		0x0	R / W receive buffer npc command buffer initialization information
3: 0	rx_buffer_pc_cmd	4	0x0	R / W receive buffer pc command buffer initialization information

133

Page 154

Loongson 3A4000 processor register user manual

14.5.23 Training 0 Timeout Short Timer Register

It is used to configure Training 0 short-time timeout threshold in HyerTransport 3.0 mode, the counter clock frequency is

HyperTra	HyperTransport3.0 link bus clock frequency is 1/4.					
Offset:		0x1E0				
Reset value: 0x00000080						
name:	e: Training 0 tin			ort count regi	ster	
			Table 14	4- 76 Trainin	g 0 Timeout Short Timer Register	
Bit field	Bit field	name	Bit wid	th reset value	Visit description	
31	Gen3_ti	ming_soft	1	0x0	R / W	
30:23	Retry_n	op_num	8	0x0	R / W	
22: 0	T0 time		twenty	th0880	R / W Training 0 Timeout short timer register	

14.5.24 Training 0 Time-out timer register

Used for Training 0 long counting timeout threshold in HyerTransport 3.0 mode, the counter clock frequency is

HyperTransport3.0 link bus clock frequency is 1/4.

31:0	T0 time		32	0xfffff	R / W Training 0 Time-out long count register
Bit field	Bit field	name	Bit wid	th reset value	Visit description
			Table 14	4- 77 Trainin	g 0 Timeout Long Count Register
name:		Training 0 tin	neout lon	g count regis	ter
Reset value: 0x000fffff					
Offset:		0x1E4			

14.5.25 Training 1 Count Register

Used in Training 1 counting threshold in HyerTransport 3.0 mode, the counter clock frequency is

HyperTransport3.0 link bus clock frequency is 1/4. Offset: 0x1E8 Reset value: 0x0004fffff

Training 1 count register

Table 14-78 Training 1 Count Register

name:

Page 155

Loongson 3A4000 processor register user manual

Bit field	Bit field name	Bit widt	h reset value	Visit description
31:0	T1 time	32	0x4fffff	R / W Training 1 count register

14.5.26 Training 2 Count Register

Used in Training 2 counting threshold in HyerTransport 3.0 mode, the counter clock frequency is

HyperTransport3.0	0 link bus clock frequency is 1/4.
Offset:	0x1EC

011000	oniec	
Reset val	ue: 0x0007fff	ff
name:	Training 2	count register
		Table 14- 79 Training 2 Count Register
Bit field	Bit field name	Bit width reset value. Visit description

31:0	T2 time	32	0x7fffff	R / W Training 2 count register

14.5.27 Training 3 Count Register

Used in Training 3 counting threshold in HyerTransport 3.0 mode, the counter clock frequency is

HyperTransport3.0 link bus clock frequency is 1/4.

Offset:	0x1F0								
name:	Training 3 count register								
		Ta	ıble 14- 80 Tr	aining 3 Count Register					
Bit field	Bit field name	Bit wi	dth reset value	Visit description					
31:0	T3 time	32	0x7fffff	R / W Training 3 Count register					

14.5.28 Software Frequency Configuration Register

It is used to switch the controller to the link frequency and controller frequency supported by any protocol and PLL during the working process;

The specific switching method is: on the premise of enabling the software configuration mode, set bit 1 of the software frequency configuration register, and

Write parameters related to the new clock, including div_refc and div_loop that determine the output frequency of the PLL

Frequency coefficients phy_hi_div and phy_lo_div, and the frequency division coefficient core_div of the controller. Then enter the warm

reset or LDT disconnect, the controller will automatically reset the PLL and configure new clock parameters.

135

Page 156

Loongson 3A4000 processor register user manual

PHY_LINK_CLK is the HT bus frequency.

The calculation formula of the clock frequency is:

When using SYS_CLOCK as the reference clock input and SYS_CLOCK is 25MHz (CLKSEL [8] is 1 and CLKSEL [5]

Is 1), the frequency calculation method is:

HyperTransport 1.0:

 $PHY_LINK_CLK = 12.5MHz \times div_loop \ / \ div_refc \ / \ phy_div$

HyperTransport 3.0:

 $PHY_LINK_CLK = 25MHz \times div_loop \ / \ div_refc \ / \ phy_div$

In other cases, the frequency calculation method is:

HyperTransport 1.0:

 $PHY_LINK_CLK = 50MHz \times div_loop \ / \ div_refc \ / \ phy_div$

HyperTransport 3.0:

PHY_LINK_CLK = 100MHz × div_loop / div_refc / phy_div

The time to wait for the PLL to relock is about 30us by default when the system clk is 33M;

Write a custom upper limit of wait count in the memory

It should be noted that in 3A4000, HT_CORE_CLK is no longer controlled by this configuration, but is divided by the NODE clock

Frequency control.

Offset:	(0x1F4				
Reset value: 0x00000000		0x00000000				
name:	5	Software frequ	ency coi	nfiguration r	egister	
			Tal	ole 14- 81 So	oftware Fro	equency Configuration Register
Bit field	Bit field n	ame	Bit widt	h reset value	Visit desci	ription
31:27	PLL relo	ock	5	0x0	R / W	Counter upper limit configuration register, when set counter
counter						When select, the upper limit of counter count is
						{PLL_relock_counter, 5'h1f}, otherwise count
						The upper limit is 10'3ff
26	Counter se	elect	1	0x0	R / W	Lock timer custom enable:
						1'b0 uses the default upper counting limit;
						1'b1 is calculated by PLL_relock_counter
25: 22 So	ft_phy_lo_c	div	4	0x0	R / W	Lower PHY Divider

136

Page 157

Loongson **3A4000** processor register user manual

21: 18 So	oft_phy_hi_div	4	0x0	\mathbf{R} / \mathbf{W}	High PHY Divider
17: 16 Sc	oft_div_refc	2	0x0	\mathbf{R} / \mathbf{W}	PLL internal frequency division factor
15: 9	Soft_div_loop	7	0x0	\mathbf{R} / \mathbf{W}	Frequency multiplication factor in PLL
8: 5	Soft_core_div	4	0x0	R / W	Controller clock division factor
4: 2	Reserved	3	0x0	R	Keep
1	Soft cofig enable	1	0x0	R / W	Software configuration enable bit
					1'b0 disable software frequency configuration
					1'b1 Enable software frequency configuration
0	Reserved	1	0x0	R	Keep

14.5.29 PHY Impedance Match Control Register

Used to control the impedance matching enable of the PHY, and set the impedance matching parameters at the transmitter and receiver

name: PHY impedance matching control register

0x00000000

Reset value:

Table 14-82 Impedance Matching Control Register

Bit field	Bit field name	Bit widt	h reset value	Visit description
31	Tx_scanin_en	1	0x0	R / W TX impedance matching enable
30	Rx_scanin_en	1	0x0	R / W RX impedance matching enable
27:24	Tx_scanin_ncode	4	0x0	R / W TX impedance matching scan input ncode
23:20	Tx_scanin_pcode	4	0x0	R / W TX impedance matching scan input pcode
19:12	Rx_scanin_code	8	0x0	R / W RX impedance matching scan input

14.5.30 PHY Configuration Register

Used to configure PHY related physical parameters. When the controller is used as two independent 8bit controllers, the high-order

The PHY and the low-order PHY are independently controlled by two controllers; when the controller acts as a 16-bit controller, the high-order

The configuration parameters of the lower PHY are controlled by the lower controller;

Offset:	0x1FC
Reset value:	0x83308000
name:	PHY configuration register

Table 14-83 PHY Configuration Register

137

Page 158

Bit field	Bit field name	Bit wid	th reset value	Visit des	scription
31	Rx_ckpll_term	1	0x1	R / W P	LL to RX end on-chip transmission line termination impedance
30	Tx_ckpll_term	1	0x0	R / W P	LL to TX terminal on-chip transmission line termination impedance
29	Rx_clk_in_sel_	1	0x0	R / W cl	ock PAD clock selection for data PAD, HT1 mode
					Under the formula, it is automatically selected as CLKPAD:
					1'b0 external clock source
					1'b1 PLL clock
28	Rx_ckdll_sell	1	0x0	R / W cl	ock selection for locking DLL:
					1'b0 PLL clock
					1'b1 external clock source
27:26	Rx_ctle_bitc	2	0x0	R / W P.	AD EQD high frequency gain
25:24	Rx_ctle_bitr	2	0x3	R / W P.	AD EQD low frequency gain
23:22	Rx_ctle_bitlim	2	0x0	R / W P.	AD EQD compensation limit
twenty or	neRx_en_ldo	1	0x1	R / W L	DO control
					1'b0 LDO disabled
					1'b1 LDO enable
20	Rx_en_by	1	0x1	R/WB	andGap control
					1'b0 BandGap disabled
					l'b1 BandGap enable
19: 17 Re	eserved	3	0x0	R	Keep
16:12	Tx_preenmp	5	0x08	R / W P.	AD pre-emphasis control signal
11:0	Reserved	12	0x0	R	Keep

14.5.31 Link initialization debug register

Used to configure whether to use the CDR provided by the PHY during the link initialization process in HyperTransport 3.0 mode

The lock signal is used as the link CDR completion flag; if the lock signal is ignored, the controller needs to count and wait

By default, the default CDR is completed.

Offset:	0x240
Reset value:	0x00000000
name:	Link initialization debug register

138

Page 159

Loongson 3A4000 processor register user manual

Table 14-84 Link Initialization Debug Register

Bit field	Bit field name	Bit width reset value access		e access	description
15	Cdr_ignore_enable 1	0x0 R / W		R / W	Whether to ignore CRC lock during link initialization and count through counter
					Wait for completion:
					1'b0 wait for CDR lock
					1'b1 Ignore the CDR lock signal and wait through the counter
14:00	Cdr_wait_counter	15	0x0	\mathbf{R} / \mathbf{W}	Wait for the upper limit of the counter to count and complete the count based on the controller clock

14.5.32 LDT debug register

After the software changes the controller frequency, the timing of the LDT reconnect phase will be inaccurate, and the counter needs to be configured.

After the frequency is configured as software, the time between the LDT signal being invalid and the controller starting link initialization, the timing is based on the control

Clock.	
Offset:	

Offset: Reset val	0x2 ue: 0x0	44 0000000			
name:	LD	Γ debug register	I		
			Table 14- 85	5 LDT debug register 1	
Bit field	Bit field name	e Bit w	idth reset value	e Visit description	
31:16	Rx_wait_time	e 16	0x0	R / W RX terminal waits for the initial value of the counter	
15:0	Tx_wait_time	16	0x0	R / W TX terminal waits for the initial value of the counter	
Offset:	0x2	48			
Reset val	ue: 0x0	0000000			
name:	LD	Γ debug register 2	2		
			Table 14- 86	6 LDT debug register 2	
Bit field	Bit field na	me Bit width	Reset value	access description	
31:30	Reserved	16	0x0	R / W	
29: 0	rx lane ts 0	16	0x0	R / W	
Offset:	0x2	4C			
Reset val	ue: 0x0	0000000			
name:	LD	Γ debug register 3	3		
			Table 14- 87	7 LDT debug register 3	
D:4 6 -14	D2-6-11	Diti kh	Denstandar	description .	

Bit field Bit field name Bit width Reset value access description

Page 160

Loongson 3A4000	processor	register	user	manual
-----------------	-----------	----------	------	--------

31:30	Reserved	16	0x0	R / W	
29:0	rx lane ts 1	16	0x0	R/W	
29:0	rx lane ts 1	10	0x0	K / W	
Offset:	0x250				
Reset value	: 0x00000	0000			
name:	LDT del	bug register 4	4		
			Table 14- 88	BLDT deb	oug register 4
Bit field	Bit field name	Bit width	Reset value	access	description
31:30	Reserved	16	0x0	\mathbf{R} / \mathbf{W}	
29: 0	rx lane ts 2	16	0x0	\mathbf{R} / \mathbf{W}	
Offset:	0x254				
Reset value	: 0x00000	0000			
name:	LDT del	bug register 5	5		
			Table 14- 89	DDT deb	oug register 5
Bit field	Bit field name	Bit width	Reset value	access	description
Bit field 31:22	Bit field name Reserved	Bit width 10	Reset value 0x0	access R / W	description
					description
31:22	Reserved	10	0x0	R / W	description
31:22 21:18	Reserved wait ctl	10 4	0x0 0x0	R / W R / W	description
31:22 21:18	Reserved wait ctl	10 4	0x0 0x0	R / W R / W	description
31:22 21:18 17: 0	Reserved wait ctl phase lock 0x258	10 4 18	0x0 0x0	R / W R / W	description
31:22 21:18 17: 0 Offset:	Reserved wait etl phase lock 0x258 :: 0x00000	10 4 18	0x0 0x0 0x0	R / W R / W	description
31:22 21:18 17: 0 Offset: Reset value	Reserved wait etl phase lock 0x258 :: 0x00000	10 4 18	0x0 0x0 0x0	R / W R / W R / W	
31:22 21:18 17: 0 Offset: Reset value	Reserved wait etl phase lock 0x258 :: 0x00000	10 4 18	0x0 0x0 0x0	R / W R / W R / W	description
31:22 21:18 17: 0 Offset: Reset value	Reserved wait etl phase lock 0x258 :: 0x00000	10 4 18 0000 bug register 5	0x0 0x0 0x0 5 7 7 Table 14- 90	R / W R / W R / W	

14.5.33 HT TX POST ID window configuration register

This window compares the ID of the internal write request with the preset window and passes the hit request through the HT POST channel

 Outgoing.

 Offset:
 0x260

 Reset value:
 0x0000000

 name:
 HT TX POST ID WIN0

140

Page 161

Loongson 3A4000 processor register user manual

Table 14-91 HT TX POST ID WIN0

31:16	HT TX POST ID0 MASK	16	0x0	\mathbf{R} / \mathbf{W}	AXI ID hit requests use POST
					Window transmission, MASK bit of I
15:0	HT TX POST ID0 BASE	16	0x0	R / W	AXI ID hit requests use POST Window transmission, BASE bit of II
Offset:	0x264				
Reset value:	0x00000000				
name:	HT TX POST ID WIN	1			
	Tab	ole 14- 92 HT	TX POST ID	WIN1	
Bit field	Bit field name	Bit width	Reset value	access	description
31:16	HT TX POST ID1 MASK	16	0x0	R / W	AXI ID hit requests use POST
					Window transmission, MASK bit of I
15:0	HT TX POST ID1 BASE	16	0x0	\mathbf{R} / \mathbf{W}	AXI ID hit requests use POST
					Window transmission, BASE bit of II
Offset:	0x268				
Reset value:	0x00000000				
name:	HT TX POST ID WIN	12			
	Tab	ole 14- 93 HT	TX POST ID	WIN2	
Bit field	Bit field name	Bit width	Reset value	access	description
31:16	UT TY DOCT ID? MARK	16	0x0	R / W	AXI ID hit requests use POST
31:10	HT TX POST ID2 MASK	10	0x0	K/W	Window transmission, MASK bit of I
15:0	HT TX POST ID2 BASE	16	0x0	R / W	AXI ID hit requests use POST
					Window transmission, BASE bit of II
Offset:	0x26C				
Reset value:					
name:	HT TX POST ID WIN	13			
	Tab	ole 14- 94 HT	TX POST ID	WIN3	
Bit field	Bit field name	Bit width	Reset value	access	description
31:16	HT TX POST ID3 MASK	16	0x0	R / W	AXI ID hit requests use POST
51.10	III INTOSTIDS MASK	10	0.0	1. 7 11	Window transmission, MASK bit of I
15:0	HT TX POST ID3 BASE	16	0x0	R / W	AXI ID hit requests use POST
					Window transmission, BASE bit of II
141					

Page 162

4/29/2020

Loongson 3A4000 processor register user manual

14.5.34 External Interrupt Conversion Configuration

This setting converts the interrupt received by HT into a write operation to a specific address and directly writes to the expansion IO inside the chip

Interrupt vector, instead of generating an interrupt within the HT controller. In this way, you can use the IO interrupt directly across the slice

Advanced features such as distribution.					
Offset:	0x270				
Reset value:	0x0000000				
name:	HT RX INT TRANS Lo				
	Table 14- 95 HT RX INT TRANS LO				

Bit field	Bit field name	Bit width	Reset value	access	description
31:4	INT_trans_addr [31: 4]	28	0x0	\mathbf{R} / \mathbf{W}	Interrupt conversion address low

3:0

Reserved

Loongson 3A4000 processor register user manual Keep

Offset: Reset value name:	HT RX INT TRANS H		T RX INT TR	ANS Hi	
Bit field	Bit field name	Bit width	Reset value	access	description
31	INT_trans_en	1	0x0	$\mathbf{R} \ / \ \mathbf{W}$	Interrupt conversion enable
30	INT_trans_allow	1	0x0	R / W	Interrupt conversion enable After setting this bit, INT_trans_en or Only the EXT_INT_en of the chip can be born effect.
29:26 25: 0	INT_trans_cache INT_trans_addr [57:32]	4 26	0x0 0x0	R / W R / W	Interrupt conversion of Cache field Interrupt conversion address high

0x0

R

14.6 Access method of HyperTransport bus configuration space

The protocol of the HyperTransport interface software layer is basically the same as the PCI protocol. Since the access to the configuration space is directly The underlying protocol is related, and the specific access details are slightly different. As listed in Table 14-6, the address range of the HT bus configuration space The range is 0xFD_FE00_0000 to 0xFD_FFFF_FFFF. For configuration access in the HT protocol, it is adopted in Godson 3A4000 Use the following format:

142

Page 163

Loongson 3A4000 processor register user manual

Type 0:

Type 1:

Figure 14-1 Configuration access of HT protocol in Loongson 3A4000

14.7 HyperTransport multiprocessor support

Loongson 3 processor uses HyperTransport interface for multi-processor interconnection, and can be automatically maintained by hardware

Consistency request between 2-8 chips.

Loongson No. 3 interconnection routing

There are two methods for Loongson No. 3 interconnection routing. When routing, X followed by Y, with four

Take a chip as an example, the ID numbers are 00, 01, 10, and 11, respectively. If a request is sent from 11 to 00, it is 11 to 00 routing,

First go in the X direction, from 11 to 10, then in the Y direction, from 10 to 00. When the response returns 11 from 00, the route

First go in the X direction, from 00 to 01, then go in the Y direction, from 01 to 11. The other is direct access to the diagonal through hard

The device connects two diagonal chips to achieve direct access, which greatly reduces the access delay. This access method needs to be individually enabled by software.

can. Due to the characteristics of this algorithm, we can use many different methods when constructing multi-chip interconnects.

Four piece Loongson No. 3 interconnection structure

The four CPUs are connected in pairs to form a ring structure. Each CPU uses two 8-bit controllers of HT0 to connect with two adjacent chips,

Using HT1 HI to connect with the diagonal chip, the interconnect structure as shown below is obtained:

143

Page 164

Loongson 3A4000 processor register user manual

Figure 14- 2 Four-chip Loongson No. 3 interconnection structure

Eight piece Loongson No. 3 interconnection structure

Eight CPUs form a cube structure. Each CPU uses two 8-bit controllers of HT0 to connect with two adjacent chips.

HT1 thus obtains the interconnection structure shown below:

144

Page 165

Loongson 3A4000 processor register user manual

Two piece Loongson No. 3 interconnection structure

Due to the nature of the fixed routing algorithm, we have two different methods when constructing the interconnection of two chips. first of all Using 8-bit HT bus interconnection. In this interconnection method, only 8-bit HT interconnection can be used between the two processors. Two chips The numbers are 00 and 01 respectively. From the routing algorithm, we can know that when two chips access each other, they are interconnected by four chips. 8-bit HT bus at the same time. As follows:

Figure 14- 4 Two-chip Loongson No. 3 8-bit interconnection structure

However, the widest HT bus can use 16-bit mode, so the connection method to maximize bandwidth should be 16-bit

Interconnect structure. In Godson III, as long as the HT0 controller is set to 16-bit mode, all commands sent to the

The order will be sent to HT0_LO instead of the previous routing table to HT0_HI or HT0_LO, so that we

You can use a 16-bit bus when interconnecting. Therefore, we only need to correctly configure the 16-bit mode of CPU0 and CPU1 and

The 16-bit HT bus can be used to interconnect the high and low bus correctly. And this interconnect structure can also use 8-bit

HT bus protocol for mutual access. The resulting interconnect structure is as follows:

145

Figure 14- 5 Two-chip Loongson No. 3 16-bit interconnection structure

146

Page 167

15 Low-speed IO controller configuration

Loongson No. 3 I / O controller includes UART controller, SPI controller, I2C and GPIO registers. These I / O controls

The controller shares an AXI port, and the CPU request is sent to the corresponding device after address decoding.

15.1 UART controller

The UART controller has the following features

• Full-duplex asynchronous data reception / transmission

- Programmable data format
 16-bit programmable clock counter
- Support receive timeout detection
- Multi-interrupt system with arbitration
- Only work in FIFO mode
- Compatible with NS16550A in registers and functions

The chip integrates two UART interfaces, the function registers are exactly the same, but the access base address is different.

The base address of the physical address of the UART0 register is 0x1FE001E0.

The base address of the physical address of the UART1 register is 0x1FE001E8.

For these two UARTs, a physical address is also provided, which is 0x1FE00100 (UART0) and

0x1FE00110 (UART1). This group of addresses can access the two newly added registers RFC and TFC.

15.1.1 Data Register (DAT)

Chinese nar	ne: Data trans	Data transfer register					
Register bit	width: [7: 0]						
Offset:	0x00						
Reset value	Reset value: 0x00						
Bit field	Bit field name	Bit width	access	description			
7: 0	Tx FIFO	8	W	Data transfer register			

Page 168

Loongson 3A4000 processor register user manual

15.1.2 Interrupt Enable Register (IER)

Chinese na	me: Interrupt	Interrupt enable register						
Register bi	t width: [7: 0]							
Offset:	0x01							
Reset value	e: 0x00							
Bit field	Bit field name	Bit width	access	description				
7: 4	Reserved	4	RW	Keep				
3	IME	1	RW	Modem status interrupt enable '0'-off '1'-open				
2	ILE	1	RW	Receiver line status interrupt enable '0' - close '1' - open				
1	ITxE	1	RW	Transfer save register is empty Interrupt enable '0' - close '1' - open				
0	IRxE	1	RW	Receive valid data interrupt enable '0' - close '1' - open				

15.1.3 Interrupt Identification Register (IIR)

Offset: Reset value	0x02 : 0xc1						
Bit field	Bit field name	Bit width	access	description			
7:4	Reserved	4	R	Keep			
3: 1	П	3	R	Interrupt source display bit, see the table below for details			
0	INTp	1	R	Interrupt indication bit			
	Interrupt control function table						
Bit 3 B	it 2 Bit 1 Priori	ty interrupt t	уре	Interrupt source Interrupt reset control			
148							

Page 169

Loongson 3A4	000 processor	r register user manual	

0	1	1	1st	Receive line status Parity, overflow, or frame error, or hiRead LSR		hitRead LSR
					Interrupt	
0	1	0	2nd	Received valid num	ber the number of characters in the FIF	FOIroacheember of characters in FIFO
				according to	trigger level	Value for trigger
1	1	0	2nd	Receive timeout	There is at least one character in the	e Filië@d receive FIFO
					But within 4 character time	
					Operations, including read and writ	e operations
0	0	1	3rd	Transfer, save, depo	sifFransfer save register is empty	Write data to THR or
				The device is empty		Multi IIR
0	0	0	4th	Modem status	CTS, DSR, RI or DCD.	Read MSR

15.1.4 FIFO Control Register (FCR)

Chinese nat	me: FIFO control re	FIFO control register				
Register bit	t width: [7: 0]					
Offset:	0x02					
Reset value	: 0xc0					
Bit field	Bit field name	Bit width	access	description		
7: 6	TL	2	W	Receive FIFO trigger value for interrupt request		
				'00' – 1 byte '01' – 4 bytes		
				'10' – 8 bytes '11' – 14 bytes		
5: 3	Reserved	3	W	Keep		
2	Txset	1	W	'l' Clear the content of transmit FIFO, reset its logic		
1	Rxset	1	W	'l' Clear the content of the receive FIFO, reset its logic		

149

Page 170

Loongson 3A4000 processor register user manual

0 Reserved 1 W Keep

15.1.5 Line Control Register (LCR)

Chinese name:		Line control regi	ster			
Register bit width: [7: 0]						
Offset:		0x03				
Reset value	:	0x03				
Bit field	Bit f	field name	Bit width	access	description	
7	dlab		1	RW	Divider latch access bit	
					'l'-access to the operation divider latch	
					'0'-access to normal operation register	
6	bcb		1	RW	Interrupt control bit	
					'I'-At this time the output of the serial port is set to 0 (interrupted state).	
					'0'-normal operation	
5	spb		1	RW	Specify parity	
					'0' - no parity bit specified	
					'l' - transmission and check parity if LCR [4] bit is 1	
					The bit is 0. If the LCR [4] bit is 0, transmit and check the parity	
					The checkpoint is 1.	
4	eps		1	RW	Parity bit selection	
					'0' - There are an odd number of 1s in each character (including data and odd	
					Even parity bit)	
					'l' – there are an even number of 1s in each character	

150

3	pe	1	RW	Parity bit enable
				'0' – no parity bit
				'l'-generate parity bit on output, judge odd on input
				Even parity
2	sb	1	RW	Define the number of generated stop bits
				'0' – 1 stop bit
				'l' – 1.5 stop bits when 5 characters long, others
				The length is 2 stop bits
1:0	bec	2	RW	Set the number of digits for each character
				'00' – 5 digits '01' – 6 digits
				'10' – 7 digits '11' – 8 digits

15.1.6 MODEM Control Register (MCR)

Chinese nat	me: Mode	m control register		
Register bit	width: [7: 0]			
Offset:	0x04			
Reset value	: 0x00			
Bit field	Bit field nar	ne Bit width	access	description
7: 5	Reserved	3	W	Keep
4	Loop	1	W	Loopback mode control bit
				'0'-normal operation
				'l' – Loopback mode. In loopback mode, TXD outputs a
				Straight to 1, the output shift register is directly connected to the input shift register
151				

Page 172

Bit field	Bit field name	Bit width	access	description
				器中. The other connections are as follows.
				$DTR \rightarrow DSR$
				$RTS \rightarrow CTS$
				$Out1 \rightarrow RI$
				$Out2 \rightarrow DCD$
3	OUT2	1	W	Connect to DCD input in loopback mode

2	OUT1	1	W	Connect to RI input in loopback mode
1	RTSC	1	W	RTS signal control bit
0	DTRC	1	W	DTR signal control bit

15.1.7 Line Status Register (LSR)

Chinese nar	ne: Line status regist	ter				
Register bit width: [7: 0]						
Offset:	0x05					
Reset value:	0x00					
Bit field	Bit field name	Bit width	access	description		
7	ERROR	1	R	Error indication bit		
				'l'-at least parity error, framing error or interruption		
				The broken one.		
				'0' – no errors		
6	TE	1	R	Transmission is empty		
				'I' – Both the transmission FIFO and the transmission shift register are empty. give		
152						

152

Page 173

Loongson 3A4000 processor register user manual

Clear when the transmit FIFO writes data

'0' - with data

5	TFE	1	R	Transmit FIFO bit empty representation bit
				'l' - The current transmit FIFO is empty, write data to the transmit FIFO
				Time zero
				'0' – with data
4	BI	1	R	Interrupt interruption bit
				'l'-Start bit + data + parity bit + stop bit received
				Is 0, that is interrupted
				'0'-no interruption
3	FE	1	R	Frame error indication bit
				'l' – received data has no stop bit
				'0' – no errors
2	PE	1	R	Parity bit error indicates bit

'1'-The current received data has a parity error

'0' - no parity error	
-----------------------	--

1	OE	1	R	Data overflow indication bit
				'l'-There is data overflow
				'0' – no overflow
0	DR	1	R	Receive data valid representation bit
				'0' – No data in FIFO
				'1' – There is data in the FIFO

When reading this register, LSR [4: 1] and LSR [7] are cleared, and LSR [6: 5] is writing data to the transmit FIFO

153

Page 174

Loongson 3A4000 processor register user manual

Cleared according to the time, LSR [0] judges the receive FIFO.

15.1.8 MODEM Status Register (MSR)

Chinese na	me: Modem status r	egister						
Register bit width: [7: 0]								
Offset:	0x06							
Reset value	e: 0x00							
Bit field	Bit field name	Bit width	access	description				
7	CDCD	1	R	Inverse of DCD input value, or connect to Out2 in loopback mode				
6	CRI	1	R	Inverse of RI input value, or connect to OUT1 in loopback mode				
5	CDSR	1	R	Inverse of DSR input value, or connect to DTR in loopback mode				
4	CCTS	1	R	Inverse of CTS input value, or connect to RTS in loopback mode				
3	DDCD	1	R	DDCD indicator				
2	TERI	1	R	RI edge detection. RI state changes from low to high				
1	DDSR	1	R	DDSR indicator				
0	DCTS	1	R	DCTS indicator				

15.1.9 Receive FIFO count value (RFC)

Chinese name: Receive FIFO count value Register bit width: [7: 0] Offset: 0x08 Reset value: 0x00

-, ,					
	Bit field	Bit field name	Bit width	access	description
	154				
Page 175					
				Loon	gson 3A4000 processor register user manual
	7: 0	RFC	8	R	Reflect the number of valid data in the current receive FIFO

15.1.10 Transmit FIFO count value (TFC)

Chinese nan	Chinese name: send FIFO count value						
Register bit	Register bit width: [7: 0]						
Offset: 0x09	Offset: 0x09						
Reset value:	Reset value: 0x00						
Bit field	Bit field name	Bit width	access	description			
7: 0	TFC	8	R	Reflect the number of valid data in the current transmit FIFO			

15.1.11 Frequency division latch

Chinese nam	e: Divider 1										
Register bit width: [7: 0]											
Offset:	0x00	0x00									
Reset value:	0x00	0x00									
Bit field	Bit field name	Bit width	access	description							
7: 0	LSB	8	RW	Store the lower 8 bits of the divider latch							
Chinese nam	e: Divider 2										
Register bit	width: [7: 0]										
Offset:	0x01										
Reset value:	0x00										
Bit field	Bit field name	Bit width	access	description							
7: 0	MSB	8	RW	Stores the upper 8 bits of the divider latch							
Chinese nam	Chinese name: Frequency Division Latch 3										
Register bit width: [7: 0]											
Offset: 0x02											
155											

Loongson 3A4000 processor register user manual

Reset value:	0x00
--------------	------

Bit field	Bit field name	Bit width	access	description
7: 0	D_DIV	8	RW	Stores the fractional divider value of the divider latch

15.1.12 Use of new registers

The new receive FIFO counter (RFC) allows the CPU to detect the number of valid data in the receive FIFO. According to this, the CPU

Multiple data can be read continuously after receiving an interrupt to improve CPU's ability to process UART received data;

The transmit FIFO counter (TFC) allows the CPU to detect the number of valid data in the transmit FIFO, according to which the CPU can keep

Proof that the sending FIFO does not overflow, and continuously send multiple data to improve the CPU's ability to process UART sending data

Frequency-dividing latch 3 (that is, decimal frequency-dividing register) is used to solve the problem that the required baud rate cannot be accurately obtained by integer divis

problem. Divide the reference clock 100MHz by 16, and then divide by the baud rate.

For MSB and LSB, the fractional part is multiplied by 256 and assigned to the divider latch D_DIV.

15.2 SPI controller

The SPI controller has the following features:

- Full duplex synchronous serial data transmission
- Supports up to 4 variable-length byte transfers
- Main mode support
- Mode failure generates an error flag and issues an interrupt request
- Double buffer receiver
- Serial clock with programmable polarity and phase
- SPI can be controlled in wait mode
- Support boot from SPI
- Support Dual / Quad mode SPI flash

156

Page 177

Loongson 3A4000 processor register user manual

The base address of the physical address of the SPI controller register is 0x1FE001F0.

Table 15-1 SPI controller address space distribution

Address name	Address range	size
SPI Boot	0X1FC0_0000-0X1FD0_0000	1MByte
SPI Memory	0X1D00_0000-0X1E00_0000	16MByte
SPI Register	0X1FE0_01F0-0X1FE0_01FF	16Byte

The SPI Boot address space is the address space that the processor first accesses when the system starts. The address of 0xBFC00000 is selected from

Automatic routing to SPI.

The SPI Memory space can also be directly accessed through the CPU's read request, its minimum 1M bytes and SPI BOOT space

overlapping.

15.2.1 Control Register (SPCR)

Chinese nat	me: Control register			
Register bit	width: [7: 0]			
Offset:	0x00			
Reset value	0x10			
Bit field	Bit field name	Bit width	access	description
7	Spie	1	RW	Interrupt output enable signal is high and effective
6	spe	1	RW	System work enable signal is highly effective
5	Reserved	1	RW	Keep
4	mstr	1	RW	master mode selection bit, this bit keeps 1
3	cpol	1	RW	Clock polarity bit
2	cpha	1	RW	Clock phase bit 1 is the opposite phase, and 0 is the same
1: 0	spr	2	RW	sclk_o crossover setting, need to be used with sper spre

157

Page 178

Loongson 3A4000 processor register user manual

15.2.2 Status Register (SPSR)

Chinese na	me: Status regi	ster				
Register bit width: [7: 0]						
Offset:	0x01					
Reset value	: 0x05					
Bit field	Bit field name	Bit width	access	description		
7	spif	1	RW	Interrupt flag bit 1 indicates that there is an interrupt request, write 1 to clear		
6	wcol	1	RW	Write register overflow flag bit is 1 indicates that it has overflowed, write 1 to clear		
5: 4	Reserved	2	RW	Keep		
3	wffull	1	RW	Write register full flag 1 means full		
2	wfempty	1	RW	Write register empty flag 1 means empty		
1	rffull	1	RW	Read register full flag 1 means full		
0	rfempty	1	RW	Read register empty flag 1 means empty		

15.2.3 Data Register (TxFIFO)

Chinese nar	ne: Data transf	er register							
Register bit width: [7: 0]									
Offset:	0x02								
Reset value:	0x00								
Bit field	Bit field name	Bit width	access	description					
7: 0	Tx FIFO	8	W	Data transfer register					

158

Page 179

Loongson 3A4000 processor register user manual

15.2.4 External register (SPER)

Chinese na Register bi				egister								
Offset:												
Reset value	:	0x00)									
Bit field	Bit	field na	ame	Bit	width	acces	SS	descrij	ption			
7: 6	icnt			2		RW		Send a	n interruj	ot request	signal aft	er how many bytes are transferred
								00 - 1	byte	01-2	bytes	
								10-3 by	ytes	11-	3 bytes	
5:2	Rese	erved		4		RW		Keep				
1:0	spre			2		RW		Set the	frequenc	ey divisio	n ratio wit	h Spr
Frequency	divisio	on fact	or:									
spre	00	00	00	00	01	01	01	01	10	10	10	10
spr	00	01	10	11	00	01	10	11	00	01	10	11
Frequency division factor			16	32	8	64 12	8 256	512 1024	4 2048 40)96		

15.2.5 Parameter control register (SFC_PARAM)

Chinese nar	ne:	SPI Flash parameter control register								
Register bit	width	: [7: 0]								
Offset:		0x04								
Reset value	:	0x21								
Bit field		Bit field name	Bit width	access	description					
7:4	clk_d	iv	4	RW	Clock frequency division number selection (frequency division coefficient is the same as {spre, spr} combination)					

4/29/2020				Loongs	son 3A4000 processor register user manual
	3	dual_io	1	RW	Use dual I / O mode with higher priority than fast read mode
	2	fast_read	1	RW	Use quick read mode
	1	burst_en	1	RW	spi flash supports continuous address read mode
	159				
Page 180					
				Looi	ngson 3A4000 processor register user manual
	0	memory_en	1	RW	spi flash read enable, when invalid, csn [0] can be controlled by software.

15.2.6 Chip Select Control Register (SFC_SOFTCS)

Chinese name	e: SPI Flash Chip S	SPI Flash Chip Select Control Register				
Register bit width: [7: 0]						
Offset:	0x05					
Reset value:	0x00					
Bit field	Bit field name	Bit width	access	description		
7:4	csn	4	RW	csn pin output value		
3: 0	csen	4	RW	When it is 1, the corresponding cs line is controlled by 7: 4 bits		

15.2.7 Timing control register (SFC_TIMING)

Chinese na	me: SPI Flash timin	SPI Flash timing control register				
Register bit	width: [7: 0]					
Offset:	0x06					
Reset value	: 0x03					
Bit field	Bit field name	Bit width	access	description		
7:4	Reserved	4	RW	Keep		
3	quad_io	1	RW	4-wire mode enabled, 1 valid		
2	tFast	1	RW			
				The shortest invalid time of the chip select signal of SPI Flash, divided by frequency		
				Clock period T calculation		
				00: 1T		
1:0	tCSH	2	RW	01: 2T		
				10: 4T		
				11: 8T		

15.2.8 Custom Control Register (CTRL)

Chinese n	ame:	SPI Flash custom control register				
Register b	it width	ı: [7: 0]				
Offset:		0x08				
Reset valu	ie:	0x00				
Bit field		Bit field name	Bit width	access	description	
7:4	nbyte	9	4	RW	Number of bytes transferred at a time	
3: 2	reser	ve	2	RW	Keep	
1	nbm	ode	1	RW	Multi-byte transfer mode	
0	start		1	RW	Start multi-byte transfer, clear automatically after completion	

15.2.9 Custom Command Register (CMD)

Chinese nar	ne:	SPI Flash custom command register						
Register bit width: [7: 0]								
Offset:		0x09						
Reset value	:	0x00						
Bit field		Bit field name	Bit width	access	description			
7: 0	cmd		8	RW	Set the command sent to spi flash			

15.2.10 User -defined data register 0 (BUF0)

Chinese nat	me:	SPI Flash custom data register 0				
Register bit width: [7: 0]						
Offset:		0x0a				
Reset value	:	0x00				
Bit field		Bit field name	Bit width	access	description	
					When sending a write command to SPI, this register configures the first	
7: 0	buf0		8	RW	Bytes of data; this register is sent when a read command is sent to the SPI	
					Store the first data read back.	

161

Page 182

Loongson 3A4000 processor register user manual

15.2.11 User -defined data register 1 (BUF1)

Chinese name:	SPI Flash custom data register 1						
Register bit width: [7: 0]							
Offset:	0x0b						
Reset value:	0x00						
Bit field	Bit field name	Bit width	access	description			

7: 0	bufl	8	RW	Bytes of data; this register is sent when a read command is sent to the SPI
------	------	---	----	---

Store the second read data.

15.2.12 Custom Timing Register 0 (TIMER0)

Chinese name:	SPI Flash custor	SPI Flash custom timing register 0					
Register bit width: [7: 0]							
Offset:	0x0c						
Reset value:	0x00						
Bit field	Bit field name	Bit width	access	description			
7: 0 time	0	8	RW	Lower 8 bits of time value required for custom command			

15.2.13 Custom Timing Register 1 (TIMER1)

Chinese name:	SPI Flash custor	SPI Flash custom timing register 1				
Register bit width: [7: 0]						
Offset:	0x0d					
Reset value:	0x00					
Bit field	Bit field name	Bit width	access	description		
7: 0 time	1	8	RW	The middle 8 bits of the time value of the custom command		

15.2.14 Custom Timing Register 2 (TIMER2)

Chinese name: SPI Flash custom timing register 2

162

Page 183

Loongson 3A4000 processor register user manual

7:0	time2	8	RW	The upper 8 bits of the time value required by the custom command
Bit field	Bit field name	Bit width	access	description
Reset value:	0x00			
Offset:	0x0e			
Register bit	width: [7: 0]			

15.2.15 SPI two-wire four-wire user guide

In addition to the traditional single-wire mode, the SPI controller also supports two modes (dual mode) and quad mode (quad mode)

The working mode is started from SPI flash. By setting the dual_io register, the SPI controller can enter the two-wire mode, set

Setting the quad_io register allows the SPI controller to enter four-wire mode. Can be added in the first few instructions of the BIOS code

For the configuration codes of these two registers, after the configuration is completed, the controller fetches instructions according to the corresponding working mode of the config

Can increase the boot speed.

It should be noted that some SPI FLASH does not enable four-wire mode by default, or need to be configured in four-wire mode

The device adds a custom register (0x8-0xe). The specific method of use is:

1. Set the custom command register (CMD) (0x9), which is a command sent to SPI FLASH;

2. If SPI FLASH requires the command sent this time to complete after a period of time, then configure the waiting time

Go to the custom timing register TIMER0-TIMER2 (0xc-0xe), otherwise these registers keep the default value of 0;

3. If you write configuration information to SPI FLASH, you need to write the configuration information to the custom data register

BUF0-BUF1 (0xa-0xb); if configuration information is read to SPI FLASH, the two registers are stored and read back

Value of

4. Configure the custom control register CTRL [7: 1] where CTRL [1] (nbmode) represents the multi-byte transmission mode

The number of bytes transferred this time is given by CTRL [7: 4] (nbyte);

5. Configure the custom control register CTRL [0] to start this transfer.

163

Page 184

Loongson 3A4000 processor register user manual

Generally speaking, the register to be configured is located in the non-volatile storage area of FLASH, so the above configuration only needs to be configured

Set once.

15.3 I2C controller

This chapter gives a detailed description and configuration of I2C. This system chip integrates I2C interface, mainly used to realize two

Data exchange between devices. I2C bus is a serial bus composed of data line SDA and clock SCL, which can send and receive

data. Two-way transmission between devices, the maximum transmission rate of 400kbps.

The I2C controller integrated in Loongson 3A4000 can be used as a master device or a slave device, these two modes

Switch between by configuring internal registers. When used as a slave device, it is only used to read the internal temperature of the chip.

The address is specified by the register SLV_CTRL [6: 0].

The base address of the physical address of the I2C0 controller register is 0x1FE00120.

The base address of the physical address of the I2C1 controller register is 0x1FE00130.

The specific internal registers are described below.

15.3.1 Divider Latch Low Byte Register (PRERlo)

Chinese name: Low-frequency register of frequency-dividing latch

Register bit wid	th: [7: 0]
Offset:	0x00
Posst value:	0xff

Reset	value.			
Bit field	Bit field name	Bit width	access	description
7:0	PRERlo	8	RW	Store the lower 8 bits of the divider latch

15.3.2 divisor latch high byte register (PRERhi)

Chinese name: high-frequency register of frequency division latch

Register bit width: [7: 0]

164

Page 185

Loongson 3A4000 processor register user manual

Offset		0x01			
Reset	value:	0xff			
Bit field 7: 0	Bit field na PRERhi	ame	Bit width 8	access RW	description Stores the upper 8 bits of the divider latch

Assume that the value of the frequency division latch is prescale The frequency of the clock input from the LPB bus PCLK is clock_a SCL total

If the output frequency of the line is clock_s, the following relationship should be satisfied

 $Prcescale = clock_a / (4 * clock_s) - 1$

15.3.3 Control Register (CTR)

Chinese name: control register

Re	Register bit width: [7: 0]				
Of	Offset:				
Re	Reset value:				
Bit field	Bit field nan	ne	Bit width	access	description
7	EN		1	RW	Module work enable bit
					Is 1 normal working mode, 0 Operate the divider register
6	IEN		1	RW	Interrupt enable bit is 1 to open the interrupt
5	MST_EN		1	RW	Module master-slave selection 0: slave mode 1: master mode
4:0	Reserved		5	RW	Keep

15.3.4 Transmit Data Register (TXR)

Chir	Chinese name: send register				
Reg	Register bit width: [7: 0]				
Offs	et:	0x03			
Res	et value:	0x00			
Bit field	Bit field nat	me	Bit width	access	description
7:1	DATA		7	W	Store the next byte to be sent
0	DRW		1	W	When data is transferred, this bit saves the lowest bit of the data
					When the address is transferred, this bit indicates the read and write status

Page 186

Loongson 3A4000 processor register user manual

15.3.5 Receive Data Register (RXR)

Chir	iese name: Re	ceive Regist			
Reg	Register bit width: [7: 0]				
Offs	Offset: 0x03				
Res	et value:	0x00			
Bit field	Bit field nar	ne	Bit width	access	description
7:0	RXR		8	R	Store the last byte received

15.3.6 Command Control Register (CR)

Chin	ese name: co	mmand regi			
Regi	ster bit width	: [7: 0]			
Offset:		0x04			
Rese	Reset value:				
Bit field	Bit field nat	me	Bit width	access	description
7	STA		1	W	Generate START signal
6	STO		1	W	Generate STOP signal
5	RD		1	W	Generate read signal
4	WR		1	W	Write signal
3	ACK		1	W	Response signal
2:1	Reserved		2	W	Keep
0	IACK		1	W	Generate interrupt acknowledge signal

The hardware is automatically cleared after I2C sends data. Always read '0' bit 3 as 1 when reading these bits

The time indicates that the controller will not send ack at the end of this transmission, otherwise it will send ack at the end.

15.3.7 Status Register (SR)

Chinese name: Status Register							
Register bit width: [7: 0]							
Offset:	0x04						
Reset value	0x00						
Bit field	Bit field name	Bit width	access	description			
7	RxACK	1	R	Response bit received 1 No response bit received			

166

Page 187

Loongson 3A4000 processor register user manual

				0 response bit received
6	Busy	1	R	I2c bus busy flag
				1 Bus is busy
				0 Bus is idle
5	AL	1	R	This bit is set when the I2C core loses control of the I2C bus
4:2	Reserved	3	R	Keep
1	TIP	1	R	Indicate the transmission process
				1 means data is being transferred
				0 means the data transmission is completed
0	IF	1	R	Interrupt flag, one data transfer is completed, or another device

Initiate data transfer, position 1

15.3.8 Slave Control Register (SLV_CTRL)

Chinese nam	e: slave device	control register

Register bit width: [7: 0]						
Offset:	0x07					
Reset valu	e: 0x00					
Bit field	Bit field name	Bit width	access	description		
7	SLV_EN	1	WR	Slave mode enable, effective when MST_EN is 0, can be used for		
		-		Reset slave internal logic		
6: 0	SLV_ADDR	7	WR	Slave mode I2C address, configurable through software		

167

Page 188

16 3A3000 kernel compatibility

In order to achieve backward compatibility of the Linux kernel starting from 3A3000, the existing kernel must be implemented according to the chip's implementation regulati

Fan made some modifications.

In order to achieve a 3A3000 compatible core, the 3A4000 chip, in addition to implementing a set of configuration methods according to the new specification,

It also needs to support the mechanisms that are widely used in the current kernel.

The following introduces the 3A4000 core from two aspects: kernel compatibility and new feature support.

16.1 Compatible with 3A3000 core

In order to be compatible with the 3A3000 core, the following parts in the core must be modified.

16.1.1 Processor characteristic recognition method

For MIPS processors, there is no common way to identify the different characteristics of the processor in the kernel,

Instead, the processor model is distinguished by PRID, and then different processing is performed in different situations according to the processor model.

Because the current kernel only judges and handles the existing processor models, there is no new processor that has not been implemented yet.

There is a default processing method, which results in a lot of low-level code that does not have a corresponding implementation when running on a new processor.

In order to solve this problem, starting from 3A4000, a set of processor configuration instructions and processor feature recognition are implemented

Instructions to standardize software and hardware interfaces. Can be accessed through processor configuration instructions, or through 0x3ff00000

To access. The register is written as CSR [Offset Address] [Bit].

This register identifies some software-related processor features for software to view before enabling specific functions. Registered

Offset address 0x0008. Record as CSR [0x08].

Table 16-1 Chip feature register

Bit fiel	d	Field name	access	Reset value	description
0	Centigrade		R	1'b1	CSR [0x428] valid
1	Node counter		R	1'b1	CSR [0x408] valid
2	MSI		R	1'b1	MSI available
3	EXT_IOI		R	1'b1	EXT_IOI available
4	IPI_percore		R	1'b1	IPI sending via CSR private address

Page 189

Loongson 3A4000 processor register user manual

5	Freq_percore	R	1'b1	Adjust frequency by CSR private address
6	Freq_scale	R	1'b0	Dynamic crossover function is available
7	DVFS_v1	R	1'b0	Dynamic FM v1 is available
8	Tsensor	R	1'b0	Temperature sensor available

16.1.2 Current kernel modification method

In the current 3.10 kernel, there are six codes that use PRID for functional feature identification.

Support, you need to modify five of them.

The	five	functions	are	as	follows:

function	path	description			
cpu_probe_loongson	arch / mips / kernel / cpu-probe.c	Identify the chip model			
loonson_cpu_temp	driver / platform / mips / cpu_hwmon.c	Read on-chip temperature sensor			
play_dead	arch / mips / loongson / loongson-3 / smp.c	Dynamic switch core support			
init_node_counter_clocksource arch / mips / loongson / loongson-3 / node_counter.c enable on-chip clock source					
ls7a_init_irq	arch / mips / loongson / loongson-3 / ls7a-irq.c	Enable MSI interrupt			

(1) cpu_probe_loongson

This function is used to identify the chip model. It is necessary to add the processor configuration instruction identification in the original default condition.

The code of the name of the other manufacturer, the name of the chip and the assignment of the corresponding data structure The corresponding registers are as follows.

Manufacturer name register. CSR [0x0010].

Table 16- 2 Manufacturer Name Register

Bit field Field name	access	Reset value	description
63: 0 Vendor	R	0x6e6f7367_6e6f6f4c the string "Loongson"	

Chip name register. CSR [0x0020].

Table 16- 3 Chip Name Register

Bit field Field name access F 63: 0 ID R 0x0000303

 access
 Reset value
 d

 R
 0x0000300_30344133 character string "3A4000"

(2) loongson_cpu_temp

This function is used to read the on-chip temperature sensor, and new processing needs to be added to the original default condition. First root

According to CSR [0x8] [0], determine whether there is an on-chip temperature sensor and decide whether to use the processor configuration instruction to read the on-chip temperature

Register CSR [0x428].

169

Page 190

Loongson 3A4000 processor register user manual

(3) play_dead

This function is used to dynamically switch cores. For future processors, this function needs to be significantly changed. original The function calls different functions according to the PRID to perform the targeted Cache operation and check the core. It needs to be changed to MIPS The specification of the second volume of the manual, the number and size of ICACHE / DCACHE / VCACHE read from the relevant CP0 register Configuration, perform the corresponding flash cache operation, and then close the core. It should be noted that in all Loongson 2 and Loongson 3 series In the column processor, when reading the cache configuration information through the CP0 register, the Secondary Cache in CP0.config2 Refers to the on-chip last-level cache or scache; when there is an on-chip private second-level cache, through CP0.config2 Tertiary Cache said. When closing the core, you need to decide whether to use CSR [0x1050] [3] based on whether CSR [0x420] [23] is 1 Whether to close the core or use the corresponding bit of 0x3ff001d0 to close the core.

(4) init_node_counter_clocksource

This function is used to initialize the on-chip clock source. A default condition needs to be added. According to CSR [0x8] [1], determine Is there a node_counter. At the same time, a parameter needs to be added, and certain specific values are no longer corrected.

(5) ls7a_init_irq

This function is used to decide whether to use MSI interrupt. A default condition needs to be added. In addition, according to CSR [0x8] [2], determine whether there is MSI support.

16.2 New feature support

In order to use the new features provided by the 3A4000 processor in the core, it can be identified or enabled according to the following method. Only the parts that can improve system performance are introduced here, and new mechanisms such as sending inter-core interrupts through CSR instructions, Because it is compatible with the requirements of the 3A3000 processor, it must actually use the existing specific address access method, there is no need to special It is intended to support CSR, but increase software overhead.

16.2.1 Identification of processor characteristics

New features are identified through CSR register instructions, in order to support the new features, you need to consider not supporting the processor

Page 191

Loongson 3A4000 processor register user manual

The processing method of the old processor with configuration instructions. One is to increase the judgment of PRID at each position that needs to be characterized,

All existing PRIDs are processed. The second is to add exception instruction processing. When the reserved instruction is recognized as a processor configuration instruction

When, according to the instruction content, according to the PRID, construct the correct return value.

16.2.2 Extended interrupt mode

In order to enable the extended interrupt mode in the kernel, it needs to be set in the following order.

1) Extended interrupt mode supports identification by CSR [0x8] [3].

2) PMON needs to configure the external interrupt conversion register of the HT controller that expects to support the extended interrupt mode to be positive Exact value. The register is defined as follows, set to the following values:

INT_trans_en = 0 // Enable control using CSR register, CSR [0x420] [48] and this register can enable

The interrupt mode can be extended. This mode is not enabled by default in PMON, and is enabled by the kernel configuration CSR [0x420] [48]

- INT_trans_allow = 1 // Allow to enable interrupt conversion function externally
- INT_trans_addr = 0x100000001140 // Extended interrupt register address, see 14.3.3.
- INT_trans_cache = 0 // Uncache way

Offset:	0x270				
Reset value:	0x00000000				
name:	HT RX INT TRANS I	Lo			
	Tal	ble 16- 4 H	T RX INT TH	RANS LO	
Bit field	Bit field name	Bit width	Reset value	access	description
31:4	INT_trans_addr [31: 4]	28	0x0	\mathbf{R} / \mathbf{W}	Interrupt conversion address low
3: 0	Reserved	4	0x0	R	Keep
Offset:	0x274				
Offset.	0X2/4				
Reset value:	0x0000000				
name:	HT RX INT TRANS H	Hi			
	Ta	ible 16- 5 H	IT RX INT T	RANS Hi	
Bit field	Bit field name	Bit width	Reset value	access	description
171					

Page 192

Loongson 3A4000 processor register user manual

31	INT_trans_en	1	0x0	\mathbf{R} / \mathbf{W}	Interrupt conversion enable
30	INT_trans_allow	1	0x0	\mathbf{R} / \mathbf{W}	Interrupt conversion is allowed
29:26	INT_trans_cache	4	0x0	\mathbf{R} / \mathbf{W}	Interrupt conversion of Cache field
25: 0	INT_trans_addr [58:32]	26	0x0	\mathbf{R} / \mathbf{W}	Interrupt conversion address high

3) The kernel first recognizes extended interrupt mode support through CSR [0x8] [3], and then through register CSR [0x420] [48]

Enable extended interrupt mode. The base address is 0x1fe00000 and the offset address is 0x0420.

Table 16-6 Other function setting registers

Bit field	Field name	access	Reset value	description
48	EXT_INT_en	RW	0x0	Extended IO interrupt enable

4) Set the corresponding routing and internal control of the extended interrupt mode.

16.3 Configuration register instruction debugging support

In principle, the configuration register instruction is not accessed across the chip when it is used, but in order to meet the needs for debugging and other functions, we use here Supports cross-chip access with multiple register addresses. It is worth noting that such registers can only be written, not read.

In addition to the original inter-core interrupts and other registers that can be accessed across the chip, all such registers and addresses are as follows.

name	Offset address	Authority	description
IPI_Send	0x1040	WO	32-bit interrupt distribution register
			[31] Wait for completion flag, set to 1 to wait for interrupt to take effect
			[30:26] Reserved
			[25:16] processor core number
			[15: 5] reserved
			[4: 0] Interrupt vector number, corresponding to the vector in IPI_Status
Mail_Send	0x1048	WO	64-bit MailBox cache register
			[63:32] MailBox data
			[31] Wait for completion flag, when set to 1, it will wait for write to take effect
			[30:27] Mask for writing data, each bit represents 32-bit write data
			The corresponding byte will not be written to the target address, such as 1000b
			Write 0-2 bytes, 0000b then write all 0-3 bytes
			[26] Reserved [25:16] processor core number

172

Page 193

Loongson **3A4000** processor register user manual [15: 5] reserved

			[15.5] reserved
			[4: 2] MailBox number
			0-MailBox0 lower 32 bits
			1-MailBox0 high 32 bits
			2-MailBox1 lower 32 bits
			3-MailBox1 high 32 bits
			4-MailBox2 lower 32 bits
			5-MailBox2 high 32 bits
			6-MailBox3 lower 32 bits
			7-MailBox4 high 32 bits
			[1: 0] Reserved
FREQ_Send	0x1058	WO	32-bit frequency enable register
			[31] Wait for completion flag, set to 1 to wait for interrupt to take effect
			[30:26] Reserved
			[25:16] processor core number
			[15: 5] reserved
			[4: 0] Write to the corresponding processor core private frequency configuration register.
			CSR [0x1050]
ANY_Send	0x1158	WO	64-bit register access register

[63:32] Write data

[31] Wait for completion flag, set to 1 to wait for interrupt to take effect

[30:27] Mask for writing data, each bit represents 32-bit write data

The corresponding byte will not be written to the target address, such as 1000b

Write 0-2 bytes, 0000b then write all 0-3 bytes

[26] Reserved [25:16] Target processor core number

[15: 0] Register offset address written

173