

Loongson 3A1000 processor user's manual Part i

Multicore processor architecture, register description and system software programming guide

V1.15

Sep 2015

Loongson technology co. LTD

自主决定命运,创新成就未来

Copyright statement

The copyright of this document belongs to loongson technology co., LTD. All rights reserved. No company or individual may make public, reprint or otherwise distribute any portion of this document to a third party without written permission. Otherwise, will pursue its legal responsibility certainly.

disclaimer

This document only provides periodic information, and the content can be updated at any time according to the actual situation of the product without prior notice. The company shall not be liable for any direct or indirect loss caused by improper use of the documents.

Loongson technology co. LTD

Loongson Technology Corporation Limited Address: Loongson Industrial Park, Building No. 2, loongson Industrial Park, zhongguancun environmental science and technology demonstration Park, haidian district, Beijing Zhongguancun Environmental Protection Park, Haidian District, Beijing Tel: 010-62546668 Fax: 010-62600826

-Reading guide------

Loongson 3A1000 processor user manual is divided into volume 1 and volume 2.

Loongson 3A1000 processor user's manual is divided into two parts. The first part (chapter $1 \sim$ chapter 10) introduces loongson 3A1000 multi-core processor architecture and register description, and gives a detailed description of chip system architecture, functions and configuration of main modules, register list and bit domain. The second part (chapter 11 ~ chapter 16) is the system software programming guide, which introduces the common problems in the development of BIOS and operating system.

The second volume of loongson 3A1000 processor user manual introduces in detail the GS464 highperformance processor core adopted by loongson 3A1000 from the perspective of system software developers.

Revision history

Docun	Document update record		The document name:	Loongson 3A1000 processor user's manual - the days		
			The version number	V1.15		
				The founders:	Research and development center	
				Date of creation:	2015-09-11	
Update	e history					
The serialUpdated dateThe version num ber				Update the content		
1	2009-10-30	V1.0	Add addro		R parameters;Fixed UART, SPI base	
2	2009-11-13	V1.1	Add	the definition of PCI_	CONFIG to the configuration pin	
3	2010-06-25	V1.2	The second part of the manual is added, including the configuration and use of interrupt, configuration and use of serial port, EJTAG debugging instructions, address window configuration conversion, system memory space distribution design and memory allocation of X system			
4	2010-06-29	V1.3	Modified the first chapter overview, the second chapter address distribution			
5	2010-07-20	V1.4	Fixed some text errors in the HT configuration register		he HT configuration register	
6	2010-07-28	V1.5	In section 10.5, Chip Config and Chip Sample register definitions are added		fig and Chip Sample register	
7	2010-12-17	V1.6	Revise the definition of DDR parameters			
8	2011-11-24	V1.7	Modify the cover			
9	2012-02-14	V1.8	Add	CLKSEL setting rest	rictions	
10	2012-02-23	V1.9	Adde	ed DDR configuration	register interrupt vector description	
11	2012-04-25	V1.10	Added details of the chip configuration register Added details of HT diagnostic register			
12	2012-08-23	V1.11	Revise the DDR parameter definition Added HT register definition supported by LS3A1000E			
13	2012-10-30	V1.12	Adde	ed matrix handling reg	gister supported by LS3A1000E	
14	2014-04-02	V1.13	According to the chip naming rules, the loongson 3A processor was renamed loongson 3A1000 processor			
15	2014-07-24	V1.14	Industrial level chip content added			

龙芯	3A1000	处理器用	户手册	目录
----	--------	------	-----	----

16	2015-09-11	V1.15	Fixed GPIO configuration register description
----	------------	-------	---

V

目录

Part 1		错误!未定义书容	奁。
Multic	ore processor architecture, register description and system software programming guide		. 1
Revisi	on history		. 4
1	overview		. 2
2	System configuration and control		. 0
4	Level 2 Cache		27
5	Matrix processing accelerator		29
6 In	terrupt and communication between processor cores		33
7	I/O interrupt		36
8	Ddr2/3 SDRAM controller configuration		36
8	3 Ddr2/3 SDRAM write operation protocol		40
9	HyperTransport controller		95
1	0 Low speed IO controller configuration		125
1	3 EJTAG debugging		131
1	4 Configure the translation in the address window		138
1	5 System memory space distribution design		148
1	6 Memory allocation for system X	•••••	151

龙芯中科技术有限公司 Loongson Technology Corporation Limited

The first part

Multi-core processor architecture, register description

龙芯中科技术有限公司 Loongson Technology Corporation Limited

1 overview

1. 1 Introduction to loongson series processors

The loongson processor mainly includes three series. Loongson 1 processor and its IP series are mainly for embedded applications, loongson 2 superstandard processor and its IP series are mainly for desktop applications, and loongson 3 multi-core processor series are mainly for server and high-performance machine applications. According to the application needs, part of the loongson 2 can also be oriented to part of the high-end embedded should With, part of low - end loongson 3 can also face part of the desktop application. The three series will develop in parallel.

Based on the scalable multi-core interconnect architecture, the loong chip 3 multi-core series integrates multiple high-performance processor cores and a large number of level-2 caches on a single chip, and interconnects multiple chips through high-speed I/O interfaces to form a larger system.

The retractable interconnection structure adopted by loongson 3 is shown in figure 1-1below.Loongson 3 and multi - chip system are adopted 2D mesh interconnection structure, in which each node is composed of 8*8 cross-switches, each cross-switch connects four processor cores and four second-level caches, and interconnects with other nodes in the four directions of east (E), south (N), west (W) and north (N).Therefore, a 2*2 mesh can connect 16 processor cores, and a 4*4 mesh can connect 64 processor cores.

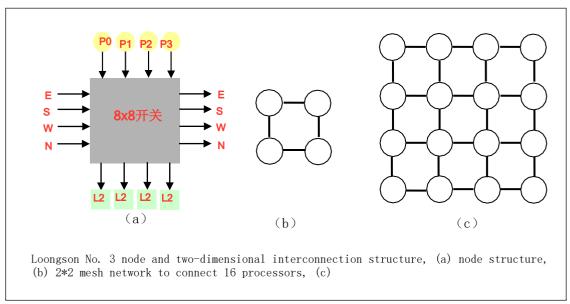


Figure 1-1 loongson 3 system structure

The node structure of loongson 3 is shown in figure 1-2 below. Each node has two levels

of AXI cross-switches connected to the processor, a secondary Cache, a memory controller, 2 龙芯中科技术有限公司

Loongson Technology Corporation Limited

and an IO controller. The first level AXI cross Switch (called the X1 Switch) connects the processor to the secondary Cache. The second level cross Switch (called the X2 Switch) connects the second level Cache to the memory controller.

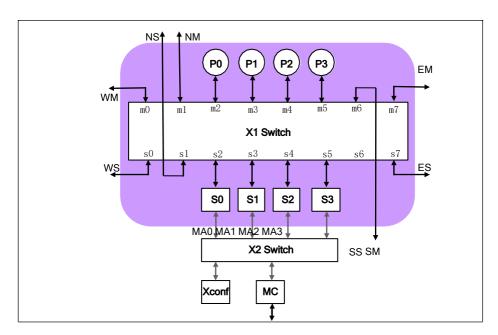


Figure 1-2 structure of loongson node3

At most 8*8 X1 crossovers are connected to four GS464 processor cores via four Master ports at each node

(P0, P1, P2, P3 in the figure), connect the four interleave second-level Cache blocks (S0, S1, S2, S3 in the figure) with four Slave ports, and connect other nodes or IO nodes (EM/ES, SM/SS, WM/WS, NM/NS in the figure) with four Master/Slave ports in the east, south, west, and north directions.

The X2 cross-switch connects four secondary caches through four Master ports, at least one Slave port to a memory controller, and at least one Slave port to a cross-switch configuration module (Xconf) to configure the local node's X1 and X2 address Windows.You can also connect more memory controllers and IO ports as needed.

The interconnection system in loongson 3 only defines the upper layer protocol, which does not specify the implementation of the transport protocol. Therefore, the interconnection between nodes can be realized either through the on-chip network or through the I/O control link to realize multi-chip interconnection. In a 4-node 16-core system, for example, it can be composed of either 4 4-core chips or 2 8-core chips

A nuclear chip, or a 16-core chip composed of four nodes based on a single chip.Because the physical implementation of the interconnected system is transparent to the software,

The above three configurations of the system can run the same operating system.

1. 2 Introduction to loongson 3A1000

The loongson 3A1000 is the first product of the loongson no. 3 multi-core processor series. It is a single-node processor with 4 cores.

Four 64-bit quad-emission superscalar GS464 high-performance processor cores are integrated on the chip.

4 MB split Shared second-level Cache(composed of 4 individual modules, each with a capacity of 1MB);

Maintain Cache consistency for multi-core and I/O DMA access through directory protocols;

Two 64 bit 400MHz ddr2/3 controllers are integrated on the chip.

Two 16-bit 800MHz HyperTransport controllers are integrated on the chip;

Each 16-bit HT port is split into two 8-way HT ports for use.

32-bit 100MHz PCIX/66MHz PCI;

1 LPC, 2 UART, 1 SPI and 16 GPIO interfaces are integrated on the chip.

The overall architecture of loongson 3A1000 chip is based on two-level interconnection, as shown in figure 1-3 below.

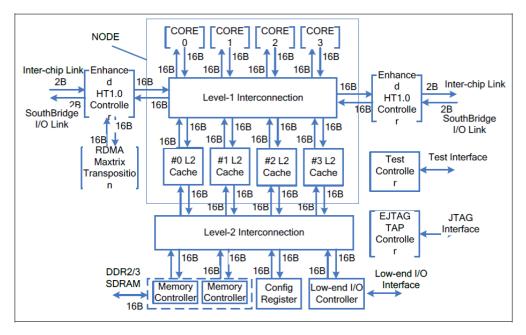


Figure 1-3 chip structure of Godson 3a10 1

The first level of interconnect USES 6x6 cross-switches to connect four cpus (as Master devices), four secondary Cache modules (as Slave devices), and two IO ports (one Master and one Slave for each port).Each IO port connected by the level 1 interconnect switch is connected to a 16-bit HT controller, and each 16-bit HT port can also be used as two 8-bit HT ports.The HT controller is connected to a level 1 interconnect switch by a DMA controller, which is responsible for the DMA control of IO and the maintenance of inter-chip consistency.The loongson 3's DMA controller can also be configured to prefetch and matrix transpose or shift.

The second level interconnection USES a 5x4 cross-switch to connect 4 secondary Cache modules (as the main device) and 2 DDR2

Memory controller, low speed and high speed I/O (including PCI, LPC, SPI, etc.) and the control register module inside the chip.The above two level interconnect switches all adopt the data channel separated by read and write. The data channel width is 128bit and

works at the same place

The same frequency is used to provide high-speed on-chip data transmission.

Based on the loongson no. 3 extensible interconnection architecture, 4 pieces of fourcore loongson 3A1000 can be connected via HT port to form 4 chips

16 - core SMP structure.

1. 3 Loongson 3A1000 commercial grade and industrial grade chips Loongson 3A1000 chip has two kinds of industrial grade and commercial grade. Its main

features are as follows:

configuration	Commercial grade	industrial-grade
Working temperature	0 °C ~ 70 °C	- 40 °C ~ 85 °C
Whether screening	-	Square root
Quality consistency test	-	Square root
Quality consistency test standard	-	GB 4937-1995

As with most semiconductor devices, the failure rate of the loongson 3A chip conforms to the bathtub curve model. In order to ensure a more long-term, stable and reliable operation, and to adapt to the more stringent environmental temperature requirements, loongson 3A industrial-grade chip was selected for reliability, so as to eliminate the early failure of the chip. This reliability screening is 100% trial, through which the chips are screened for industrial-grade applications

The main contents of loongson 3A screening test are as follows:

Screening program	Methods and conditions (summary)	requireme nts
1, visual inspection	Clear identification, no contamination, no oxidation of welding ball, chip intact	100%
2. Stable baking	125 °C for 24 h	100%
3. The temperature changes rapidly	10 cycles at maximum and minimum storage temperatures	100%
4. Serial number		100%
5, intermediate (before the old) electrical test	The normal temperature	100%
6, aging	TC = 85 °C, 160 h	100%
7. Intermediate (after aging) electrical test	The normal temperature	100%
8. Percentage of defective products allowed (PDA)	PDA≤5%, normal temperature, when 5% < PDA≤10%, can be heavy	All batch
To calculate	New submissions, but only once	
9. Terminal electrical test	Three temperature, record all test data	100%
10. External visual inspection	Clear identification, no contamination, no oxidation of welding ball, chip intact	100%

2 System configuration and control

2.1 Chip working mode

According to the structure of the composing system, loongson 3A1000 has two working modes:

Single chip mode. The system only integrates one loongson 3A1000, which is a symmetric multiprocessor system (SMP).

Multi-chip interconnection model. The system consists of 2 or 4 loongson 3A1000, which is interlinked through the HT port of loongson 3A1000. It is a non-uniform memory multi-processor system (cc-numa)

Control pin instructions

The control pins of loongson 3A1000 include DO_TEST, ICCC_EN, NODE_ID[1:0], CLKSEL[15:0], and PCI_CONFIG. Table 2-1 control pin description

signal	Pull up and down	role
DO_TEST	On the pull	1 'b1 represents the functional mode
	Pull	1 'b0 represents the test mode
		1 'b1 represents the consistent interconnection mode of multiple chips
ICCC_EN	The drop- down	1 'b0 stands for single chip mode
NODE_ID [1:0]		Represents the processor number in the multichip consistent interconnection mode
		Power on clock control
		HT clock control

龙芯 3A1000 处理器用户手册 第一语

	signal	role
CLKSEL [15:0]	CLKSEL [15]	1 'b1 indicates the use of internal reference voltage 1 'b0 indicates external reference voltage
	CLKSEL [14]	1 'b1 means HT PLL USES differential clock input 1 'b0 means HT PLL USES normal clock input
	CLKSEL [12]	 2 'b00 represents the PHY clock of 1.6GHZ/1 2 'b01 represents the PHY clock of 3.2GHZ/2 2 'b10 represents the PHY clock. It is an ordinary input clock 2 'b11 represents PHY clock and is a differential input clock
	CLKSEL [10]	2 'b00 represents HT controller clock 200MHz 2 'b01 represents HT controller clock 400MHz

2 'b1x means that HT controller clock is an ordinary

	input clock MEM clock control				
	signal	role			
		5 'b11111 means that MEM clock directly			
		adopts memclk. In other cases, MEM clock is			
	01.1/051	memclk*(clksel[8:5]+30)/(clksel[9]+3)			
	CLKSEL [will]	Note:			
		Memclk *(clksel[8:5]+30) must be 600MHz~			
		1.36ghz memclk must be 10~40MHz			
		CORE clock control			
	signal	role			
		5 'b11111 means that the CORE clock			
		directly adopts sysclk. In other cases, the			
		CORE clock is			
	CLKSEL [Wednesday]	sysclk*(clksel[3:0]+30)/(clksel[4]+1).			
		Note:			
		Sysclk *(clksel[3:0]+30) must be 600MHz~ 1.36ghz			
	IO configuration contro				
	7HT control signal pin control bit 1* 6:5 PCIX				
	selection *				
	4PCIX bus mode selection				
	3PCI main device mode				
	2 the system is started from the PCI space				
	1 use external PCI me				
PCI_CONFIG [away]	0HT control signal pin	voltage control bit 0*			
	$\begin{array}{c c} Note * \\ \hline 6 & - & 4 \end{array}$	PCIX bus pattern			
	0 - 0	PCI 33/66			
	0 1 1 1 0 1	PCI - 66 X PCI - 10 - X			
		PCI - 133 X			
	7 0 HT c	ontrols the pin voltage of the signal. These signals			
	inclu	de HT_8x2, HT_Mode,			
		Powerok, HT_Rstn, HT_Ldt_Stopn, HT_Ldt_Reqn.			
		0 0 1.8 v 0 1 Reserved			
	1 1 3.3 v				

2.2 The Cache consistency

The loongson 3A1000 is maintained by the hardware for the Cache consistency between the processor and the I/O accessed through the HT port, but the hardware does not maintain the Cache consistency of the I/O devices accessed through PCI into the system.At the time of driver development, the software is required to maintain Cache consistency for DMA (Direct Memory Access) transfers to devices accessed through PCI.

2.3 Physical address space distribution at the system node level

The system physical address distribution of the loongson 3 series processor adopts globally accessible hierarchical addressing design to ensure

System development extension compatibility. The overall system physical address width is 48 bits. According to the height of the address, the whole address is empty

It is evenly distributed among 16 nodes, that is, each node is allocated with a 44-bit address space.

The godson 3A1000 adopts a single-node 4-core configuration, so the corresponding addresses of the DDR memory controller, HT bus and PCI bus integrated by the godson 3A1000 chip are all contained in the 44-bit address space from 0x0 (inclusive) to $0x1000_0000_0000$ (not inclusive). Please refer to the following relevant sections for the address distribution of each device.

Table 2-2 node-level system global address distribution

Node number	Address [47:44]	The starting address	End address
		0 x0000_0000_0000	0 x1000_0000_0000
1	1	0 x1000_0000_0000	0 x2000_0000_0000
2	2	0 x2000_0000_0000	0 x3000_0000_0000
3	3	0 x3000_0000_0000	0 x4000_0000_0000
4	4	0 x4000_0000_0000	0 x5000_0000_0000
5	5	0 x5000_0000_0000	0 x6000_0000_0000
6	6	0 x6000_0000_0000	0 x7000_0000_0000
7	7	0 x7000_0000_0000	0 x8000_0000_0000
8	8	0 x8000_0000_0000	0 x9000_0000_0000

9	9	0 x9000_0000_0000	0 xa000_0000_0000
10	0 xa	0 xa000_0000_0000	0 xb000_0000_0000
11	0 xb	0 xb000_0000_0000	0 xc000_0000_0000
12	0 xc	0 xc000_0000_0000	0 xd000_0000_0000
13	0 xd	0 xd000_0000_0000	0 xe000_0000_0000
14	0 xe	0 xe000_0000_0000	0 xf000_0000_0000
15	0 xf	0 xf000_0000_0000	0 x1_0000_0000_0000

Within each node, the 44-bit address space is further evenly distributed among up to eight possible devices connected within the node. The low 43-bit address is owned by four 2-level Cache modules, and the high 43-bit address is further determined by the [43:42] of the address.

Bits are distributed to devices connected to four directional ports.Depending on the chip and system configuration, if there is no slave device connected to a port, the corresponding address space is reserved address space and access is not allowed.

equip ment	Address [43:41]	The initial address within the node	End of node address
Level 2 Cache	0,1,2,3	0 x000_0000_0000	0 x800_0000_0000
In the east	4	0 x800_0000_0000	0 xa00_0000_0000
south	5	0 xa00_0000_0000	0 xc00_0000_0000
In the west	6	0 xc00_0000_0000	0 xe00_0000_0000
north	7	0 xe00_0000_0000	0 x1000_0000_0000

Table 2-3 address distribution within nodes

For example, the base address of the east end port device of node 0 is 0x0800_0000_0000, the base address of the east end port device of node 1 is 0x1800_0000_0000, and so on.

Unlike the directional port mapping, the loongson 3A1000 can determine the cross-addressing mode of the secondary Cache based on the actual access behavior of the application. The four level-2 Cache modules in the node correspond to a total of 43 address Spaces, and the address space corresponding to each level-2 module is determined according to a certain two selection bits of the address bit, which can be dynamically configured and modified by the software. A configuration register named SCID_SEL is set in the system to determine the address selection bit, as shown in the following table. By default, it is distributed in a [6:5] status hash, where the address [6:5] determines the corresponding level 2 Cache number. The register address is 0x3FF00400.

SCID_SEL	Address bit selection	SCID_SEL	Address bit selection
4'h0	6: 5	4'h8	23:22
4'h1	9: 8	4'h9	25:24
4'h2	11:10	4'ha	27:26
4'h3	13:12	4'hb	29:28
4'h4	15:14	4'hc	31:30
4'h5	17:16	4'hd	33:32
4'h6	19:18	4'he	35:34

2.4 Address routing distribution and configuration

The routing of loongson 3A1000 is mainly realized through the two-stage crossover switch of the system. A level 1 cross switch can configure the routing of requests received by each Master port. Each Master port has 8 address Windows, which can complete the target routing of 8 address Windows. Each address window consists of three 64-bit registers, BASE, MASK and MMAP. BASE is aligned with K bytes. The MASK used a format similar to the network MASK with a high position of 1. The lower three bits of MMAP represent the number of the target Slave port, MMAP[4] means the allowed fetch-pointing, MMAP[5] means the allowed block reading, and MMAP[7] means the enabled window.

Window hit formula :(IN_ADDR & MASK) == BASE

Because the loongson 3 adopts fixed route by default, the configuration window is closed when it is powered on and started, so the system software is required to enable it to be configured when it is in use.

The address window conversion register is shown in the following table.

Table 2-5 register table of level 1 crossover switch address window

address	register	address	register
0 x3ff0_2000	CORE0_WIN0_BASE	0 x3ff0_2100	CORE1_WIN0_BASE
0 x3ff0_2008	CORE0_WIN1_BASE	0 x3ff0_2108	CORE1_WIN1_BASE
0 x3ff0_2010	CORE0_WIN2_BASE	0 x3ff0_2110	CORE1_WIN2_BASE
0 x3ff0_2018	CORE0_WIN3_BASE	0 x3ff0_2118	CORE1_WIN3_BASE
0 x3ff0_2020	CORE0_WIN4_BASE	0 x3ff0_2120	CORE1_WIN4_BASE
0 x3ff0_2028	CORE0_WIN5_BASE	0 x3ff0_2128	CORE1_WIN5_BASE
0 x3ff0_2030	CORE0_WIN6_BASE	0 x3ff0_2130	CORE1_WIN6_BASE
0 x3ff0_2038	CORE0_WIN7_BASE	0 x3ff0_2138	CORE1_WIN7_BASE
0 x3ff0_2040	CORE0_WIN0_MASK	0 x3ff0_2140	CORE1_WIN0_MASK
0 x3ff0_2048	CORE0_WIN1_MASK	0 x3ff0_2148	CORE1_WIN1_MASK
0 x3ff0_2050	CORE0_WIN2_MASK	0 x3ff0_2150	CORE1_WIN2_MASK
0 x3ff0_2058	CORE0_WIN3_MASK	0 x3ff0_2158	CORE1_WIN3_MASK
0 x3ff0_2060	CORE0_WIN4_MASK	0 x3ff0_2160	CORE1_WIN4_MASK
0 x3ff0_2068	CORE0_WIN5_MASK	0 x3ff0_2168	CORE1_WIN5_MASK
0 x3ff0_2070	CORE0_WIN6_MASK	0 x3ff0_2170	CORE1_WIN6_MASK
0 x3ff0_2078	CORE0_WIN7_MASK	0 x3ff0_2178	CORE1_WIN7_MASK
0 x3ff0_2080	CORE0_WIN0_MMAP	0 x3ff0_2180	CORE1_WIN0_MMAP
0 x3ff0_2088	CORE0_WIN1_MMAP	0 x3ff0_2188	CORE1_WIN1_MMAP
0 x3ff0_2090	CORE0_WIN2_MMAP	0 x3ff0_2190	CORE1_WIN2_MMAP

0 x3ff0_2098	CORE0_WIN3_MMAP	0 x3ff0_2198	CORE1_WIN3_MMAP
0 x3ff0_20a0	CORE0_WIN4_MMAP	0 x3ff0_21a0	CORE1_WIN4_MMAP
0 x3ff0_20a8	CORE0_WIN5_MMAP	0 x3ff0_21a8	CORE1_WIN5_MMAP
0 x3ff0_20b0	CORE0_WIN6_MMAP	0 x3ff0_21b0	CORE1_WIN6_MMAP
0 x3ff0_20b8	CORE0_WIN7_MMAP	0 x3ff0_21b8	CORE1_WIN7_MMAP
0 x3ff0_2200	CORE2_WIN0_BASE	0 x3ff0_2300	CORE3_WIN0_BASE
0 x3ff0_2208	CORE2_WIN1_BASE	0 x3ff0_2308	CORE3_WIN1_BASE
0 x3ff0_2210	CORE2_WIN2_BASE	0 x3ff0_2310	CORE3_WIN2_BASE
0 x3ff0_2218	CORE2_WIN3_BASE	0 x3ff0_2318	CORE3_WIN3_BASE
0 x3ff0_2220	CORE2_WIN4_BASE	0 x3ff0_2320	CORE3_WIN4_BASE
0 x3ff0_2228	CORE2_WIN5_BASE	0 x3ff0_2328	CORE3_WIN5_BASE
0 x3ff0_2230	CORE2_WIN6_BASE	0 x3ff0_2330	CORE3_WIN6_BASE
0 x3ff0_2238	CORE2_WIN7_BASE	0 x3ff0_2338	CORE3_WIN7_BASE
0 x3ff0_2240	CORE2_WIN0_MASK	0 x3ff0_2340	CORE3_WIN0_MASK
0 x3ff0_2248	CORE2_WIN1_MASK	0 x3ff0_2348	CORE3_WIN1_MASK
0 x3ff0_2250	CORE2_WIN2_MASK	0 x3ff0_2350	CORE3_WIN2_MASK
0 x3ff0_2258	CORE2_WIN3_MASK	0 x3ff0_2358	CORE3_WIN3_MASK
0 x3ff0_2260	CORE2_WIN4_MASK	0 x3ff0_2360	CORE3_WIN4_MASK
0 x3ff0_2268	CORE2_WIN5_MASK	0 x3ff0_2368	CORE3_WIN5_MASK
0 x3ff0_2270	CORE2_WIN6_MASK	0 x3ff0_2370	CORE3_WIN6_MASK
0 x3ff0_2278	CORE2_WIN7_MASK	0 x3ff0_2378	CORE3_WIN7_MASK
0 x3ff0_2280	CORE2_WIN0_MMAP	0 x3ff0_2380	CORE3_WIN0_MMAP
0 x3ff0_2288	CORE2_WIN1_MMAP	0 x3ff0_2388	CORE3_WIN1_MMAP
0 x3ff0_2290	CORE2_WIN2_MMAP	0 x3ff0_2390	CORE3_WIN2_MMAP
0 x3ff0_2298	CORE2_WIN3_MMAP	0 x3ff0_2398	CORE3_WIN3_MMAP
0 x3ff0_22a0	CORE2_WIN4_MMAP	0 x3ff0_23a0	CORE3_WIN4_MMAP
0 x3ff0_22a8	CORE2_WIN5_MMAP	0 x3ff0_23a8	CORE3_WIN5_MMAP
0 x3ff0_22b0	CORE2_WIN6_MMAP	0 x3ff0_23b0	CORE3_WIN6_MMAP
0 x3ff0_22b8	CORE2_WIN7_MMAP	0 x3ff0_23b8	CORE3_WIN7_MMAP
0 x3ff0_2400	EAST_WIN0_BASE	0 x3ff0_2500	SOUTH_WIN0_BASE
0 x3ff0_2408	EAST_WIN1_BASE	0 x3ff0_2508	SOUTH_WIN1_BASE
0 x3ff0_2410	EAST_WIN2_BASE	0 x3ff0_2510	SOUTH_WIN2_BASE
0 x3ff0_2418	EAST_WIN3_BASE	0 x3ff0_2518	SOUTH_WIN3_BASE

0 x3ff0_2420EAST_WIN4_BASE0 x3ff0_2520SOUTH_WIN4_BASE0 x3ff0_2428EAST_WIN5_BASE0 x3ff0_2528SOUTH_WIN5_BASE0 x3ff0_2430EAST_WIN6_BASE0 x3ff0_2530SOUTH_WIN6_BASE0 x3ff0_2440EAST_WIN7_BASE0 x3ff0_2540SOUTH_WIN1_MASK0 x3ff0_2440EAST_WIN2_MASK0 x3ff0_2540SOUTH_WIN1_MASK0 x3ff0_2443EAST_WIN2_MASK0 x3ff0_2550SOUTH_WIN1_MASK0 x3ff0_2450EAST_WIN2_MASK0 x3ff0_2550SOUTH_WIN3_MASK0 x3ff0_2452EAST_WIN5_MASK0 x3ff0_2560SOUTH_WIN4_MASK0 x3ff0_2454EAST_WIN5_MASK0 x3ff0_2560SOUTH_WIN5_MASK0 x3ff0_2470EAST_WIN5_MASK0 x3ff0_2570SOUTH_WIN5_MASK0 x3ff0_24710EAST_WIN7_MASK0 x3ff0_2578SOUTH_WIN7_MASK0 x3ff0_2478EAST_WIN7_MASK0 x3ff0_2580SOUTH_WIN7_MAPA0 x3ff0_2480EAST_WIN3_MMAP0 x3ff0_2598SOUTH_WIN3_MMAP0 x3ff0_2490EAST_WIN3_MMAP0 x3ff0_2598SOUTH_WIN3_MMAP0 x3ff0_2491EAST_WIN5_MMAP0 x3ff0_2580SOUTH_WIN4_MAPA0 x3ff0_2492EAST_WIN5_MMAP0 x3ff0_2580SOUTH_WIN5_MMAP0 x3ff0_2448EAST_WIN6_MAP0 x3ff0_2580SOUTH_WIN5_MMAP0 x3ff0_2440EAST_WIN6_MAP0 x3ff0_2580SOUTH_WIN5_MAPA0 x3ff0_2440EAST_WIN5_MAP0 x3ff0_2580SOUTH_WIN5_MAPA0 x3ff0_2440EAST_WIN7_MAP0 x3ff0_2580SOUTH_WIN5_MAPA0 x3ff0_2440WEST_WIN6_BASE0 x3ff0_2780NORTH_WI				
0 x3ft0_2430 EAST_WIN6_BASE 0 x3ft0_2530 SOUTH_WIN6_BASE 0 x3ft0_2438 EAST_WIN7_BASE 0 x3ft0_2538 SOUTH_WIN7_BASE 0 x3ft0_2440 EAST_WIN0_MASK 0 x3ft0_2548 SOUTH_WIN0_MASK 0 x3ft0_2448 EAST_WIN1_MASK 0 x3ft0_2548 SOUTH_WIN1_MASK 0 x3ft0_2450 EAST_WIN2_MASK 0 x3ft0_2550 SOUTH_WIN2_MASK 0 x3ft0_2458 EAST_WIN3_MASK 0 x3ft0_2558 SOUTH_WIN3_MASK 0 x3ft0_2460 EAST_WIN5_MASK 0 x3ft0_2568 SOUTH_WIN5_MASK 0 x3ft0_2460 EAST_WIN6_MASK 0 x3ft0_2568 SOUTH_WIN5_MASK 0 x3ft0_2470 EAST_WIN6_MASK 0 x3ft0_2570 SOUTH_WIN6_MASK 0 x3ft0_2470 EAST_WIN7_MASK 0 x3ft0_2580 SOUTH_WIN7_MASK 0 x3ft0_2480 EAST_WIN2_MMAP 0 x3ft0_2580 SOUTH_WIN3_MMAP 0 x3ft0_2480 EAST_WIN3_MARP 0 x3ft0_2580 SOUTH_WIN3_MMAP 0 x3ft0_2480 EAST_WIN3_MMAP 0 x3ft0_2580 SOUTH_WIN3_MMAP 0 x3ft0_2480 EAST_WIN6_MMAP 0 x3ft0_2580 SOUTH_WIN4_MMAP 0 x3ft0	0 x3ff0_2420	EAST_WIN4_BASE	0 x3ff0_2520	SOUTH_WIN4_BASE
0 x3ff0 2438 EAST_WIN7_BASE 0 x3ff0 2538 SOUTH_WIN7_BASE 0 x3ff0 2440 EAST_WIN0_MASK 0 x3ff0 2540 SOUTH_WIN0_MASK 0 x3ff0 2440 EAST_WIN1_MASK 0 x3ff0 2550 SOUTH_WIN2_MASK 0 x3ff0 2450 EAST_WIN2_MASK 0 x3ff0 2550 SOUTH_WIN2_MASK 0 x3ff0 2458 EAST_WIN3_MASK 0 x3ff0 2550 SOUTH_WIN3_MASK 0 x3ff0 2460 EAST_WIN5_MASK 0 x3ff0 2560 SOUTH_WIN4_MASK 0 x3ff0 2460 EAST_WIN5_MASK 0 x3ff0 2570 SOUTH_WIN5_MASK 0 x3ff0 2470 EAST_WIN6_MASK 0 x3ff0 2570 SOUTH_WIN7_MASK 0 x3ff0 2470 EAST_WIN6_MASK 0 x3ff0 2578 SOUTH_WIN7_MASK 0 x3ff0 2480 EAST_WIN0_MMAP 0 x3ff0 2580 SOUTH_WIN1_MMAP 0 x3ff0 2480 EAST_WIN3_MMAP 0 x3ff0 2598 SOUTH_WIN3_MMAP 0 x3ff0 2480 EAST_WIN3_MAP 0 x3ff0 2588 SOUTH_WIN3_MAP 0 x3ff0 2488 EAST_WIN4_MMAP 0 x3ff0 2598 SOUTH_WIN3_MAP 0 x3ff0 2488 EAST_WIN5_MMAP 0 x3ff0 2508 SOUTH_WIN4_MAP 0 x3ff0 248	0 x3ff0_2428	EAST_WIN5_BASE	0 x3ff0_2528	SOUTH_WIN5_BASE
0 x3ff0 2440 EAST_WIN0_MASK 0 x3ff0_2540 SOUTH_WIN0_MASK 0 x3ff0_2448 EAST_WIN1_MASK 0 x3ff0_2548 SOUTH_WIN1_MASK 0 x3ff0_2450 EAST_WIN2_MASK 0 x3ff0_2550 SOUTH_WIN2_MASK 0 x3ff0_2458 EAST_WIN3_MASK 0 x3ff0_2558 SOUTH_WIN3_MASK 0 x3ff0_2460 EAST_WIN4_MASK 0 x3ff0_2568 SOUTH_WIN4_MASK 0 x3ff0_2460 EAST_WIN5_MASK 0 x3ff0_2570 SOUTH_WIN5_MASK 0 x3ff0_2470 EAST_WIN6_MASK 0 x3ff0_2570 SOUTH_WIN7_MASK 0 x3ff0_2470 EAST_WIN6_MASK 0 x3ff0_2570 SOUTH_WIN7_MASK 0 x3ff0_2470 EAST_WIN6_MASK 0 x3ff0_2580 SOUTH_WIN7_MASK 0 x3ff0_2480 EAST_WIN2_MMAP 0 x3ff0_2590 SOUTH_WIN2_MMAP 0 x3ff0_2490 EAST_WIN3_MMAP 0 x3ff0_2590 SOUTH_WIN3_MMAP 0 x3ff0_2448 EAST_WIN4_MMAP 0 x3ff0_2548 SOUTH_WIN4_MMAP 0 x3ff0_2448 EAST_WIN5_MMAP 0 x3ff0_2548 SOUTH_WIN4_MAP 0 x3ff0_2448 EAST_WIN5_MMAP 0 x3ff0_2548 SOUTH_WIN4_MAP 0 x3ff0_2	0 x3ff0_2430	EAST_WIN6_BASE	0 x3ff0_2530	SOUTH_WIN6_BASE
0 x3ff0_2448EAST_WIN1_MASK0 x3ff0_2548SOUTH_WIN1_MIASK0 x3ff0_2450EAST_WIN2_MASK0 x3ff0_2550SOUTH_WIN2_MASK0 x3ff0_2460EAST_WIN3_MASK0 x3ff0_2558SOUTH_WIN3_MASK0 x3ff0_2460EAST_WIN4_MASK0 x3ff0_2568SOUTH_WIN4_MASK0 x3ff0_2470EAST_WIN5_MASK0 x3ff0_2570SOUTH_WIN5_MASK0 x3ff0_24770EAST_WIN6_MASK0 x3ff0_2578SOUTH_WIN7_MASK0 x3ff0_2478EAST_WIN7_MASK0 x3ff0_2578SOUTH_WIN7_MASK0 x3ff0_2480EAST_WIN7_MASK0 x3ff0_2588SOUTH_WIN7_MASK0 x3ff0_2480EAST_WIN2_MMAP0 x3ff0_2598SOUTH_WIN3_MMAP0 x3ff0_2490EAST_WIN3_MMAP0 x3ff0_2598SOUTH_WIN3_MMAP0 x3ff0_2490EAST_WIN3_MMAP0 x3ff0_2598SOUTH_WIN4_MAP0 x3ff0_2440EAST_WIN5_MMAP0 x3ff0_2500SOUTH_WIN4_MAP0 x3ff0_2440EAST_WIN6_MMAP0 x3ff0_2508SOUTH_WIN6_MMAP0 x3ff0_2440EAST_WIN6_MMAP0 x3ff0_2508SOUTH_WIN6_MMAP0 x3ff0_2440EAST_WIN6_MMAP0 x3ff0_2508SOUTH_WIN6_MMAP0 x3ff0_2460WEST_WIN6_MAP0 x3ff0_2700NORTH_WIN6_MAP0 x3ff0_2600WEST_WIN1_BASE0 x3ff0_2710NORTH_WIN1_BASE0 x3ff0_2610WEST_WIN2_BASE0 x3ff0_2718NORTH_WIN3_BASE0 x3ff0_2620WEST_WIN5_BASE0 x3ff0_2720NORTH_WIN3_BASE0 x3ff0_2620WEST_WIN5_BASE0 x3ff0_2738NORTH_WIN5_BASE0 x3ff0_2638WEST_WIN5_BASE0 x3ff0_2748NORTH_W	0 x3ff0_2438	EAST_WIN7_BASE	0 x3ff0_2538	SOUTH_WIN7_BASE
0 x3ff0_2450EAST_WIN2_MASK0 x3ff0_2550SOUTH_WIN2_MASK0 x3ff0_2458EAST_WIN3_MASK0 x3ff0_2558SOUTH_WIN3_MASK0 x3ff0_2460EAST_WIN4_MASK0 x3ff0_2560SOUTH_WIN4_MASK0 x3ff0_2470EAST_WIN5_MASK0 x3ff0_2568SOUTH_WIN5_MASK0 x3ff0_24770EAST_WIN6_MASK0 x3ff0_2578SOUTH_WIN6_MASK0 x3ff0_2478EAST_WIN7_MASK0 x3ff0_2578SOUTH_WIN7_MASK0 x3ff0_2478EAST_WIN1_MAP0 x3ff0_2580SOUTH_WIN7_MASK0 x3ff0_2480EAST_WIN2_MMAP0 x3ff0_2590SOUTH_WIN1_MMAP0 x3ff0_2490EAST_WIN2_MMAP0 x3ff0_2590SOUTH_WIN3_MMAP0 x3ff0_2498EAST_WIN3_MMAP0 x3ff0_2598SOUTH_WIN3_MMAP0 x3ff0_2440EAST_WIN5_MMAP0 x3ff0_2548SOUTH_WIN4_MMAP0 x3ff0_2440EAST_WIN5_MMAP0 x3ff0_2548SOUTH_WIN5_MMAP0 x3ff0_2440EAST_WIN6_MMAP0 x3ff0_2548SOUTH_WIN6_MMAP0 x3ff0_2440EAST_WIN6_MMAP0 x3ff0_2548SOUTH_WIN6_MMAP0 x3ff0_2440EAST_WIN6_MMAP0 x3ff0_2548SOUTH_WIN6_MMAP0 x3ff0_2440EAST_WIN1_BASE0 x3ff0_2700NORTH_WIN6_MASE0 x3ff0_2610WEST_WIN1_BASE0 x3ff0_2710NORTH_WIN1_BASE0 x3ff0_2620WEST_WIN3_BASE0 x3ff0_2728NORTH_WIN3_BASE0 x3ff0_2628WEST_WIN4_BASE0 x3ff0_2728NORTH_WIN5_BASE0 x3ff0_2630WEST_WIN6_BASE0 x3ff0_2740NORTH_WIN7_BASE0 x3ff0_2640WEST_WIN6_BASE0 x3ff0_2748NORTH	0 x3ff0_2440	EAST_WIN0_MASK	0 x3ff0_2540	SOUTH_WIN0_MASK
0 x3ff0_2458EAST_WIN3_MASK0 x3ff0_2558SOUTH_WIN3_MASK0 x3ff0_2460EAST_WIN4_MASK0 x3ff0_2560SOUTH_WIN4_MASK0 x3ff0_2468EAST_WIN5_MASK0 x3ff0_2568SOUTH_WIN5_MASK0 x3ff0_2470EAST_WIN6_MASK0 x3ff0_2570SOUTH_WIN6_MASK0 x3ff0_2478EAST_WIN7_MASK0 x3ff0_2578SOUTH_WIN7_MASK0 x3ff0_2480EAST_WIN0_MMAP0 x3ff0_2580SOUTH_WIN7_MASK0 x3ff0_2480EAST_WIN1_MMAP0 x3ff0_2588SOUTH_WIN2_MMAP0 x3ff0_2490EAST_WIN2_MMAP0 x3ff0_2590SOUTH_WIN2_MMAP0 x3ff0_2490EAST_WIN3_MMAP0 x3ff0_2590SOUTH_WIN3_MMAP0 x3ff0_2488EAST_WIN3_MMAP0 x3ff0_2588SOUTH_WIN3_MMAP0 x3ff0_2480EAST_WIN5_MMAP0 x3ff0_2588SOUTH_WIN4_MMAP0 x3ff0_2488EAST_WIN5_MMAP0 x3ff0_2588SOUTH_WIN5_MMAP0 x3ff0_2488EAST_WIN5_MMAP0 x3ff0_2588SOUTH_WIN5_MMAP0 x3ff0_2488EAST_WIN7_MMAP0 x3ff0_2588SOUTH_WIN6_MMAP0 x3ff0_2600WEST_WIN6_MMAP0 x3ff0_2700NORTH_WIN6_MAP0 x3ff0_2610WEST_WIN2_BASE0 x3ff0_2708NORTH_WIN1_BASE0 x3ff0_2610WEST_WIN3_BASE0 x3ff0_2718NORTH_WIN3_BASE0 x3ff0_2628WEST_WIN3_BASE0 x3ff0_2728NORTH_WIN4_BASE0 x3ff0_2628WEST_WIN5_BASE0 x3ff0_2738NORTH_WIN5_BASE0 x3ff0_2640WEST_WIN6_BASE0 x3ff0_2748NORTH_WIN7_BASE0 x3ff0_2648WEST_WIN1_MASK0 x3ff0_2750NORTH_	0 x3ff0_2448	EAST_WIN1_MASK	0 x3ff0_2548	SOUTH_WIN1_MASK
0 x3ff0_2460EAST_WIN4_MASK0 x3ff0_2560SOUTH_WIN4_MASK0 x3ff0_2468EAST_WIN5_MASK0 x3ff0_2568SOUTH_WIN5_MASK0 x3ff0_2470EAST_WIN6_MASK0 x3ff0_2570SOUTH_WIN6_MASK0 x3ff0_2478EAST_WIN7_MASK0 x3ff0_2578SOUTH_WIN7_MASK0 x3ff0_2480EAST_WIN1_MMAP0 x3ff0_2580SOUTH_WIN7_MASK0 x3ff0_2480EAST_WIN1_MMAP0 x3ff0_2580SOUTH_WIN2_MMAP0 x3ff0_2488EAST_WIN1_MMAP0 x3ff0_2580SOUTH_WIN2_MMAP0 x3ff0_2490EAST_WIN2_MMAP0 x3ff0_2580SOUTH_WIN2_MMAP0 x3ff0_2490EAST_WIN3_MMAP0 x3ff0_2580SOUTH_WIN3_MMAP0 x3ff0_2490EAST_WIN4_MMAP0 x3ff0_2580SOUTH_WIN3_MMAP0 x3ff0_2490EAST_WIN5_MMAP0 x3ff0_2580SOUTH_WIN5_MMAP0 x3ff0_2480EAST_WIN5_MMAP0 x3ff0_2580SOUTH_WIN5_MMAP0 x3ff0_2440EAST_WIN5_MMAP0 x3ff0_2580SOUTH_WIN5_MMAP0 x3ff0_2440EAST_WIN5_MMAP0 x3ff0_2580SOUTH_WIN5_MMAP0 x3ff0_2440EAST_WIN6_MMAP0 x3ff0_2580SOUTH_WIN5_MMAP0 x3ff0_2640WEST_WIN6_BASE0 x3ff0_2700NORTH_WIN0_BASE0 x3ff0_2610WEST_WIN1_BASE0 x3ff0_2718NORTH_WIN1_BASE0 x3ff0_2628WEST_WIN3_BASE0 x3ff0_2728NORTH_WIN4_BASE0 x3ff0_2628WEST_WIN6_BASE0 x3ff0_2730NORTH_WIN5_BASE0 x3ff0_2630WEST_WIN6_BASE0 x3ff0_2740NORTH_WIN7_BASE0 x3ff0_2640WEST_WIN6_BASE0 x3ff0_2748NORTH	0 x3ff0_2450	EAST_WIN2_MASK	0 x3ff0_2550	SOUTH_WIN2_MASK
0 x3ff0_2468 EAST_WIN5_MASK 0 x3ff0_2568 SOUTH_WIN5_MASK 0 x3ff0_2470 EAST_WIN6_MASK 0 x3ff0_2570 SOUTH_WIN6_MASK 0 x3ff0_2478 EAST_WIN7_MASK 0 x3ff0_2578 SOUTH_WIN7_MASK 0 x3ff0_2480 EAST_WIN0_MMAP 0 x3ff0_2580 SOUTH_WIN0_MMAP 0 x3ff0_2488 EAST_WIN1_MMAP 0 x3ff0_2588 SOUTH_WIN1_MMAP 0 x3ff0_2490 EAST_WIN2_MMAP 0 x3ff0_2590 SOUTH_WIN2_MMAP 0 x3ff0_2498 EAST_WIN3_MMAP 0 x3ff0_2598 SOUTH_WIN3_MMAP 0 x3ff0_2440 EAST_WIN5_MMAP 0 x3ff0_2508 SOUTH_WIN3_MMAP 0 x3ff0_2440 EAST_WIN5_MMAP 0 x3ff0_2508 SOUTH_WIN5_MMAP 0 x3ff0_2440 EAST_WIN5_MMAP 0 x3ff0_2508 SOUTH_WIN5_MMAP 0 x3ff0_2440 EAST_WIN6_MMAP 0 x3ff0_2508 SOUTH_WIN5_MMAP 0 x3ff0_2440 EAST_WIN6_MMAP 0 x3ff0_2508 SOUTH_WIN5_MMAP 0 x3ff0_2460 EAST_WIN6_MMAP 0 x3ff0_2508 SOUTH_WIN5_MMAP 0 x3ff0_2600 WEST_WIN6_MAP 0 x3ff0_2700 NORTH_WIN6_MMAP 0 x3ff0_2600 WEST_WIN1_BASE 0 x3ff0_2700 NORTH_WIN1_BASE 0 x3ff0_2610 WEST_WIN2_BASE 0 x3ff0_2710 NORTH_WIN2_BASE 0 x3ff0_2618 WEST_WIN3_BASE 0 x3ff0_2710 NORTH_WIN3_BASE 0 x3ff0_2620 WEST_WIN4_BASE 0 x3ff0_2720 NORTH_WIN4_BASE 0 x3ff0_2620 WEST_WIN4_BASE 0 x3ff0_2720 NORTH_WIN4_BASE 0 x3ff0_2628 WEST_WIN5_BASE 0 x3ff0_2728 NORTH_WIN5_BASE 0 x3ff0_2630 WEST_WIN6_BASE 0 x3ff0_2738 NORTH_WIN5_BASE 0 x3ff0_2640 WEST_WIN6_BASE 0 x3ff0_2738 NORTH_WIN5_BASE 0 x3ff0_2638 WEST_WIN7_BASE 0 x3ff0_2738 NORTH_WIN5_BASE 0 x3ff0_2648 WEST_WIN7_BASE 0 x3ff0_2748 NORTH_WIN6_BASE 0 x3ff0_2648 WEST_WIN1_MASK 0 x3ff0_2748 NORTH_WIN1_MASK 0 x3ff0_2648 WEST_WIN1_MASK 0 x3ff0_2748 NORTH_WIN2_MASK 0 x3ff0_2648 WEST_WIN3_MASK 0 x3ff0_2748 NORTH_WIN3_MASK	0 x3ff0_2458	EAST_WIN3_MASK	0 x3ff0_2558	SOUTH_WIN3_MASK
0 x3ff0_2470 EAST_WIN6_MASK 0 x3ff0_2570 SOUTH_WIN6_MASK 0 x3ff0_2478 EAST_WIN7_MASK 0 x3ff0_2578 SOUTH_WIN7_MASK 0 x3ff0_2480 EAST_WIN0_MMAP 0 x3ff0_2580 SOUTH_WIN0_MMAP 0 x3ff0_2480 EAST_WIN1_MMAP 0 x3ff0_2588 SOUTH_WIN1_MMAP 0 x3ff0_2490 EAST_WIN2_MMAP 0 x3ff0_2590 SOUTH_WIN2_MMAP 0 x3ff0_2490 EAST_WIN3_MMAP 0 x3ff0_2590 SOUTH_WIN3_MMAP 0 x3ff0_2490 EAST_WIN4_MMAP 0 x3ff0_2590 SOUTH_WIN3_MMAP 0 x3ff0_2490 EAST_WIN4_MMAP 0 x3ff0_2590 SOUTH_WIN4_MMAP 0 x3ff0_2440 EAST_WIN5_MMAP 0 x3ff0_2588 SOUTH_WIN5_MMAP 0 x3ff0_2440 EAST_WIN6_MMAP 0 x3ff0_2580 SOUTH_WIN5_MMAP 0 x3ff0_2440 EAST_WIN6_MMAP 0 x3ff0_2580 SOUTH_WIN5_MMAP 0 x3ff0_2440 EAST_WIN6_MMAP 0 x3ff0_2580 SOUTH_WIN5_MMAP 0 x3ff0_2600 WEST_WIN6_MAP 0 x3ff0_2700 NORTH_WIN7_MAP 0 x3ff0_2608 WEST_WIN2_BASE 0 x3ff0_2700 NORTH_WIN1_BASE 0 x3ff0_2	0 x3ff0_2460	EAST_WIN4_MASK	0 x3ff0_2560	SOUTH_WIN4_MASK
0 x3ff0_2478 EAST_WIN7_MASK 0 x3ff0_2578 SOUTH_WIN7_MASK 0 x3ff0_2480 EAST_WIN0_MMAP 0 x3ff0_2580 SOUTH_WIN0_MMAP 0 x3ff0_2488 EAST_WIN1_MMAP 0 x3ff0_2588 SOUTH_WIN1_MMAP 0 x3ff0_2490 EAST_WIN2_MMAP 0 x3ff0_2590 SOUTH_WIN2_MMAP 0 x3ff0_2498 EAST_WIN3_MMAP 0 x3ff0_2598 SOUTH_WIN3_MMAP 0 x3ff0_2440 EAST_WIN4_MMAP 0 x3ff0_2540 SOUTH_WIN4_MMAP 0 x3ff0_2448 EAST_WIN5_MMAP 0 x3ff0_2540 SOUTH_WIN4_MMAP 0 x3ff0_2448 EAST_WIN6_MMAP 0 x3ff0_2540 SOUTH_WIN6_MMAP 0 x3ff0_2440 EAST_WIN6_MMAP 0 x3ff0_2540 SOUTH_WIN6_MMAP 0 x3ff0_2440 EAST_WIN6_MMAP 0 x3ff0_2540 SOUTH_WIN6_MAP 0 x3ff0_2600 WEST_WIN0_BASE 0 x3ff0_2700 NORTH_WIN1_BASE 0 x3ff0_2610 WEST_WIN1_BASE 0 x3ff0_2710 NORTH_WIN1_BASE 0 x3ff0_26218 WEST_WIN3_BASE 0 x3ff0_2720 NORTH_WIN3_BASE 0 x3ff0_2628 WEST_WIN5_BASE 0 x3ff0_2730 NORTH_WIN4_BASE 0 x3ff0	0 x3ff0_2468	EAST_WIN5_MASK	0 x3ff0_2568	SOUTH_WIN5_MASK
0 x3ff0_2480 EAST_WIN0_MMAP 0 x3ff0_2580 SOUTH_WIN0_MMAP 0 x3ff0_2488 EAST_WIN1_MMAP 0 x3ff0_2588 SOUTH_WIN1_MMAP 0 x3ff0_2490 EAST_WIN2_MMAP 0 x3ff0_2590 SOUTH_WIN2_MMAP 0 x3ff0_24a0 EAST_WIN3_MMAP 0 x3ff0_2598 SOUTH_WIN3_MMAP 0 x3ff0_24a0 EAST_WIN5_MMAP 0 x3ff0_25a0 SOUTH_WIN4_MMAP 0 x3ff0_24a8 EAST_WIN5_MMAP 0 x3ff0_25a8 SOUTH_WIN5_MMAP 0 x3ff0_24b0 EAST_WIN5_MMAP 0 x3ff0_25b8 SOUTH_WIN5_MMAP 0 x3ff0_24b0 EAST_WIN6_MMAP 0 x3ff0_25b8 SOUTH_WIN6_MMAP 0 x3ff0_24b0 EAST_WIN7_MMAP 0 x3ff0_25b8 SOUTH_WIN7_MMAP 0 x3ff0_2600 WEST_WIN0_BASE 0 x3ff0_2700 NORTH_WIN0_BASE 0 x3ff0_2600 WEST_WIN1_BASE 0 x3ff0_2708 NORTH_WIN1_BASE 0 x3ff0_2610 WEST_WIN2_BASE 0 x3ff0_2718 NORTH_WIN2_BASE 0 x3ff0_2618 WEST_WIN3_BASE 0 x3ff0_2718 NORTH_WIN3_BASE 0 x3ff0_2620 WEST_WIN5_BASE 0 x3ff0_2720 NORTH_WIN4_BASE 0 x3ff0_2628 WEST_WIN5_BASE 0 x3ff0_2738 NORTH_WIN5_BASE 0 x3ff0_2638 WEST_WIN5_BASE 0 x3ff0_2738 NORTH_WIN5_BASE 0 x3ff0_2638 WEST_WIN6_BASE 0 x3ff0_2738 NORTH_WIN5_BASE 0 x3ff0_2638 WEST_WIN6_BASE 0 x3ff0_2738 NORTH_WIN5_BASE 0 x3ff0_2638 WEST_WIN7_BASE 0 x3ff0_2738 NORTH_WIN6_BASE 0 x3ff0_2638 WEST_WIN7_BASE 0 x3ff0_2738 NORTH_WIN5_BASE 0 x3ff0_2648 WEST_WIN7_BASE 0 x3ff0_2748 NORTH_WIN5_BASE 0 x3ff0_2648 WEST_WIN7_BASE 0 x3ff0_2748 NORTH_WIN6_BASE 0 x3ff0_2648 WEST_WIN3_MASK 0 x3ff0_2748 NORTH_WIN3_MASK 0 x3ff0_2648 WEST_WIN3_MASK 0 x3ff0_2748 NORTH_WIN3_MASK	0 x3ff0_2470	EAST_WIN6_MASK	0 x3ff0_2570	SOUTH_WIN6_MASK
0 x3ff0_2488 EAST_WIN1_MMAP 0 x3ff0_2588 SOUTH_WIN1_MMAP 0 x3ff0_2490 EAST_WIN2_MMAP 0 x3ff0_2590 SOUTH_WIN2_MMAP 0 x3ff0_2498 EAST_WIN3_MMAP 0 x3ff0_2598 SOUTH_WIN3_MMAP 0 x3ff0_24a0 EAST_WIN4_MMAP 0 x3ff0_25a0 SOUTH_WIN4_MMAP 0 x3ff0_24a8 EAST_WIN5_MMAP 0 x3ff0_25a8 SOUTH_WIN5_MMAP 0 x3ff0_24b0 EAST_WIN6_MMAP 0 x3ff0_25b8 SOUTH_WIN5_MMAP 0 x3ff0_24b8 EAST_WIN7_MMAP 0 x3ff0_25b8 SOUTH_WIN6_MMAP 0 x3ff0_2600 WEST_WIN0_BASE 0 x3ff0_2700 NORTH_WIN0_BASE 0 x3ff0_2608 WEST_WIN1_BASE 0 x3ff0_2708 NORTH_WIN1_BASE 0 x3ff0_2610 WEST_WIN2_BASE 0 x3ff0_2710 NORTH_WIN2_BASE 0 x3ff0_2618 WEST_WIN3_BASE 0 x3ff0_2718 NORTH_WIN3_BASE 0 x3ff0_2620 WEST_WIN5_BASE 0 x3ff0_2720 NORTH_WIN4_BASE 0 x3ff0_2620 WEST_WIN5_BASE 0 x3ff0_2728 NORTH_WIN5_BASE 0 x3ff0_2630 WEST_WIN5_BASE 0 x3ff0_2730 NORTH_WIN4_BASE 0 x3ff0_2630 WEST_WIN5_BASE 0 x3ff0_2730 NORTH_WIN5_BASE 0 x3ff0_2630 WEST_WIN6_BASE 0 x3ff0_2730 NORTH_WIN5_BASE 0 x3ff0_2630 WEST_WIN6_BASE 0 x3ff0_2730 NORTH_WIN5_BASE 0 x3ff0_2630 WEST_WIN6_BASE 0 x3ff0_2730 NORTH_WIN5_BASE 0 x3ff0_2640 WEST_WIN6_BASE 0 x3ff0_2730 NORTH_WIN6_BASE 0 x3ff0_2640 WEST_WIN7_BASE 0 x3ff0_2740 NORTH_WIN7_BASE 0 x3ff0_2648 WEST_WIN1_MASK 0 x3ff0_2748 NORTH_WIN1_MASK 0 x3ff0_2650 WEST_WIN3_MASK 0 x3ff0_2750 NORTH_WIN3_MASK	0 x3ff0_2478	EAST_WIN7_MASK	0 x3ff0_2578	SOUTH_WIN7_MASK
0 x3ff0_2490EAST_WIN2_MMAP0 x3ff0_2590SOUTH_WIN2_MMAP0 x3ff0_2498EAST_WIN3_MMAP0 x3ff0_2598SOUTH_WIN3_MMAP0 x3ff0_24a0EAST_WIN4_MMAP0 x3ff0_25a0SOUTH_WIN4_MMAP0 x3ff0_24a8EAST_WIN5_MMAP0 x3ff0_25a8SOUTH_WIN5_MMAP0 x3ff0_24b0EAST_WIN6_MMAP0 x3ff0_25b0SOUTH_WIN6_MMAP0 x3ff0_24b0EAST_WIN6_MMAP0 x3ff0_25b0SOUTH_WIN6_MMAP0 x3ff0_24b8EAST_WIN7_MMAP0 x3ff0_25b8SOUTH_WIN6_MMAP0 x3ff0_2600WEST_WIN0_BASE0 x3ff0_2700NORTH_WIN0_BASE0 x3ff0_2608WEST_WIN1_BASE0 x3ff0_2708NORTH_WIN1_BASE0 x3ff0_2610WEST_WIN2_BASE0 x3ff0_2710NORTH_WIN3_BASE0 x3ff0_2618WEST_WIN3_BASE0 x3ff0_2718NORTH_WIN3_BASE0 x3ff0_2628WEST_WIN5_BASE0 x3ff0_2720NORTH_WIN4_BASE0 x3ff0_2630WEST_WIN5_BASE0 x3ff0_2730NORTH_WIN5_BASE0 x3ff0_2640WEST_WIN7_BASE0 x3ff0_2740NORTH_WIN1_BASE0 x3ff0_2640WEST_WIN1_MASK0 x3ff0_2748NORTH_WIN1_MASK0 x3ff0_2650WEST_WIN3_MASK0 x3ff0_2758NORTH_WIN3_MASK	0 x3ff0_2480	EAST_WIN0_MMAP	0 x3ff0_2580	SOUTH_WIN0_MMAP
0 x3ff0_2498 EAST_WIN3_MMAP 0 x3ff0_2598 SOUTH_WIN3_MMAP 0 x3ff0_24a0 EAST_WIN4_MMAP 0 x3ff0_25a0 SOUTH_WIN4_MMAP 0 x3ff0_24a8 EAST_WIN5_MMAP 0 x3ff0_25a8 SOUTH_WIN5_MMAP 0 x3ff0_24b0 EAST_WIN6_MMAP 0 x3ff0_25b0 SOUTH_WIN6_MMAP 0 x3ff0_24b8 EAST_WIN7_MMAP 0 x3ff0_25b8 SOUTH_WIN7_MMAP 0 x3ff0_2600 WEST_WIN0_BASE 0 x3ff0_2700 NORTH_WIN0_BASE 0 x3ff0_2608 WEST_WIN1_BASE 0 x3ff0_2708 NORTH_WIN1_BASE 0 x3ff0_2610 WEST_WIN2_BASE 0 x3ff0_2710 NORTH_WIN2_BASE 0 x3ff0_2610 WEST_WIN3_BASE 0 x3ff0_2718 NORTH_WIN3_BASE 0 x3ff0_2620 WEST_WIN4_BASE 0 x3ff0_2718 NORTH_WIN3_BASE 0 x3ff0_2620 WEST_WIN5_BASE 0 x3ff0_2720 NORTH_WIN4_BASE 0 x3ff0_2628 WEST_WIN5_BASE 0 x3ff0_2728 NORTH_WIN5_BASE 0 x3ff0_2638 WEST_WIN5_BASE 0 x3ff0_2738 NORTH_WIN5_BASE 0 x3ff0_2638 WEST_WIN5_BASE 0 x3ff0_2738 NORTH_WIN5_BASE 0 x3ff0_2640 WEST_WIN6_BASE 0 x3ff0_2740 NORTH_WIN6_BASE 0 x3ff0_2648 WEST_WIN7_BASE 0 x3ff0_2748 NORTH_WIN1_BASE	0 x3ff0_2488	EAST_WIN1_MMAP	0 x3ff0_2588	SOUTH_WIN1_MMAP
0 x3ff0_24a0 EAST_WIN4_MMAP 0 x3ff0_25a0 SOUTH_WIN4_MMAP 0 x3ff0_24a8 EAST_WIN5_MMAP 0 x3ff0_25a8 SOUTH_WIN5_MMAP 0 x3ff0_24b0 EAST_WIN6_MMAP 0 x3ff0_25b0 SOUTH_WIN6_MMAP 0 x3ff0_24b8 EAST_WIN7_MMAP 0 x3ff0_25b8 SOUTH_WIN7_MMAP 0 x3ff0_2600 WEST_WIN0_BASE 0 x3ff0_2700 NORTH_WIN0_BASE 0 x3ff0_2608 WEST_WIN1_BASE 0 x3ff0_2708 NORTH_WIN1_BASE 0 x3ff0_2610 WEST_WIN2_BASE 0 x3ff0_2710 NORTH_WIN2_BASE 0 x3ff0_2618 WEST_WIN3_BASE 0 x3ff0_2718 NORTH_WIN3_BASE 0 x3ff0_2620 WEST_WIN4_BASE 0 x3ff0_2720 NORTH_WIN3_BASE 0 x3ff0_2620 WEST_WIN4_BASE 0 x3ff0_2720 NORTH_WIN4_BASE 0 x3ff0_2628 WEST_WIN5_BASE 0 x3ff0_2728 NORTH_WIN5_BASE 0 x3ff0_2638 WEST_WIN5_BASE 0 x3ff0_2738 NORTH_WIN5_BASE 0 x3ff0_2638 WEST_WIN6_BASE 0 x3ff0_2738 NORTH_WIN5_BASE 0 x3ff0_2640 WEST_WIN6_BASE 0 x3ff0_2740 NORTH_WIN7_BASE 0 x3ff0_2640 WEST_WIN6_BASE 0 x3ff0_2740 NORTH_WIN7_BASE 0 x3ff0_2648 WEST_WIN1_MASK 0 x3ff0_2748 NORTH_WIN1_MASK 0 x3ff0_2658 WEST_WIN2_MASK 0 x3ff0_2758 NORTH_WIN1_MASK	0 x3ff0_2490	EAST_WIN2_MMAP	0 x3ff0_2590	SOUTH_WIN2_MMAP
0 x3ff0_24a8 EAST_WIN5_MMAP 0 x3ff0_25a8 SOUTH_WIN5_MMAP 0 x3ff0_24b0 EAST_WIN6_MMAP 0 x3ff0_25b0 SOUTH_WIN6_MMAP 0 x3ff0_24b8 EAST_WIN7_MMAP 0 x3ff0_25b8 SOUTH_WIN7_MMAP 0 x3ff0_2600 WEST_WIN0_BASE 0 x3ff0_2700 NORTH_WIN0_BASE 0 x3ff0_2608 WEST_WIN1_BASE 0 x3ff0_2708 NORTH_WIN1_BASE 0 x3ff0_2610 WEST_WIN2_BASE 0 x3ff0_2710 NORTH_WIN2_BASE 0 x3ff0_2618 WEST_WIN3_BASE 0 x3ff0_2718 NORTH_WIN3_BASE 0 x3ff0_2620 WEST_WIN4_BASE 0 x3ff0_2720 NORTH_WIN3_BASE 0 x3ff0_2620 WEST_WIN5_BASE 0 x3ff0_2728 NORTH_WIN3_BASE 0 x3ff0_2638 WEST_WIN5_BASE 0 x3ff0_2728 NORTH_WIN5_BASE 0 x3ff0_2638 WEST_WIN5_BASE 0 x3ff0_2738 NORTH_WIN5_BASE 0 x3ff0_2638 WEST_WIN6_BASE 0 x3ff0_2738 NORTH_WIN6_BASE 0 x3ff0_2640 WEST_WIN7_BASE 0 x3ff0_2740 NORTH_WIN6_BASE 0 x3ff0_2640 WEST_WIN1_MASK 0 x3ff0_2748 NORTH_WIN1_MASK 0 x3ff0_2648 WEST_WIN1_MASK 0 x3ff0_2748 NORTH_WIN1_MASK 0 x3ff0_2658 WEST_WIN3_MASK 0 x3ff0_2758 NORTH_WIN3_MASK	0 x3ff0_2498	EAST_WIN3_MMAP	0 x3ff0_2598	SOUTH_WIN3_MMAP
0 x3ff0_24b0EAST_WIN6_MMAP0 x3ff0_25b0SOUTH_WIN6_MMAP0 x3ff0_24b8EAST_WIN7_MMAP0 x3ff0_25b8SOUTH_WIN7_MMAP0 x3ff0_2600WEST_WIN0_BASE0 x3ff0_2700NORTH_WIN0_BASE0 x3ff0_2608WEST_WIN1_BASE0 x3ff0_2708NORTH_WIN1_BASE0 x3ff0_2610WEST_WIN2_BASE0 x3ff0_2710NORTH_WIN2_BASE0 x3ff0_2618WEST_WIN3_BASE0 x3ff0_27118NORTH_WIN3_BASE0 x3ff0_2620WEST_WIN4_BASE0 x3ff0_2720NORTH_WIN3_BASE0 x3ff0_2628WEST_WIN5_BASE0 x3ff0_2728NORTH_WIN5_BASE0 x3ff0_2630WEST_WIN6_BASE0 x3ff0_2730NORTH_WIN6_BASE0 x3ff0_2638WEST_WIN6_BASE0 x3ff0_2738NORTH_WIN7_BASE0 x3ff0_2640WEST_WIN0_MASK0 x3ff0_2748NORTH_WIN1_MASK0 x3ff0_2650WEST_WIN3_MASK0 x3ff0_2758NORTH_WIN3_MASK0 x3ff0_2658WEST_WIN3_MASK0 x3ff0_2758NORTH_WIN3_MASK	0 x3ff0_24a0	EAST_WIN4_MMAP	0 x3ff0_25a0	SOUTH_WIN4_MMAP
0 x3ff0_24b8EAST_WIN7_MMAP0 x3ff0_25b8SOUTH_WIN7_MMAP0 x3ff0_2600WEST_WIN0_BASE0 x3ff0_2700NORTH_WIN0_BASE0 x3ff0_2608WEST_WIN1_BASE0 x3ff0_2708NORTH_WIN1_BASE0 x3ff0_2610WEST_WIN2_BASE0 x3ff0_2710NORTH_WIN2_BASE0 x3ff0_2618WEST_WIN3_BASE0 x3ff0_2718NORTH_WIN3_BASE0 x3ff0_2620WEST_WIN4_BASE0 x3ff0_2720NORTH_WIN4_BASE0 x3ff0_2628WEST_WIN5_BASE0 x3ff0_2720NORTH_WIN5_BASE0 x3ff0_2630WEST_WIN6_BASE0 x3ff0_2730NORTH_WIN6_BASE0 x3ff0_2638WEST_WIN7_BASE0 x3ff0_2738NORTH_WIN7_BASE0 x3ff0_2640WEST_WIN0_MASK0 x3ff0_2740NORTH_WIN1_MASK0 x3ff0_2648WEST_WIN1_MASK0 x3ff0_2750NORTH_WIN1_MASK0 x3ff0_2650WEST_WIN3_MASK0 x3ff0_2758NORTH_WIN3_MASK	0 x3ff0_24a8	EAST_WIN5_MMAP	0 x3ff0_25a8	SOUTH_WIN5_MMAP
0 x3ff0_2600 WEST_WIN0_BASE 0 x3ff0_2700 NORTH_WIN0_BASE 0 x3ff0_2608 WEST_WIN1_BASE 0 x3ff0_2708 NORTH_WIN1_BASE 0 x3ff0_2610 WEST_WIN2_BASE 0 x3ff0_2710 NORTH_WIN2_BASE 0 x3ff0_2618 WEST_WIN3_BASE 0 x3ff0_2718 NORTH_WIN3_BASE 0 x3ff0_2620 WEST_WIN4_BASE 0 x3ff0_2720 NORTH_WIN4_BASE 0 x3ff0_2628 WEST_WIN5_BASE 0 x3ff0_2728 NORTH_WIN5_BASE 0 x3ff0_2630 WEST_WIN6_BASE 0 x3ff0_2730 NORTH_WIN6_BASE 0 x3ff0_2638 WEST_WIN7_BASE 0 x3ff0_2738 NORTH_WIN7_BASE 0 x3ff0_2640 WEST_WIN1_MASK 0 x3ff0_2740 NORTH_WIN1_MASK 0 x3ff0_2648 WEST_WIN1_MASK 0 x3ff0_2750 NORTH_WIN1_MASK 0 x3ff0_2650 WEST_WIN3_MASK 0 x3ff0_2758 NORTH_WIN3_MASK	0 x3ff0_24b0	EAST_WIN6_MMAP	0 x3ff0_25b0	SOUTH_WIN6_MMAP
0 x3ff0_2608WEST_WIN1_BASE0 x3ff0_2708NORTH_WIN1_BASE0 x3ff0_2610WEST_WIN2_BASE0 x3ff0_2710NORTH_WIN2_BASE0 x3ff0_2618WEST_WIN3_BASE0 x3ff0_2718NORTH_WIN3_BASE0 x3ff0_2620WEST_WIN4_BASE0 x3ff0_2720NORTH_WIN4_BASE0 x3ff0_2628WEST_WIN5_BASE0 x3ff0_2728NORTH_WIN5_BASE0 x3ff0_2630WEST_WIN6_BASE0 x3ff0_2730NORTH_WIN5_BASE0 x3ff0_2638WEST_WIN6_BASE0 x3ff0_2738NORTH_WIN7_BASE0 x3ff0_2640WEST_WIN7_BASE0 x3ff0_2740NORTH_WIN7_BASE0 x3ff0_2648WEST_WIN1_MASK0 x3ff0_2748NORTH_WIN1_MASK0 x3ff0_2650WEST_WIN2_MASK0 x3ff0_2750NORTH_WIN1_MASK0 x3ff0_2658WEST_WIN3_MASK0 x3ff0_2758NORTH_WIN3_MASK	0 x3ff0_24b8	EAST_WIN7_MMAP	0 x3ff0_25b8	SOUTH_WIN7_MMAP
0 x3ff0_2610WEST_WIN2_BASE0 x3ff0_2710NORTH_WIN2_BASE0 x3ff0_2618WEST_WIN3_BASE0 x3ff0_2718NORTH_WIN3_BASE0 x3ff0_2620WEST_WIN4_BASE0 x3ff0_2720NORTH_WIN4_BASE0 x3ff0_2628WEST_WIN5_BASE0 x3ff0_2728NORTH_WIN5_BASE0 x3ff0_2630WEST_WIN6_BASE0 x3ff0_2730NORTH_WIN6_BASE0 x3ff0_2638WEST_WIN6_BASE0 x3ff0_2738NORTH_WIN6_BASE0 x3ff0_2640WEST_WIN7_BASE0 x3ff0_2740NORTH_WIN7_BASE0 x3ff0_2648WEST_WIN1_MASK0 x3ff0_2748NORTH_WIN1_MASK0 x3ff0_2650WEST_WIN2_MASK0 x3ff0_2750NORTH_WIN2_MASK0 x3ff0_2658WEST_WIN3_MASK0 x3ff0_2758NORTH_WIN3_MASK	0 x3ff0_2600	WEST_WIN0_BASE	0 x3ff0_2700	NORTH_WIN0_BASE
0 x3ff0_2618WEST_WIN3_BASE0 x3ff0_2718NORTH_WIN3_BASE0 x3ff0_2620WEST_WIN4_BASE0 x3ff0_2720NORTH_WIN4_BASE0 x3ff0_2628WEST_WIN5_BASE0 x3ff0_2728NORTH_WIN5_BASE0 x3ff0_2630WEST_WIN6_BASE0 x3ff0_2730NORTH_WIN6_BASE0 x3ff0_2638WEST_WIN7_BASE0 x3ff0_2738NORTH_WIN7_BASE0 x3ff0_2640WEST_WIN0_MASK0 x3ff0_2740NORTH_WIN0_MASK0 x3ff0_2648WEST_WIN1_MASK0 x3ff0_2748NORTH_WIN1_MASK0 x3ff0_2650WEST_WIN2_MASK0 x3ff0_2750NORTH_WIN2_MASK0 x3ff0_2658WEST_WIN3_MASK0 x3ff0_2758NORTH_WIN3_MASK	0 x3ff0_2608	WEST_WIN1_BASE	0 x3ff0_2708	NORTH_WIN1_BASE
0 x3ff0_2620WEST_WIN4_BASE0 x3ff0_2720NORTH_WIN4_BASE0 x3ff0_2628WEST_WIN5_BASE0 x3ff0_2728NORTH_WIN5_BASE0 x3ff0_2630WEST_WIN6_BASE0 x3ff0_2730NORTH_WIN6_BASE0 x3ff0_2638WEST_WIN7_BASE0 x3ff0_2738NORTH_WIN7_BASE0 x3ff0_2640WEST_WIN0_MASK0 x3ff0_2740NORTH_WIN0_MASK0 x3ff0_2648WEST_WIN1_MASK0 x3ff0_2748NORTH_WIN1_MASK0 x3ff0_2650WEST_WIN2_MASK0 x3ff0_2750NORTH_WIN1_MASK0 x3ff0_2658WEST_WIN3_MASK0 x3ff0_2758NORTH_WIN3_MASK	0 x3ff0_2610	WEST_WIN2_BASE	0 x3ff0_2710	NORTH_WIN2_BASE
0 x3ff0_2628WEST_WIN5_BASE0 x3ff0_2728NORTH_WIN5_BASE0 x3ff0_2630WEST_WIN6_BASE0 x3ff0_2730NORTH_WIN6_BASE0 x3ff0_2638WEST_WIN7_BASE0 x3ff0_2738NORTH_WIN7_BASE0 x3ff0_2640WEST_WIN0_MASK0 x3ff0_2740NORTH_WIN0_MASK0 x3ff0_2648WEST_WIN1_MASK0 x3ff0_2748NORTH_WIN1_MASK0 x3ff0_2650WEST_WIN2_MASK0 x3ff0_2750NORTH_WIN1_MASK0 x3ff0_2658WEST_WIN3_MASK0 x3ff0_2758NORTH_WIN3_MASK	0 x3ff0_2618	WEST_WIN3_BASE	0 x3ff0_2718	NORTH_WIN3_BASE
0 x3ff0_2630WEST_WIN6_BASE0 x3ff0_2730NORTH_WIN6_BASE0 x3ff0_2638WEST_WIN7_BASE0 x3ff0_2738NORTH_WIN7_BASE0 x3ff0_2640WEST_WIN0_MASK0 x3ff0_2740NORTH_WIN0_MASK0 x3ff0_2648WEST_WIN1_MASK0 x3ff0_2748NORTH_WIN1_MASK0 x3ff0_2650WEST_WIN2_MASK0 x3ff0_2750NORTH_WIN1_MASK0 x3ff0_2658WEST_WIN3_MASK0 x3ff0_2758NORTH_WIN3_MASK	0 x3ff0_2620	WEST_WIN4_BASE	0 x3ff0_2720	NORTH_WIN4_BASE
0 x3ff0_2638WEST_WIN7_BASE0 x3ff0_2738NORTH_WIN7_BASE0 x3ff0_2640WEST_WIN0_MASK0 x3ff0_2740NORTH_WIN0_MASK0 x3ff0_2648WEST_WIN1_MASK0 x3ff0_2748NORTH_WIN1_MASK0 x3ff0_2650WEST_WIN2_MASK0 x3ff0_2750NORTH_WIN2_MASK0 x3ff0_2658WEST_WIN3_MASK0 x3ff0_2758NORTH_WIN3_MASK	0 x3ff0_2628	WEST_WIN5_BASE	0 x3ff0_2728	NORTH_WIN5_BASE
0 x3ff0_2640WEST_WIN0_MASK0 x3ff0_2740NORTH_WIN0_MASK0 x3ff0_2648WEST_WIN1_MASK0 x3ff0_2748NORTH_WIN1_MASK0 x3ff0_2650WEST_WIN2_MASK0 x3ff0_2750NORTH_WIN2_MASK0 x3ff0_2658WEST_WIN3_MASK0 x3ff0_2758NORTH_WIN3_MASK	0 x3ff0_2630	WEST_WIN6_BASE	0 x3ff0_2730	NORTH_WIN6_BASE
0 x3ff0_2648 WEST_WIN1_MASK 0 x3ff0_2748 NORTH_WIN1_MASK 0 x3ff0_2650 WEST_WIN2_MASK 0 x3ff0_2750 NORTH_WIN2_MASK 0 x3ff0_2658 WEST_WIN3_MASK 0 x3ff0_2758 NORTH_WIN3_MASK	0 x3ff0_2638	WEST_WIN7_BASE	0 x3ff0_2738	NORTH_WIN7_BASE
0 x3ff0_2650 WEST_WIN2_MASK 0 x3ff0_2750 NORTH_WIN2_MASK 0 x3ff0_2658 WEST_WIN3_MASK 0 x3ff0_2758 NORTH_WIN3_MASK	0 x3ff0_2640	WEST_WIN0_MASK	0 x3ff0_2740	NORTH_WIN0_MASK
0 x3ff0_2658 WEST_WIN3_MASK 0 x3ff0_2758 NORTH_WIN3_MASK	0 x3ff0_2648	WEST_WIN1_MASK	0 x3ff0_2748	NORTH_WIN1_MASK
	0 x3ff0_2650	WEST_WIN2_MASK	0 x3ff0_2750	NORTH_WIN2_MASK
0 x3ff0_2660 WEST_WIN4_MASK 0 x3ff0_2760 NORTH_WIN4_MASK	0 x3ff0_2658	WEST_WIN3_MASK	0 x3ff0_2758	NORTH_WIN3_MASK
	0 x3ff0_2660	WEST_WIN4_MASK	0 x3ff0_2760	NORTH_WIN4_MASK

0 x3ff0_2668	WEST_WIN5_MASK	0 x3ff0_2768	NORTH_WIN5_MASK
0 x3ff0_2670	WEST_WIN6_MASK	0 x3ff0_2770	NORTH_WIN6_MASK
0 x3ff0_2678	WEST_WIN7_MASK	0 x3ff0_2778	NORTH_WIN7_MASK
0 x3ff0_2680	WEST_WIN0_MMAP	0 x3ff0_2780	NORTH_WIN0_MMAP
0 x3ff0_2688	WEST_WIN1_MMAP	0 x3ff0_2788	NORTH_WIN1_MMAP
0 x3ff0_2690	WEST_WIN2_MMAP	0 x3ff0_2790	NORTH_WIN2_MMAP
0 x3ff0_2698	WEST_WIN3_MMAP	0 x3ff0_2798	NORTH_WIN3_MMAP
0 x3ff0_26a0	WEST_WIN4_MMAP	0 x3ff0_27a0	NORTH_WIN4_MMAP
0 x3ff0_26a8	WEST_WIN5_MMAP	0 x3ff0_27a8	NORTH_WIN5_MMAP
0 x3ff0_26b0	WEST_WIN6_MMAP	0 x3ff0_27b0	NORTH_WIN6_MMAP
0 x3ff0_26b8	WEST_WIN7_MMAP	0 x3ff0_27b8	NORTH_WIN7_MMAP

In the level 2 XBAR of loongson 3, there are three ip-related address Spaces (including HT space), DDR2 address space, and PCI address space. The address window is set for routing and address translation between CPU and pci-dma, two IP with Master functions. Both the CPU and pci-dma have eight address Windows that enable the selection of the target address space and the conversion from the source address space to the target address space. Each address window consists of three 64-bit registers, BASE, MASK, and MMAP. BASE is k-byte aligned, MASK is in a format similar to the network MASK with a high digit of 1, and the lower digit of MMAP is routing.

At level 2 XBAR, the corresponding relationship between the label and the module is as follows, indicating the number corresponding to the new address space (where two DDR2 labels are 0 and 1, PCI/Local IO Numbers are 2, and the configuration register module is connected on port 3).

label	The default value	
0	No. 0 ddr2/3 controller	
1	No. 1 ddr2/3 controller	
2	Low speed I/O (PCI, LPC, etc.)	
3	Configuration register	

This is shown in the following table.MMAP[4] is allowed to fetch, MMAP[5] is allowed to read blocks, and MMAP[7] is allowed to make Windows

Can.

Table 2-7 the MMAP field corresponds to the spatial access properties

[4]	[5]	[7]
Allowed to take to	Allow the block	The window can
	read	make

The address configuration of level 2 XBAR adds the capability of address translation compared with the address configuration of level 1 XBAR. In contrast, the window configuration of level 1 XBAR cannot address Cache consistent requests, otherwise the address in the level 2 Cache will not match the address in the processor's level 1 Cache, resulting in Cache consistency maintenance errors.

Window hit formula :(IN_ADDR & MASK) == BASE

New address conversion formula :OUT_ADDR = $(IN_ADDR & \sim MASK) | \{MMAP[63:10], 10 h0\}$ Address window conversion registers are shown in the following table.

address	register	describe	The default value
3 ff0 0000	CPU_WIN0_BASE	Base address of CPU window 0	0 x0
3 ff0 0008	CPU_WIN1_BASE	Base address of CPU window 1	0 x1000_0000
3 ff0 0010	CPU_WIN2_BASE	Base address of CPU window 2	0 x0
3 ff0 0018	CPU_WIN3_BASE	Base address of CPU window 3	0 x0
3 ff0 0020	CPU_WIN4_BASE	Base address of CPU window 4	0 x0
3 ff0 0028	CPU_WIN5_BASE	Base address of CPU window 5	0 x0
3 ff0 0030	CPU_WIN6_BASE	Base address of CPU window 6	0 x0
3 ff0 0038	CPU_WIN7_BASE	The base address of CPU window 7	0 x0
3 ff0 0040	CPU_WIN0_MASK	The mask for CPU window 0	0 xffff_ffff_f000_0000
3 ff0 0048	CPU_WIN1_MASK	Mask for CPU window 1	0 xffff_ffff_f000_0000
3 ff0 0050	CPU_WIN2_MASK	CPU window 2 mask	0 x0
3 ff0 0058	CPU_WIN3_MASK	Mask for CPU window 3	0 x0
3 ff0 0060	CPU_WIN4_MASK	Mask for CPU window 4	0 x0
3 ff0 0068	CPU_WIN5_MASK	Mask for CPU window 5	0 x0
3 ff0 0070	CPU_WIN6_MASK	Mask for CPU window 6	0 x0
3 ff0 0078	CPU_WIN7_MASK	CPU window 7 mask	0 x0
3 ff0 0080	CPU_WIN0_MMAP	New base address for CPU window 0	0 xf0
3 ff0 0088	CPU_WIN1_MMAP	New base address for CPU window 1	0 x1000_00f2

Table 2-8 the register table is converted from the level 2 XBAR address window

龙芯中科技术有限公司 Loongson Technology Corporation Limited

		74-8- 0AH	
3 ff0 0090	CPU_WIN2_MMAP	New base address for CPU window 2	0
3 ff0 0098	CPU_WIN3_MMAP	New base address for CPU window 3	0
3 ff0 00 a nought	CPU_WIN4_MMAP	New base address for CPU window 4	0 x0
3 ff0 00 a8	CPU_WIN5_MMAP	New base address for CPU window 5	0 x0
3 ff0 00 b0	CPU_WIN6_MMAP	New base address for CPU window 6	0
3 ff0 00 b8	CPU_WIN7_MMAP	New base address for CPU window 7	0
	PCI_WIN0_BASE	Base address for PCI window 0	0 x8000_0000
3 ff0 0108	PCI_WIN1_BASE	Base address for PCI window 1	0 x0
3 ff0 0110	PCI_WIN2_BASE	PCI window 2 base address	0 x0
3 ff0 0118	PCI_WIN3_BASE	Base address for PCI window 3	0 x0
3 ff0 0120	PCI_WIN4_BASE	Base address for PCI window 4	0 x0
3 ff0 0128	PCI_WIN5_BASE	Base address for PCI window 5	0 x0
3 ff0 0130	PCI_WIN6_BASE	Base address for PCI window 6	0 x0
3 ff0 0138	PCI_WIN7_BASE	Base address for PCI window 7	0 x0
3 ff0 0140	PCI_WIN0_MASK	Mask for PCI window 0	0 xffff_ffff_8000_0000
3 ff0 0148	PCI_WIN1_MASK	Mask for PCI window 1	0 x0
3 ff0 0150	PCI_WIN2_MASK	Mask for PCI window 2	0 x0
3 ff0 0158	PCI_WIN3_MASK	Mask for PCI window 3	0 x0
3 ff0 0160	PCI_WIN4_MASK	Mask for PCI window 4	0 x0
3 ff0 0168	PCI_WIN5_MASK	Mask for PCI window 5	0 x0
3 ff0 0170	PCI_WIN6_MASK	Mask for PCI window 6	0 x0
3 ff0 0178	PCI_WIN7_MASK	Mask for PCI window 7	0 x0
3 ff0 0180	PCI_WIN0_MMAP	New base address for PCI window 0	0 xf0
3 ff0 0188	PCI_WIN1_MMAP	New base address for PCI window 1	0 x0
3 ff0 0190	PCI_WIN2_MMAP	New base address for PCI window 2	0
3 ff0 0198	PCI_WIN3_MMAP	New base address for PCI window 3	0

3 ff0 01 a8	PCI_WIN5_MMAP	New base address for PCI window 5	0 x0
3 ff0 b0 01	PCI_WIN6_MMAP	New base address for PCI window 6	0
3 ff0 b8 01	PCI_WIN7_MMAP	New base address for PCI window 7	0

According to the default register configuration, CPU 0x0000000-0x0fffffff address range after chip startup

(256M) is mapped to the address range of 0x0000000-0x0fffffff of DDR2, 0x10000000-0x1fffffff of CPU (256M) is mapped to 0x10000000-0x1fffffff of PCI, and 0x80000000 of PCIDMA

The address interval of -0x8fffffff (256M) maps to the address interval of 0x00000000-0x0ffffff of DDR2. The software can realize the new address space routing and transformation by modifying the corresponding configuration registers.

In addition, when read access to illegal addresses occurs due to CPU guess execution, all 8 address Windows fail to hit,

The configuration register module returns all zeros to the CPU to prevent the CPU from waiting.

Base address	high	The owner of the
0 x0000_0000_0000_0000	0 x0000_0000_1000_0000	No. 0 DDR controller
0 x0000_0000_1000_0000	0 x0000_0000_2000_0000	Low speed I/O (PCI, etc.)

Table 2-9 XBAR level 2 default address configuration

2.5 Chip configuration and sampling register

The chip configuration register (Chip_config) and the chip sampling register (chip_sample) in the loong chip 3 provide the mechanism for reading and writing the chip configuration.

A domai n	The field name	access	Reset value	descr ibe
	Freq_scale_ctrl	RW	3 'b111	Processor core frequency division
The 2- 0				The actual frequency of the processor core is zero
				PLL frequency * (Freq_scal_ctrl + 1)/8
3	DDR Clksel en	RW	1 'b0	Whether to use software to configure DDR octave
5	DDR_Cikser_cii	IC W	1 00	1: use software configuration
				0: use pin CLKSEL configuration
8	Disable ddr2 confspace	RW	1 'b0	Whether to disable DDR configuration space
0	Disuble_dui2_comspuce		1 00	1: disable
				0: I can't help it
9	DDR buffer cpu	RW	1 'b0	Whether to turn on the DDR read access buffer
	DDR_build_opu	10.00	1 00	1: open the
				0: disable
				Whether to enable
12	Core0_en	RW	1 'b1	processor core 0 1: on
				0: disable
				Whether to enable
13	Core1_en	RW	1 'b1	processor core 1 1:
				open
				0: disable
				Whether to enable
14	Core2_en	RW	1 'b1	processor core 2 1: on
				0: disable

Table 2-10 d	hin config	uration register	(nhysical	address	$0 \times 1 fe00180$	
14010 2-10 0	mp comig	uration register	. (pilysical	audicss	0x11000180)	

龙芯中科技术有限公司 Loongson Technology Corporation Limited

			74-64	
15	Core3_en	RW	1 'b1	Whether to enable processor core 3 1: on 0: disable
16	Mc0_en	RW	1 'b1	Whether to enable DDR controller 0 1: open the
				0: disable
				Whether to enable DDR
17	Mal an	RW	1 'b1	controller 1 1: on
1/	Mc1_en	ĸw	1 01	0: disable
				Software reset DDR controller 0
18	DDR reset0	RW	1 'b1	1: reset
	_			0: unreset
				Software reset DDR controller 1
19	DDR_reset1	RW	1 'b1	1: reset
				0: unreset
				Whether to enable HT
22	HT0_en	RW	1 'b1	controller 0 1: on
	_			0: disable
				Whether to enable HT
23	HT1 en	RW	1 'b1	controller 1 1: on
	_			0: disable
				Software configuration DDR clock
throug hout	DDR_Clksel	RW	5 'b11111	frequency doubling relationship (when
				DDR_Clksel_en is 1)
	HT_freq_scale_ctrl0	RW	3 'b111	The actual
take				frequency of the
				HT controller 0
				frequency divider is
				the HT controller
				frequency *
				(HTFreq_scal_ctrl + 1) / 8
	HT_freq_scale_ctrl0	RW	3 'b111	HT controller 1 the
That				actual frequency of
which				the frequency
				division controller
				is HT controller
				frequency *
				(HTFreq_scal_ctrl + 1) / 8
	Mc0_prefetch_disable	RW	1 'b0	Whether or not to disable MC0 prefetch
				(which has different performance effects
35				on different program behaviors)
				1: disable

36	Mc1_prefetch_disable	RW	Whether to disable MC1 prefetch (which has different performance effects on different program behaviors) 1: disable 0: I can't help it
other		R	reserve

Table 2-11 chip sampling register (physical address 0x1fe00190)

A domai n	The field name	access	Reset value	descr ibe
15:0	Pad2v5_ctrl	RW	16 'h780	2 v5pad control
Cause d the	Pad3v3_ctrl	RW	16 'h780	3 v3pad control
47:32	Sys_clksel	R		On board frequency doubling setting
spoilers	Bad_ip_core	R		Represents whether the processor core is unavailable, and each corresponds to the processor core 3 to the processor core 0 0 - available 1 - do not use
53:52	Bad_ip_ddr	R		Whether 2 DDR controllers are bad
57:56	Bad_ip_ht	R		Is the 2 HT controllers bad
A 102- 96	Thsens0_out	R		Temperature sensor 0 temperature, used to monitor the temperature near the level 2 cache, accuracy is +/-6 °C (note: this sensor sometimes has abnormal Temperature)
103	Thsens0_overflow	R		Temperature sensor 0 temperature overflow (over 128 C)
A 110- 104	Thsens1_out	R		Temperature sensor 1 temperature, used to monitor the temperature near the processor core, precision is +/-6 degrees Celsius
111	Thsens1_overflow	R		Temperature sensor 1 temperature overflow (over 128 C)
other		R		reserve

3 GS464 processor core

The GS464 is a four-shot 64-bit high-performance processor core. The processor core can be used as a single core for high-end embedded applications and desktop applications, and can also be used as a basic processor core for in-chip multi-core systems for server and high-performance machine applications. The GS464 cores in loongson 3A1000 and the secondary Cache modules form a distributed Shared secondary Cache multicore structure via a AXI interconnection network. The main features of GS464 are as follows:

MIPS64 compatible, support loongson extended instruction set;

Four emission superscalar structure, two fixed points, two floating point, one memory access parts;

Each floating point component supports full-flow 64-bit/double-32-bit floating point multiplication and addition;

Memory access parts support 128 bit storage access, virtual address and physical address are 48 bits;

Support register renaming, dynamic scheduling, transfer prediction and other out-oforder execution techniques;

64 fully linked TLB, 16 independent instruction TLB, variable page size;

The size of the first-level instruction Cache and the data Cache is 64KB respectively, and the four-way groups are connected.

Support the optimization technology of non-blocking visit and load-speculation;

Support Cache consistency protocol, which can be used in chip multi-core processors;

The instruction Cache implements parity check, and the data Cache implements ECC check.

Standard EJTAG debugging standard is supported to facilitate debugging of software and hardware.

Standard 128 - bit AXI interface.

The structure of GS464 is shown in the following figure. Please refer to the GS464 user manual and MIPS64 for more details

User's manual.

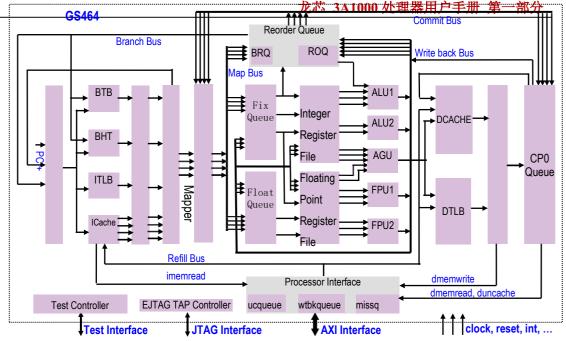


Figure 3-1 GS464 structure diagram

4 Level 2 Cache

The secondary Cache module is designed with GS464 processor IP. This module can not only connect with GS464, but also make GS464 the IP of the processor including the second-level Cache. It is also possible to connect multiple GS464 and multiple secondary Cache modules through a AXI network to form a CMP structure of multiple processors on the chip. The main features of the second-level Cache module include:

Use 128 - bit AXI interface.

Eight Cache items access the queue.

Keyword first.

Receive read invalidation requests to return data at the fastest 8 beats.

Cache consistency protocol is supported through directories.

It can be used for multi-core structure on chip, and also can be directly connected with IP of single processor.

The soft IP level can configure the size of the secondary Cache (512KB/1MB).

Adopt four - way group - linked structure.

The runtime can be closed dynamically.

Support ECC validation.

Support DMA consistent read-write and prefetch reads.

Supports 16 secondary Cache hashes.

Supports locking the second level of Cache by window.

Ensure that the read data returns atomicity.

The second level Cache module includes the second level Cache management module scachemanage and the second level Cache access module scacheaccess. The Scachemanage module is responsible for the processor's access requests from the processor and DMA, while the TAG, directory, and data of the secondary Cache are stored in the scacheaccess module. To reduce power consumption, the TAG, directory and DATA of the second-level Cache can be accessed separately. The second-level Cache status bit and the w bit are stored together with the TAG, which is stored in TAG RAM, the directory in DIR RAM, and the DATA in DATA RAM. The invalidation request accesses the second level Cache, reads the tags, directories, and data of all the paths, and selects the data and directories according to the TAG. Replace requests, refill requests, and write back requests operate only on tags, directories, and data

along the way.

To improve the performance of certain computing tasks, a locking mechanism was added to the second level Cache. A secondary Cache block that falls in a locked area is locked and will not be replaced with a secondary Cache (unless all four secondary Cache blocks are locked). Confbus can dynamically configure the four groups of lock window registers inside the second-level Cache module, but it must ensure that all of the four-way second-level caches are locked. The size of each group of Windows can be adjusted according to the mask, but not more than 3/4 of the overall second-level Cache size. In addition, when the second level Cache receives a DMA write request, if the region is written

When a hit is made and locked in a second-level Cache, the DMA write is written directly to the second-level Cache instead of memory.

The name of the	address	A domain	describe
Slock0_valid	0 x3ff00200	[63-63]	Zero lock window valid bit
Slock0_addr	0 x3ff00200	[47:0]	Lock window 0 lock address
Slock0_mask	0 x3ff00240	[47:0]	Lock window mask no. 0
Slock1_valid	0 x3ff00208	[63-63]	No. 1 lock window valid bit
Slock1_addr	0 x3ff00208	[47:0]	No. 1 lock window lock address
Slock1_mask	0 x3ff00248	[47:0]	No. 1 lock window mask
Slock2_valid	0 x3ff00210	[63-63]	No. 2 lock window valid bit
Slock2_addr	0 x3ff00210	[47:0]	No. 2 lock window lock address
Slock2_mask	0 x3ff00250	[47:0]	No. 2 lock window mask
Slock3_valid	0 x3ff00218	[63-63]	No. 3 lock window valid bit
Slock3_addr	0 x3ff00218	[47:0]	No. 3 lock window lock address
Slock3_mask	0 x3ff00258	[47:0]	No. 3 lock window mask

Table 4-1 configuration	of the second level	Cache lock window	v register
Table - Toungulation	of the second level	Cache lock while v	v icgister

For example, when an address addr makes slock0_valid && ((addr & slock0_mask) == (slock0_addr & slock0_mask)) equal to 1, the address is locked by lock window 0.

5 Matrix processing accelerator

Logodson 3A1000 is built with two matrix processing accelerators independent of the processor core. Its basic function is to realize the function of transposing or moving the matrix stored in memory from the source matrix to the target matrix through the configuration of software

(previous versions of LS3A1000E only supported transpose). Two accelerators are respectively integrated in two of the loongson 3A1000

Inside the HyperTransport controller, level 1 cross switches are used to read and write the level 2 Cache and memory.

Before due to transpose the same Cache line element order after the transposed matrix is distributed, in order to improve the efficiency of reading and writing, need read many rows of data, makes the data can be in after the transposed matrix unit to write to the Cache behavior, thus set up a size 32 in the module the buffer zone, realize transverse writing (matrix into the buffer from the source), longitudinal read (matrix) by the buffer is written to the target.

The working process of matrix processing is to read in the 32 rows of source matrix data, and then write the 32 rows of data to the target matrix, and so on, until the entire matrix is transposed or moved. The matrix processing accelerator can also prefetch the data to a level 2 Cache by prefetching the source matrix instead of writing the target matrix as needed.

The source matrix involved in transpose or shift may be a small matrix located in a large matrix, so its matrix address may not be completely contiguous, and the addresses between adjacent rows will be spaced, requiring more programming control interfaces to be implemented. The following tables 5-1 through 5-4 illustrate the programming interfaces involved in matrix processing.

addre ss	The name of the	attribu te	instr uctio ns
0 x3ff00600	src_start_addr	RW	The starting address of the source matrix
0 x3ff00608	dst_start_addr	RW	The starting address of the destination matrix
0 x3ff00610	The row	RW	The number of elements in a row in the source matrix
0 x3ff00618	Col.	RW	The number of elements in a column of the source matrix
0 x3ff00620	length	RW	The row span (bytes) of the large matrix in which the source matrix is located

Table 5-1 matrix processing programming interface description

龙芯中科技术有限公司 Loongson Technology Corporation Limited

0 x3ff00628	width		The row span (bytes) of the large matrix in which the target matrix is located
0 x3ff00630	trans_ctrl	RW	Transpose the control register
0 x3ff00638	trans_status	RO	Transpose the status register

Table 5-2 matrix processing register address description

addre ss	The name of the
0 x3ff00600	Src_start_addr of the zero transpose module
0 x3ff00608	Dst_start_addr of the zero transpose module
0 x3ff00610	Row of the zero transpose module
0 x3ff00618	Col of the 0 transposed module
0 x3ff00620	Length of the zero transpose module
0 x3ff00628	Width of the zero transpose module
0 x3ff00630	Trans_ctrl for the zero transpose module
0 x3ff00638	Trans_status of the zero transpose module
0 x3ff00700	Src_start_addr of the # 1 transpose module
0 x3ff00708	Dst_start_addr of the # 1 transpose module
0 x3ff00710	Src_row_stride of no. 1 transpose module
0 x3ff00718	Src_last_row_addr of the # 1 transpose module
0 x3ff00720	Length of the number 1 transpose module
0 x3ff00728	Width of no. 1 transpose module
0 x3ff00730	Trans_ctrl for the # 1 transpose module
0 x3ff00738	Trans_status for the # 1 transpose module

Table 5-3 interpretation of the trans_ctrl register

field	instr uctio
	ns
0	Can make a
1	Whether writing the target matrix is allowed. When the value is 0, the transpose process only prefetches the source matrix, but does not write the target matrix.
2	After the source matrix is read, whether it is valid or not is interrupted.
3	After the completion of writing the target matrix, whether it is valid or not,
7 4	Arcmd, read command internal control bit. When arcache is 4 'hf, it must be set to 4' hc. When arcache is another value, it is meaningless.

	Arcache, read command internal control bit. The cache path is used when 4 'hf, and the uncache path is used when 4' h0.its It has no value.
15 12	Awcmd, write command internal control bit. When awcache is 4 'hf, it must be set to 4' hb. It is meaningless when awcache is other values.
19 16	Awcache, write command internal control bit. The cache path is used when 4 'hf, and the uncache path is used when 4' h0.its
	It has no value.
21 20	The element size of the matrix, 00 for 1 byte, 01 for 2 bytes, 10 for 4 bytes, and 11 for 8 bytes
22	Trans_yes, 1 means transpose; A value of 0 means no transpose (LS3A1000E was previously read-only and supported only)
	Transpose function)

Table 5-4 definitions of the trans_status register

field	instr uctio ns
0	The source matrix is read
1	The target matrix is written

6 Interrupt and communication between processor cores

Loongson 3A1000 implements eight intercore interrupt registers (IPI) for each processor core to support interrupt and communication between processor cores during multi-core BIOS startup and operating system runtime, as shown in tables 6-1 through 6-5 for instructions and addresses.

The name of the	Read and write access	describe
IPI_Status	R	The 32-bit status register, where any bit is set to 1 and the
		corresponding bit is enabled, is set to the processor core INT4
		interrupts.
IPI_Enable	RW	The 32-bit enable register controls whether the corresponding interrupt bit is valid
IPI_Set	W.	32 position bit register, write 1 to the corresponding bit, then the corresponding STATUS register
		Bit is set 1
IPI_Clear	W.	32 bit clear register, write 1 to the corresponding bit, the
		corresponding STATUS register bit is clear 0
MailBox0	RW	Cache register, used to pass parameters at startup, 64 or 32 bits
		Uncache method for access.
MailBox01	RW	Cache register, used to pass parameters at startup, 64 or 32 bits
		Uncache method for access.
MailBox02	RW	Cache register, used to pass parameters at startup, 64 or 32 bits
		Uncache method for access.
MailBox03	RW	Cache register, used to pass parameters at startup, 64 or 32 bits
		Uncache method for access.

Table 6-1 registers associated with interrupts between processor cores and their functional descriptions

The registers and functions related to interrupts between loongson 3A1000 and processor cores are described as follows:

Table 6- list of intercore interrupt and communication registers for processor no. 2

The name of the	address	permissi ons	describe
Core0_IPI_Status	0 x3ff01000	R	The IPI_Status register for the number 0 processor core
Core0_IPI_Enalbe	0 x3ff01004	RW	The IPI_Enalbe register of the number 0 processor core
Core0_IPI_Set	0 x3ff01008	W.	The IPI_Set register of the number 0 processor core
Core0 _IPI_Clear	0 x3ff0100c	W.	The IPI_Clear register for the number 0 processor core
Core0_MailBox0	0 x3ff01020	RW	Register IPI_MailBox0 of the number 0 processor core
Core0_MailBox1	0 x3ff01028	RW	Register IPI_MailBox1 of processor core 0
Core0_MailBox2	0 x3ff01030	RW	Register IPI_MailBox2 for the number 0 processor core
Core0_MailBox3	0 x3ff01038	RW	Register IPI_MailBox3 of processor core 0

Table 6-3 intercore interrupt and communication registers list for processor core no. 1 龙芯中科技术有限公司 Loongson Technology Corporation Limited

The name of the	address	permissi ons	describe
Core1_IPI_Status	0 x3ff01100	R	The IPI_Status register for the number 1 processor core
Core1_IPI_Enalbe	0 x3ff01104	RW	The IPI_Enalbe register of the number 1 processor core
Core1_IPI_Set	0 x3ff01108	W.	The IPI_Set register of the number 1 processor core
Core1 _IPI_Clear	0 x3ff0110c	W.	The IPI_Clear register of the number 1 processor core
Core1_MailBox0	0 x3ff01120	R	Register IPI_MailBox0 for the number 1 processor core
Core1_MailBox1	0 x3ff01128	RW	Register IPI_MailBox1 of the number 1 processor core
Core1_MailBox2	0 x3ff01130	W.	The IPI_MailBox2 register of the number 1 processor core
Core1_MailBox3	0 x3ff01138	W.	Register IPI_MailBox3 for the number 1 processor core

Table 6-4 intercore interrupt and communication registers list for no. 2 processor core

The name of the	address	permissi ons	describe
Core2_IPI_Status	0 x3ff01200	R	The IPI_Status register of the number 2 processor core
Core2_IPI_Enalbe	0 x3ff01204	RW	The IPI_Enalbe register of the number 2 processor core
Core2_IPI_Set	0 x3ff01208	W.	The IPI_Set register of the number 2 processor core
Core2_IPI_Clear	0 x3ff0120c	W.	The IPI_Clear register of the number 2 processor core
Core2_MailBox0	0 x3ff01220	R	Register IPI_MailBox0 of the number 2 processor core
Core2_MailBox1	0 x3ff01228	RW	Register IPI_MailBox1 in the number 2 processor core
Core2_MailBox2	0 x3ff01230	W.	The IPI_MailBox2 register of the number 2 processor core
Core2_MailBox3	0 x3ff01238	W.	The IPI_MailBox3 register of the number 2 processor core

Table 6-5 intercore interrupt and communication registers list for no. 3 processor core

The name of the	address	permissi ons	describe
Core3_IPI_Status	0 x3ff01300	R	The IPI_Status register of the number 3 processor core
Core3_IPI_Enalbe	0 x3ff01304	RW	The IPI_Enalbe register of the number 3 processor core
Core3_IPI_Set	0 x3ff01308	W.	The IPI_Set register of the number 3 processor core
Core3_IPI_Clear	0 x3ff0130c	W.	The IPI_Clear register of the number 3 processor core
Core3_MailBox0	0 x3ff01320	R	Register IPI_MailBox0 for the number 3 processor core
Core3_MailBox1	0 x3ff01328	RW	Register IPI_MailBox1 for the number 3 processor core
Core3_MailBox2	0 x3ff01330	W.	The IPI_MailBox2 register of the number 3 processor core
Core3_MailBox3	0 x3ff01338	W.	The IPI_MailBox3 register of the number 3 processor core

The above is a list of intercore interrupt related registers for a single-node multiprocessor system consisting of a single loongson 3A1000 chip. When a multi-node cc-numa system is constructed by multi-chip loongson 3A1000 interconnection, each node in the chip corresponds to a global node number of the system, and the IPI register address of the processor core in the node is in a fixed offset relationship according to the base address of the node in

the above table.For example, the IPI_Status address of the processor core of node 0 is 0x3ff01000, and the address of processor 0 of node 1 is 0x10003ff01000, and so on.

7 I/O interrupt

The logodson 3A1000 chip supports up to 32 interrupt sources, which are managed in a unified manner, as shown in figure 7-1 below. Any IO interrupt source can be configured to enable or disable, trigger mode, and the target processor core interrupt pin to be routed.

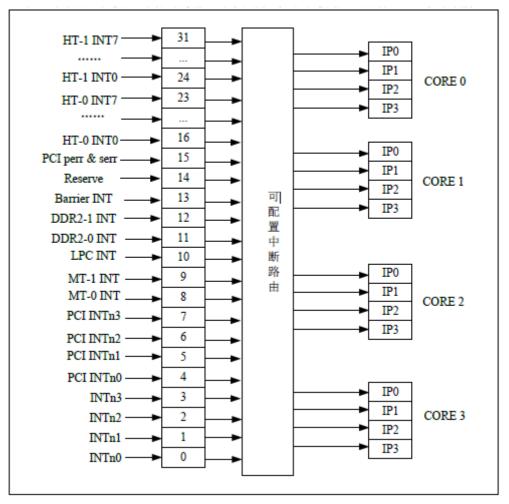


FIG. 7-1 schematic diagram of interrupt 1

The interruption-related configuration registers control the corresponding interrupts in the form of bits. See table 7-1 below for the connection and property configuration of interrupt control bits. The interrupt Enable configuration has three registers: Intenset, Intenclr, and Inten. The Intenset sets the interrupt enable, and the interrupt corresponding to the bit write 1 in the Intenset register is enabled. The Intenclr clears interrupts to enable, and the interrupt corresponding to the Intenclr register write 1 is cleared. The Inten register reads the current status of each interrupt enable. Interrupt signals in the form of pulses (such as PCI_SERR) are selected by the Intedge configuration register, with write 1 for pulse trigger and write 0 for level trigger. The interrupt handler can clear the pulse record by the corresponding bit of the Intenclr.

			-		
A domain			Access properties/de values	fault	
	Intedge	Inten	Intenset	Intenclr	The interrupt source
3:0	RW / 0	R / 0	W / 0	W / 0	Sys_int0-3
7:4	RO / 0	R / 0	RW / 0	RW / 0	PCI_INTn
8	RO / 0	R / 0	RW / 0	RW / 0	Matrix_int0
9	RO / 1	R / 0	RW / 0	RW / 0	Matrix_int1
10	RO / 1	R / 0	RW / 0	RW / 0	Lpc
12:11	RW / 0	reserv e	reserve	reserve	Mc0-1
13	RW / 0	R / 0	RW / 0	RW / 0	The Barrier
14	RW / 0	R / 0	RW / 0	RW / 0	reserve
15	RW / 0	R / 0	RW / 0	RW / 0	Pci_perr
23:16	RW / 0	R / 0	RW / 0	RW / 0	HT0 int0-7
31:24	RW / 0	R / 0	RW / 0	RW / 0	HT1 int0-7

Table 7-1 interrupt control registers

Table 7-2 IO control register addresses

The name of the	Address offset	Describe
Intisr	0 x3ff01420	32-bit interrupt status register
Inten	0 x3ff01424	32-bit interrupt enabled status register
Intenset	0 x3ff01428	The 32-bit setting enables the register
Intenclr	0 x3ff0142c	32-bit clear enable register
Intedge	0 x3ff01438	32-bit trigger mode register
CORE0_INTISR	0 x3ff01440	Routing to the 32-bit interrupt state of CORE0
CORE1_INTISR	0 x3ff01448	Routing a 32-bit interrupt state to CORE1
CORE2_INTISR	0 x3ff01450	Routing a 32-bit interrupt state to CORE2
CORE3_INTISR	0 x3ff01458	Routing a 32-bit interrupt state to CORE3

With four processor cores integrated into the loson 3A1000, the 32-bit interrupt source described above can be configured to select the target processor core to interrupt.Further, the interrupt source can choose to route to any of the processor core interrupts INT0 through INT3, IP2 through IP5 corresponding to CP0_Status.Each of the 32 I/O interrupt sources corresponds to an 8-bit routing controller, whose format and address are shown in tables 7-3 and 7-4 below.The routing register USES a vector approach for routing, such as 0x48 to indicate routing to INT2 of processor no. 3.

A domain	Said Ming
3-0	Routing the processor core vector number
The log	Routing the processor core interrupt pin vector number

Table 7-3 description of interrupt routing registers

Table 7-4 interrupt routing register addresses

The name of the	Address offset	describe	The name of the	Address offset	describe
Entry0	0 x3ff01400	Sys_int0	Entry16	0 x3ff01410	HT0 - int0
Entry1	0 x3ff01402	Sys_int1	Entry17	0 x3ff01411	HT0 - int1
Entry2	0 x3ff01403	Sys_int2	Entry18	0 x3ff01412	HT0 - int2
Entry3	0 x3ff01404	Sys_int3	Entry19	0 x3ff01413	HT0 - int3
Entry4	0 x3ff01405	Pci_int0	Entry20	0 x3ff01414	HT0 - int4
Entry5	0 x3ff01406	Pci_int1	Entry21	0 x3ff01415	HT0 - int5
Entry6	0 x3ff01407	Pci_int2	Entry22	0 x3ff01416	HT0 - int6
Entry7	0 x3ff01408	Pci_int3	Entry23	0 x3ff01417	HT0 - int7
Entry8	0 x3ff01409	Matrix int0	Entry24	0 x3ff01418	HT1 - int0
Entry9	0 x3ff0140a	Matrix int1	Entry25	0 x3ff01419	HT1 - int1
Entry10	0 x3ff0140b	Lpc int	Entry26	0 x3ff0141a	HT1 - int2
Entry11	0 x3ff0140c	Mc0	Entry27	0 x3ff0141b	HT1 - int3
Entry12	0 x3ff0140d	Mc1	Entry28	0 x3ff0141c	HT1 - int4
Entry13	0 x3ff0140e	The Barrier	Entry29	0 x3ff0141d	HT1 - int5
Entry14	0 x3ff0140f	reserve	Entry30	0 x3ff0141e	HT1 - int6
Entry15	0 x3ff0140f	Pci_perr/serr	Entry31	0 x3ff0141f	HT1 - int7

8 Ddr2/3 SDRAM controller configuration

The integrated memory controller inside the loongson 3 processor is designed to comply with the ddr2/3 SDRAM industry standard (jesd79-2 and jesd79-3). In the loongson 3 processor, all memory read/write operations are implemented in accordance with jesd79-2b and jesd79-3.

8.1 Ddr2/3 SDRAM controller features overview

The loongson 3 processor supports up to 4 CS (implemented by 4 DDR2 SDRAM chip selectors, namely two double-sided memory strips) and contains a total of 18 bit address bus (i.e., 15 bit line and column address bus and 3 bit logical Bank bus).

Loongson 3 processor can adjust the parameter setting of ddr2/3 controller to support the use of different memory chip types. Among them, the maximum number of supported block selections (CS_n) is 4, the number of row addresses (RAS_n) is 15, and the number of column addresses

The number (CAS_n) is 14, and the logical body choice (BANK_n) is 3. The maximum supported address space is 128GB (237). The physical address of the memory request sent by the CPU will be converted as shown in the following figure:

Take the 4GB address space as an example and configure it as follows: slice = 4Bank = 8

	0	0	2	3	14	15	17	18	29	30		31	32	36
片选 行选 BANK选择 列选 生成字节包	も能	成字节使能	生		列选	〈选择	BAI		行选		片选			

Number of row addresses = 12 number of column addresses = 12

Figure 8-1 DDR2 SDRAM column and column address and CPU physical address conversion

The memory control circuit integrated by the loongson 3 processor only accepts memory read/write requests from the processor or external devices. In all memory read/write operations, the memory control circuit is in Slave State.

The memory controller in loongson 3 processor has the following characteristics:

Interface command, read and write data full flow operation

Memory command merge, sort to improve the overall bandwidth

Configure the register read-write port to modify the basic parameters of the memory device

Built - in dynamic delay compensation circuit (DCC) for reliable data sending and receiving

The ECC function can detect 1 - and 2-bit errors in the data path and automatically correct 1 - bit errors

Support 133-400mhz operating frequency

8.2 Ddr2/3 SDRAM read operation protocol

The protocol for ddr2/3 SDRAM read operations is shown in figure 11-2. In the figure, the Command (CMD) is given by

RAS_n, CAS_n and WE_n are composed of three signals. For read operations, RAS_n=1, CAS_n = 0, and WE_n = 1.

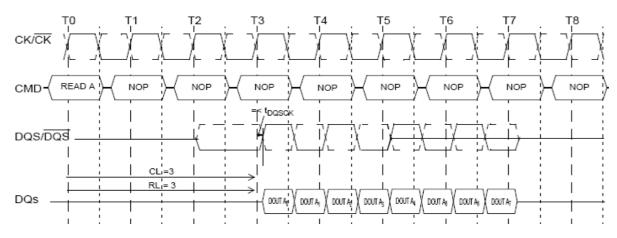
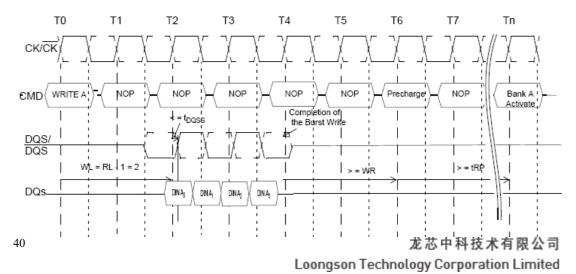



Figure 8-2 DDR2 SDRAM read operation protocol

In the figure above, Cas Latency (CL) = 3, Read Latency (RL) = 3, and Burst Length = 8.

8.3 Ddr2/3 SDRAM write operation protocol

The protocol for ddr2/3 SDRAM write operations is shown in figure 11-3.In the figure, the command CMD is composed of RAS_n, CAS_n, and WE_n.For write operations,

RAS_n=1, CAS_n = 0, and WE_n = 0.Also, unlike read operations, write operations require DQM to identify the mask of the write operation, that is, the number of bytes to write.DQM synchronizes with DQs signal in the figure.

Figure 8-3 DDR2 SDRAM write operation protocol

In the figure above, Cas Latency (CL) = 3, Write Latency (WL) = Read Latency (RL) -- 1 = 2, and Burst Length = 4.

8.4 Ddr2/3 SDRAM parameter configuration format

Since different types of ddr2/3 SDRAM may be used in the system, ddr2/3 SDRAM needs to be configured after the system is power-on reset.Detailed configuration operations and configuration procedures are specified in jesd79-2b and jesd79-3,

Ddr2/3 is not available until the memory initialization operation for ddr2/3 has been completed.Memory initialization operations are performed in the following order:

System reset, at which point all registers inside the controller are cleared to their original values.

System reset.

Issue 64-bit write instructions to the configuration register address to configure all 180 configuration registers.Now if I write

CTRL_03, where the parameter START should be set to 0.All registers must be configured correctly to work properly.

Sends 64-bit write instructions to the configuration register CTRL_03.The parameter START should be set to 1.After completion, the memory controller will automatically initiate the initialization instruction to the memory.

In the design of loongson 3 processor, the configuration of ddr2/3 SDRAM is carried out after the initialization of the system motherboard and before the use of memory. The specific configuration operation is to the physical address 0x0000 0000 0FF0 0000

The corresponding 180 64-bit registers write the corresponding configuration parameters. A register may contain data for more than one, one, or part of a parameter. The meanings of these configuration registers and the parameters they contain are shown in the following table (all unused bits in registers are reserved bits). A register configuration method based on DDR2 667 is also shown in the table. The specific configuration can be determined according to the actual situation:

The parameter	position	The default value	The scope of	descr ibe
name CONF CTL 00 [63:0]	Offset: 0		DDR2 667	:0 x0000010000000101
CONCURRENTAP	48:48	0 x0	0 x0-0 x1	Whether to allow the controller to do auto precharge on one bank, issue a command to the other bank.Note: Some memory chips are not supported
BANK_SPLIT_EN	40:40	0 x0	0 x0-0 x1	Whether to allow the command queue reorder logic to split the bank
AUTO_REFRESH_M ODE	"	0 x0	0 x0-0 x1	(split) Set auto-refresh to the next burst or the next command boundary
AREFRESH	"	0 x0	0 x0-0 x1	Issue an automatic refresh command into memory (write only) based on the auto_refresh_mode parameter
АР	The archite	0 x0	0 x0-0 x1	Enable memory controller to automatically refresh function, set 1, represents Memory access is in the CLOSE PAGE mode.
ADDR_CMP_EN	Hand,	0 x0	0 x0-0 x1	Whether to allow command queue reordering logic on address conflict detection
CONF_CTL_01 [63:0]	Offset: () x10		:0 x0000010100010000
FWC	56:56	0 x0		When this parameter is set, the memory controller will specify the number and data with the xor check bits parameter
				Xor write to memory (write only)
FAST_WRITE	48:48	0 x0	0 x0-0 x1	Whether to allow the controller to turn on the quick write function. After the quick write function is turned on, the controller issues a write command to the memory module without receiving all the write data.
ENABLE_QUICK_SR EFRESH	40:40	0 x0	0 x0-0 x1	Whether to enable fast self-refresh. When this parameter is enabled, the memory initialization is not completed before it enters a self-refresh state
EIGHT_BANK_MODE	"	0 x0		Indicates whether the memory module has 8 Banks
ECC_DISBALE_W_U C_ERR	"	0 x0	0 x0-0 x1	Disables setting the memory check code to error when the write operation detects an unrecoverable error
DQS_N_EN	The archite	0 x0	0 x0-0 x1	Set the DQS signal to be single-ended or differential signal.

Table 8-1 DDR2 SDRAM configuration parameter register format

LOONGSON TECHNOLO	DGY			龙芯 3A1000 处理器用户手册 第一部分
				Indicates whether the DLL is locked (read only), and
DLLLOCKREG	0-0 draw	0 x0	0 x0-0 x1	only after the DLL is locked can read and write
	ulaw			operations initiated to memory reach memory
				effectively, so you can use the standard to determine
				the timing of the first write to memory.
CONF_CTL_02 [63:0]	Offset:	0 x20	DDR2 667	7:0 x0100010100000000
PRIORITY_EN	56:56	0 x0	0 x0-0 x1	Whether to enable command queue reorder logic to use priority
				When enabling this parameter, the memory
POWER DOWN	48:48	0 x0	0 x0-0 x1	controller will close all pages of the memory module
_				with the pre-charge command, making the clock
				enable signal low and not sending all commands
				received until this parameter is reloaded
				The new setting is 0
PLACEMENT_EN	40:40	0 x0	0 x0-0 x1	Enable command reorder logic
ODT ADD TUDN CL				Whether to insert a turn-around clock in the middle
ODT_ADD_TURN_CL	"	0 x0	0 x0-0 x1	of a quick back-to-back read or write command for
K_EN				different movie selections.Usually, inserting one
				such cycle is required for memory.
NO_CMD_INIT	"	0 x0	0 x0-0 x1	During the memory initialization process, whether the memory module is disabled
				Other commands are issued during tDLL time
INTRPTWRITENA	The archite	0 x0	0 x0-0 x1	Whether to allow the use of autoprecharge commands on the same
				The other write command of the bank interrupts the previous write command
INTRPTREADA	Hand,	0 x0	0 x0-0 x1	Whether to allow the use of autoprecharge commands on the same
				The other read command of the bank interrupts the previous read command
INTRPTAPBURST	0-0 draw	0 x0	0 x0-0 x1	Whether other commands to another bank are allowed to interrupt the current one
				Auto - a precharge command
CONF_CTL_03 [63:0]	Offset:	0 x30	DDR2 66	7:0 x0101010001000000
SWAP_PORT_RW_S	56:56	0 x0	0 x0-0 x1	When swap_en is enabled, this parameter determines
AME_EN	50:50	U XU	0 XU-U XI	whether similar commands on the same port will be
				swapped
SWAP_EN	48:48	0 x0	0 x0-0 x1	When enabling command queue reorder logic, when a high priority command
				Whether to exchange the command being executed
				with the new command when it arrives

LOONGSON TECHNOL	OGY			龙芯 3A1000 处理器用户手册 第一部分
				Whether to initiate memory initialization. This bit
				needs to be set after all the parameter configurations
START	40:40	0 x0	0 x0-0 x1	
				have been completed to allow memory to enter the
				initialization configuration. Configuring a bit
				without completing the configuration of the other bit
				is likely to result in memory access errors.
SREFRESH	"	0 x0	0 x0-0 x1	Whether the memory module enters the self-refresh working mode
RW_SAME_EN	"	0 x0	0 x0-0 x1	Whether to consider the same bank in the command queue reorder logic
				Reorganization of read and write commands
REG_DIMM_EN	The archite	0 x0	0 x0-0 x1	Whether to enable DIMM memory module
REDUC	Hand,	0 x0	0 x0-0 x1	Whether to use only 32-bit wide memory data channels, usually
				Case, the bit should not be set
PWRUP_SREFRESH	0-0	0 x0	0 x0 0 x0-0 x1	Use the self-refresh command instead of the normal
Associated with	draw	0 10	0 X0-0 X1	memory initialization command to get out of power
				mode
CONF_CTL_04 [63:0]	Offset:	0 x40	DDR2 667	7:0 x0102010100010101
DITE 0		0.0	0.00.2	Enable the on-chip terminal resistance of a memory module.
RTT_0	57:56	0 x0	0 x0-0 x3	00 - disable
				Other enable, the resistance size is determined by the value in mrs data
				Set the error detection and error correction modes of ECC
				2 'b00 - ECC is not used
CTRL_RAW	49:48	0 x0	0 x0-0 x3	2 'b01 error reporting, no error correction
				2 'b10 no ECC devices are used
				2 b11 error correction using ECC
AXI0_W_PRIORITY	41:40	0 x0	0 x0-0 x3	Set the AXI0 port write command priority
AXI0_R_PRIORITY	33:32	0 x0	0 x0-0 x3	Set the priority of the AXI0 port read command
				Whether or not to write the memory module's EMRS
WRITE_MODEREG	"	0 x0	0 x0-0 x1	register (write only), the controller will configure the
_		0 10		parameters emrs_data and
				Mrs_data is sent to memory.
WRITEINTERP	The archite	0 x0	0 x0-0 x1	Defines whether a write burst can be interrupted by a read command
	TT 1	0.0	0.001	Whether to enable the automatic refresh function
TREF_ENABLE	Hand,	0 x0	0 x0-0 x1	inside the controller, normally the position should be
				1

				龙芯 3A1000 处理器用户手册 第一部分
TRAS_LOCKOUT	0-0 draw	0 x0	0 x0-0 x1	Whether to issue auto-prechareg before tRAS time expires The command
CONF_CTL_05 [63:0]	Offse	t: 0 x50	DDR2 66'	7:0 x0700000404050100
Q_FULLNESS	58:56	0 x0	0 x0 0 x7	Defines how many commands are in the memory controller command queue
				Command queue full
PORT_DATA_ERROR _TYPE	50:48	0 x0	0 x0 0 x7	Define the data error type (read only) bit 0 - the number of burst data greater than 16 on the memory controller port Bit 1 - write data interleaving Bit 2 - ECC 2 dislocation
OUT_OF_RANGE_TY PE	42:40	0 x0	0 x0 0 x7	Define the error type when an out-of-bounds access occurs (read only)
MAX_CS_REG	That which	0 x4	0 x0 0 x4	Define the number of chips used for the controller (read only)
COLUMN_SIZE	they	0 x0	0 x0 0 x7	Setting the difference between the actual number of column addresses and the maximum number of column addresses (14) should be configured according to the specific memory particle. Number of column addresses used in memory = 14-
CASLAT	thou	0 x0	0 x0 0 x7	Set CAS latency value. It should be configured at different operating frequencies depending on the specific memory particles.
ADDR_PINS	10:8	0 x0	0 x0 0 x7	Sets the difference between the actual address pin number and the maximum address number (15) Number of address lines used in memory = 15 ADDR_PINS
CONF_CTL_06[63:0]Off	fset: 0x60]	DDR2 667:0x	.0a040406030	040003
APREBIT	59:56	0 x0	0 x0-0 xf	Define which address line to use to issue autoprecharge commands to memory, typically bit 10.
WRLAT	50:48	0 x0	0 x0 0 x7	The time (in clock cycles) between the time the write command is sent and the time the first data is received during a write operation, and the time when the corresponding ODT signal is made valid. Note: when WRLAT = (CASLAT_LIN /2), the
				Add a beat extra delay between CS read and write.

				龙芯 3A1000 处理器用户手册 第一部分
				Defines the number of clock cycles required to
TWTR	42:40	0 x0	0 x0 0 x7	switch from write to read, which needs to be
				configured according to the specific memory size and
				running frequency.
				Define the write recovery time of the memory
TWR_INT	That which	0 x0	0 x0 0 x7	module, which needs to be configured according to
				the specific memory particles and running
				frequency.
				Define the number of read to precharge cycles for the
TRTP	they	0 x0	0 x0 0 x7	memory module, which need to be configured
				according to the specific memory size and running
				frequency.
				Define active command time intervals to different Banks,
TRRD	thou	0 x0	0 x0 0 x7	which need to be configured according to the specific
				memory granularity and running frequency.
TCKE	The 2-	0 x0	0 x0 0 x7	Define the minimum pulse width of CKE signal
ICKE	0	0 X0	0 X0 0 X7	Define the minimum pulse with of CKE signal
CONF_CTL_07[63:0]	Offset: 0x70I	DDR2 667:02	x0f0e0200000	fDa0a
MAX_ROW_REG	59:56	0 xf	0 x0-0 xf	System maximum number of line addresses (read only)
MAX_ROW_REG	59:56 spoiler s	0 xf 0 xe	0 x0-0 xf 0 x0 0 xe	
MAX_COL_REG	spoiler s	0 xe	0 x0 0 xe	only) System maximum number of column addresses
	spoiler	-		only) System maximum number of column addresses (read only)
MAX_COL_REG	spoiler s	0 xe	0 x0 0 xe	only) System maximum number of column addresses (read only) Define the number of autorefresh commands that
MAX_COL_REG	spoiler s	0 xe	0 x0 0 xe	only) System maximum number of column addresses (read only) Define the number of autorefresh commands that need to be executed when the system is
MAX_COL_REG	spoiler s 43:40	0 xe 0 x0	0 x0 0 xe 0 x0-0 xf	only) System maximum number of column addresses (read only) Define the number of autorefresh commands that need to be executed when the system is initialized.DDR2 is set to 2, DDR3 is set to 0.
MAX_COL_REG	spoiler s	0 xe	0 x0 0 xe	only) System maximum number of column addresses (read only) Define the number of autorefresh commands that need to be executed when the system is initialized.DDR2 is set to 2, DDR3 is set to 0. Define the available slice signal. This parameter
MAX_COL_REG	43:40	0 xe 0 x0	0 x0 0 xe 0 x0-0 xf	only) System maximum number of column addresses (read only) Define the number of autorefresh commands that need to be executed when the system is initialized.DDR2 is set to 2, DDR3 is set to 0. Define the available slice signal. This parameter should be correctly configured according to the
MAX_COL_REG	43:40	0 xe 0 x0	0 x0 0 xe 0 x0-0 xf	only) System maximum number of column addresses (read only) Define the number of autorefresh commands that need to be executed when the system is initialized.DDR2 is set to 2, DDR3 is set to 0. Define the available slice signal. This parameter should be correctly configured according to the actual number of slices used. Incorrect configuration
MAX_COL_REG	43:40	0 xe 0 x0	0 x0 0 xe 0 x0-0 xf	only) System maximum number of column addresses (read only) Define the number of autorefresh commands that need to be executed when the system is initialized.DDR2 is set to 2, DDR3 is set to 0. Define the available slice signal. This parameter should be correctly configured according to the actual number of slices used. Incorrect configuration will lead to incorrect memory access. The four bits of
MAX_COL_REG	43:40	0 xe 0 x0	0 x0 0 xe 0 x0-0 xf	only) System maximum number of column addresses (read only) Define the number of autorefresh commands that need to be executed when the system is initialized.DDR2 is set to 2, DDR3 is set to 0. Define the available slice signal. This parameter should be correctly configured according to the actual number of slices used. Incorrect configuration will lead to incorrect memory access. The four bits of this parameter correspond to CS0- CS3
MAX_COL_REG INITAREF CS_MAP	43:40	0 xe 0 x0	0 x0 0 xe 0 x0-0 xf	only) System maximum number of column addresses (read only) Define the number of autorefresh commands that need to be executed when the system is initialized.DDR2 is set to 2, DDR3 is set to 0. Define the available slice signal. This parameter should be correctly configured according to the actual number of slices used. Incorrect configuration will lead to incorrect memory access. The four bits of this parameter correspond to CS0- CS3 When the line running delay on the board is 0.5~1.5
MAX_COL_REG	spoiler s 43:40 He hath	0 xe 0 x0 0 x0	0 x0 0 xe 0 x0-0 xf 0 x0-0 xf	only) System maximum number of column addresses (read only) Define the number of autorefresh commands that need to be executed when the system is initialized.DDR2 is set to 2, DDR3 is set to 0. Define the available slice signal. This parameter should be correctly configured according to the actual number of slices used. Incorrect configuration will lead to incorrect memory access. The four bits of this parameter correspond to CS0- CS3 When the line running delay on the board is 0.5~1.5 times of the clock cycle of DDR2: CASLAT_LIN =
MAX_COL_REG INITAREF CS_MAP	spoiler s 43:40 He hath	0 xe 0 x0 0 x0	0 x0 0 xe 0 x0-0 xf 0 x0-0 xf	only) System maximum number of column addresses (read only) Define the number of autorefresh commands that need to be executed when the system is initialized.DDR2 is set to 2, DDR3 is set to 0. Define the available slice signal. This parameter should be correctly configured according to the actual number of slices used. Incorrect configuration will lead to incorrect memory access. The four bits of this parameter correspond to CS0- CS3 When the line running delay on the board is 0.5~1.5 times of the clock cycle of DDR2: CASLAT_LIN = CASLAT×2 is less than 0.5 times: CASLAT_LIN
MAX_COL_REG INITAREF CS_MAP	spoiler s 43:40 He hath	0 xe 0 x0 0 x0	0 x0 0 xe 0 x0-0 xf 0 x0-0 xf	only) System maximum number of column addresses (read only) Define the number of autorefresh commands that need to be executed when the system is initialized.DDR2 is set to 2, DDR3 is set to 0. Define the available slice signal. This parameter should be correctly configured according to the actual number of slices used. Incorrect configuration will lead to incorrect memory access. The four bits of this parameter correspond to CS0- CS3 When the line running delay on the board is 0.5~1.5 times of the clock cycle of DDR2: CASLAT_LIN = CASLAT×2 is less than 0.5 times: CASLAT_LIN = CASLAT×2-1 More than 1.5 times: CASLAT_LIN = CASLAT×

LOONGSON TECHNOL	OGY			龙芯 3A1000 处理器用户手册 第一部分
				When CS3 has a write command, the ODT terminal
		0.0	0.00.0	resistance of the specified CS will be valid. The
ODT_WR_MAP_CS3	59:56 0 x0	0 x0-0 xf	specific configuration should refer to the	
				requirements of the corresponding memory particle
				manual for the ODT configuration. The four bits of
				this parameter correspond to CS0- CS3
				When CS2 has a write command, the ODT terminal
				resistance of the specified CS will be valid. The
ODT_WR_MAP_CS2	spoiler s	0 x0	0 x0-0 xf	specific configuration should refer to the
	3			·
				requirements of the corresponding memory particle
				manual for the ODT configuration. The four bits of
				this parameter correspond to CS0- CS3
				When CS1 has a write command, the ODT terminal
ODT_WR_MAP_CS1	43:40	0 x0	0 x0-0 xf	resistance of the specified CS will be valid. The
				specific configuration should refer to the
				requirements of the corresponding memory particle
				manual for the ODT configuration. The four bits of
				this parameter correspond to CS0- CS3
				When CS0 is defined to have a write command, the
ODT_WR_MAP_CS0	has	0 x0	0 x0-0 xf	ODT terminal resistance of the specified CS will be
				valid. The specific configuration should refer to the
				requirements of the corresponding memory particle
				manual for the ODT configuration.Four bits of the
				parameter
				Don't correspond to CS0 minus CS3
				When CS3 has a read command, the ODT terminal
ODT RD MAP CS3	he	0 x0	0 x0-0 xf	resistance of the specified CS will be valid. The
		0.110	0.110 0.111	specific configuration should refer to the
				requirements of the corresponding memory particle
				manual for the ODT configuration.Four bits of the
				parameter
				Don't correspond to CS0 minus CS3
				When CS2 has a read command, the ODT terminal
ODT DD MAD CS2	11a h-4h	00	0 = 0 0 = 6	resistance of the specified CS will be valid. The
ODT_RD_MAP_CS2	He hath 0 x0	0 x0-0 xf	specific configuration should refer to the	
				requirements of the corresponding memory particle
				manual for the ODT configuration. The four bits of
				this parameter correspond to CS0- CS3
	1		1	1

LOONGSON TECHNOL	.OGY			龙芯 3A1000 处理器用户手册 第一部分
				When CS1 has a read command, the ODT terminal
ODT PD MAR CS1	and	0 x0	0 x0-0 xf	resistance of the specified CS will be valid. The
ODT_RD_MAP_CS1	and	0 X0	0 X0-0 X1	specific configuration should refer to the
				requirements of the corresponding memory particle
				manual for the ODT configuration. The four bits of
				this parameter correspond to CS0- CS3
				When CS0 is defined to have a read command, the
				ODT terminal resistance of the specified CS will be
ODT_RD_MAP_CS0	3-0	0 x0	0 x0-0 xf	valid. The specific configuration should refer to the
				requirements of the corresponding memory particle
				manual for the ODT configuration. The four bits of
				this parameter correspond to CS0- CS3
CONF_CTL_09[63:0]O	ffset: 0x901	DDR2 667:02	x0000070d000	000000
OCD_ADJUST_PUP_				Set memory module slice to select 0 OCD pull-up
CS0	60:56	0 x0	0 x0 x1f 0	adjustment value. The memory controller will issue
0.50				the OCD tuning command to the memory module
				based on the value of this parameter at initialization
				time
				Set memory module slice to select 0 OCD drop-down
OCD_ADJUST_PDN_	52:48	0 x0	0 x0 x1f 0	adjustment value. The memory controller will issue
CS0				the OCD tuning command to the memory module
				based on the value of this parameter at initialization
				time
				Define the number of clock cycles required by the
TRP	43:40	0 x0	0 x0-0 xf	memory module for pre-charge execution, which
				shall be matched according to the specific memory
				particles and running frequency
				Buy.
				When the auto-precharge parameter is set, the parameter is defined
TDAL	has	0 x0	0 x0-0 xf	Auto-precharge and write recovery clock cycles.
				TDAL = auto-precharge + write recovery
				This parameter takes effect only after the AP is set.
				Type (read only) bit 0 where a
				command error occurred on the port -
PORT_CMD_ERROR	He hath	0 x0	0 x0-0 xf	data bit too wide
_TYPE				Bit 1 - keyword priority operation
				address not aligned bit 2 - keyword
				priority operation word count is not 2
				priority operation word count is not 2

power

Bit 3-narrow transform was wrong

CONF_CTL_10[63:0]Offset: 0xa0DDR2 667:0x0000003f3f140612							
COMMAND_AGE_CO	Go	0 x0	0 x0 x3f 0	Define the command queue reordering logic using the			
without	forth	0 X0	0 10 151 0	aging algorithm when each The initial aging value of the command			
AGE_COUNT	A partner	0 x0	0 x0 x3f 0	Define the command queue reordering logic using the aging algorithm when each			
				The initial aging value of the command			
				Defines the number of clock cycles between active			
TRC	"	0 x0	0 x0 x1f 0	commands on the same bank of the memory module,			
				which needs to be configured according to the specific			
				memory grain and running frequency.			
TMRD	"	0 x0	0 x0 x1f 0	Defines the number of clock cycles required to configure the memory module mode register,			
				usually 2 cycles			
TFAW	4:0!	0 x0	0 x0 x1f 0	Define the memory module tFAW parameter used for 8 logical Banks			
				- 6			
CONF_CTL_12[63:0]O	ffset: 0xc01	DDR2 667:0x	00002c05110	00000			
TRFC	47:40	0 x0	0 x0-0	Define the number of clock cycles required for the			
			XFF	memory module refresh operation, which needs to be			
				configured according to the specific memory particle			
				and running frequency.			
TRCD_INT	39:32	0 x0	0 x0-0	Define the number of clock cycles between the memory			
			XFF	module RAS and CAS, which need to be configured			
				according to the specific memory granularity and running			
				frequency.			
TRAS_MIN	came	0 x0	0 x0-0	Defines the minimum number of clock cycles			
			XFF	for the memory module line address valid			
				command			
OUT_OF_RANGE_LE NGTH	Ephron;	0 x0	0 x0-0 XFF	Command length when an out-of-bounds access occurs (read only)			
ECC_U_SYND	"	0 x0	0 x0-0 XFF	Cause of 2bit uncorrectable error (read only)			
ECC_C_SYND	away	0 x0	0 x0-0 XFF	Cause of 1bit correctable error (read only)			

Г

CONF_CTL_17[63:0]Offset: 0x110DDR2 667:0x0000000000000c2d					
TREF	13:0	0 x0	0 x0 x3ff 0	Define the clock interval between the memory module's two refresh commands, which need to be configured according to the specific memory particle	
				and running frequency.	
CONF_CTL_18[63:0]Of	fset: 0x120)DDR2 667:0	x001c000000	000000	
AXI0_EN_LT_WIDTH_ INSTR	63:48	0 x0000	0 x0 0 XFFFF	Defines whether AXI0 port receives memory access less than 64 bits wide	
CONF_CTL_19[63:0]Of	fset: 0x130)DDR2 667:0	x6d56000302	2000000	
TRAS_MAX	63:48	0 x0000	0 x0 0 XFFFF	Defines the maximum number of clock cycles for a valid command on a memory module line, which needs to be configured according to the specific memory grain and running frequency.	
TPDEX	47:32	0 x0000	0 x0 0 XFFFF	Defines the number of clock cycles for the memory module power out exit command	
TDLL	Caused the	0 x0000		Defines the number of clock cycles required for memory module DLL locking	
TCPD	15:0	0 x0000	0 x0 0 XFFFF	Define the number of clock cycles between the memory module clock and the precharge, depending on the specific memory particle and running frequency	
				Configuration.	
CONF_CTL_20[63:0]Of	fset: 0x14()DDR2 667:0	x0000204002	2000030	
XOR_CHECK_BITS	63:48	0 x0000	0 x0 0 XFFFF	When the FWC parameter is set, the check bit of the next write operation will be written to the memory after the same or the same parameter	
The VERSION	47:32	0 x2040	0 x2040	Define memory controller version number (read only)	
TXSR	Caused the	0 x0000	0 x0 0 XFFFF	Defines the number of clock cycles that the memory module needs to self-refresh to exit	
TXSNR	15:0	0 x0000	0 x0 0 XFFFF	Defines the memory module tXSNR parameter	
CONF_CTL_21[63:0]Off	fset: 0x150)DDR2 667:0	x0000000000	000000	
ECC_C_ADDR [man]	60:32	0 x0	0 x0 x1fffffff 0 f	Record the address information when a 1bit ECC error occurs (read only)	
ECC_C_ADDR [away]	came	0 x0000	0 x0 x1fffffff 0 f	Record the address information when a 1bit ECC error occurs (read only)	
TINIT	23:0	0 x0000	0 x0 XFFFFF 0	Define the number of clock cycles required for memory module initialization, which needs to be configured according to the specific memory particle	

LOONGSON TECHNOLO	DGY		龙	芯 3A1000 处理器用户手册 第一部分
			an	nd running frequency. It's usually 200us.
CONF_CTL_22[63:0]Off	fset: 0x160)DDR2 667:0	x0000000000000	00000
ECC_U_ADDR took Jeremiah]	Took Jeremia h	0 x0		ecord address information when a 2bit ECC error ccurs (read only)
ECC_U_ADDR [31:0]	31:0	0 x0		ecord address information when a 2bit ECC error ccurs (read only)
CONF_CTL_23[63:0]Of	fset: 0x17()DDR2 667:0	x0000000000000	00000
OUT_OF_RANGE_AD DR took Jeremiah]	Took Jeremia h	0 x0		ecord address information when an out-of-bounds ccess occurs (read only)
OUT_OF_RANGE_AD DR [31:0]	31:0	0 x0		ecord address information when an out-of-bounds ecess occurs (read only)
CONF_CTL_24[63:0]Of	fset: 0x180)DDR2 667:0	x0000000000000	00000
PORT_CMD_ERROR _ADDR took Jeremiah]	Took Jeremia h	0 x0		ecord the address information when a command ror occurs on the port (read only)
PORT_CMD_ERROR _ADDR [31:0]	31:0	0 x0		ecord the address information when a command ror occurs on the port (read only)
CONF_CTL_25[63:0]Of	fset: 0x190)DDR2 667:0	x0000000000000)0000
ECC_C_DATA [63:32]	63:32	0 x0		ecord the data information when a 1bit ECC error ccurs (read only)
ECC_C_DATA [31:0]	31:0	0 x0		ecord the data information when a 1bit ECC error ccurs (read only)
CONF_CTL_26[63:0]Of	fset: 0x1a(DDR2 667:0	x00000000000000	00000
ECC_U_DATA [63:32]	63:32	0 x0		ecord the data information when a 2bit ECC error ccurs (read only)
ECC_U_DATA [31:0]	31:0	0 x0		ecord the data information when a 2bit ECC error cours (read only)
CONF_CTL_27[63:0]Of	fset: 0x1b()DDR2 667:0	x00000000000000	00000
CKE_DELAY	The 2- 0	0 x0	0 x0 0 x7 No	KE effective delay. ote: used to control the response time of the internal efresh_enter command, invalid for loongson 3.
			1	
CONF_CTL_29[63:0]Off	fset: 0x1d)DDR2 667:0	x010307040000	00101

				化心 3A1000 处理器用户于册 第一部分
TDFI_PHY_WRLAT_B ASE	59:56	0 x0	0 x0-0 xf	Set the delay to be added for writing data in DDR PHY.For loongson 3 this value should be 2
TDFI_PHY_WRLAT	spoilers	0 x0	0 x0-0 xf	Used to show the number of cycles between the actual write command issue and the write data
				issue (read only)
TDFI_PHY_RDLAT	44:40	0 x0	0 x0-0 xf	Sets the number of cycles between the read command and the read data return interval
TDFI_CTRLUPD_MIN	has	0 x4	0 x0-0 xf	Save DFI Tctrlup_min time parameter (read only)
DRAM_CLK_DISABLE	He hath	0 x0	0 x0-0 xf	Sets whether to output DRAM clock signal, with one chip for each.0: output clock signal;1: do not output clock signal.
ODT_ALT_EN	Hand,	0 x0	0 x0-0 x1	Does it support ODT signal when CAS = 3? Note: invalid for loongson 3
DRIVE_DQ_DQS	0-0 draw	0 x0		Sets whether to drive the data bus when the controller is idle
CONF_CTL_30[63:0]Off	Set: 0x1e	DDR2 667:0	x0c2d0c2d0c2	2d0205
TDFI_PHYUPD_TYPE 0	61:48	0 x0000	0 x0 x3fff 0	This value is equal to TREF (read only)
TDFI_PHYUPD_RESP	45:32	0 x0000	0 x0 x3fff 0	This value is equal to TREF (read only)
TDFI_CTRLUPD_MAX	Was a	0 x0000	0 x0 x3fff 0	This value is equal to TREF (read only)
TDFI_RDDATA_EN_B ASE	"	0 x00		The basic time between the issuance of the DDR PHY internal read command and the return of the read.For loongson 3 this value is 2
TDFI_RDDATA_EN	4:0!	0 x00	0 x0 x1f 0	Used to display the actual number of cycles from the read command to the read data return
CONF_CTL_31[63:0]Off	fset: 0x1f0	DDR2 667:02	x0020008000	000000
DLL_CTRL_REG_0_0	63:32	0 x00000	0 x0 0 XFFFFFFFF	The 0th data group (dq7-dq0) DLL control signal

				24: control the enable signal of the internal DLL, the DLL is valid when it is 0 23:16: controls the phase relationship between write data (DQ) and DQS, and each value is expressed as (1/ precision) * 360.In loongson 3, this value is usually 1/4, or 8 'h20 7:0: controls the precision of the internal DLL, in loongson 3, this The values are usually 8 'h80
DFT_CTRL_REG	away	0 x00	0 x0-0 XFF	Test enabled signal, OxO in normal working mode
CONF_CTL_32 [63:0]	Offse	et: 0 x200	DDR2 66	7:0 x0020008000200080
DLL_CTRL_REG_0_2	63:32	0 x000000	0 x0 0	The second data group (dq23-dq16) DLL control signal 24: control the enable signal of the internal DLL, the DLL is valid when it is 0 23:16: controls the phase relationship between write data (DQ) and DQS, and each value is expressed as (1/ precision) * 360.In loongson 3, this value is usually 1/4, or 8 'h20 7:0: controls the precision of the internal DLL, in loongson 3, this The values are usually 8 'h80
DLL_CTRL_REG_ 0 _1	31:0	0 x0000	XFFF	The first data group (dq15-dq8) DLL control. signal 24: control the enable signal of the internal DLL, when it is 0 DLL effectively 23:16: controls the phase relationship between write data (DQ) and DQS, and each value is expressed as (1/ precision) * 360.In loongson 3, this value is usually 1/4, or 8 'h20 7:0: controls the precision of the internal DLL in loongson 3 In, the value is generally 8 'h80
CONF_CTL_33 [63:0) O	ffset: 0 x21	0 DD	R2 667:0 x0020008000200080
				The fourth data group (dq39-dq32) DL control signal 24: control the enable signal of the internal DLL when it is 0

DLL_CTRL_REG_0_3	31:0	0 x00000	0 x0 0 XFFFFFFF	7:0: controls the precision of the 3 N internal DLL. In loongson, this value is 0. usually 8 'h80 The third data group (dq31-dq24) DLL control signal 24: control the enable signal of the internal DLL, the DLL is valid when it is 0 23:16: controls the phase relationship between write data (DQ) and DQS, and each value is expressed as (1/ precision) * 360. In loongson 3, this value is usually 1/4, or 8 h20	
				7:0: controls the precision of the internal DLL, in loongson 3, this The values are usually 8 'h80	
CONF_CTL_34 [63:0]	Offse	t: 0 x220	DDR2 667	7:0 x0020008000200080	
DLL_CTRL_REG_0_6	63:32	0 x00000	0 x0 0 XFFFFFFF	The sixth data group (dq55-dq48) DLL control signal 24: control the enable signal of the internal DLL, the DLL is valid when it is 0 23:16: controls the phase relationship between write data (DQ) and DQS, and each value is expressed as (1/ precision) * 360. In loongson 3, this value is usually 1/4, or 8 h20 7:0: controls the precision of the internal DLL, in loongson 3, this The values are usually 8 'h80	
DLL_CTRL_REG_0_5	31:0	0 x00000	0 x0 0 XFFFFFFF	The fifth data group (dq47-dq40) DLL control signal 24: control the enable signal of the internal DLL, the DLL is valid when it is 0 23:16: controls the phase relationship between write data (DQ) and DQS, and each value is expressed as (1/ precision) * 360. In loongson 3, this value is usually 1/4, or 8 h20 7:0: controls the precision of the internal DLL, in loongson 3, this The values are usually 8 'h80	
CONF_CTL_35 [63:0] Offset: 0 x230 DDR2 667:0 x0020008000200080					

COUNTIECHNOLD	141			龙芯 3A1000 处理器用户手册 第一部分
DLL_CTRL_REG_0_8	63:32	0 x00000	0 x0 0 XFFFFFFF	The 8th data group (dq71-dq64) DLL control signal 24: control the enable signal of the internal DLL, the DLL is valid when it is 0 23:16: controls the phase relationship between write data (DQ) and DQS, and each value is expressed as (1/ precision) * 360.In loongson 3, this value is usually 1/4, or 8h20 7:0: controls the precision of the internal DLL, in loongson 3, this

:

				1
				DLL test control signal, normally 8 'h0. is
				The sixth data group DLL control signal
DLL_CTRL_REG_1_6	31:0	0 x0000	0 x0 0 XFFFFFFF	15:8: phase delay of DQSn when read data is returned.
			F	5:0: DLL test control signal, normally 8 'h0
CONF_CTL_40 [63:0]	Offse	et: 0 x280	DDR2 66	7:0 x0000000000001e00
DLL_OBS_REG_0_0	33:32	0 x0	0 x0-0 x3	The Oth data group DLL output in test mode (read only)
				The eighth data group DLL control signal
DLL_CTRL_REG_1_8	31:0	0 x00000	XFFFFFFF	15:8: phase delay of DQSn when read data is returned.
			F	5:0: DLL test control signal, normally 8 'h0
CONF_CTL_41 [63:0]	Offse	et: 0 x290	DDR2 66	7:0 x000000000000000
DLL_OBS_REG_0_2	33:32	0 x0	0 x0-0 x3	2 data group DLL output in test mode (read only)
DLL_OBS_REG_0_1	1-0	0 x0	0 x0-0 x3	Data group 1 DLL output in test mode (read only)
CONF_CTL_42 [63:0]	Offse	et: 0 x2a0	DDR2 66	7:0 x0x000000000000000
DLL_OBS_REG_0_4	33:32	0 x0	0 x0-0 x3	The fourth data group DLL output in test mode (read only)
DLL_OBS_REG_0_3	1-0	0 x0	0 x0-0 x3	Third data group DLL output in test mode (read only)
CONF_CTL_43 [63:0]	Offse	et: 0 x2b0	DDR2 66	7:0 x0x000000000000000
DLL_OBS_REG_0_6	33:32	0 x0	0 x0-0 x3	The 6th data group DLL output in test mode (read only)
DLL_OBS_REG_0_5	1-0	0 x0	0 x0-0 x3	The 5th data group DLL output in test mode (read only)
CONF_CTL_44 [63:0]	Offse	et: 0 x2c0	DDR2 66	7:0 x000000000000000
DLL_OBS_REG_0_8	33:32	0 x0	0 x0-0 x3	8 data group DLL output in test mode (read only)
DLL_OBS_REG_0_7	1-0	0 x0	0 x0-0 x3	7 data group DLL output in test mode (read only)
CONF_CTL_45 [63:0]	Offse	et: 0 x2d0	DDR2 66	7:0 xf30029470000019d
				Delay control for the Oth data set.
				28: whether to use deburring circuit for reading DQS, refer to gate
				Whether the signal is delayed through PAD_feedback
				27: using read FIFO valid signal to
PHY_CTRL_REG_0_0	63:32	0 x00000		automatically control read data back to
			XFFFFFFF F	sampling (1), or using fixed time sampling (0) in

 PAD_CTRL_REG_0 25:0 0 x0000 0 x0 x3ffffff 1: USEPAD corresponding to internal feedback pin, low effective 13: output enable signal of the corresponding data shielding pin, low effective 11: USEPAD corresponding to pin 0: use internal reference voltage: 1: use external reference voltage. 8: enable signal of clock pin {1,3,5}, highly effective 6: enable signal of clock pin {1,3,5}, highly effective 5: PROGB1v8 of the corresponding pin 4: PROGA1v8 corresponding to the pin Used to control pin drive capability 3: ODTB of the corresponding pin 2: ODTA of the corresponding pin 1 1 0 150

				117560
				00DisableDisable 1: MODEZI1v8 corresponding to the pin
				For loongson 3 it should be set to 0.
				0: DDR1v8 of the corresponding pin
				0:1.8v mode corresponding to DDRII
				1:1.5v mode corresponding to DDRIII
CONF_CTL_46[63:0]Off	tset: 0x2e	DDDR2 667:0	xf3002947f30	02947
				The second data set delay control.
				28: whether to use deburring circuit for reading DQS.
				refer to gate
				Whether the signal is delayed through PAD_feedback
				27: using read FIFO valid signal to automatically control read data back to sampling (1), or using fixed
				time sampling (0) in 26:24
				26:24: read data returns the sampling completion time, the delay of sampling from the internal clock
				domain.
				21: in Read ever, the level of the sampled data bus
PHY_CTRL_REG_0_2	63:32	0 x00000		20: the data effectively controls the level of the
	05.52	0 800000	XFFFFFFFF	signal, which is 0 in loongson 3
				19: whether to add another cycle to the write data delay
)
				18: read whether DQS samples are sampled 1/4 cycle
				ahead (with clk_wr)
				Synchronization)

		26:24: read data returns the sampling completion time, the delay of sampling from the internal clock domain. 21: in Read ever, the level of the sampled data bus 20: the data effectively controls the level of the
		signal, which is 0 in loongson 3 19: whether to add another cycle to the write data delay
		18: read whether DQS samples are sampled 1/4 cycle ahead (with clk_wr)
		Synchronization)
		17: whether the write data /DQS delay increases the half-cycle delay
		16: whether the CAS delay is half a cycle
		15:12: write DQS valid start time, DDR3 should be turned on one cycle earlier than DDR2, and provide ⁾ particle requirements for Preamble DQS 11:8: write DQS valid end time
		6:4: start time for writing data
	2000002 ((7.0. 00000)	2:0: the end time of writing data that is valid
CONF_CTL_47[63:0]Offset: 0x	210DK2 007:0XI300294	The fourth data group delay control.
		28: whether to use deburring circuit for reading DQS, refer to gate Whether the signal is delayed through
		PAD_feedback

				The Preamble of DQS
				11:8: write DQS valid end time
				6:4: start time for writing data
				2:0: the end time of writing data that is valid
				The third data set delay control.
				28: whether to use deburring circuit for reading DQS.
				refer to gate
				Whether the signal is delayed through
				PAD_feedback
				27: using read FIFO valid signal to automatically
				control read data back to sampling (1), or using fixed
	01.0			time sampling (0) in 26:24
PHY_CTRL_REG_0_3				26:24: read data returns the sampling completion
FHT_CIRL_REG_0_3	31:0			time, the delay of sampling from the internal clock
		0 x0000		domain.
				21: in Read ever, the level of the sampled data bus
				20: the data effectively controls the level of the
			0 x0 (XFFFFFFFF	signal, which is 0 in loongson 3
				19: whether to add another cycle to the write data
				delay
				18: read whether DQS samples are sampled 1/4 cycle ahead (with clk_wr)
				Synchronization)
				17: whether the write data /DQS delay increases the
				half-cycle delay
				16: whether the CAS delay is half a cycle
				half-cycle delay

)

	Level level
	20: the data effectively controls the level of the signal, which is 0 in loongson 3
	19: whether to add another cycle to the write data delay
	18: read whether DQS samples are sampled 1/4 cycle ahead (with clk_wr)
	Synchronization)
	17: whether the write data /DQS delay increases the half-cycle delay
	16: whether the CAS delay is half a cycle
) 15:12: write DQS valid start time, DDR3 should be turned on one cycle earlier than DDR2, and provide particle requirements for Preamble DQS 11:8: write DQS valid end time
	6:4: start time for writing data
	2:0: the end time of writing data that is valid
	The fifth data group delay control.
	28: whether to use deburring circuit for reading DQS. refer to gate
	Whether the signal is delayed through PAD_feedback
	27: using read FIFO valid signal to automatically control read data back to sampling (1), or using fixed time sampling (0) in 26:24
	26:24: read data returns the sampling completion

CONF_CTL_49[63:0]Offs	set: 0x3	10DDR2 66	7:0xf300294	7f3002947
				The 8th data group delay control.
				28: whether to use deburring circuit for reading DQS, refer to gate) Whether the signal is delayed through PAD_feedback
				 27: using read FIFO valid signal to automatically control read data back to sampling (1), or using fixed time sampling (0) in 26:24 26:24: read data returns the sampling completion time, the delay of sampling from the internal clock
PHY_CTRL_REG_0_8 63	3:32	0 x00000		domain. 21: in Read ever, the level of the sampled data bus 20: the data effectively controls the level of the
	5.52		XFFFFFFFF	signal, which is 0 in loongson 3 19: whether to add another cycle to the write data delay
				18: read whether DQS samples are sampled 1/4 cycle ahead (with clk_wr)
				Synchronization)
				17: whether the write data /DQS delay increases the half-cycle delay
				16: whether the CAS delay is half a cycle
				15:12: write DQS valid start time, DDR3 should be turned on one cycle earlier than DDR2, and provide particle requirements for Preamble DQS 11:8: write DQS valid end time
				6.4. start time for writing data

				Synchronization)
				17: whether the write data /DQS delay increases the half-cycle delay
				16: whether the CAS delay is half a cycle
				15:12: write DQS valid start time, DDR3 should be turned on one cycle earlier than DDR2, and provide particle requirements for Preamble DQS
				11:8: write DQS valid end time
				6:4: start time for writing data
				2:0: the end time of writing data that is valid
CONF_CTL_50[63:0]Of	fset: 0x32	0DDR2 667:0	x07c0000007	c00000
				The terminal resistance control of the PAD in data group 1 is only enabled when a read is initiated 31:28: start time control of terminal resistance,
				starting from 4 beats after sending read command, each value represents half period
				27:24: timing control of terminal resistance shutdown
PHY_CTRL_REG_1_1	63:32			23: effective level control of terminal resistance, for loongson no. 3 1
				22: when the enable signal of the terminal resistance is 1, the dynamic side is used
				Enable the resistance of the control terminal; At 0, the terminal resistance on the 23rd bit PAD can be either always valid (set 0) or never valid (set 1) 21: test signal, normal should be 0
				20:16: test signal, normal should be 0

			 14:12: test signal, normal should be 0 11:8: read sampling delay 1, in which only 1 bit is valid, used to control the closing time of DQS sampling window 7:0: read sampling delay is 0, in which only 1 bit is valid for control DQS sampling window opening time
PHY_CTRL_REG_1_0	31:0	 0 x0 0 XFFFFFFFF	The terminal resistance control of the PAD in data group 0 is only enabled when a read is initiated 31:28: start time control of terminal resistance, starting from 4 beats after sending read command, each value represents half period 27:24: timing control of terminal resistance shutdown 23: effective level control of terminal resistance, for loongson no. 3

		1		
		22: when the enable signal of the terminal resistance is 1, the dynamic side is used Enable the resistance of the control terminal; At 0, the terminal resistance on the 23rd bit PAD can be		
		either always valid (set 0) or never valid (set 1)		
		21: test signal, normal should be 0		
		20:16: test signal, normal should be 0		
		14:12: test signal, normal should be 0		
		11:8: read sampling delay 1, in which only 1 bit is valid, used to control the closing time of DQS		
		sampling window		
		7:0: read sampling delay is 0, in which only 1 bit is		
		valid for control		
		DQS sampling window opening time		
CONF_CTL_51[63:0]Offset: 0x330DDR2 667:0x07c0000007c00000				

LOONGSON TECHNOLO	DGY			龙芯 3A1000 处理器用户手册 第一部分
				The terminal resistance control of the PAD in the
				third data group is only enabled when a read is
				initiated
				31:28: start time control of terminal resistance,
				starting from 4 beats after sending read command,
				each value represents half period
				27:24: timing control of terminal resistance
				shutdown
	(2.22	0 00000	0.00	
PHY_CTRL_REG_1_3	63:32	0 x00000		23: effective level control of terminal resistance, for
				loongson no. 3
				1
				22: when the enable signal of the terminal resistance
				is 1, the dynamic side is used
				Enable the resistance of the control terminal; At 0,
				the terminal resistance on the 23rd bit PAD can be
				either always valid (set 0) or never valid (set 1)
				21: test signal, normal should be 0
				21. test signal, normal should be o
				20:16: test signal, normal should be 0
				14:12: test signal, normal should be 0
				11:8: read sampling delay 1, in which only 1 bit is
				valid, used to control the closing time of DQS
				sampling window
				7:0: read sampling delay is 0, in which only 1 bit is
				valid for control
				DQS sampling window opening time
PHY_CTRL_REG_1_2	31:0 0 x00	0 x00000	0 x0 0 XFFFFFFFF	The terminal resistance control of the PAD in the
				second data set is only enabled when a read is
				initiated
				31:28: terminal resistance start time control, from
				send to read command
				Each value represents half a period

				27:24: timing control of terminal resistance shutdown
				23: effective level control of terminal resistance, for loongson no. 3
				1
				22: when the enable signal of the terminal resistance is 1, the dynamic side is used
				Enable the resistance of the control terminal; At 0, the
				terminal resistance on the 23rd bit PAD can be either
				always valid (set 0) or never valid (set 1)
				21: test signal, normal should be 0
				20:16: test signal, normal should be 0
				14:12: test signal, normal should be 0
				11:8: read sampling delay 1, in which only 1 bit is valid.
				used to control the closing time of DQS sampling window
				7:0: read sampling delay is 0, in which only 1 bit is valid for control
				DQS sampling window opening time
CONF_CTL_52[63:0]Off	fset: 0x34	0DDR2 667:0	x07c000007	c00000
				The terminal resistance control of the PAD in data
				group 5 is only enabled when a read is initiated
				31:28: start time control of terminal resistance.
				starting from 4 beats after sending read command,
				each value represents half period
				27:24: start time control of terminal resistance
		0 x00000		23: effective level control of terminal resistance, for
PHY_CTRL_REG_1_5	63:32			loongson no. 3
				1001gs01 110. 5
				1
				22: when the enable signal of the terminal resistance
				is 1, the dynamic side is used
			XFFFFFFFF	is 1, the dynamic side is used
			Enable the resistance of the control terminal; At 0,	
				the terminal resistance on the 23rd bit PAD can be
				either always valid (set 0) or never valid (set 1)
				21: test signal, normal should be 0
				20:16: test signal, normal should be 0

			14:12: test signal, normal should be 0
			11:8: read sampling delay 1, in which only 1 bit is valid, used to control the closing time of DQS sampling window 7:0: read sampling delay is 0, in which only 1 bit is
			valid for control
			DQS sampling window opening time
PHY_CTRL_REG_1_4	31:0	0 x00000	The terminal resistance control of PAD in the fourth data group initiates the read operation When done, it will be enabled

		31:28: start time control of terminal resistance,
		starting from 4 beats after sending read command,
		each value represents half period
		27:24: timing control of terminal resistance shutdown
		23: effective level control of terminal resistance, for loongson no. 3
		1
		22: when the enable signal of the terminal resistance is 1, the dynamic side is used
		Enable the resistance of the control terminal; At 0, the
		terminal resistance on the 23rd bit PAD can be either
		always valid (set 0) or never valid (set 1)
		21: test signal, normal should be 0
		20:16: test signal, normal should be 0
		14:12: test signal, normal should be 0
		11:8: read sampling delay 1, in which only 1 bit is valid,
		used to control the closing time of DQS sampling
		window
		7:0: read sampling delay is 0, in which only 1 bit is valid for control
		DQS sampling window opening time
CONF_CTL_53[63:0]Off	set: 0x350DDR2 667:0	0x07c000007c00000

LOONGSON TECHNOLO	DGY			龙芯 3A1000 处理器用户手册 第一部分
				The terminal resistance control of the PAD in data
				group 7 is only enabled when a read is initiated
				31:28: start time control of terminal resistance,
				starting from 4 beats after sending read command,
				each value represents half period
				27:24: timing control of terminal resistance shutdown
				23: effective level control of terminal resistance, for loongson no. 3
PHY CTRL REG 1 7	63:32	0 x00000	0 x0 0	1
		0 x00000	XFFFFFFFF	22: when the enable signal of the terminal resistance is 1, the dynamic side is used
				Enable the resistance of the control terminal; At 0, the
				terminal resistance on the 23rd bit PAD can be either
				always valid (set 0) or never valid (set 1)
				21: test signal, normal should be 0
				20:16: test signal, normal should be 0
				14:12: test signal, normal should be 0
				11:8: read sampling delay 1, in which only 1 bit is valid.
				used to control the closing time of DQS sampling
				window
				7:0: read sampling delay is 0, in which only 1 bit is valid for control
				DQS sampling window opening time

				The terminal resistance control of the PAD in data group 6 is only enabled when a read is initiated 31:28: start time control of terminal resistance, starting from 4 beats after sending read command,
				each value represents half period
				27:24: timing control of terminal resistance shutdown
				23: effective level control of terminal resistance, for loongson no. 3
PHY_CTRL_REG_1_6	31:0	0 x00000		1 22: when the enable signal of the terminal resistance is 1, the dynamic side is used
				Enable the resistance of the control terminal; At 0, the terminal resistance on the 23rd bit PAD can be either always valid (set 0) or never valid (set 1)
				21: test signal, normal should be 0
				20:16: test signal, normal should be 0
				14:12: test signal, normal should be 0
				11:8: read sampling delay 1, in which only 1 bit is valid.
				used to control the closing time of DQS sampling
				window
				7:0: read sampling delay is 0, in which only 1 bit is valid for control
				DQS sampling window opening time
CONF_CTL_54[63:0]Off	fset: 0x36	0DDR2 667:0	x0800c00507	c00000
				Read and write data delay control
				27: select the read data buffer type, which defaults to 0
				26: used to clear the read return buffer, normally 0
				25: high-speed pin enable, when 1, all signals pass through the pin
PHY_CTRL_REG_2	63:32	0 x00000		The outgoing delay is reduced by 1 cycle
			XFFFFFFFF	16:13: set the effective time of reading data and the delay
				of collecting data from FIFO to return to the controller.It
				the delay from pin to FIFO increases, this value must
				also increase
				8: set whether DQS signal output is in DDR3 mode.
				In DDR3 mode, Preamble writing DQS will contain
				a pulse
				5: test mode signal, normal is 0
				4: test mode signal, normal is 0

LOONGSON TECHNOL	JGY			龙芯 3A1000 处理器用户手册 第一部分		
				Terminal resistance control in data group 8		
PHY_CTRL_REG_1_8	31:0	0 x00000	0 x0 0 XFFFFFFFF	The PAD's terminal resistance control is only enabled when a read is initiated		
				31:28: terminal resistance start time control, from send to read command		
				Each value represents half a period		
				27:24: timing control of terminal resistance shutdown		
				23: effective level control of terminal resistance, for loongson no. 3		
				1		
				22: when the enable signal of the terminal resistance is 1, the dynamic side is used		
				Enable the resistance of the control terminal; At 0, the		
				terminal resistance on the 23rd bit PAD can be either		
				always valid (set 0) or never valid (set 1)		
				21: test signal, normal should be 0		
				20:16: test signal, normal should be 0		
				14:12: test signal, normal should be 0		
				11:8: read sampling delay 1, in which only 1 bit is valid,		
				used to control the closing time of DQS sampling		
				window		
				7:0: read sampling delay is 0, in which only 1 bit is valid for control		
				DQS sampling window opening time		
CONF_CTL_55[63:0]Of	fset: 0x37	0DDR2 667:0	x00000000000	000000		
PHY_OBS_REG_0_1	63:32	0 x00000	0 x0 0 XFFFFFFFF	Observation signals for testing data group 1 (read only)		
PHY_OBS_REG_0_0	31:0	0 x00000	0 x0 0 XFFFFFFFF	Observation signal for testing the 0th data set (read only)		
CONF_CTL_56[63:0]Of	fset: 0x38	0DDR2 667:0	x00000000000	000000		
PHY_OBS_REG_0_3	63:32	0 x00000	0 x0 0 XFFFFFFFF	Observation signals for testing data group 3 (read only)		
PHY_OBS_REG_0_2	31:0	0 x00000	0 x0 0 XFFFFFFFF	Observation signals for testing data group 2 (read only)		
CONF_CTL_57[63:0]Of	CONF_CTL_57[63:0]Offset: 0x390DDR2 667:0x0000000000000000000000000000000000					
PHY_OBS_REG_0_5	63:32	0 x000000	0 x0 0 XFFFFFFFF	Observation signals for testing data group 5 (read only)		
PHY_OBS_REG_0_4	31:0	0 x0000	0 x0 0 XFFFFFFFF	Observation signals for testing data group 4 (read only)		
CONF_CTL_58[63:0]Of	fset: 0x3a	DDR2 667:0	x00000000000	000000		
PHY_OBS_REG_0_7	63:32	0 x00000	0 x0 0 XFFFFFFFF	Observation signals for testing data group 7 (read only)		
PHY_OBS_REG_0_6	31:0	0 x00000	0 x0 0 XFFFFFFFF	Observation signals for testing data group 6 (read only)		

龙芯中科技术有限公司 Loongson Technology Corporation Limited

PHY_OBS_REG_0_1	63:32	0 x00000	0 x0 0 Observation signals for testing data group 1 (read XFFFFFFFF only)
PHY_OBS_REG_0_0	31:0	0 x00000	0 x0 0 Observation signal for testing the 0th data set (read XFFFFFFFF only)
CONF_CTL_56[63:0]Of	fset: 0x380	0DDR2 667:0	x00000000000000
PHY_OBS_REG_0_3	63:32	0 x00000	0 x0 0 Observation signals for testing data group 3 (read XFFFFFFFF only)
PHY_OBS_REG_0_2	31:0	0 x00000	0 x0 0 Observation signals for testing data group 2 (read XFFFFFFFF only)
CONF_CTL_57[63:0]Of	fset: 0x39	0DDR2 667:0	x00000000000000
PHY_OBS_REG_0_5	63:32	0 x000000	0 x0 0 Observation signals for testing data group 5 (read XFFFFFFFF only)
PHY_OBS_REG_0_4	31:0	0 x0000	0 x0 0 Observation signals for testing data group 4 (read XFFFFFFFF only)
CONF_CTL_58[63:0]Of	fset: 0x3a	DDR2 667:0	x00000000000000
PHY_OBS_REG_0_7	63:32	0 x00000	0 x0 0 Observation signals for testing data group 7 (read XFFFFFFFF only)
PHY_OBS_REG_0_6	31:0	0 x00000	0 x0 0 Observation signals for testing data group 6 (read XFFFFFFFF only)

金龙 241000 从理器田户主册 第一郊分

CONF_CTL_59[63:0]Off	CONF_CTL_59[63:0]Offset: 0x3b0DDR2 667:0x0000000000000000000000000000000000				
PHY_OBS_REG_0_8	31:0	0 x00000	0 x0 0 XFFFFFFFF	Observation signals for testing data group 8 (read only)	
CONF_CTL_114[63:0]Offset: 0x720DDR2 667:0x0000000000000000000000000000000000					
RDLVL_GATE_REQ	56	0 x0	0 x0-0 x1	User requests read-pass sampling training function. (write only)	
RDLVL_GATE_PREA	48	0 x0	0 x0-0 x1	Open the lead sampling inspection during the read- pass sampling training	
MBLE_CHECK_EN					
				Enable Read like a real-time Read through sampling training. After initialization, commands were sent to	
RDLVL_GATE_EN	40	0 x0	0 x0-0 x1	the particles for DQS sampling window training	
RDLVL_EN	32	0 x0	0 x0-0 x1	6. Like a rod, like a rod	
RDLVL_BEGIN_DELA Y_EN	24	0 x0	0 x0-0 x1	6. Enable Read to look for the data sampling point feature	
SWLVL_OP_DONE	8	0 x0	0 x0-0 x1	Used to indicate whether the software was ever finished.	
CONF_CTL_115[63:0]O	ffset: 0x7	30DDR2 667:	0x000000000		
				Data set 7 was reoriented like a medium point.When	
RDLVL_OFFSET_DIR				is 0, the midpoint is calculated as minus	
_7	56	0 x0	0 x0-0 x1	rdlvl_offset_delay, and if is 1, then plus.	
RDLVL OFFSET DIR				Data set 6 was reoriented like a medium point. When is 0, the midpoint is calculated as minus	
	48	0 x0	0 x0-0 x1	rdlvl_offset_delay, and if is 1, then plus.	
				Data set 5 was reoriented like a medium point.When	
RDLVL_OFFSET_DIR				is 0, the midpoint is calculated as minus	
_5	40	0 x0	0 x0-0 x1	rdlvl_offset_delay, and if is 1, then plus.	
				Data set 4 was reoriented like a medium point.When	
RDLVL_OFFSET_DIR				is 0, the midpoint is calculated as minus	
_4	32	0 x0	0 x0-0 x1	rdlvl_offset_delay, and is	
				1 is added.	
				Data set 3 was reoriented like a medium point.When	
RDLVL_OFFSET_DIR				is 0, the midpoint is calculated as minus	
_3	24	0 x0	0 x0-0 x1	rdlvl_offset_delay, and if is 1, then plus.	
				Data set 2 was reoriented like a medium point.When	
RDLVL_OFFSET_DIR				is 0, the midpoint is calculated as minus	
_2	16	0 x0	0 x0-0 x1	rdlvl_offset_delay, and if is 1, then plus.	

LOONGSON TECHNOLO	DGY			龙芯 3A1000 处理器用户手册 第一部分
RDLVL_OFFSET_DIR				Group 1. Read honored to have redirected the midpoint.When is 0, the midpoint is calculated as
_1	8	0 x0	0 x0-0 x1	minus rdlvl_offset_delay, and if is 1, then plus.
RDLVL_OFFSET_DIR _0 CONF_CTL_116[63:0]O	0 ffset: 0x7		0 x0-0 x1 0x010000000	The zeroth data set was reoriented like a midpoint.When is 0, the midpoint is calculated as minus rdlvl_offset_delay, and if is 1, then plus.
AXI1_PORT_ORDERI	57:56	0 x0	0 x0-0 x3	Whether internal port 1 can be executed out of order
				is invalid for loongson 3
NG, AXI0_PORT_ORDERI NG	49:48	0 x0	0 x0-0 x3	Whether internal port 0 can be executed out of order
WRLVL_REQ	40	0 x0	0 x0-0 x1	The user requested that it be written.
WRLVL_INTERVAL_C T_EN	32	0 x0	0 x0-0 x1	Make it possible to Write a time interval feature
WEIGHTED_ROUND_ ROBIN_WEIGHT_SH ARING	24	0 x0	0 x0-0 x1	Per-port pair Shared arbitration for WRR
WEIGHTED_ROUND_ ROBIN_LATENCY_ The CONTROL	16	0 x0	0 x0-0 x1	Free-running or limited WRR deposition counters.
RDLVL_REQ	8	0 x0	0 x0-0 x1	The user requested that Read ever be trained.
RDLVL_OFFSET_DIR _8	0	0 x0	0 x0-0 x1	Group 8. Read honored to have redirected the medium point. When is 0, the midpoint is calculated as minus rdlvl_offset_delay, and if is 1, then plus.
CONF_CTL_117[63:0]O	ffset: 0x7	50DDR2 667:	0x01000001	01020101
WRLVL_CS	57:56	0 x0	0 x0-0 x3	A chipped signal indicating the current write-like operation
SW_LEVELING_MOD E	49:48	0 x0	0 x0-0 x3	Define the software as a model of operation
RDLVL_CS	41:40	0 x0	0 x0-0 x3	A chip selective signal indicating the current Read polished operation
AXI2_W_PRIORITY	33:32	0 x0	0 x0-0 x3	The write priority of internal port 2 is not valid for loongson 3
AXI2_R_PRIORITY	Thus for	0 x0	0 x0-0 x3	The read priority of internal port 2 is not valid for loongson 3
AXI2_PORT_ORDERI NG	"	0 x0	0 x0-0 x3	Can internal port 2 be executed out of order? It is not valid for loongson 3
l		1		1

LOONGSON TECHNOLO	J.G.T			龙芯 3A1000 处理器用户手册 第一部分
AXI1_W_PRIORITY	0	0 x0	0 x0-0 x3	The write priority of internal port 1 is not valid for loongson 3
AXI1_R_PRIORITY	1-0	0 x0	0 x0-0 x3	The read priority of internal port 1 is not valid for loongson 3
CONF_CTL_118[63:0]O	ffset: 0x7	60DDR2 667:	0x030303000	00020002
AXI0_PRIORITY2_RE LATIVE_PRIORITY	59:56	0 x0	0 x0-0 xf	The relative priority of commands with internal port 0 priority 2
AXI0_PRIORITY1_RE LATIVE_PRIORITY	spoiler s	0 x0	0 x0-0 xf	The relative priority of commands with internal port 0 priority 1
AXI0_PRIORITY0_RE LATIVE_PRIORITY	43:40	0 x0	0 x0-0 xf	The relative priority of commands with internal port 0 priority 0
ADDRESS_MIRRORI NG	has	0 x0	0 x0-0 xf	Indicates which slice supports the Address mirroring feature
TDFI_DRAM_CLK_DI SABLE	they	0 x0	0 x0 0 x7	Delay setting from internal clock off to external clock off
BSTLEN	thou	0 x0	0 x0 0 x7	Sets the Burst length value sent to the memory module on the controller
ZQ_REQ	0	0 x0	0 x0-0 x3	User requests to start ZQ tuning
ZQ_ON_SREF_EXIT	1-0	0 x0	0 x0-0 x3	Defines the mode in which ZQ adjusts the functionality when exiting the self-refresh mode
CONF_CTL_119[63:0]O	ffset: 0x7′	70DDR2 667:	0x010102020	020203
AXI2_PRIORITY2_RE LATIVE_PRIORITY	59:56	0 x0	0 x0-0 xf	Internal port 2 priority 2 relative priority of the command, for
AXI2_PRIORITY1_RE LATIVE_PRIORITY	spoilers	0 x0	0 x0-0 xf	Loongson 3 is invalid Internal port 2 priority 1 relative priority of the command, for Loongson 3 is invalid
AXI2_PRIORITY0_RE LATIVE_PRIORITY	43:40	0 x0	0 x0-0 xf	Internal port 2 priority 0 relative priority of the command, for Loongson 3 is invalid
AXI1_PRIORITY3_RE LATIVE_PRIORITY	has	0 x0	0 x0-0 xf	Internal port 1 has a relative priority of 3 commands, for Loongson 3 is invalid
AXI1_PRIORITY2_RE LATIVE_PRIORITY	he	0 x0	0 x0-0 xf	Internal port 1 priority 2 command relative priority for Loongson 3 is invalid
AXI1_PRIORITY1_RE LATIVE_PRIORITY	He hath	0 x0	0 x0-0 xf	Internal port 1 priority 1 relative priority of the command, for Loongson 3 is invalid
AXI1_PRIORITY0_RE LATIVE_PRIORITY	and	0 x0	0 x0-0 xf	Internal port 1 priority 0 relative priority of the command, for Loongson 3 is invalid
AXI0_PRIORITY3_RE LATIVE_PRIORITY	3-0	0 x0	0 x0-0 xf	The relative priority of commands with internal port 0 priority 3

				龙心 JA1000 处理备用广于加 界 即力
CONF_CTL_120[63:0]O	ffset: 0x7	80DDR2 667:	0x010202040	00040c01
TDFI_DRAM_CLK_EN ABLE	59:56	0 x0	0 x0-0 xf	The delay from the internal clock to the output clock
TDFI_CTRL_DELAY	spoilers	0 x0	0 x0-0 xf	The delay between the clock being active and the output command
RDLVL_GATE_DQ_ZE RO_COUNT	43:40	0 x0	0 x0-0 xf	Set the read-through sampling training to represent the zeros from 1 to 0 The number
RDLVL_DQ_ZERO_C mount	has	0 x0	0 x0-0 xf	Let's say that when I say Read like this, I mean the number of zeros from 1 to 0
LOWPOWER_REFRE SH_ENABLE	he	0 x0	0 x0-0 xf	Enable the refresh function in low power mode
DRAM_CLASS	He hath	0 x0	0 x0-0 xf	Defines the controller external memory type 110: DDR3 100: DDR2
BURST_ON_FLY_BIT	and	0 x0	0 x0-0 xf	The burst-on-fly bit in the pattern configuration emitted to DRAM
AXI2_PRIORITY3_RE LATIVE_PRIORITY	3-0	0 x0	0 x0-0 xf	Internal port 2 priority 3 command relative priority for Loongson 3 is invalid
CONF_CTL_121[63:0]O	ffset: 0x7	90DDR2 667:	0x28190000)f000303
WLMRD	61:56	0 x00	0 x0 x3f 0	From the configuration of DRAM send mode to the latency of Write
WLDQSEN	53:48	0 x00	0 x0 x3f 0	From the configuration of DRAM send mode to the design of Write
LOWPOWER_CONTR OL	44:40	0 x00	0 x0 x1f 0	Gate data sampling delay Low power mode enabled Bit 4: power down Bit 3: power down external Bit 2: self refresh Bit 1: external Bit 0: internal
LOWPOWER_AUTO_ ENABLE	Took Jeremia h	0 x00	0 x0 x1f 0	Enable automatically enters low power mode when the controller is idle The control bit is the same as LOWERPOWER CONTROL
ZQCS_CHIP	he	0 x0	0 x0-0 xf	Define the valid slice selection for the next ZQ
WRR_PARAM_VALUE _ERR	He hath	0 x0	0 x0-0 xf	Errors/warningsrelatedtotheWRR
				Parameters. (read-only)

LOONGSON TECHNOLO	οGŸ			龙芯 3A1000 处理器用户手册 第一部分		
TDFI_WRLVL_DLL	"	0 x00	0 x0-0 XFF	The minimum period between a read operation and a Write update the number of delay lines		
TDFI_RDLVL_DLL	away	0 x00	0 x0-0 XFF	A minimum period from a Read operation to a Read that updates the number of delay lines		
CONF_CTL_122[63:0]O	ffset: 0x7a	a0DDR2 667:	0x000000000	000000		
SWLVL_RESP_6	63:56	0 x00	0 x0-0 XFF	The polished response of dataset 6		
SWLVL_RESP_5	55:48	0 x00	0 x0-0 XFF	The polished response of group 5		
SWLVL_RESP_4	47:40	0 x00	0 x0-0 XFF	The polished response of group 4		
SWLVL_RESP_3	39:32	0 x00	0 x0-0 XFF	The polished response of data group 3		
SWLVL_RESP_2	came	0 x00	0 x0-0 XFF	The polished response of data group 2		
SWLVL_RESP_1	Ephron;	0 x00	0 x0-0 XFF	The polished response of group 1		
SWLVL_RESP_0	"	0 x00	0 x0-0 XFF	The polished response of the zeroth dataset		
CONF_CTL_123[63:0]O	ffset: 0x71	b0DDR2 667:	0x000000000	000000		
OBSOLETE	63:16					
SWLVL_RESP_8	"	0 x00	0 x0-0 XFF	The polished response of data group 8		
SWLVL_RESP_7	away	0 x00	0 x0-0 XFF	The polished response of dataset 7		
CONF_CTL_124[63:0]O	ffset: 0x7	c0DDR2 667:	0x000000000	000000		
OBSOLETE						
CONF_CTL_125[63:0]O	ffset: 0x7	d0DDR2 667:	0x000000000	000000		
RDLVL_GATE_CLK_A DJUST_3	63:56	0 x00	0 x0-0 XFF	In the third data set, read the starting value of the sampling training		
RDLVL_GATE_CLK_A DJUST_2	55:48	0 x00	0 x0-0 XFF	In the second data set, read the starting value of the sampling training		
RDLVL_GATE_CLK_A DJUST_1	47:40	0 x00	0 x0-0 XFF	In the first data set, read the starting value of the sampling training		
RDLVL_GATE_CLK_A DJUST_0	39:32	0 x00	0 x0-0 XFF	In the 0th data set, read the starting value of the sampling training		
CONF_CTL_126[63:0]O	CONF_CTL_126[63:0]Offset: 0x7e0DDR2 667:0x0000000000000000000000000000000000					
RDLVL_GATE_CLK_A DJUST_8	39:32	0 x00	0 x0-0 XFF	In the 8th data set, read the starting value of sampling training		
RDLVL_GATE_CLK_A DJUST_7	came	0 x00	0 x0-0 XFF	In the seventh data set, read the starting value of the sampling training		
 RDLVL_GATE_CLK_A DJUST_6	Ephron;	0 x00	0 x0-0 XFF	In the sixth data set, read the starting value of the sampling training		
			l	<u> </u>		

LOONGSON TECHNOLO	DGY			龙芯 3A1000 处理器用户手册 第一部分	
RDLVL_GATE_CLK_A DJUST_5	"	0 x00	0 x0-0 XFF	In the fifth data set, read the starting value of the sampling training	
RDLVL_GATE_CLK_A DJUST_4	away	0 x00	0 x0-0 XFF	In the fourth data set, read the starting value of the sampling training	
CONF_CTL_127[63:0]O	ffset: 0x7	f0DDR2 667:()x000000000	000000	
OBSOLETE					
CONF_CTL_128[63:0]O	ffset: 0x8	00DDR2 667:	0x000000000	0000000	
OBSOLETE					
CONF_CTL_129[63:0]O	ffset: 0x8	10DDR2 667:	0x000000000	0000000	
OBSOLETE					
CONF_CTL_130[63:0]O	ffset: 0x82	20DDR2 667:	0x0420000c2	0400000	
TDFI_WRLVL_RESPL AT	63:56	0 x00	0 x0-0 XFF	Write ever achieved the number of cycles that responded effectively	
TDFI_RDLVL_RESPL AT	39:32	0 x00	0 x0-0 XFF	The Read polished the number of cycles that responded effectively	
REFRESH_PER_ZQ	Ephron;	0 x00	0 x0-0 XFF	Number of refresh commands between automatic ZQCS commands	
CONF_CTL_131[63:0]O	ffset: 0x8	30DDR2 667:	0x000000000	00000c0a	
TMOD	"	0 x00	0 x0-0 XFF	Number of cycles to be idle after DRAM mode configuration	
CONF_CTL_132[63:0]O	ffset: 0x84	40DDR2 667:	0x000064006	54000000	
AXI1_PRIORITY_REL AX	49:40	0 x000	0 x0 x3ff 0	Counter value that triggers priority control release on internal port 1, yes	
AXI0 PRIORITY REL				No effect on loongson 3 The counter value that triggers priority control	
AXI0_IRIORITI_REL	33:32	0 x0	0 x0-0 x3	relaxation on internal port 0	
AXI0_PRIORITY_REL AX [away]	came	0 x00	0 x0-0 XFF	The counter value that triggers priority control relaxation on internal port 0	
CONF_CTL_133[63:0]Offset: 0x850DDR2 667:0x000000000000064					
OUT_OF_RANGE_SO URCE_ID	57:48	0 x000	0 x0 x3ff 0	Access address overflow request ID number (read only)	
ECC_U_ID	41:32	0 x000	0 x0 x3ff 0	Access the ID number (read only) of the 2 dislocation request	
ECC_C_ID	"	0 x000	0 x0 x3ff 0	Access the ID number of the 1 dislocation request (read only)	
AXI2_PRIORITY_REL AX	9:0	0 x000	0 x0 x3ff 0	Counter value that triggers priority control release on internal port 2, yes	
CONF_CTL_134[63:0]O	ffset: Av&	50DDR2 667.	0x000000400	No effect on loongson 3	
CONF_CTL_134[63:0]Offset: 0x860DDR2 667:0x0000004000000000					

	龙芯 3A1000	处理器用户	手册	第一	·部分
--	-----------	-------	----	----	-----

				龙心 3A1000 处理奋用广于加 第一部分		
ZQCS	loathso me	0 x000	0 x0 XFFF 0	Number of cycles required by the ZQCS command		
PORT_DATA_ERROR _ID	"	0 x000	0 x0 x3ff 0	ID number of internal port data error request (read only)		
PORT_CMD_ERROR _ID	9:0	0 x000	0 x0 x3ff 0	Internal port command wrong ID number for request (read only)		
CONF_CTL_135[63:0]O	ffset: 0x8′	70DDR2 667:	0x000000000	000000		
OBSOLETE						
CONF_CTL_136[63:0]O	ffset: 0x8	80DDR2 667:	0x000000000	000000		
OBSOLETE						
CONF_CTL_137[63:0]O	ffset: 0x89	90DDR2 667:	0x000000000	000000		
OBSOLETE						
CONF_CTL_138[63:0]O	ffset: 0x8a	a0DDR2 667:	0x000000000	01c001c		
LOWPOWER_INTER NAL_CNT	63:48	0 x0000	0 x0 0 XFFFF	Counts idle cycles to self-refresh with memory and controller CLK gating.		
LOWPOWER_EXTER NAL_CNT	47:32	0 x0000	0 x0 0 XFFFF	Counts idle cycles to self-refresh with memory clock gating.		
AXI2_EN_SIZE_LT_W IDTH_INSTR	Caused the	0 x0000	0 x0 0 XFFFF	Enables various narrow accesses on internal port 2, not valid for loongson 3		
AXI1_EN_SIZE_LT_W IDTH_INSTR	15:0	0 x0000	XFFFF	Enable internal port 1 on various narrow access for loongson 3 invalid		
CONF_CTL_139[63:0]O	ffset: 0x8l	0DDR2 667:		!		
LOWPOWER_POWE R_DOWN_CNT	15:0	0 x0000	0 x0 0 XFFFF	Number of idle cycles before entering Power Down mode		
LOWPOWER_REFRE SH_HOLD	Caused the	0 x0000	0 x0 0 XFFFF	The number of idle cycles before the memory controller re-lock DLL in clock-gated mode		
LOWPOWER_SELF_ REFRESH_CNT	47:32	0 x0000		The number of idle cycles before entering memory self-refresh mode		
CONF_CTL_140[63:0]Offset: 0x8c0DDR2 667:0x00040000000000						
OBSOLETE						
CONF_CTL_141[63:0]O	ffset: 0x8	d0DDR2 667:	0x00000000c	800000		
CKE_INACTIVE [and]	55:32	0 x0000000	0 x0 0 XFFFFFFFF	High time interval from output DDR_RESET to CKE		
CKE_INACTIVE [away]	came	0 x00	0 x0-0 XFF	The interval from the output DDR_RESET value to the CKE value is low		

LOONGSON TECHNOLO				龙芯 3A1000 处理器用户手册 第一部分				
WRLVL_STATUS	17:0	0 x00000	0 x0 x3ffff 0	The last time you ever wrote like this.				
CONF_CTL_142[63:0]Offset: 0x8e0DDR2 667:0x00000000000000050								
TRST_PWRON	31:0	0 x0000000	0 x0 0 XFFFFFFFF	From start effective after 500 beats to DDR_RESET effective				
CONF CTL 143[63:0]O	ffset: 0x8	f0DDR2 667:0)x000000002	The delay of				
DLL_CTRL_REG_2								
[32]	"	0 x0	0 x0-0 x1	Output clock DLL enable signal, highly efficient				
				Output clock DLL control				
DLL_CTRL_REG_2 [31:0]	31:0	0 x0000000 0	0 x0 0 XFFFFFFFF	31:24: the delay of CLK4 and CLK5 on the output clock DLL				
				23:16: output clock DLL CLK2 and CLK3 delay				
				15:8: the delay of CLK0 and CLK1 on the output clock DLL				
				7:0: outputs the precision value on the clock DLL				
CONF_CTL_144[63:0]O	ffset: 0x9	00DDR2 667:	0x000000000	0000000				
RDLVL_ERROR_STA TUS [go forth]	Go forth	0 x00	0 x0 x3f 0	Indicates the state of the RDLVL when an error occurred				
RDLVL_ERROR_STA TUS [31:0]	31:0	0 x0000000 0	0 x0 0 XFFFFFFFF	Indicates the state of the RDLVL when an error				
CONF_CTL_145[63:0]O	ffcat: AvQ	-						
	11set. 0x9		0x000000000					
RDLVL_GATE_RESP_ MASK [63:32]	63:32	0 x0000000 0	0 x0 0 XFFFFFFFF	Read back mask in sampling training				
RDLVL_GATE_RESP_ MASK [31:0]	31:0	0 x0000000 0	0 x0 0 XFFFFFFFF	Read back mask in sampling training				
CONF_CTL_146[63:0]O	ffset: 0x9	20DDR2 667:	0x000000000	000000				
RDLVL_GATE_RESP_ MASK (71-64)	away	0 x00	0 x0-0 XFF	Read back mask in sampling training				
CONF CTL 147[63:0]Offset: 0x930DDR2 667:0x0000000000000000								
RDLVL_RESP_MASK	(2.22	0 x0000000	0 0 0	6 Dead like a rad				
[63:32]	63:32	0	0 x0 0 XFFFFFFFF	6. Read like a rod				
RDLVL_RESP_MASK	31:0	0 x0000000	0 x0 0	6. Read like a rod				
[31:0]		0	XFFFFFFFF					
CONF_CTL_148[63:0]O	ffset: 0x9	40DDR2 667:	0x030101000	0050500				
TDFI_RDLVL_EN	59:56	0 x0	0 x0-0 xf	The smallest number of cycles that ever went from Read to Read				
W2R_SAMECS_DLY	50:48	0 x0	0 x0 0 x7	An additional delay between write and read for the same selected signal				

LOONGSON TECHNOLO	DGY			龙芯 3A1000 处理器用户手册 第一部分
W2R_DIFFCS_DLY	42:40	0 x0	0 x0 0 x7	An additional delay between write and read for different selective signals
LVL_STATUS	That which	0 x0	0 x0 0 x7	Write as well as Read as well as sample the state of the request for LVL_REQ interrupts (Read only)
RDLVL_EDGE	24	0 x0	0 x0-0 x1	In the Read polished operation, indicates that DQS rising edge is efficient or
CKSRX	He hath	0 x0	0 x0-0 x0	Falling edge effective Exit the clock cycle delay in self-refresh mode
CKSRE	and	0 x0	0 x0-0 x0	Clock cycle delay for entering self-refresh mode
	and	0 40	0 X0-0 X0	chock cycle deny for entering sen renesh mode
RDLVL_RESP_MASK [71, 64]	away	0 x00	0 x0-0 XFF	6. Read like a rod
CONF_CTL_149[63:0]O	offset: 0x9:	50DDR2 667	2:0x00000000	00000a03
				Interrupt mask
				[18] = or of all interrupt bits;
				[17] = end of user-initiated DLL synchronization;
				[16] = change of DLL lock signal (switch between
				locked and non-locked states);
				[15] = error of reading sampling clock;
				[14] = a read-write training operation is completed;
				[13] = a read-write training request has
				been initiated; [12] = a writing training
				result is wrong;
INT MASK	From	0 x00	0 x0 x7ffff 0	[11] = error of a reading sampling
	them	0 100	0 x0 x/111 0	training result; $[10] = a$ reading
				training result is wrong;
				[9] = ODT enabled, and CAS Latency was 3. [8]
				= DRAM initialization is completed;
				[7] = internal port data error;
				[6] = internal port command
				error;
				[5] = multiple ECC two-digit
				errors found; [4] = finding a
				two-digit error in ECC once; [3]
				= multiple ECC one-bit errors
				found; [2] = one ECC error
				found;
				[1] = found multiple visits out of the physical space of memory;
				[0] = found an access out of the physical space of

龙芯中科技术有限公司 Loongson Technology Corporation Limited

sXFFFFTDFI_WRLVL_EN3-00 x00 x0-0 xfWrite like the number of cycles that you can Write like the minimum number of read operationsCONF_CTL_150[63:0]Offset: 0x960DDR2 667:0x060400000000000000000RDLAT_ADJ60:560 x000 x0 x1f 0PHY read delay periodWRLAT_ADJ5poiler s0 x00 x0-0 xfPHY write delay periodSWLVL_START400 x00 x0-0 x1Like a chip, like a chip. The software worked like a chip.SWLVL_LOAD320 x00 x0-0 x1Like a chip, like a chip. Like a chip. Like a chip.SWLVL_EXIT240 x00 x0-0 x1Like a winnow, like a winnow.Interrupt status (read only)Interrupt status (read only)	LOONGSON TECHNOL	Jur			龙芯 3A1000 处理器用户手册 第一部分
sXFFFTDFI_WRLVL_EN3-00 x00 x0-0 xfWrite like the number of cycles that you can Write like the minimum number of read operationsCONF_CTL_150[63:0]OFSet: 0x90DDR2 667:00000000000000000000000000000000000					memory
sXFFFTDFI_WRLVL_EN $3-0$ $0 x0$ $0 x0-0 xf$ Write like the number of cycles that you can Write like the minimum number of read operationsCONF_CTL_150[63:0]OFSet: 0x90DDR2 667:00000000000000000000000000000000000					
sXFFFTDFI_WRLVL_EN $3-0$ $0 x0$ $0 x0-0 xf$ Write like the number of cycles that you can Write like the minimum number of read operationsCONF_CTL_150[63:0]OFSet: 0x90DDR2 667:00000000000000000000000000000000000					
sXFFFTDFI_WRLVL_EN $3-0$ $0 x0$ $0 x0-0 xf$ Write like the number of cycles that you can Write like the minimum number of read operationsCONF_CTL_150[63:0]OFSet: 0x90DDR2 667:00000000000000000000000000000000000					
sXFFFTDFI_WRLVL_EN $3-0$ $0 x0$ $0 x0-0 xf$ Write like the number of cycles that you can Write like the minimum number of read operationsCONF_CTL_150[63:0]OFSet: 0x90DDR2 667:00000000000000000000000000000000000					
sXFFFTDFI_WRLVL_EN $3-0$ $0 x0$ $0 x0-0 xf$ Write like the number of cycles that you can Write like the minimum number of read operationsCONF_CTL_150[63:0]OFSet: 0x90DDR2 667:00000000000000000000000000000000000					
sXFFFTDFI_WRLVL_EN $3-0$ $0 x0$ $0 x0-0 xf$ Write like the number of cycles that you can Write like the minimum number of read operationsCONF_CTL_150[63:0]OFSet: 0x90DDR2 667:00000000000000000000000000000000000					
sXFFFTDFI_WRLVL_EN $3-0$ $0 x0$ $0 x0-0 xf$ Write like the number of cycles that you can Write like the minimum number of read operationsCONF_CTL_150[63:0]OFSet: 0x90DDR2 667:00000000000000000000000000000000000					
sXFFFTDFI_WRLVL_EN $3-0$ $0 x0$ $0 x0-0 xf$ Write like the number of cycles that you can Write like the minimum number of read operationsCONF_CTL_150[63:0]OFSet: 0x90DDR2 667:00000000000000000000000000000000000					
sXFFFTDFI_WRLVL_EN $3-0$ $0 x0$ $0 x0-0 xf$ Write like the number of cycles that you can Write like the minimum number of read operationsCONF_CTL_150[63:0]OFSet: 0x90DDR2 667:00000000000000000000000000000000000					
sXFFFTDFI_WRLVL_EN $3-0$ $0 x0$ $0 x0-0 xf$ Write like the number of cycles that you can Write like the minimum number of read operationsCONF_CTL_150[63:0]OFSet: 0x90DDR2 667:00000000000000000000000000000000000					
sXFFFTDFI_WRLVL_EN $3-0$ $0 x0$ $0 x0-0 xf$ Write like the number of cycles that you can Write like the minimum number of read operationsCONF_CTL_150[63:0]OFSet: 0x90DDR2 667:00000000000000000000000000000000000					
sXFFFTDFI_WRLVL_EN $3-0$ $0 x0$ $0 x0-0 xf$ Write like the number of cycles that you can Write like the minimum number of read operationsCONF_CTL_150[63:0]OFSet: 0x90DDR2 667:00000000000000000000000000000000000					
sXFFFTDFI_WRLVL_EN $3-0$ $0 x0$ $0 x0-0 xf$ Write like the number of cycles that you can Write like the minimum number of read operationsCONF_CTL_150[63:0]OFSet: 0x90DDR2 667:00000000000000000000000000000000000					
sXFFFTDFI_WRLVL_EN $3-0$ $0 x0$ $0 x0-0 xf$ Write like the number of cycles that you can Write like the minimum number of read operationsCONF_CTL_150[63:0]OFSet: 0x90DDR2 667:00000000000000000000000000000000000					
sXFFFTDFI_WRLVL_EN $3-0$ $0 x0$ $0 x0-0 xf$ Write like the number of cycles that you can Write like the minimum number of read operationsCONF_CTL_150[63:0]OFSet: 0x90DDR2 667:00000000000000000000000000000000000					
sXFFFTDFI_WRLVL_EN $3-0$ $0 x0$ $0 x0-0 xf$ Write like the number of cycles that you can Write like the minimum number of read operationsCONF_CTL_150[63:0]OFSet: 0x90DDR2 667:00000000000000000000000000000000000					
sXFFFTDFI_WRLVL_EN $3-0$ $0 x0$ $0 x0-0 xf$ Write like the number of cycles that you can Write like the minimum number of read operationsCONF_CTL_150[63:0]OFSet: 0x90DDR2 667:00000000000000000000000000000000000					
sXFFFTDFI_WRLVL_EN $3-0$ $0 x0$ $0 x0-0 xf$ Write like the number of cycles that you can Write like the minimum number of read operationsCONF_CTL_150[63:0]OFSet: 0x90DDR2 667:00000000000000000000000000000000000					
sXFFFTDFI_WRLVL_EN $3-0$ $0 x0$ $0 x0-0 xf$ Write like the number of cycles that you can Write like the minimum number of read operationsCONF_CTL_150[63:0]OFSet: 0x90DDR2 667:00000000000000000000000000000000000					
sXFFFTDFI_WRLVL_EN $3-0$ $0 x0$ $0 x0-0 xf$ Write like the number of cycles that you can Write like the minimum number of read operationsCONF_CTL_150[63:0]OFSet: 0x90DDR2 667:00000000000000000000000000000000000					
sXFFFTDFI_WRLVL_EN $3-0$ $0 x0$ $0 x0-0 xf$ Write like the number of cycles that you can Write like the minimum number of read operationsCONF_CTL_150[63:0]OFSet: 0x90DDR2 667:00000000000000000000000000000000000					
IDFI_WRLVL_EN3-0 $0 x0$ $0 x0 - 0 xf$ like the minimum number of read operationsCONF_CTL_150[63:0]Offset: 0x90DDR2 667:0x0604000000000RDLAT_ADJ $60:56$ $0 x00$ $0 x0 x1f 0$ PHY read delay periodWRLAT_ADJspoiler s $0 x0$ $0 x0-0 xf$ PHY write delay periodSWLVL_START 40 $0 x0$ $0 x0-0 x1$ Like a chip, like a chip. The software worked like a chip.SWLVL_LOAD 32 $0 x0$ $0 x0-0 x1$ Like a chip, like a chip. Like a chip. Like a chip.SWLVL_EXIT 24 $0 x0$ $0 x0-0 x1$ Like a winnow, like a winnow.INT_STATUS $18:0$ $0 x00$ $0 x0 x7ffff 0$ $[18] = $ or of all interrupt bits;	TXPDLL		0 x0000		DRAM TXPDLL parameter in cycles.
Image: Control of the control of th	TDFI WRLVL EN	3-0	0 x0	0 x0-0 xf	Write like the number of cycles that you can Write
RDLAT_ADJ60:56 $0 \ x00$ $0 \ x0 \ x1f \ 0$ PHY read delay periodWRLAT_ADJspoiler s $0 \ x0$ $0 \ x0-0 \ xf$ PHY write delay periodSWLVL_START40 $0 \ x0$ $0 \ x0-0 \ x1$ Like a chip, like a chip. The software worked like a chip.SWLVL_LOAD32 $0 \ x0$ $0 \ x0-0 \ x1$ Like a chip, like a chip. Like a chip. Like a chip.SWLVL_EXIT24 $0 \ x0$ $0 \ x0-0 \ x1$ Like a winnow, like a winnow.INT_STATUS18:0 $0 \ x00$ $0 \ x0 \ x7ffff0$ [18] = or of all interrupt bits;			0.10		like the minimum number of read operations
WRLAT_ADJspoiler s 0×0 $0 \times 0 - 0 \times f$ PHY write delay periodSWLVL_START40 0×0 $0 \times 0 - 0 \times f$ Like a chip, like a chip. The software worked like a chip.SWLVL_LOAD32 0×0 $0 \times 0 - 0 \times f$ Like a chip, like a chip. Like a chip. Like a chip.SWLVL_EXIT24 0×0 $0 \times 0 - 0 \times f$ Like a winnow, like a winnow.INT_STATUS18:0 0×00 $0 \times 0 \times 7 \times f \oplus f$	CONF_CTL_150[63:0]0	Offset: 0x9	60DDR2 667	:0x060400000	000000
sImage: sImage: sSWLVL_START400 x00 x0-0 x1Like a chip, like a chip. The software worked like a chip.SWLVL_LOAD320 x00 x0-0 x1Like a chip, like a chip. Like a chip. Like a chip.SWLVL_EXIT240 x00 x0-0 x1Like a winnow, like a winnow.INT_STATUS18:00 x000 x0 x7ffff 0[18] = or of all interrupt bits;	RDLAT_ADJ	60:56	0 x00	0 x0 x1f 0	PHY read delay period
swlvl_LOAD 32 0 x0 0 x0-0 x1 Like a chip, like a chip. Like a chip. Like a chip. SWLVL_EXIT 24 0 x0 0 x0-0 x1 Like a winnow, like a winnow. INT_STATUS 18:0 0 x00 0 x0 x7ffff 0 [18] = or of all interrupt bits;	WRLAT_ADJ	-	0 x0	0 x0-0 xf	PHY write delay period
SWLVL_EXIT240 x00 x0-0 x1Like a winnow, like a winnow.INT_STATUS18:00 x000 x0 x7ffff 0[18] = or of all interrupt bits;	SWLVL_START	40	0 x0		
INT_STATUS 18:0 0×00 $0 \times 0 \times 7$ ffff 0 [18] = or of all interrupt bits;	SWLVL_LOAD	32	0 x0	0 x0-0 x1	Like a chip, like a chip. Like a chip. Like a chip.
INT_STATUS 18:0 0×00 $0 \times 0 \times 7$ ffff 0 [18] = or of all interrupt bits;	SWLVL_EXIT	24	0 x0	0 x0-0 x1	Like a winnow, like a winnow.
					Interrupt status (read only)
[17] = end of user-initiated DLL synchronization;	INT_STATUS	18:0	0 x00	0 x0 x7ffff 0	[18] = or of all interrupt bits;
					[17] = end of user-initiated DLL synchronization;

				龙芯 3A1000 处理器用户手册 第一部分
				[16] = change of DLL lock signal (switch between locked and non-locked states);
				<pre>[15] = error of reading sampling clock;</pre>
				[14] = a read-write training operation is completed;
				[13] = a read-write training request has
				been initiated; $[12] = a$ writing training
				result is wrong;
				[11] = error of a reading sampling
				training result; [10] = a reading
				training result is wrong;
				[9] = ODT enabled, and CAS Latency was 3. [8]
				= DRAM initialization is completed;
				[7] = internal port data error;
				[6] = internal port command
				error;
				[5] = multiple ECC two-digit
				errors found; [4] = finding a
				two-digit error in ECC once; [3]
				= multiple ECC one-bit errors
				found; [2] = one ECC error
				found;
				 = found multiple visits out of the physical space of memory;
				[0] = found an access out of the physical space of memory
CONF_CTL_151[63:0]O	ffset: 0x9′	70DDR2 667:	0x00000000	0003e805
CONCURRENTAP_W R_ONLY	56	0 x0	0 x0-0 x1	Whether to prevent concurrent auto-precharge operations by waiting for write recovery time before read operation after write operation
CKE_STATUS	48	0 x0	0 x0-0 x1	Indicates CKE_STATUS (read only)

龙芯 341000 协理哭田户毛册 第一部分

LOONGSON TECHNOLO	JGY			龙芯 3A1000 处理器用户手册 第一部分
				Break clear (write only)
				[17] = end of user-initiated DLL synchronization;
			[16] = change of DLL lock signal (switch between	
				locked and non-locked states);
	г	0 00	0 0 2 5555 0	[15] = error of reading sampling clock;
INT_ACK	Even as	0 x00	0 x0 x3ffff 0	[14] = a read-write training operation is completed;
				[13] = a read-write training request has
				been initiated; [12] = a writing
				training result is wrong;
				[11] = error of a reading sampling training result;
				[10] = a reading training result is wrong;
				[9] = ODT enabled, and CAS Latency was 3. [8]
				= DRAM initialization is completed;
				[7] = internal port data error;
				[6] = internal port command
				error;
				[5] = multiple ECC two-digit
				errors found; [4] = finding a
				two-digit error in ECC once; [3]
				= multiple ECC one-bit errors
				found; [2] = one ECC error
				found;
				 = found multiple visits out of the physical space of memory;
				[0] = found an access out of the physical space of memory
DLL_RST_DELAY	confes s	0 x0000	0 x0 0 XFFFF	DLL reset minimum number of cycles
DLL_RST_ADJ_DLY	away	0 x00		Configure the minimum number of cycles from the DLL precision to the end of the DLL reset
CONF_CTL_152[63:0]O	ffset: 0x9	80DDR2 667:	0x000101000	
ZQ_IN_PROGRESS	56	0 x0	0 x0-0 x1	Indicates that the ZQ operation is in progress (read only)
				Enables ZQCS (short ZQ) to be calibrated in turn. When the bit
ZQCS_ROTATE 48				is 0, each ZQCS request command will correct all the
	48	0 x0	0 x0-0 x1	slices in the system. When the position is 1, the system will
		0 40		correct only one slice when each ZQCS command comes.
				and the system will correct all the slices in turn. The
				ZQCS and REFRESH_PER_ZQ parameters should
				be set to match that bit

				WHE DITION ACTINIAN 1 WAY NA HAVA
WRLVL_REG_EN	40	0 x0	0 x0-0 x1	Enables you to write the wrlvl_delay register
WRLVL_EN	32	0 x0	0 x0-0 x1	Leverage the controller's Write capability
RESYNC_DLL_PER_ AREF_EN	24	0 x0	0 x0-0 x1	Enables DLL automatic synchronization after each refresh command
RESYNC_DLL	16	0 x0	0 x0-0 x1	Issue a DLL synchronization command (write only)
RDLVL_REG_EN	8	0 x0	0 x0-0 x1	Enable to write the rdlvl_delay register
RDLVL_GATE_REG_ EN	0	0 x0	0 x0-0 x1	Enable to write rdlvl_gate_delay register
CONF_CTL_153[63:0]O	ffset: 0x9	90DDR2 667:	0x010102020)2010100
W2W_SAMECS_DLY	58:56	0 x0	0 x0 0 x7	The number of additional delay clock cycles from a write command selected on the same chip to a write command
W2W_DIFFCS_DLY	50:48	0 x0	0 x0 0 x7	The number of additional delay clock cycles from the write command to the write command selected for different slices
TBST_INT_INTERVAL	42:40	0 x0	0 x0 0 x7	Number of DRAM burst interrupt interval cycles

R2W_SAMECS_DLY	That which	0 x0	0 x0 0 x7	The number of additional delay clock cycles from a read command to a write command selected for the same slice
R2W_DIFFCS_DLY	they	0 x0	0 x0 0 x7	The number of additional delay clock cycles from the read command to the write command selected for different
R2R_SAMECS_DLY	thou	0 x0	0 x0 0 x7	slices The number of additional delay clock cycles from the read command to the read command selected for the same slice
R2R_DIFFCS_DLY	10:8	0 x0	0 x0 0 x7	The number of additional delay clock cycles from the read command to the read command selected from different slices
AXI_ALIGNED_STRO BE_DISABLE	The 2-0	0 x0		When a transaction of a AXI port has one of the following characteristics: 1. The start and end addresses of the transaction are aligned according to the user word; 2.2. The transaction length is one user word (128 bits). Each AXI Strobe is not allowed to have a corresponding AXI port. When set to 0, write operations are performed in read-modification-write order. When set to 1, the write operation is treated as
				a standard write operation (non Read-modification-write order)
CONF_CTL_154[63:0]0	Offset: 0x	(9a0DDR2 6		
TDFI_WRLVL_LOAD	63:56	0 x0	0 x0-0 XFF	Write down the minimum number of clock cycles from the first write down to the first Load
TDFI_RDLVL_LOAD	55:48	0 x0	0 x0-0 XFF	Read like the minimum number of clock cycles from the first read like the Load command
TCKESR	44:40	0 x0	0 x0 x1f 0	The minimum number of clock cycles in which CKE remains low from refresh entry to exit
ТССД	Took Jeremi ah	0 x0	0 x0 x1f 0	The delay from the case # to the case # command

TDFI_WRLVL_WW	"	0 x0	0 x0 x3ff 0	The minimum number of clock cycles between two consecutive times
TDFI_RDLVL_RR	9:0	0 x0	0 x0 x3ff 0	The minimum number of clock cycles between two consecutive times
CONF_CTL_156[63:0]O	ffset: 0x90	0DDR2 667	:0x0a5200000	000000
MR0_DATA_0	62:48	0 x0	0 x0 x7fff 0	The mode register 0 configuration value corresponding to the slice selection 0
TDFI_PHYUPD_TYPE 3	45:32	0 x0	0 x0 x3fff 0	Save DFI Tphyupd_type3 parameter (read only)
TDFI_PHYUPD_TYPE 2	Was a	0 x0	0 x0 x3fff 0	Save DFI Tphyupd_type2 parameter (read only)
TDFI_PHYUPD_TYPE	13:0	0 x0	0 x0 x3fff 0	Save DFI Tphyupd_type1 parameter (read only)
CONF_CTL_157[63:0]O	ffset: 0x90	10DDR2 667	:0x00440a520	a520a52
MR1_DATA_0	62:48	0 x0		The configuration value of mode register 1 corresponding to shard selection 0
MR0_DATA_3	46:32	0 x0		The mode register 0 configuration value corresponding to the slice selection 3
MR0_DATA_2	and	0 x0	0 x0 x7fff 0	The mode register 0 configuration value corresponding to slice 2
MR0_DATA_1	14:0	0 x0		The mode register 0 configuration value corresponding to slice 1
CONF_CTL_158[63:0]O	ffset: 0x9	e0DDR2 667	:0x000000440	0440044
MR2_DATA_0	62:48	0 x0	0 x0 x7fff 0	The mode register 2 configuration value corresponding to the slice selection 0
MR1_DATA_3	46:32	0 x0	0 x0 x7fff 0	The configuration value of mode register 1 corresponding to TAB 3
MR1_DATA_2	and	0 x0		The configuration value of mode register 1 corresponding to chip selection 2
MR1_DATA_1	14:0	0 x0	0 x0 x7fff 0	The configuration value of mode register 1 corresponding to chip selection 1
CONF_CTL_159[63:0]O	ffset: 0x91	0DDR2 667:	0x000000000	000000
MR3_DATA_0	62:48	0 x0	0 x0 x7fff 0	The mode register 3 configuration value corresponding to the slice selection 0
MR2_DATA_3	46:32	0 x0	0 x0 x7fff 0	The mode register 2 configuration value corresponding to TAB 3
MR2_DATA_2	and	0 x0		The mode register 2 configuration value corresponding to slice 2
MR2_DATA_1	14:0	0 x0		The configuration value of mode register 2 corresponding to chip selection 1
CONF_CTL_160[63:0]O	ffset: 0xa(00DDR2 667	:0x00ff000000	000000
DFI_WRLVL_MAX_DE LAY	63:48	0 x0	0 x0 0 XFFFF	Like the largest delay line ever used by Hareware Write series
MR3_DATA_3	46:32	0 x0		The configuration value of mode register 3 corresponding to TAB 3

MR3_DATA_2	and	0 x0	0 x0 x7fff 0	The configuration value of mode register 3				
				corresponding to slice 2				
MR3_DATA_1	14:0	0 x0	0 x0 x7fff 0	The configuration value of mode register 3				
				corresponding to chip selection 1				
CONF_CTL_161[63:0]Offset: 0xa10DDR2 667:0x0000000000000000000000000000000000								
RDLVL_BEGIN_DELA	63:48	0 x0	0 x0 0 XFFFF	In the third data set, Read ever went from the first 1				
				to				

Y_3				Number of delay units for 0
RDLVL_BEGIN_DELA				In the second data set, Read ever went from the first
Y_2	47:32	0 x0	0 x0 0 XFFFF	1 to
				Number of delay units for 0
RDLVL_BEGIN_DELA				In the first data set, Read ever went from the first 1
Y_1	Caused	0 x0	0 x0 0 XFFFF	to
	the			Number of delay units for 0
RDLVL_BEGIN_DELA				In the zeroth data set, Read ever went from the first
Y_0	15:0	0 x0	0 x0 0 XFFFF	one to
				Number of delay units for 0
CONF_CTL_162[63:0]O	ffset: 0xa	20DDR2 667:	0x000000000	000000
RDLVL_BEGIN_DELA				In the 7 data set, Read ever went from the first 1 to
Y_7	63:48	0 x0	0 x0 0 XFFFF	Number of delay units for 0
RDLVL_BEGIN_DELA				In the 6th data set, Read ever went from the first 1 to
	47:32	0 x0		Number of delay units for 0
				In the 5th data set, Read ever went from the first 1 to
RDLVL_BEGIN_DELA Y_5	Caused	0 x0		Number of delay units for 0
1_5	the	0 X0		Number of delay units for 0
RDLVL_BEGIN_DELA				In data set 4, Read ever went from the first 1 to
	15:0	0 x0		Number of delay units for 0
_				
CONF_CTL_163[63:0]O	iiset: Uxa	30DDR2 667:		
				In the second data set, Read imported the number of
RDLVL_DELAY_2	63:48	0 x0	0 x0 0 XFFFF	delay elements used
				The number of delay elements that Read used in the
RDLVL_DELAY_1	47:32	0 x0	0 x0 0 XFFFF	first data set
				In data set 0, Read imported a delay unit
RDLVL_DELAY_0	Caused	0 x0	0 x0 0 XFFFF	The number of
	the			
RDLVL_BEGIN_DELA				In the 8th data set, Read ever went from the first 1 to
Y_8	15:0	0 x0	0 x0 0 XFFFF	Number of delay units for 0
CONF_CTL_164[63:0]O	ffset: 0xa	40DDR2 667:	0x000000000	000000
				In data set 6, Read imported the number of delay
RDLVL_DELAY_6	63:48	0 x0		elements used
	-			In data set 5, Read imported a delay unit
	47.20	0 v0		The number of
RDLVL_DELAY_5	47:32	0 x0	0 XU U AFFFF	

LOONGSON TECHNOLO	DGY			龙芯 3A1000 处理器用户手册 第一部分
RDLVL_DELAY_4	Caused the	0 x0		In data set 4, Read imported a delay unit The number of
RDLVL_DELAY_3	15:0		0 x0 0 XFFFF	In data set 3, Read imported the number of delay elements used
CONF_CTL_165[63:0]O	ffset: 0xa	50DDR2 667:		
RDLVL_END_DELAY_ 1	63:48	0 x0	0 x0 0 XFFFF	In the first data set, Read ever went from the first zero to zero The number of delay units of 1
RDLVL_END_DELAY_ 0	47:32	0 x0	0 x0 0 XFFFF	In the zeroth data set, Read ever went from the first zero to zero The number of delay units of 1
RDLVL_DELAY_8	Caused the	0 x0	0 x0 0 XFFFF	Number of delay units used by Read ever in data set 8
RDLVL_DELAY_7	15:0	0 x0		In data set 7, Read imported the number of delay elements used
CONF_CTL_166[63:0]O	ffset: 0xa	60DDR2 667:	0x000000000	000000
RDLVL_END_DELAY_ 5	63:48	0 x0	0 x0 0 XFFFF	In the fifth data set, Read ever went from the first zero to zero The number of delay units of 1
RDLVL_END_DELAY_ 4	47:32	0 x0	0 x0 0 XFFFF	In the fourth data set, Read ever went from the first zero to zero The number of delay units of 1
RDLVL_END_DELAY_ 3	Caused	0 x0		In the third data set, Read ever went from the first
RDLVL_END_DELAY_ 2	15:0	0 x0	0 x0 0 XFFFF	In the second data set, Read ever went from the first zero to zero The number of delay units of 1
CONF_CTL_167[63:0]O	ffset: 0xa	70DDR2 667:	0x000000000	0000000
RDLVL_GATE_DELA Y _0	63:48	0 x0	0 x0 0 XFFFF	In the data group 0, the number of delay units from the sampling time to the rising edge of the selected communication number
RDLVL_END_DELAY_ 8	47:32	0 x0	0 x0 0 XFFFF	In the 8th data set, Read ever went from the first zero to zero The number of delay units of 1

				龙芯 3A1000 处理器用户手册 第一部分
RDLVL_END_DELAY_	_			In the 7 data set, Read ever went from the first zero
7	Caused	0 x0	0 x0 0 XFFFF	to zero
	the			The number of delay units of 1
RDLVL_END_DELAY_	_			In the sixth data set, Read ever went from the first
6	15:0	0 x0	0 x0 0 XFFFF	zero to zero
				The number of delay units of 1
CONF_CTL_168[63:0]C	Offset: 0xa	80DDR2 667:	:0x000000000	000000
RDLVL_GATE_DELA				In the fourth data set, the sampling time is extended
Y	63:48	0 x0	0 x0 0 XFFFF	to the rising edge of the selected communication
_4				number
				Number of late units
RDLVL_GATE_DELA				In the third data group, the sampling time is extended
Y	47:32	0 x0	0 x0 0 XFFFF	to the rising edge of the selected communication
_3				number
				Number of late units
RDLVL_GATE_DELA				In the second data group, the number of delay units
Y	Caused	0 x0	0 x0 0 XFFFF	from the sampling time to the rising edge of the
_2	the			selected communication number
RDLVL_GATE_DELA				In the first data group, the number of delay units from
Y	15:0	0 x0	0 x0 0 XFFFF	the sampling time to the rising edge of the selected
_1				communication number
CONF_CTL_169[63:0]C	Offset: 0xa	90DDR2 667:	:0x000000000	000000
RDLVL_GATE_DELA				In the 8th data group, the number of delay units from
Y	63:48	0 x0	0 x0 0 XFFFF	the sampling time to the rising edge of the selected
_8				communication number
RDLVL_GATE_DELA				In the 7th data group, the number of delay units from
Y	47:32	0 x0	0 x0 0 XFFFF	the sampling time to the rising edge of the selected
_7				communication number
RDLVL_GATE_DELA				In the sixth data group, the number of delay units
Y	Caused	0 x0	0 x0 0 XFFFF	from the sampling time to the rising edge of the
_6	the			selected communication number
RDLVL_GATE_DELA				In the fifth data group, the sampling time is extended
Y	15:0	0 x0	0 x0 0 XFFFF	to the rising edge of the selected communication
_5				number
				Number of late units
CONF_CTL_170[63:0]C) Offset: 0xa	a0DDR2 667:	0x0000ffff000	000010

RDLVL_MIDPOINT_D R No When the Hardware read polished the module, it was equal to the median between rdlvl_begin_delay_0 ELAY_0 63:48 0.00 0.00 0 XFFFFH and rdlvl_end_delay_0. Otherwise, it was rdlvl_delay_0. RDLVL_MAX_DELAY 47:32 0.00 0.00 0 XFFFFH and rdlvl_end_delay_0. Otherwise, it was rdlvl_delay_0. RDLVL_GATE_REFR 0.00 0.00 0 XFFFFH wo automatic Gate Training (should be set to 0) Maximum number of refresh commands between resorted by Read RDLVL_GATE_MAX_ Distantian 0.00 0.00 0 XFFFFH wo automatic Gate Training (should be set to 0) RDLVL_MIDPOINT_D 0.00 0.00 0 XFFFFH wo automatic Gate Training (should be set to 0) RDLVL_MIDPOINT_D 0.00 0.00 0 XFFFFF Relative set to 0) RDLVL_MIDPOINT_D 8:48 0.00 0.00 0 XFFFFF Relative set to 0) RDLVL_MIDPOINT_D 8:48 0.00 0.00 0 XFFFFF Relative set to 0) RDLVL_MIDPOINT_D 8:48 0.00 0.00 0 XFFFFF Relative set to reduce in the median between relative set in was relative set to reduce in the median between relative set in was relative set to reduce in the median between relative set in was relative set in the Hardware read polished the module, it was relative set in the median between relative set in was relative set in was relative set in the median between relative set in was relatin the median between relative set in the median betwe	LOONGSON TECHNOLO	DGY			
RDLVL_MIDPOINT_D Russian Russi					龙芯 3A1000 处理器用户手册 第一部分
ELAY_0 63:48 0 x0 0 XFFFF and rdlvl_end_delay_0. Otherwise, it was rdlvl_day_0. RDLVL_MAX_DELAY 47:32 0 x0 0 x0 0 XFFFF. The largest number of delay lines ever recorded by Read RDLVL_GATE_REFR Esh_1NTERVAL Caused 0 x0 0 x0 0 XFFFF. Two automatic Gate Training (should be set to 0) RDLVL_GATE_MAX_ DELAY 15:0 0 x0 0 x0 0 XFFFF. The maximum number of sampling delay lines CONF_CTL_171[63:000000000000000000000000000000000000					When the Hardware read polished the module, it was
Image: Second	RDLVL_MIDPOINT_D				equal to the median between rdlvl_begin_delay_0
RDLVL_MAX_DELAY 47:32 0 x0 0 x0 0 XFFFF 6. The largest number of delay lines ever recorded by Read RDLVL_GATE_REFR Caused 0 x0 0 x0 0 XFFFF Maximum number of refresh commands between (should be set to 0) RDLVL_GATE_MAX_DELAY 15:0 0 x0 0 x0 0 XFFFF The maximum number of sampling delay lines CONF_CTL_171[63:0)=Tiset: 0 x0 0 XFFFF When the Hardware read learned like a rod, it was like RDLVL_MIDPOINT_D 63:48 0 x0 0 x0 0 XFFFF When the Hardware read learned like a rod, it was requi to the median between rdlvl_end_delay_4 otherwise, equal to the median between rdlvl_begin_delay_3. RDLVL_MIDPOINT_D 47:32 0 x0 0 x0 0 XFFFF When the Hardware read cultivated the module, it was rdlvl_delay_3. RDLVL_MIDPOINT_D LAY_2 0 x0 0 x0 0 XFFFF When the Hardware read cultivated the module, it was rdlvl_delay_3. RDLVL_MIDPOINT_D LAY_2 0 x0 0 x0 0 XFFFF When the Hardware read cultivated the module, it was rdlvl_delay_2. RDLVL_MIDPOINT_D No 0 x0 0 XFFFF When the Hardware read polished the module, it was rdlvl_delay_2. RDLVL_MIDPOINT_D No 0 x0 0 x0 0 XFFFF When the Hardware read cultivated the module, it was rdlvl_delay_1. RDLVL_	ELAY_0	63:48	0 x0	0 x0 0 XFFFF	and rdlvl_end_delay_0. Otherwise, it was
Image: Second					rdlvl_delay_0.
RDLVL_GATE_REFR Caused 0 x0 x0 x00 XFFFH wo automatic Gate Training should be set to 0) RDLVL_GATE_MAX_ 0 x0 0 x0 0 XFFFH wo automatic Gate Training should be set to 0) RDLVL_GATE_MAX_ 0 x0 0 x0 0 XFFFH wo automatic Gate Training should be set to 0) RDLVL_GATE_MAX_ 0 x0 0 x0 0 XFFFF The maximum number of sampling delay lines CONF_CTL_171[63:0]OFfset: 0 x0 0 XFFFF The maximum number of sampling delay lines CONF_CTL_171[63:0]OFfset: 0 x0 0 0 x0 0 XFFFF RdIvl_begin_delay_4 and rdIvl_end_delay_4 otherwise, equal to rdIvl_delay_4(recad only) RDLVL_MIDPOINT_D 63:48 0 x0 0 x0 0 XFFFF and rdIvl_end_delay_3. Otherwise, it was rdIvl_delay_3. RDLVL_MIDPOINT_D 47:32 0 x0 0 x0 0 XFFFF rdIvl_begin_delay_2 and rdIvl_end_delay_2. RDLVL_MIDPOINT_D Caused 0 x0 0 XFFFF rdIvl_begin_delay_2. Otherwise, it was rdIvl_delay_3. RDLVL_MIDPOINT_D LAY_1 15:0 0 x0 0 x0 0 XFFFF rdIvl_begin_delay_1. Otherwise, it was rdIvl_delay_1. RDLVL_MIDPOINT_D LAY_1 0 x0 0 XFFFF rdIvl_begin_delay_1. Otherwise, it was rdIvl_delay_1. Otherwise, it was rdIvl_delay_1. RDLVL_MIDPOINT_D 63:48 0 x0 0 x0 0 XFFFF When the Hardware read polished the module, it was rdIvl_delay_1. </td <td>RDLVL_MAX_DELAY</td> <td>47:32</td> <td>0 x0</td> <td>0 x0 0 XFFFF</td> <td>6. The largest number of delay lines ever recorded by</td>	RDLVL_MAX_DELAY	47:32	0 x0	0 x0 0 XFFFF	6. The largest number of delay lines ever recorded by
ESH_INTERVAL Caused 0 x0 x00 XFFFF two automatic Gate Training (should be set to 0) RDLVL_GATE_MAX_DELAY 15:0 0 x0 0 x0 0 XFFFF The maximum number of sampling delay lines CONF_CTL_171[63:0) 15:0 0 x0 0 x0 0 XFFFF The maximum number of sampling delay lines CONF_CTL_171[63:0) 0 x0 0 x0 0 XFFFF The maximum number of sampling delay lines CONF_CTL_171[63:0) 0 x0 0 x0 0 XFFFF The maximum number of sampling delay lines CONF_CTL_171[63:0) 0 x0 0 x0 0 XFFFF When the Hardware read learned like a rod, it was like RDLVL_MIDPOINT_D 63:48 0 x0 0 x0 0 XFFFF When the Hardware read polished the module, it was equal to rdlv1_delay_4 and rdlv1_end_delay_3 RDLVL_MIDPOINT_D 47:32 0 x0 0 x0 0 XFFFF When the Hardware read cultivated the module, it was rdlv1_delay_3. RDLVL_MIDPOINT_D Caused 0 x0 0 x0 0 XFFFF When the Hardware read polished the module, it was equal to the median between rdlv1_end_delay_2. RDLVL_MIDPOINT_D Caused 0 x0 0 x0 0 XFFFF When the Hardware read polished the module, it was rdlv1_delay_1. RDLVL_MIDPOINT_D 0 x0 0 x0 0 XFFFF Rdlv1_end_delay_1. Othe					Read
IndeIndeIndeIndexInd	RDLVL_GATE_REFR				Maximum number of refresh commands between
RDLVL_GATE_MAX_ DELAY 15:0 0 x0 0 x0 0 XFFFF The maximum number of sampling delay lines CONF_CTL_171[63:0]OTSet: 0xabDDR2 667:00000000000000000000000000000000000	ESH INTERVAL	Caused	0 x0	0 x0 0 XFFFF	two automatic Gate Training
RDLVL_GATE_MAX_ DELAY 15:0 0 x0 0 x0 0 XFFFF The maximum number of sampling delay lines CONF_CTL_171[63:0]OTSet: 0xabDDR2 667:00000000000000000000000000000000000	_	the			(should be set to 0)
DELAY 15:0 0 x0 x0 x 0 X XFFF The maximum number of sampling delay lines CONF_CTL_171[63:0]OT CONF_CTL_171[63:0]OT UN When the Hardware read learned like a rod, it was like RDLVL_MIDPOINT_D 63:48 0 x0 XO XFFFF Rdlvl_begin_delay_4 and rdlvl_end_delay_4, otherwise, equal to rdlvl_delay_4(read only) RDLVL_MIDPOINT_D 7:32 0 x0 XO XFFFF and rdlvl_end_delay_3. Otherwise, it was equal to the median between rdlvl_begin_delay_3 RDLVL_MIDPOINT_D Faise 0 x0 XO XFFFF Ard rdlvl_end_delay_3. Otherwise, it was rdlvl_edelay_3. RDLVL_MIDPOINT_D Faise 0 x0 XO XFFFF Ard rdlvl_end_delay_2. Otherwise, it was requal to the median between rdlvl_end_edelay_2. RDLVL_MIDPOINT_D Faise 0 x0 XFFFF When the Hardware read polished the module, it was equal to the median between rdlvl_end_edelay_1. RDLVL_MIDPOINT_D 0 x0 0 x0 XFFFF When the Hardware read polished the module, it was rdlvl_edlay_1. CONF_CTL_172[63:0]OF 0 x0 0 x0 0 XFFFF When the Hardware read polished the module, it was rdlvl_edlay_1. CONF_CTL_172[63:0]OF 0 x0 0 x0 0 XFFFF When the Hardware read learned like a rod, i	RDLVL GATE MAX				×
CONF_CTL_171[63:0]OffSet: 0xabUDDR2 667:0x0000000000000000000000000000000000		15.0	0 x0	0 x0 0 XFFFF	The maximum number of sampling delay lines
RDLVL_MIDPOINT_D A:48 0 x0 0 x0 0 XFFFFRdlvl_begin_delay_4 and rdlvl_end_delay_4, otherwise, equal to rdlvl_delay_4(read only) When the Hardware read polished the module, it was equal to the median between rdlvl_begin_delay_3. When the Hardware read polished the module, it was equal to the median between rdlvl_end_delay_3. RDLVL_MIDPOINT_D A:32 0 x0 0 x0 0 XFFFF rand rdlvl_end_delay_3. Otherwise, it was equal to the median between rdlvl_begin_delay_3. RDLVL_MIDPOINT_D Caused 0 x0 0 x0 0 XFFFF rand rdlvl_end_delay_2. and rdlvl_end_delay_2. RDLVL_MIDPOINT_D Law 0 x0 0 x0 0 XFFFF rand rdlvl_end_delay_2. and rdlvl_end_delay_2. RDLVL_MIDPOINT_D Law 0 x0 0 x0 0 XFFFF rand rdlvl_end_delay_1. Otherwise, it was equal to the median between rdlvl_begin_delay_1. RDLVL_MIDPOINT_D LaAY_1 15:0 0 x0 0 x0 0 XFFFF rand rdlvl_end_delay_1. Otherwise, it was rdlvl_delay_1. CONF_CTL_172[63:0UTset: 0xacUDDR2 667:UX000000000000000000000000000000000000					
RDLVL_MIDPOINT_D 63.48 0 x0 bike ELAY_4 63.48 0 x0 0 x0 0 XFFFF Rdlvl_begin_delay_4 and rdlvl_end_delay_4, otherwise, equal to rdlvl_delay_4(read only) RDLVL_MIDPOINT_D 47.32 0 x0 0 x0 0 XFFFF and rdlvl_end_delay_3. Otherwise, it was equal to the median between rdlvl_begin_delay_3. RDLVL_MIDPOINT_D 47.32 0 x0 0 x0 0 XFFFF and rdlvl_end_delay_3. Otherwise, it was rdlvl_delay_2. RDLVL_MIDPOINT_D and	CONF_CTL_171[63:0]O	ffset: 0xa	60DDR2 667:	0x0000000000	000000
ELAY_4 63:48 0 x0 0 x0 0 XFFFF Rdlvl_begin_delay_4 and rdlvl_end_delay_4, otherwise, equal to rdlvl_delay_4(read only) RDLVL_MIDPOINT_D ar:32 0 x0 0 x0 0 XFFFF Rdlvl_begin_delay_3. When the Hardware read polished the module, it was equal to the median between rdlvl_begin_delay_3. RDLVL_MIDPOINT_D ar:32 0 x0 0 x0 0 XFFFF ard rdlvl_end_delay_3. Otherwise, it was rdlvl_delay_3. RDLVL_MIDPOINT_D caused 0 x0 0 x0 0 XFFFF was equal to the median between rdlvl_end_delay_2. RDLVL_MIDPOINT_D caused 0 x0 0 x0 0 XFFFF When the Hardware read polished the module, it was equal to the median between rdlvl_end_delay_2. RDLVL_MIDPOINT_D br 0 x0 0 x0 0 XFFFF When the Hardware read polished the module, it was rdlvl_delay_1. RDLVL_MIDPOINT_D 0 x0 0 x0 0 x0 0 XFFFF When the Hardware read polished the module, it was rdlvl_delay_1. CONF_CTL_172[63:0]OFfset: 0x=0DDR2 667:>x000000000000000000000000000000000000					When the Hardware read learned like a rod, it was
Image: Constraint of the second sec	RDLVL_MIDPOINT_D				like
RDLVL_MIDPOINT_D ELAY_347:320 x0Went he Hardware read polished the module, it was equal to the median between rdlvl_begin_delay_3RDLVL_MIDPOINT_D ELAY_247:320 x00 x0 0 XFFFF and rdlvl_end_delay_3. Otherwise, it was rdlvl_delay_3.RDLVL_MIDPOINT_D ELAY_2Caused the0 x00 x0 0 XFFFF vdlvl_begin_delay_2 and rdlvl_end_delay_2. Otherwise, it was rdlvl_delay_2.RDLVL_MIDPOINT_D ELAY_115:00 x00 x0 0 XFFFF vdlvl_begin_delay_1. Otherwise, it was rdlvl_delay_1.CONF_CTL_172[63:0]Offset: 0xacUDDR2 667:UX000000000000000000000000000000000000	ELAY_4	63:48	0 x0	0 x0 0 XFFFF	Rdlvl_begin_delay_4 and rdlvl_end_delay_4.
RDLVL_MIDPOINT_D ELAY_347:320 x0x0 x XFFFF and rdlvl_end_delay_3. Otherwise, it was rdlvl_eday_3.RDLVL_MIDPOINT_D ELAY_2Caused the0 x0XFFFF and rdlvl_end_delay_3. Otherwise, it was rdlvl_eday_3.RDLVL_MIDPOINT_D ELAY_1Caused the0 x0XFFFF and rdlvl_begin_delay_2 and rdlvl_end_eday_2. Otherwise, it was rdlvl_delay_2.RDLVL_MIDPOINT_D ELAY_10 x00 x0XFFFF and rdlvl_end_delay_1. Otherwise, it was rdlvl_end_delay_1. Otherwise, it was rdlvl_eday_1. Otherwise, it was rdlvl_eday_1.CONF_CTL_172[63:0]5:480 x00 x0 0 XFFFF and rdlvl_end_delay_8 and rdlvl_end_delay_8, otherwise, equal to rdlvl_eday_8 and rdlvl_end_delay_8, otherwise, equal to rdlvl_delay_8 and rdlvl_end_delay_8, otherwise, equal to rdlvl_delay_6 and rdlvl_delay_7 and ELAY_7					otherwise, equal to rdlvl_delay_4(read only)
ELAY_347:320 x00 x0 0 XFFFF and rdlvl_end_delay_3. Otherwise, it was rdlvl_delay_3.RDLVL_MIDPOINT_D ELAY_2Caused0 x00 x00 x0 0 XFFFF rdlvl_delay_2. Otherwise, it was rdlvl_end_delay_2. Otherwise, it was rdlvl_delay_2.RDLVL_MIDPOINT_D ELAY_115:00 x00 x00 x0 0 XFFFF rdlvl_begin_delay_1. Otherwise, it was rdlvl_delay_1.CONF_CTL_172[63:0]OTSET: 0xaUDR2 667:UND000000000000000000000000000000000000					When the Hardware read polished the module, it was
RDLVL_MIDPOINT_D Caused 0 x0 0 x0 0 XFFFF rdlvl_delay_3. RDLVL_MIDPOINT_D Caused 0 x0 0 x0 0 XFFFF rdlvl_begin_delay_2 and rdlvl_end_delay_2. ELAY_2 the 0 x0 0 XFFFF rdlvl_begin_delay_2 and rdlvl_end_delay_2. RDLVL_MIDPOINT_D the 0 x0 0 XFFFF was equal to the median between rdlvl_begin_delay_1. ELAY_1 15:0 0 x0 0 x0 0 XFFFF was equal to the median between rdlvl_begin_delay_1. CONF_CTL_172[63:0]UFfset: 0 x00 0 x0 0 XFFFF was rdlvl_end_delay_1. Otherwise, it was rdlvl_end_delay_1. CONF_CTL_172[63:0]UFfset: 0 x00 0 x0 0 XFFFF When the Hardware read learned like a rod, it was rdlvl_end_delay_8, otherwise, equal to rdlvl_end_delay_8, otherwise, equal to rdlvl_end_delay_8, otherwise, equal to rdlvl_end_delay_8, otherwise, equal to rdlvl_delay_8, otherwise, equal to rdlvl_delay_8(read only) RDLVL_MIDPOINT_D 47:32 0 x0 0 x00 XFFFF When the Hardware read polished the module, it was equal to rdlvl_delay_8 and rdlvl_end_delay_8, otherwise, equal to rdlvl_delay_8(read only)	RDLVL_MIDPOINT_D				equal to the median between rdlvl_begin_delay_3
RDLVL_MIDPOINT_D Caused 0 x0 0 x0 0 XFFFFrdlvl_begin_delay_2 and rdlvl_end_delay_2. ELAY_2 Caused 0 x0 0 x0 0 XFFFFrdlvl_begin_delay_2 and rdlvl_end_delay_2. RDLVL_MIDPOINT_D the 0 x0 0 x0 0 XFFFFrdlvl_begin_delay_2. When the Hardware read polished the module, it was equal to the median between rdlvl_begin_delay_1. ELAY_1 15:0 0 x0 0 x0 0 XFFFF and rdlvl_end_delay_1. Otherwise, it was rdlvl_delay_1. CONF_CTL_172[63:0]Offset: 0xac0DDR2 667:0x0000000000000000000000000000000000	ELAY_3	47:32	0 x0	0 x0 0 XFFFF	and rdlvl_end_delay_3. Otherwise, it was
RDLVL_MIDPOINT_D Ause 0 x0 x0 0 XFFFF was equal to the median between ELAY_2 Caused 0 x0 x0 0 XFFFF rdlvl_begin_delay_2 and rdlvl_end_delay_2. the 0 x0 0 XFFFF rdlvl_begin_delay_2 and rdlvl_end_delay_2. Otherwise, it was rdlvl_delay_2. RDLVL_MIDPOINT_D 15:0 0 x0 0 x0 0 XFFFF and rdlvl_end_delay_1. CONF_CTL_172[63:0] 0 x0 0 x0 0 x0 0 XFFFF when the Hardware read learned like a rod, it was rdlvl_delay_1. RDLVL_MIDPOINT_D 63:48 0 x0 0 x0 0 XFFFF When the Hardware read learned like a rod, it was like ELAY_8 0 x0 0 x0 0 XFFFF Rdlvl_begin_delay_8 and rdlvl_end_delay_8, otherwise, equal to rdlvl_delay_8(read only) RDLVL_MIDPOINT_D 47:32 0 x0 0 x0 0 XFFFF When the Hardware read polished the module, it was equal to rdlvl_delay_8(read only) RDLVL_MIDPOINT_D 47:32 0 x0 0 x0 0 XFFFF When the Hardware read polished the module, it was equal to the middle of rdlvl_begin_delay_7 and equal to the middle of rdl					rdlvl_delay_3.
RDLVL_MIDPOINT_D Ause 0 x0 x0 0 XFFFF was equal to the median between ELAY_2 Caused 0 x0 x0 0 XFFFF rdlvl_begin_delay_2 and rdlvl_end_delay_2. the 0 x0 0 XFFFF rdlvl_begin_delay_2 and rdlvl_end_delay_2. Otherwise, it was rdlvl_delay_2. RDLVL_MIDPOINT_D 15:0 0 x0 0 x0 0 XFFFF and rdlvl_end_delay_1. CONF_CTL_172[63:0] 0 x0 0 x0 0 x0 0 XFFFF when the Hardware read learned like a rod, it was rdlvl_delay_1. RDLVL_MIDPOINT_D 63:48 0 x0 0 x0 0 XFFFF When the Hardware read learned like a rod, it was like ELAY_8 0 x0 0 x0 0 XFFFF Rdlvl_begin_delay_8 and rdlvl_end_delay_8, otherwise, equal to rdlvl_delay_8(read only) RDLVL_MIDPOINT_D 47:32 0 x0 0 x0 0 XFFFF When the Hardware read polished the module, it was equal to rdlvl_delay_8(read only) RDLVL_MIDPOINT_D 47:32 0 x0 0 x0 0 XFFFF When the Hardware read polished the module, it was equal to the middle of rdlvl_begin_delay_7 and equal to the middle of rdl					When the Hardware read cultivated the module, it
ELAY_2 Caused 0 x0 0 x0 0 XFFFF rdlvl_begin_delay_2 and rdlvl_end_delay_2 RDLVL_MIDPOINT_D A	RDLVL MIDPOINT D				
theOtherwise, it was rdlvl_delay_2.RDLVL_MIDPOINT_DAAA </td <td></td> <td>Caused</td> <td>0 x0</td> <td>0 x0 0 XFFFF</td> <td>rdlvl begin delay 2 and rdlvl end delay 2.</td>		Caused	0 x0	0 x0 0 XFFFF	rdlvl begin delay 2 and rdlvl end delay 2.
RDLVL_MIDPOINT_D Is:0 0 x0 0 x0 0 XFFFF and rdlvl_end_delay_1. Otherwise, it was equal to the median between rdlvl_begin_delay_1 ELAY_1 15:0 0 x0 0 x0 0 XFFFF and rdlvl_end_delay_1. Otherwise, it was rdlvl_delay_1. CONF_CTL_172[63:0]Offset: 0xac0DDR2 667:0x0000000000000000000000000000000000	_	the			
RDLVL_MIDPOINT_D ELAY_115:00 x0x0Arrow o x0 0 XFFFF and o x0 0 XFFFF and rdlvl_end_delay_1.equal to the median between rdlvl_begin_delay_1 otherwise, it was rdlvl_delay_1.CONF_CTL_172[63:0]OFTset: 0xx0 x0 0 XFFFF o x0 0 XFFFFand rdlvl_end_delay_1.Otherwise, it was rdlvl_delay_1.CONF_CTL_172[63:0]OFTset: 0xx0 x0 0 XFFFF o x0 0 XFFFFWhen the Hardware read learned like a rod, it was likeRDLVL_MIDPOINT_D ELAY_863:480 x00 x0 0 XFFFF o x0 0 XFFFFWhen the Hardware read learned like a rod, it was likeRDLVL_MIDPOINT_D ELAY_747:320 x00 x0 0 XFFFF o x0 0 XFFFFWhen the Hardware read polished the module, it was equal to the middle of rdlvl_begin_delay_7 and equal to the middle of rdlvl_begin_delay_7 and					
ELAY_115:00 x00 x0 0 XFFFFand rdlvl_end_delay_1. Otherwise, it was rdlvl_delay_1.CONF_CTL_172[63:0] UTSET: 0xaUDDR2 667:0x0000000000000000000000000000000000	RDLVL MIDPOINT D				
CONF_CTL_172[63:0]Offset: 0xac0DDR2 667:0x0000000000000000000000000000000000		15.0	0 x0	0x00XFFFF	
CONF_CTL_172[63:0]Offset: 0xac0DDR2 667:0x0000000000000000000000000000000000		15.0	0 10	0 X0 0 741 111	
RDLVL_MIDPOINT_D 63:48 0 x0 0 x0 0 XFFFF When the Hardware read learned like a rod, it was like ELAY_8 Image: Constraint of the state of t	CONF CTL 172[63:0]0	ffset: Ova	-0DDR2 667.	0×0000000000	
ELAY_8 Image: Constraint of the state					
ELAY_8 Rdlvl_begin_delay_8 and rdlvl_end_delay_8, otherwise, equal to rdlvl_delay_8(read only) RDLVL_MIDPOINT_D 47:32 0 x0 0 x0 0 XFFFF When the Hardware read polished the module, it was equal to the middle of rdlvl_begin_delay_7 and	RDLVL_MIDPOINT_D	63:48	0 x0	0 x0 0 XFFFF	When the Hardware read learned like a rod, it was
RDLVL_MIDPOINT_D 47:32 0 x0 0 x0 0 When the Hardware read polished the module, it was equal to the middle of rdlvl_begin_delay_7 and					like
RDLVL_MIDPOINT_D 47:32 0 x0 0 x0 0 When the Hardware read polished the module, it was equal to the middle of rdlvl_begin_delay_7 and XFFFF	ELAY_8				Rdlvl_begin_delay_8 and rdlvl_end_delay_8,
RDLVL_MIDPOINT_D 47:32 0 x0 0 x0 0 ELAY_7 XFFFF equal to the middle of rdlvl_begin_delay_7 and					otherwise, equal to rdlvl_delay_8(read only)
ELAY_7 47:32 0 x0 0 x0 0 equal to the middle of rdlvl_begin_delay_7 and XFFFF					When the Hardware read polished the module, it was
		47:32	0 x0		equal to the middle of rdlvl_begin_delay_7 and
	ELAY_/				rdlvl_end_delay_7. Otherwise, it was rdlvl_delay_7.

LOONGSON TECHNOLO	IGY			龙芯 3A1000 处理器用户手册 第一部分
				When the Hardware read cultivated the module, it
RDLVL_MIDPOINT_D	Caused	0 x0	0 x0 0	was equal to the middle of rdlvl_begin_delay_6 and
ELAY_6	the		XFFFF	rdlvl_end_delay_6. Otherwise, it was rdlvl_delay_6.
				When the Hardware read polished the module, it was
RDLVL_MIDPOINT_D	15:0	0 x0	0 x0 0	equal to the median between rdlvl begin delay 5
ELAY_5			XFFFF	and rdlvl_end_delay_5. Otherwise, it was
				rdlvl_delay_5.
CONF_CTL_173[63:0]O	ffset: 0xac	10DDR2 667:	0x00000000	0000000
RDLVL_OFFSET_DEL	63:48	0 x0	0 x0 0	In the third data set, the offset from the middle
AY_3	05.40	0 X0	XFFFF	point of Read
RDLVL_OFFSET_DEL	47.22	00	0 0 0	In the second data set, the offset from the middle
AY_2	47:32	0 x0	0 x0 0 XFFFF	point of Read
RDLVL_OFFSET_DEL	Course 1	00	0 0 0	In the first data set, the offset from the middle point
AY_1	Caused the	0 x0	0 x0 0 XFFFF	of Read
RDLVL_OFFSET_DEL	15.0	0.0	0.00	In the month late and the effect from the Dard sour
AY_0	15:0	0 x0	0 x0 0 XFFFF	In the zeroth data set, the offset from the Read ever midpoint
CONF_CTL_174[63:0]O	ffset: 0xae	0DDR2 667:0	0x000000000	0000000
RDLVL_OFFSET_DEL	(2.49	00	0 0 0	In the 7th date set the effect from the middle point
AY_7	63:48	0 x0	0 x0 0 XFFFF	In the 7th data set, the offset from the middle point of Read
RDLVL_OFFSET_DEL	47:32	0 x0	0 x0 0	In the sixth data set, the offset from the middle
AY_6	47.32	0 x0	XFFFF	point of Read
RDLVL_OFFSET_DEL	Caused	00	0 x0 0	In the 5th data set, the offset from the middle point
AY_5	the	0 x0	XFFFF	of Read
RDLVL_OFFSET_DEL	15.0	00	0 0 0	In the fourth date set the offect from the middle
AY_4	15:0	0 x0	0 x0 0 XFFFF	In the fourth data set, the offset from the middle point of Read
CONF_CTL_175[63:0]O	ffset: 0xaf	0DDR2 667:()x000000000	0000000
WRLVL_DELAY_1	63:48	0 x0	0 x0 0 XFFFF	In the first data group, control the number of write DQS via DLL delays
WRLVL_DELAY_0	47:32	0 x0	0 x0 0 XFFFF	In the 0th data group, control the number of write DQS via DLL delays
RDLVL_REFRESH_IN	Caused	0 x0	0 x0 0	Ever the maximum number of refresh commands between
TERVAL	the	U AU	0 X0 0 XFFFF	two auto Read instances (should be set to 0)
RDLVL_OFFSET_DEL	15:0	0 x0	0 x0 0 XFFFF	In the 8th data set, the offset from the middle point of Read
AY_8				
CONF_CTL_176[63:0]O	ffset: 0xb(00DDR2 667:	0x00000000	0000000
WRLVL_DELAY_5	63:48	0 x0	0 x0 0 XFFFF	In the fifth data group, control the number of write DQS via DLL delays

LOONGSON TECHNOL	DGY			龙芯 3A1000 处理器用户手册 第一部分
WRLVL_DELAY_4	47:32	0 x0	0 x0 0 XFFFF	In the fourth data set, control the number of write DQS via DLL delays
WRLVL_DELAY_3	Caused the	0 x0	0 x0 0 XFFFF	In the third data group, control the number of write DQS via DLL delays
WRLVL_DELAY_2	15:0	0 x0	0 x0 0 XFFFF	In the second data set, control the number of write DQS via DLL delays
CONF_CTL_177[63:0]C	offset: 0xb1	0DDR2 667	:0x00000000	0000000
WRLVL_REFRESH_I NTERVAL	63:48	0 x0	0 x0 0 XFFFF	Ever the maximum number of refresh commands between two auto writes (should be set to 0)
WRLVL_DELAY_8	47:32	0 x0	0 x0 0 XFFFF	In the eighth data group, control the number of write DQS via DLL delays
WRLVL_DELAY_7	Caused the	0 x0	0 x0 0 XFFFF	In the seventh data group, control the number of write DQS via DLL delays
WRLVL_DELAY_6	15:0	0 x0	0 x0 0 XFFFF	In the sixth data set, control the number of write DQS via DLL delays
CONF_CTL_178[63:0]C	offset: 0xb2	20DDR2 667:	:0x00000c2d	00000c2d
TDFI_RDLVL_RESP	63:32	0 x0	0 x0 0 XFFFF	Save the DFI Trdlvl_resp time parameter
TDFI_RDLVL_MAX	31:0	0 x0	0 x0 0 XFFFF	Save the DFI Trdlvl_max time parameter
CONF_CTL_179[63:0]C	offset: 0xb3	0DDR2 667:	:0x00000c2d	00000c2d
TDFI_WRLVL_RESP	63:32	0 x0	0 x0 0 XFFFF	Save the DFI Twrlvl_resp time parameter
TDFI_WRLVL_MAX	31:0	0 x0	0 x0 0 XFFFF	Save the DFI Twrlvl_max time parameter

9 HyperTransport controller

In loongson 3, the HyperTransport bus is used for external device connection and multichip interconnection. When used for peripheral connections, the user program is free to choose whether or not IO Cache consistency is supported (set by the address window Uncache window, see section x.4.2). In the Cache consistency support mode, IO devices are transparent to the Cache hierarchy for internal DMA access, which means that the program's Cache instructions do not need to maintain the consistency, but the hardware automatically maintains its consistency. When used for multi-chip interconnection, the HT0 controller (initial address 0x0C00_0000_0000 -- 0x0DFF_FFFF_FFFF) hardware automatically maintains Cache consistency between cpus, while the HT1 controller (initial address 0x0E00_0000_0000 --0x0FFF_FFFF_FFFF_FFFF) does not support inter-chip Cache consistency. See section x.5 for details.

The HyperTransport controller supports up to 16 bit width in both directions and has a maximum operating frequency of 800Mhz.After the automatic initialization of the system to establish the connection, the user can modify the required running frequency and width by modifying the configuration register in the protocol, and then re-initialize, as detailed in section x.1.

The main features of loongson 3 HyperTransport controller are as follows:

Support 200/400/800 MHZ

Supports 8/16 bit widths

Each HT controller (HT0/HT1) can be configured as two 8-bit HT controllers

The bus control signal (including PowerOK, Rstn, LDT Stopn) direction is configurable

Peripheral DMA space Cache/Uncache is configurable

The HT0 controller can be configured in Cache consistency mode when used for multichip interconnection

9.1 HyperTransport hardware setup and initialization

The HyperTransport bus consists of a transmission signal bus and a control signal pin, as shown in the following table

HyperTransport bus-related pins and their role.

Table 9-1 HyperTransport bus-related pin signals

龙芯 3A1000	处理器用户	手册	第一部分
-----------	-------	----	------

pin	The name of	describe
{PCI_Config [7], PCI_Config [0]}	the HT peripheral signal voltage control	 00: take HyperTransport peripheral signals as 1.8v signals, including HT_8x2, HT_Mode, HT_Powerok, HT_Rstn, HT_Ldt_Stopn, HT_Ldt_Reqn. 01: reserve. 10: take HyperTransport peripheral signals as 2.5v signals. 11: take HyperTransport peripheral signals as 3.3v signals.
HT0_8x2	Bus width configuratio n	 1: the 16-bit HyperTransport bus is configured as two independent 8-bit buses, which are controlled by two independent controllers respectively. The address space is distinguished as HT0_L0: address[40] = 0; HT0_Hi: address[40] = 1; 0: use the 16-bit HyperTransport bus as a 16-bit bus by HT0_L0 control, address space is the address of HT0_L0, that is, address[40] = 0; All signals of HT0_Hi are invalid.
HT0_Lo_mode	Master device mode	 set HT0_Lo as the main device mode. In this mode, bus control signals are driven by HT0_Lo, including HT0_Lo_Powerok, HT0_Lo_Rstn, HT0_Lo_Ldt_Stopn.In this mode, these control signals can also be bidirectional. At the same time, this pin determines the initial value of the register "Act as Slave". When this register is 0, the Bridge bit in the packet on the HyperTransport bus is 1, otherwise it is 0.In addition, when this register is 0, if the request address on the HyperTransport bus is not hit by the controller's receive window, it will be sent back to the bus as a P2P request, and if this register is 1, if it is not hit, it will be responded as an error request. set HT0_Lo to slave device mode. In this mode, bus control signals are driven by each other's devices, or if they are not driven correctly, the HT bus Not working properly.
HT0_Lo_Powerok	The bus Powerok	HyperTransport bus Powerok signal, When HT0_Lo_Mode is 1, it is controlled by HT0_Lo; When HT0_Lo_Mode is 0, it is controlled by the other device.
HT0_Lo_Rstn	Bus Rstn	HyperTransport bus Rstn signal, When HT0_Lo_Mode is 1, it is controlled by HT0_Lo; When HT0_Lo_Mode is 0, it is controlled by the other device.
HT0_Lo_Ldt_Stopn	The bus Ldt_Stopn	HyperTransport bus Ldt_Stopn signal, When HT0_Lo_Mode is 1, it is controlled by HT0_Lo; When HT0_Lo_Mode is 0, it is controlled by the other device.
HT0_Lo_Ldt_Reqn	The bus Ldt_Reqn	HyperTransport bus Ldt_Reqn signal,
HT0_Hi_mode	Master device mode	 set HT0_Hi to the main device mode. In this mode, bus control signals are driven by HT0_Hi. These control signals include HT0_Hi_Powerok, HT0_Hi_Rstn, HT0_Hi_Ldt_Stopn.In this mode, these control signals can also be bidirectional. At the same time, this pin determines the initial value of the register "Act as Slave". When this register is 0, the Bridge bit in the packet on the HyperTransport bus is 1, otherwise it is 0.In addition, when this register is 0, if the request address on the HyperTransport bus is not hit by the controller's receive window, it will be sent back to the bus as a P2P request, and if this register is 1, if it is not hit, it will be responded as an error request. set HT0_Hi to slave device mode. In this mode, bus control signals are driven by other devices, including HT0_Hi_Powerok, HT0_Hi_Rstn, HT0_Hi_Ldt_Stopn.In this mode, these controls The signal is driven by the other device, and if it is not driven correctly, the HT bus will not work correctly.

_

LOONGSON TECHNOLOG	Y	
		龙芯 3A1000 处理器用户手册 第一部分
HT0 Hi Powerok	The bus	When the HyperTransport main line Powerok
	Powerok	number, HT0 Lo Mode is 1, it is controlled
		by HT0 Hi; When HT0 Lo Mode is 0, it is
		controlled by the other device. When
		HT0 8x2 is 1, control the high 8-bit bus;
		Invalid when HT0_8x2 is 0.
HT0_Hi_Rstn	Bus Rstn	When Rstn number of HyperTransport main line,
		HT0_Lo_Mode is 1, it is controlled by
		HT0 Hi; When HT0 Lo Mode is 0, it is
		controlled by the other device. When
		HT0 8x2 is 1, control the high 8-bit bus;
		Invalid when HT0_8x2 is 0.
HT0_Hi_Ldt_Stopn	The bus	HyperTransport main line Ldt_Stopn,
	Ldt_Stopn	HT0_Lo_Mode = 1, is controlled by HT0_Hi;
		When HT0_Lo_Mode is 0, it is controlled by
		the other device. When HT0_8x2 is 1, control
		the high 8-bit bus;
		Invalid when HT0_8x2 is 0.
HT0_Hi_Ldt_Reqn	The bus	HyperTransport bus Ldt_Reqn signal,
	Ldt_Reqn	When HT0_8x2 is 1, control the high 8-bit bus;
		Invalid when HT0_8x2 is 0.
HT0_Rx_CLKp [1:0]	CLK [1:0]	HyperTransport bus CLK signal

HT0_Rx_CLKn		When HT0_8x2 is 1, CLK[1] is controlled by	
HT0_Tx_CLKp [1:0]		HT0_Hi	
[1:0] HT0_Tx_CLKp		CLK[0] is controlled by HT0_Lo	
(1-0)		When HT0_8x2 is 0, CLK[1:0] is controlled by HT0_Lo	
HT0_Rx_CTLp	CTL (1-0)	HyperTransport bus CTL signal	
HT0_Rx_CTLn [1:0]		When HT0_8x2 is 1, CTL[1] is controlled by	
[1:0] HT0_Tx_CTLp		HT0_Hi	
[1:0] HT0_Tx_CTLn		The CTL[0] is controlled by HT0_Lo	
(1-0)		When HT0_8x2 is 0, CTL[1] is invalid	
		The CTL[0] is controlled by HT0_Lo	
HT0 Rx CADp	CAD [15:0]	HyperTransport bus CAD signal	
HT0_Rx_CADn [15:0]		When HT0 8x2 is 1, CAD[15:8] is controlled by HT0 Hi	
[15:0] HT0_Tx_CADp		CAD[7:0] is controlled by HT0_Lo	
HT0_Tx_CADn [15:0]		When HT0 8x2 is 0, CAD[15:0] is controlled by HT0 Lo	
[15:0]			

The initialization of HyperTransport starts automatically after each reset is completed. After cold startup, the HyperTransport bus will automatically work at the lowest frequency (200Mhz) and minimum width (8bit), and attempt to perform the bus initialization handshake. The state of whether the initialization is Complete or not can be read by the register "Init Complete" (see section 9.5.2). After initialization, the Width of the bus can be read from the registers "Link Width Out" and "Link Width In" (see section 9.5.2). After initialization is complete, the user can back to register "Link Width Out", "the Link Width In" and "Link Freq" programming, at the same time, the corresponding register of needs of the other equipment programming after the completion of the heat need to reset the bus or through HT_Ldt_Stopn signal to initialize the bus operation, In order to make programming values In the re-initialization. It is important to note that the configuration of devices at both ends of HyperTransport needs to be one-to-one, otherwise the HyperTransport interface will not work properly.

9.2 HyperTransport protocol support

The HyperTransport bus supports most of the commands in the 1.03 protocol, and some extended instructions are added to the extended conformance protocol supported by multi-chip interconnection. For both modes, the HyperTransport receiver can receive commands as shown in the following table. It is important to note that the atomic operation command of the HyperTransport bus is not supported.

coding	chann el	The command	The standard model	Extension (consistency)
000000	-	The NOP	Empty packet or flow control	
000001	NPC	FLUSH	No operation	
x01xxx	NPC	The Write	Bit 5:0 - Nonposted	Bit 5: must be 1, POSTED
	The or		1 - Posted	
	The		bit 2:0 - Byte	Bit 2:0 Byte
	PC		1 Doubleword	1 - Doubleword

Table 9-2 commands that the HyperTransport receiver can receive

			<i>7</i> 0	口 241000 万字册/11/ 1
			bit 1: Don't Care	Bit 1: Don't Care
			Bit 0: Don't Care	Bit 0: must be 1
01	NPC	The Read	Bit 3: Don't Care	Bit 3: Don't Care
XXXX			bit 2:0 Byte	bit 2:0 Byte
			1 Doubleword	1 Doubleword
			bit 1: Don't Care	bit 1: Don't Care
			Bit 0: Don't Care	Bit 0: must be 1
110000	R	RdResponse	Read operation return	
110011	R	TgtDone	Write operation return	
110100	The PC	WrCoherent		Write command extension
110101	The PC	WrAddr		Write address extension
111000	R	RespCoherent		Read response extension
111001	NPC	RdCoherent		Read command extension
111010	The PC	Broadcast	No operation	
111011	NPC	RdAddr		Read address extension
111100	The PC	A FENCE	Guarantee order relation	
111111	-	The Sync/Error	The Sync/Error	

For the sending side, the commands sent out in both modes are shown in the following table.

coding	channel	The command	The standard model	Extension (consistency)
000000	-	The NOP	Empty packet or flow control	
x01x0x	NPC	The Write	Bit 5:0 - Nonposted	Bit 5: must be 1, POSTED
	The or PC		1 - Posted bit 2:0 - Byte 1 - Doubleword Bit 0: must be 0	Bit 2:0 Byte 1 - Doubleword Bit 0: must be 1
010 x0x	NPC	The Read	Bit 2:0 Byte 1 - Doubleword Bit 0: Don't Care	Bit 2:0 Byte 1 - Doubleword Bit 0: must be 1
110000	R	RdResponse	Read operation return	
110011	R	TgtDone	Write operation return	
110100	The PC	WrCoherent		Write command extension
110101	The PC	WrAddr		Write address extension
111000	R	RespCoherent		Read response extension
111001	NPC	RdCoherent		Read command extension
111011	NPC	RdAddr		Read address extension
111111	-	The Sync/Error	Will only forward	

Table 9-3 commands sent out in both modes

9.3 HyperTransport interrupt support

The HyperTransport controller provides 256 interrupt vectors to support Fix, Arbitor, and other types of interrupts, but no hardware automatic EOI support.For these two types of interrupts, the controller will automatically write to the interrupt register after receiving and notify the system interrupt controller according to the Settings of the interrupt mask 99 龙芯中科技术有限公司

Loongson Technology Corporation Limited

register.For the specific interrupt control, see the interrupt control register group in section 5.

In addition, the controller has special support for PIC interrupts to speed up this type of interrupt handling.

A typical PIC interrupt is completed by the following steps: (1) the PIC controller sends a PIC interrupt request to the system; The system sends interrupt vector query to PIC controller; (3) PIC controller sends interrupt vector number to the system; The system clears the corresponding interrupt on the PIC controller. The PIC controller will not issue the next interrupt to the system until all 4 steps above have been completed. for

Loongson 3 HyperTransport controller will automatically process the first 3 steps and write PIC interrupt vector to the corresponding position in 256 interrupt vectors. After the interrupt is processed by the software system, the fourth step is required, which is to send a clear interrupt to the PIC controller. Then the processing of the next interrupt begins.

9.4 HyperTransport address window

9. 4. 1 HyperTransport space

In loongson 3 processor, the default four HyperTransport address Windows are as follows:

Base address	End address	The size of the	define
0 x0c00_0000_0000	0 x0cff_ffff_ffff	One Tbytes	HT0_LO window
0 x0d00_0000_0000	0 x0dff_ffff_ffff	One Tbytes	HT0_HI window
0 x0e00_0000_0000	0 x0eff_ffff_ffff	One Tbytes	HT1_LO window
0 x0f00_0000_0000	0 x0fff_ffff_ffff	One Tbytes	HT1_HI window

Table 9-4 default addresses for the four HyperTransport address Windows

By default (the system address window is not configured separately), the software accesses each HyperTransport interface through the above address space. In addition, the software can configure the address window on the crossover switch to be accessed from another address space (see section 2.5). The distribution of specific address Windows within each HyperTransport interface's 40-bit address space is described in the following table.

The address window distribution of the loong chip 3 processor HyperTransport interface protocol is as follows:

Table 9-5 address window distribution of the HyperTransport interface of loongson 3 processor

			加处理备用广于加 界 即
Base address	End address	The size of the	define
0 x00_0000_0000	0 xfc_ffff_ffff	1012 Gbytes	MEM space
0 xfd_0000_0000	0 xfd_f7ff_ffff	3968 Mbytes	reserve
0 xfd_f800_0000	0 xfd_f8ff_ffff	16 Mbytes	interrupt
0 xfd_f900_0000	0 xfd_f90f_ffff	1 Mbyte	PIC interrupt response
0 xfd_f910_0000	0 xfd_f91f_ffff	1 Mbyte	System information
0 xfd_f920_0000	0 xfd_faff_ffff	30 Mbytes	reserve
0 xfd_fb00_0000	0 xfd_fbff_ffff	16 Mbytes	HT controller configuration space
0 xfd_fc00_0000	0 xfd_fdff_ffff	32 Mbytes	I/O space
0 xfd_fe00_0000	0 xfd_ffff_ffff	32 Mbytes	HT bus configuration space
0 xfe_0000_0000	0 xff_ffff_ffff	8 Gbytes	reserve

9. 4. 2 HyperTransport controller internal window configuration

The loongson 3 processor HyperTransport interface provides a variety of rich address Windows for users to use, including

Here are a few:

The address window	Window number	Accept the bus	role	note
Receiving window See window configuration 9.5.4)	3	HyperTransport	Judge whether to accept An access emitted on the HyperTransport bus.	In the main bridge mode (i.e., act_as_slave is 0 in the configuration register), only the access that falls in these address Windows will be responded to by the internal bus. Other access will be considered as P2P access and sent back to the HyperTransport bus.When in device mode (that is, act_as_slave is 1 in the configuration register), only the accesses that fall into these address Windows will be received and processed by the internal bus, and other accesses will be returned with protocol errors.
The Post window See window configuration 9.5.8)	2	Inside the bus	Determines whether Write access from the internal bus to the HyperTranspor t bus is treated as Post Write	Outgoing Write access that falls into these address Spaces will be treated as Post Write. In the Post Write: HyperTransport protocol, this Write access does not have to wait for the Write response, that is, after the controller issues the Write access to the bus, the Write access to the processor completes the response.

LOONGSON TECI	HNOLOGY		龙芯 3A	1000 处理器用户手册 第一部分
Prefetch window See window configuration 9.5.9)	2	Inside the bus	To determine whether to receive internal Cache access, fetch access.	When the processor core is out of order, some guess reads or fetches are given to the bus, which is wrong for some IO Spaces.By default, this access HT controller will return directly without access to the HyperTransport bus.These Windows enable such access to the HyperTransport bus.
Uncache window See window configuration 9.5.10)	2	HyperTransport	Determine if the access on the HyperTransport bus is to be accessed as Uncache on the inside	IO DMA access inside loongson 3 processor, in case of Cache access, will be judged as a hit by the second level Cache, so as to maintain its IO consistency information.Through the configuration of these Windows, it is possible to make the access hit in these Windows access memory directly in the manner of Uncache, without maintaining its IO consistency information through hardware.

9.5 Configuration register

The configuration register module is mainly used to control the access of the configuration register from the AXI SLAVE or HT RECEIVER, the external interrupt processing, and the storage of a large number of configuration registers visible to the software to control the various working modes of the system.

First, the access and storage of the configuration registers used to control the various behaviors of the HT controller are in this module, whose access offset address is 0xFD FB00 0000 to 0xFD FBFF FFFF at the AXI end. The visible registers of all software in this module are shown in the following table:

offset	The name of the	software visible registers in this module describe
0 x30	The name of the	describe
0 x34		
0 x38		
0 x3c	Bridge Control	Bus Reset Control
0 x40		Command, Capabilities Pointer, Capability ID
0 x44	Capability	Link Config, Link Control
0 x48	Registers	Revision ID, Link Freq, Link Error, Link Freq Cap
0 x4c		Feature Capability
0 x50	Custom register	MISC
0 x54	Receive diagnostic register	The receiver samples the received cad and CTL values
0 x58	Interrupt routing register	Interrupt routing control register (LS3A1000E and above)
0 x5c	Receive buffer register	Set the initial value of the receive buffer (LS3A1000E and above)
0 x60		HT bus receive address window 0 enable (external access)
0 x64		HT bus receiving address window 0 base address (external access)
0 x68	Receive address	HT bus receive address window 1 enable (external access)
0 x6c	window	HT bus receiving address window 1 base address (external access)
0 x70	configuration register	HT bus receive address window 2 enable (external access)
0 x74		HT bus receiving address window 2 base address (external access)
0 x78		
0 x7c		
0 x80		HT bus interrupt vector register [31:0]
0 x84		HT bus interrupt vector register [63:32]
0 x88	_	HT bus interrupt vector register [95:64]
0 x8c	Interrupt vector	HT bus interrupt vector register [127:96]
0 x90	register	HT bus interrupt vector register [159:128]
0 x94		HT bus interrupt vector register [191:160]
0 x98		HT bus interrupt vector register [223:192]
0 x9c		HT bus interrupt vector register [255:224]
0 xa0		HT bus interrupts enable register [31:0]
0 xa4		HT bus interrupt enabled register [63:32]
0 xa8		HT bus interrupt enabled register [95:64]
0 xac	Interrupt enable	HT bus interrupt enabled register [127:96]
0 xb0	register	HT bus interrupt enabled register [159:128]
0 xb4		HT bus interrupt enabled register [191:160]
0 xb8		HT bus interrupt enabled register [223:192]
0 XBC		HT bus interrupt enabled register [255:224]
0 xc0	Interrupt	Interrupt Capability
0 xc4	Discovery &	DataPort
0 xc8	The Configuration	IntrInfo [31:0]
0 XCC	The configuration	IntrInfo [63:32]
0 xd0		HT bus POST address window 0 enable (internal access)
0 xd4	Configure the	HT bus POST address window 0 base address (internal access)
0 xd8	register in the POST address	HT bus POST address window 1 enable (internal access)
0 XDC	1 5 5 1 uuur 000	HT bus POST address window 1 base address (internal access)

Table 9-7 all software visible registers in this module

龙芯中科技术有限公司 Loongson Technology Corporation Limited

	window					
0 xe0-0xfc	Pre-fetch address	HT bus prefetching address window 0 enable (internal access)				
0 xe4	window configuration register	HT bus can prefetch address window 0 base address (internal access)				
0 xe8		HT bus prefetching address window 1 enable (internal access)				
0 xec		Ht bus prefetch address window 1 base address (internal access)				
0 xf0		HT bus Uncache address window 0 enable (internal access)				
0 xf4	Uncache address window	HT bus Uncache address window 0 base address (internal access)				
0 xf8	configuration	HT bus Uncache address window 1 enable (internal access)				
0 XFC	register	HT bus Uncache address window 1 base address (internal access)				

The specific meaning of each register is shown in the following section:

9.5.1 Bridge Control

Offset: 0x3C

Reset value: 0x00200000 Name: Bus Reset Control

A domain	A domain name	A wie	le Reset va	alueaccess	describe
For calamity	Reserved	4	0 x0		reserve
22	The Reset	12	0 x0	R/W	Bus reset control: 0 >1: HT_RSTn set 0, bus reset 1 >0: HT_RSTn set 1, bus unreset
Lift up	Reserved	4	0 x0		reserve
17	B_interleave	1	0 x0	R/W	Does the write response channel allow out-of-order execution (LS3A1000E and above) When using multi-chip interconnection mode, 1 must be set
16	Nop_interleave	1	0 x0	R/W	Does flow control channel allow out-of-order execution (LS3A1000E and above) When using multi-chip interconnection mode, 1 must be set
15:0	Reserved	16	0 x0		reserve

9.5.2 Capability Registers

Offset: 0x40

Reset value: 0x20010008

Name: Command, Capabilities Pointer, Capability ID

A domain	A domain name	A wide	Reset value	access	describe
take	The HOST/Sec	3	0 x1	R	The Command format is HOST/Sec
Forepart thereof	Reserved	2	0 x0	R	reserve
26	Act as a Slave	1	0 x0 / 0 x1		The HOST/SLAVE mode The initial value is determined by the pin HOSTMODE HOSTMODE: 0 HOSTMODE dropdown: 1

25	Reserved	1	0 x0		reserve
24	The Host Hide	1	0 x0	R/W	Whether to disable register access from HT bus
23	Reserved	1	0 x0		reserve
"	The Unit ID	5	0 x0	R/W	HOST mode: can be used to record the number of use ids SLAVE mode: record self Unit ID
17	A Double Ended	1	0 x0	R	The dual HOST mode is not used
16	A Warm Reset	1	0 x1	R	The reset in Bridge Control adopts the thermal reset mode
"	"Capabilities Pointer	8	0 xa0	R	The next Cap register offset address
away	Capability ID	8	0 x08	R	HyperTransport capability ID

Offset: 0x44

Reset value: 0x00112000

Name: Link Config, Link Control

A	A domain name		Reset value	eaccess	describe
domain 31	Reserved	1	0 x0		reserve
he	The Link Width Out	3	0 x0	R/W	Sending end width The value after cold reset is the maximum width of the current connection. The value written to this register will take effect after the next hot reset or HT Disconnect 000:8 bit mode
27	Reserved	1	0 x0		001:16 bit mode reserve
		-			
they	The Link Width In	3	0 x0	R/W	Receiver width The value after cold reset is the maximum width of the current connection. The value written to this register will take effect after the next hot reset or HT Disconnect
23	Dw Fc out	1	0 x0	R	Sending terminal does not support double word flow control
Lift up	Max Link Width out	3	0 x1	R	HT bus sending end maximum width: 16bits
19	Dw Fc In	1	0 x0	R	The receiver does not support double word flow control
thou	Max Link Width In	3	0 x1	R	HT bus receiver maximum width: 16bits
The lowest	Reserved	2	0 x0		reserve
13	LDTSTOP# Tristate Enable	1	0 x1	R/W	Whether to close HT PHY when HT bus enters HT Disconnect state 1: closed 0: not closed
12:10	Reserved	3	0 x0		reserve
9	CRC Error (hi)	1	0 x0	R/W	CRC errors occur in the high 8 bit
8	CRC Error (lo)	1	0 x0	R/W	CRC errors occur in the lower 8 bits
7	Trans off	1	0 x0	R/W	HT PHY close control In 16-bit bus mode of operation 1: close high/low 8-bit HT PHY 0: enable low 8-bit HT PHY, high 8-bit HT PHY controlled by bit 0
6	The End of the Chain	0	0 x0	R	HT bus terminal

5	Init Complete	1	0 x0	R	Whether the HT bus initialization is completed
4	The Link Fail	1	0 x0	R	Indicating connection failure
3:2	Reserved	2	0 x0		reserve
1	CRC Flood the Enable	1	0 x0	R/W	Whether flood HT bus occurs when CRC error occurs
0	Trans off (hi)	1	0 x0	R/W	High 8-bit PHY closes control when running 8-bit protocol using 16-bit HT bus 1: close high 8-bit HT PHY 0: enable high 8 bit HT PHY

Offset: 0x48

Reset value: 0x80250023

Name: Revision ID, Link Freq, Link Error, Link Freq Cap

A domain	A domain name	A wide	Reset valu	eaccess	describe
Caused the	The Link Freq Cap	16	0 x0025	R	Supported HT bus frequency 200Mhz, 400Mhz, 800Mhz,
The lowest	Reserved	2	0 x0		reserve
13	Over Flow Error	1	0 x0	R	HT bus packet overflow
12	Protocol Error	1	0 x0	R/W	Protocol error, An unrecognized command received on the HT bus
and	The Link Freq	4	0 x0	R/W	HT bus operating frequency The value of this register will take effect after the next hot reset or HT Disconnect 0000-200 m 0010-400 m 0101-800 m
away	Revision ID	8	0 x23	R/W	Version number: 1.03

Offset: 0x4C

Reset value: 0x0000002

Name: Feature Capability

А	A domain name	A wide	Reset value	access	describe
domain					
Is wasted	Reserved	25	0 x0		reserve
8	Extended the Register	1	0 x0	R	There is no
The log	Reserved	3	0 x0		reserve
3	Extended CTL Time	1	0 x0	R	Don't need
2	CRC Test Mode	1	0 x0	R	Does not support
1	LDTSTOP#	1	0 x1	R	Support LDTSTOP#
0	Isochronous Mode	1	0 x0	R	Does not support

9.5.3 Custom register

Offset: 0x50 Reset value: 0x00904321 Name: MISC A A domain name A wide Reset value access describe

					龙芯 3A1000 处理器用尸手册 第一部分
31	Reserved	1	0 x0		reserve
30	Ldt Stop Gen	1	0 x0	R/W	Take the bus into LDT DISCONNECT mode The correct way is: 0 minus >, 1
29	Ldt the Req Gen	1	0 x0	R/W	Waken HT bus from LDT DISCONNECT, set LDT_REQ_n The right way to do it is to put a 0 and then a 1:0 minus >, 1
					In addition, direct read and write requests to the
					bus can also automatically wake up the bus
A	A domain name	A wide	Reset valu	eaccess	describe
domain through a	Interment the Index	5	0.20	D/W	Dediment interments of an them stored and interments
througho ut	Interrupt the Index	5	0 x0	R/W	Redirect interrupts other than standard interrupts to which interrupt vector (including SMI, NMI, INIT, INTA, INTB, INTC, INTD) There are 256 interrupt vectors in total. This register represents interrupts The height of the vector is 5 bits, and the internal interrupt vector is as follows: 000: SMI 001: NMI 010: INIT 011: Reservered 100: INTA 101: intb.br deal 110: INTC 111: INTD
23	Dword Write	1	0 x1	R/W	For 32/64/128/256 bit write access, whether to use Dword Write command format 1: Write using Dword 0: use Byte Write (with MASK)
22	Coherent Mode	1	0 x0	R	Processor consistency mode Determined by pin ICCC_EN
21	Not Care Seqid	1	0 x0	R/W	Whether you don't care about HT
20	The Not Axi2Seqid	1	0 x1	R	Whether to convert the commands on the Axi bus to a different SeqID or not, if not, all read and write commands will take the Fixed ID number in the Fixed SeqID 1: no conversion 0: conversion
He hath	Fixed Seqid	4	0 x0	R/W	Configure the HT bus emitted when Not Axi2Seqid is valid Seqid
"	Priority Nop	4	0 x4	R/W	HT bus Nop flow control packet priority
and	Specify the NPC	4	0 x3	R/W	Non Post channel read and write priority
The log	Priority RC	4	0 x2	R/W	The Response channel reads and writes first
3-0	Priority PC	4	0 x1	R/W	Post channel read and write priority 0x0: highest priority 0xF: lowest priority The priority strategy of increasing with time is adopted for each channel, and this memory set is used to configure the initial priority of each channel

9.5.4 Receive diagnostic register

Offset: 0x54

Reset value: 0x00000000

Name: receive diagnostic register

A domain name A wide Reset value access describe

A

domain					
0	Sample_en	1	0 x0	R/W	Enable to sample input cad and CTL 0x0: disabled 0 x1: can make
"	rx_ctl_catch	24	0 x0	R/W	Save the input CTL from the sample (0, 2, 4, 6) corresponds to the four phases of CTL0 sampling (1, 3, 5, 7) corresponds to the four phases of CTL1 sampling
Caused the	rx_cad_phase_0	24	0 x0	R/W	Save the values of the input CAD[15:0] from the sample

9.5.5 Interrupt routing mode selection register (LS3A1000E and above)

Offset: 0x58

Reset value: 0x00000000

Name: interrupt routing selection register

A domain	A domain name	A wide	Reset value	access	describe
0	ht_int_stripe	2	0 x0		Corresponding to the three interrupt routing methods, see 9.5.7 interrupt vector register for details 0x0: ht_int_stripe_1 0x1: ht_int_stripe_2 0 x2: ht_int_stripe_4

9.5.6 Receive buffer initial register (LS3A1000E and above)

Offset: 0x5c

Reset value: 0x07778888

Name: receive buffer initialization configuration register

А	A domain name	A wide	Reset value	access	describe
domain					
he	rx_buffer_r_data	4	0 x7	R/W	Receive buffer's read data buffer initialization information
Behold,	rx_buffer_npc_data	4	0 x7	R/W	Receive the NPC data buffer initialization information for the buffer
He hath	rx_buffer_pc_data	4	0 x7	R/W	Receive the buffer's PC data buffer initialization information
"	rx_buffer_b_cmd	4	By 8 0	R/W	The bresponse command buffer initializes the message to receive the buffer Interest rates
and	rx_buffer_r_cmd	4	By 8 0	R/W	Receive buffer's read command buffer initialization information
The log	rx_buffer_npc_cmd	4	By 8 0	R/W	Receive the NPC command buffer initialization information for the buffer
3-0	rx_buffer_pc_cmd	4	By 8 0	R/W	Receive the buffer's PC command buffer initialization information

9.5.7 Receive address window configuration register

The address window hit formula in this controller is as follows:

Hit = (BASE & MASK) == (ADDR & MASK)

Addr_out = TRANS_EN? TRANS b0 ADDR & ~MASK: ADDR

It is worth mentioning that, when configuring the address window register, the MASK should be all 1 and all 0.MASK

The actual number of zeros in the address window represents the size of the address window.

The address of this window is the address received on the HT bus. The HT address that

falls in this window will be sent to the CPU, and commands from other addresses will be forwarded back to the HT bus as P2P commands.

Offset: 0x60

Reset value: 0x00000000

Name: HT bus receive address window 0 enable (external access)

A A domain name A wide Reset value access describe domain

А	A domain name	A wide Reset value access			describe
domain					
31	ht_rx_image0_en	1	0 x0	R/W	HT bus receives address window 0, enabling signal
30	Ht_rx_image0_ trans_en	1	0 x0	R/W	HT bus receives address window 0, mapping enable signal
29:0	Ht_rx_image0_ trans [53:24]	16	0 x0	R/W	HT bus receive address window 0, the mapped address [53:24], for LS3A1000D and below version, [29:23] fixed as 0

Offset: 0x64

Reset value: 0x0000000

Name: HT bus receiving address window 0 base address (external access)

A domain	A domain name	A wide	Reset value	access	describe
Caused the	Ht_rx_image0_ base [they]	16	0 x0		HT bus receive address window 0, address base address [39:24]
15:0	Ht_rx_image0_ mask [they]	16	0 x0		HT bus receiving address window 0, address shielded [39:24]

Offset: 0x68

Reset value: 0x0000000

Name: HT bus receive address window 1 enable (external access)

A domain	A domain name	A wide	Reset valu	ie access	describe
			0 0	D (111	
31	ht_rx_image1_en	1	0 x0	R/W	HT bus receives address window 1, enabling signal
30	Ht_rx_image1_	1	0 x0	R/W	HT bus receives address window 1, mapping the
	trans_en				enable signal
29:0	Ht_rx_image1_	16	0 x0	R/W	HT bus receive address window 1, the mapped
	trans [53:24]				address [53:24], for LS3A1000D and below
					version, [29:23] fixed as
					0

Offset: 0x6c

Reset value: 0x0000000

Name: HT bus receiving address window 1 base address (external access)

А	A domain name	A wide Reset value access			describe
domain					
Caused the	Ht_rx_image1_ base [they]	16	0 x0		HT bus receive address window 1, address base address [39:24]
15:0	Ht_rx_image1_ mask [they]	16	0 x0	R/W	HT bus receive address window 1, address mask [39:24]

Offset: 0x70

Reset value: 0x0000000

Name: HT bus receive address window 2 enable (external access)

А	A domain name	A wide	Reset value	access	describe
domain					
31	ht_rx_image2_en	1	0 x0	R/W	HT bus receives address window 2, enabling signal
30	Ht_rx_image2_ trans_en	1	0 x0		The HT bus receives the address window 2, mapping the enable signal
	Ht_rx_image2_ trans [53:24]	16	0 x0	R/W	HT bus receive address window 2, the translated address [53:24], for LS3A1000D and below version, [29:23] fixed as 0

龙芯中科技术有限公司 Loongson Technology Corporation Limited

Offset: 0x74 Reset value: 0x00000000

Name: HT bus receiving address window 2 base address (external access)

A domain	A domain name	A wide	Reset value	access	describe
	Ht_rx_image2_ base [they]	16	0 x0		HT bus receive address window 2, address base address [39:24]
	Ht_rx_image2_ mask [they]	16	0 x0	R/W	HT bus receive address window 2, address mask [39:24]

9.5.8 Interrupt vector register

Interrupt vector register a total of 256, of which exclude HT Fixed on the bus and Arbitrated, interruption of PIC 256 map directly to the interrupt vector, other plants, such as SMI, NMI, INIT, INTA, intb.br deal, a steady, 0 x50 [doth INTD can register mapped to any one of eight interrupt vector, the order of the map for {INTD, steady, intb.br deal, INTA, 1 'b0, INIT, NMI, SMI}.The corresponding value of Interrupt vector is {Interrupt Index, internal vector [2:0]}.

For LS3A1000E and above versions, 256 interrupt vectors are mapped to different interrupt lines according to different interrupt routing mode selection register configuration. The specific mapping mode is as follows:

Ht_int_stripe_1:

[0,1,2,3... 63] corresponds to the interrupted line 0 /HT HI corresponds to the interrupted line 4

[64,65,66,67... 127] corresponding to interrupted line 1 /HT HI corresponding to interrupted line 5

[128,129,130,131... 191] corresponding to discontinuous line 2 /HT HI corresponding to discontinuous line 6

[192,193,194,195... 255] corresponding to interrupted line 3 /HT HI corresponding to interrupted line 7 ht int stripe 2:

[0,2,4,6... 126] corresponds to the interrupted line 0 /HT HI corresponds to the interrupted line 4

[1,3,5,7... 127] corresponds to interrupted line 1 /HT HI corresponds to interrupted line 5

[128,130,132,134... 254] corresponding to discontinuous line 2 /HT HI corresponding to discontinuous line 6

[129,131,133,135... 255] corresponding to discontinuous line 3 /HT HI corresponding to discontinuous line 7 ht_int_stripe_4:

[0,4,8,12... 252] corresponds to the interrupted line 0 /HT HI corresponds to the interrupted line 4

[1,5,9,13... 253] corresponds to 1 /HT HI corresponds to 5

[2,6,10,14... 254] corresponding to discontinuous line 2 /HT HI corresponding to discontinuous line 6

[3,7,11,15... 255] corresponds to interrupted line 3 /HT HI corresponds to interrupted line 7

The following interrupt vector description corresponds to ht_int_stripe_1, and two other ways can be obtained as described above.For LS3A1000D and below, you can only use ht_int_stripe_1.

Offset: 0x80

Reset value: 0x0000000

Name: HT bus interrupt vector register [31:0]

А	A domain name	A wide	Reset value	access	describe
doma	in				
31:0	Interrupt_case [31:0]	32	0 x0		HT bus interrupt vector register [31:0], It's 0 over HT HI and it's 4

Offset: 0x84

Reset value: 0x00000000

Name: HT bus interrupt vector register [63:32]

A domain	A domain name	A wide	Reset value	access	describe
31:0	Interrupt_case [63:32]	32	0 x0	1	HT bus interrupt vector register [63:32], It's 0 over HT HI and it's 4

Offset: 0x88

Reset value: 0x0000000

Name: HT bus interrupt vector register [95:64]

A domain	A domain name	A wide	Reset value	access	describe
	Interrupt_case [95, 64]	32	0 x0		HT bus interrupt vector register [95:64], This corresponds to 1 /HT HI and this corresponds to 5

Offset: 0x8c

Reset value: 0x0000000

Name: HT bus interrupt vector register [127:96]

A domain	A domain name	A wide	Reset value	access	describe
31:0	Interrupt_case [127, 96]	32	0 x0		HT bus interrupt vector register [127:96], This corresponds to 1 /HT HI and this corresponds to 5

Offset: 0x90

Reset value: 0x0000000

Name: HT bus interrupt vector register [159:128]

A domain	A domain name	A wide	Reset value	access	describe
31:0	Interrupt_case [159, 128]	32	0 x0		HT bus interrupt vector register [159:128], corresponding to the discontinuous line 2 /HT HI corresponding to the discontinuous line 6

Offset: 0x94

Reset value: 0x00000000

Name: HT bus interrupt vector register [191:160]

А	A domain name	A wide	Reset value	access	describe
domain					
31:0	Interrupt_case [191, 160]	32	0 x0		HT bus interrupt vector register [191:160], So this corresponds to 2 /HT HI and this corresponds to 6

Offset: 0x98

Reset value: 0x00000000

Name: HT bus interrupt vector register [223:192]

A domain	A domain name	A wide	Reset value	access	describe
31:0	Interrupt_case [223, 192]	32	0 x0		HT bus interrupt vector register [223:192], So this corresponds to 3 /HT HI and this corresponds to 7

Offset: 0x9c

Reset value: 0x00000000

Name: HT bus interrupt vector register [255:224]

A domain	A domain name	A wide	Reset value	access	describe
31:0	Interrupt_case [255, 224]	32	0 x0		HT bus interrupt vector register [255:224], So this corresponds to 3 /HT HI and this corresponds to 7

9.5.9 Interrupt enable register

There are 256 interrupt enabled registers, corresponding to the interrupt vector register.

Set 1 to open the corresponding interrupt, and set 0 to interrupt shielding.

Offset: 0xa0

Reset value: 0x00000000

Name: HT bus interrupt enabled register [31:0]

A domain	A domain name	A wide	Reset value	access	describe
31:0	Interrupt_mask [31:0]	32	0 x0		HT bus interrupts enable register [31:0], It's 0 over HT HI and it's 4

Offset: 0xa4

Reset value: 0x00000000

Name: HT bus interrupt enabled register [63:32]

A domain	A domain name	A wide	Reset value	access	describe
31:0	Interrupt_mask [63:32]	32	0 x0		HT bus interrupts enable register [63:32], It's 0 over HT HI and it's 4

Offset: 0xa8

Reset value: 0x00000000

Name: HT bus interrupt enabled register [95:64]

A domain	A domain name	A wide	Reset value	access	describe
31:0	Interrupt_mask [95, 64]	32	0 x0		HT bus interrupts enable register [95:64], This corresponds to 1 /HT HI and this corresponds to 5

Offset: 0xac Reset value: 0x00000000 Name: HT bus interrupt enabled register [127:96]

I	A	A domain name	A wide	Reset value	access	describe
	domain					
	31:0	Interrupt_mask	32	0 x0	R/W	HT bus interrupts enable register [127:96],
		[127, 96]				This corresponds to 1 /HT HI and this corresponds to 5

Offset: 0xb0

Reset value: 0x00000000

Name: HT bus interrupt enabled register [159:128]

A domain	A domain name	A wide	Reset value	access	describe
31:0	Interrupt_mask [159, 128]	32	0 x0		HT bus interrupts enable register [159:128], So this corresponds to 2 /HT HI and this corresponds to 6

Offset: 0xb4

Reset value: 0x00000000

Name: HT bus interrupt enabled register [191:160]

А	A domain name	A wide	Reset value	access	describe
domain					
31:0	Interrupt_mask [191, 160]	32	0 x0		HT bus interrupts enable register [191:160], So this corresponds to 2 /HT HI and this corresponds to 6

Offset: 0xb8

Reset value: 0x00000000

Name: HT bus interrupt enabled register [223:192]

A domain	A domain name	A wide	Reset value	access	describe
31:0	Interrupt_mask [223, 192]	32	0 x0		HT bus interrupts enable register [223:192], So this corresponds to 3 /HT HI and this corresponds to 7

Offset: 0xbc

Reset value: 0x00000000

Name: HT bus interrupt enabled register [255:224]

A domain	A domain name	A wide	Reset value	access	describe
31:0	Interrupt_mask [255, 224]	32	0 x0		HT bus interrupts enable register [255:224], So this corresponds to 3 /HT HI and this corresponds to 7

9.5.10 Interrupt Discovery & Configuration

Offset: 0xc0

Reset value: 0x80000008

Name: Interrupt Capability

A domain	A domain name	A wide	Reset value	access	describe
came	"Capabilities Pointer	8	0 x80	R	Interrupt discovery and configuration block
Ephron;	The Index	8	0 x0	R/W	Read register offset address
"	"Capabilities Pointer	8	0 x0	R	"Capabilities Pointer
away	Capability ID	8	0 x08	R	Hypertransport Capablity ID

Reset value: 0x00000000

Name: Dataport

A domain	A domain name	A wide	Reset value	access	describe
31:0	Dataport	32	0 x0		When the last register Index is 0x10, this register reads and writes The result is register 0xa8, otherwise 0xac

Offset: 0xc8

Reset value: 0xF8000000

Name: IntrInfo [31:0]

A	A domain name	A wide Reset value access			describe
domain		22	0 00	D	
came	IntrInfo [came]	32	0 xf8	R	reserve
Isle;	IntrInfo [great]	22	0 x0	1	IntrInfo[23:2], the value of IntrInfo when sending PIC interrupt It's used to represent interrupt vectors
1-0	Reserved	2	0 x0	R	reserve

Offset: 0xcc Reset value: 0x0000000

Name	IntrInfo	[63.32]	

i tuille.									
А	A domain name	A wide	Reset value	access	describe				
domain									
31:0	IntrInfo [63:32]	32	0 x0	R	reserve				

9.5.11 Configure the register in the POST address window

The address window hit formula in this controller is as follows:

Hit = (BASE & MASK) == (ADDR & MASK)

It is worth mentioning that, when configuring the address window register, the MASK should be all 1 and all 0. 0 in the MASK

Is the size of the address window.

The address of this window is the one received on the AXI bus.All WRITE accesses that fall into this window will immediately be returned in the AXI B channel and sent to the HT bus in the command format of POST WRITE.WRITE requests that are not in this window are sent to the HT bus as NONPOST WRITE and wait for the HT bus to respond before returning to the AXI bus.

Offset: 0xd0

Reset value: 0x0000000

Name: HT bus POST address window 0 enable (internal access)

А	A domain name	A wide	Reset value	access	describe
domain					
31	ht_post0_en	1	0 x0	R/W	HT bus POST address window 0, enable signal
then	Reserved	15	0 x0		reserve

15:0	Ht_post0_trans	16	0 x0	R/W	HT bus POST address window 0, translated after the
	[they]				address
					[they]

Offset: 0xd4

Reset value: 0x00000000

Name: HT bus POST address window 0 base address (internal access)

A domain	A domain name	A wide	Reset value	access	describe
Caused the	Ht_post0_base [they]	16	0 x0		HT bus POST address window 0, address base address [39:24]
15:0	Ht_post0_mask [they]	16	0 x0		HT bus POST address window 0, address masked [39:24]

Offset: 0xd8

Reset value: 0x00000000

Name: HT bus POST address window 1 enable (internal access)

А	A domain name	A wide	Reset value	access	describe
domain					
А	A domain name	A wide	Reset value	access	describe
domain					
31	ht_post1_en	1	0 x0	R/W	HT bus POST address window 1, enable signal
then	Reserved	15	0 x0		reserve
15:0	Ht_post1_trans [they]	16	0 x0	R/W	HT bus POST address window 1, translated after the address [they]

Offset: 0xdc

Reset value: 0x00000000

Name: HT bus POST address window 1 base address (internal access)

А	A domain name	A wide	Reset value	access	describe
domain					
Caused	Ht_post1_base	16	0 x0	R/W	HT bus POST address window 1, address base
the	[they]				address [39:24]
15:0	Ht_post1_mask	16	0 x0	R/W	HT bus POST address window 1, address masked
	[they]				[39:24]

9.5.12 Pre-fetch address window configuration register

The address window hit formula in this controller is as follows:

Hit = (BASE & MASK) == (ADDR & MASK)

It is worth mentioning that, when configuring the address window register, the MASK should be all 1 and all 0. 0 in the MASK

Is the size of the address window.

The address of this window is the one received on the AXI bus. The CACHE access will only be sent to the HT bus if it falls into this window. Other access or CACHE access will not be sent to the HT bus, but will be returned immediately. If it is a read command, it will return invalid read data of the corresponding number.

Offset: 0xe0

Reset value: 0x00000000

Name: HT bus prefetching address window 0 enable (internal access)

А	A domain name	A wide Reset value access			describe
domain					
31	ht_prefetch0_en	1	0 x0	R/W	HT bus can prefetch address window 0, enable signal
then	Reserved	15	0 x0		reserve
15:0	Ht_prefetch0_trans [they]	16	0 x0	R/W	HT bus can prefetch address window 0, after translation address [they]

Offset: 0xe4

Reset value: 0x00000000

Name: HT bus prefetch address window 0 base address (internal access)

А	A domain name	A wide	Reset value	access	describe
domain					
Caused the	Ht_prefetch0_ base [they]	16	0 x0		HT bus can prefetch address window 0, address base address [39:24] An address
15:0	Ht_prefetch0_ mask [they]	16	0 x0		HT bus can prefetch address window 0, address mask [39:24]

Offset: 0xe8

Reset value: 0x0000000

Name: HT bus prefetching address window 1 enable (internal access)

	1	\mathcal{O}			
A domain	A domain name	A wide	e Reset valu	eaccess	describe
A domain	A domain name	A wide	e Reset valu	eaccess	describe
31	ht_prefetch1_en	1	0 x0	R/W	HT bus can prefetch address window 1 to enable the signal
then	Reserved	15	0 x0		reserve
15:0	Ht_prefetch1_ trans [they]	16	0 x0	R/W	HT bus can prefetch address window 1, after the translation of the address [they]

Offset: 0xec

Reset value: 0x0000000

Name: HT bus prefetch address window 1 base address (internal access)

А	A domain name	A wide	A wide Reset value access		describe
domain					
Caused the	Ht_prefetch1_ base [they]	16	0 x0	R/W	HT bus can prefetch address window 1, address base address [39:24]
15:0	Ht_prefetch1_ mask [they]	16	0 x0	R/W	HT bus can prefetch address window 1, address mask [39:24]

9.5.13 UNCACHE address window configuration register

The address window hit formula in this controller is as follows:

Hit = (BASE & MASK) == (ADDR & MASK)

Addr_out = TRANS_EN? TRANS b0 ADDR & ~MASK: ADDR

It is worth mentioning that, when configuring the address window register, the MASK

should be all 1 and all 0. 0 in the MASK

Is the size of the address window.

The address of this window is the address received on the HT bus. A read or write command that falls at the address of this window will not be sent to the second level CACHE or invalidate the first level CACHE, but will be sent directly to memory or another address space. This means that read and write commands in the address window will not maintain IO CACHE consistency. This window is for operations that are not hit in the CACHE and can improve memory efficiency, such as access to video memory.

Offset: 0xf0

Reset value: 0x0000000

Name: HT bus Uncache address window 0 enable (internal access)

А	A domain name	A wide	A wide Reset value access		describe
domain					
31	ht_uncache0_en	1	0 x0	R/W	HT bus uncache address window 0, enable signal
30	Ht_uncache0_ trans_en	1	0 x0	R/W	HT bus uncache address window 1, mapping enable signal
29:0	Ht_uncache0_ trans [53:24]	16	0 x0	R/W	HT bus uncache address window 0, translated address [53:24], for LS3A1000D and below, [29:23] Fixed 0

Offset: 0xf4

Reset value: 0x0000000

Name: HT bus Uncache address window 0 base address (internal access)

A domain	A domain name	A wide	Reset value	access	describe
	Ht_uncache0_ base [they]	16	0 x0	R/W	HT bus uncache address window 0, address base address [they]
15:0	Ht_uncache0_ mask [they]	16	0 x0	R/W	HT bus uncache address window 0, address mask [they]

Offset: 0xf8

Reset value: 0x00000000

Name: HT bus Uncache address window 1 enable (internal access)

А	A domain name	A wide	Reset value	access	describe
domain					
31	ht_uncache1_en	1	0 x0	R/W	HT bus uncache address window 1, enable the signal
30	Ht_uncache1_ trans_en	1	0 x0	R/W	HT bus uncache address window 1, mapping enable signal
	Ht_uncache1_ trans [53:24]	16	0 x0	R/W	HT bus uncache address window 1, translated address [53:24], for LS3A1000D and below, [29:23] Fixed 0

Offset: 0xfc

Reset value: 0x0000000

Name: HT bus Uncache address window 1 base address (internal access)

А	A domain name	A wide	Reset value	access	describe
domain					
	Ht_uncache1_ base [they]	16	0 x0		HT bus uncache address window 1, address base address [they]

120

龙芯中科技术有限公司

Loongson Technology Corporation Limited

5:0	Ht_uncache1_	16
	mask [thev]	

14

0 x 0

9.5.14 The HyperTransport bus conpoints the access methods to the space

The protocol of the HyperTransport interface software layer is basically the same as that of the PCI protocol, and the configuration access may be slightly different because it is directly related to the underlying protocol. As shown in table 9-5, the configuration access space is located at addresses $0xFD_FE00_0000 \sim 0xFD_FFFF_FFFFh.For configuration access in the PCI protocol, the following implementation is implemented in loongson 3.$

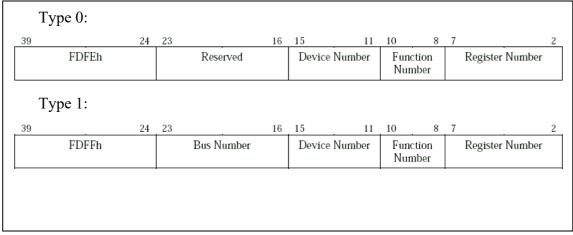


Figure 9-1 configuration access of HT protocol in loongson 3

9.6 HyperTransport multi-processor support

The loongson 3 processor USES the HyperTransport interface to interconnect multiple processors, and the hardware can automatically maintain the consistency requests between the four chips.Here are two ways to interconnect multiple processors:

Four pieces of loong core no. 3 interconnection structure

Four pieces of CPU are connected to form a ring structure.Each CPU USES two 8-bit controllers of HT0 to connect with two adjacent ones, among which HTx_LO is the main device and HTx_HI is the slave device. Thus, the following interconnection structure can be obtained:

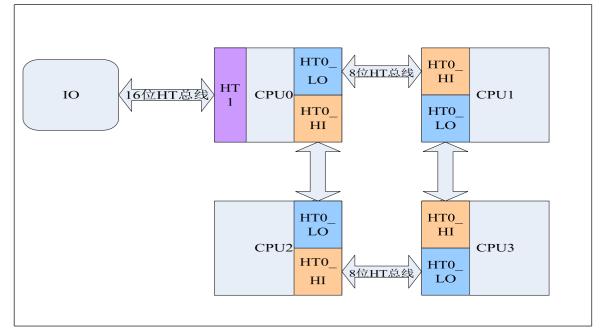
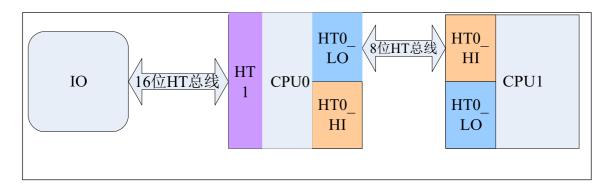


FIG. 9-2 interconnection structure of four-piece loongson no. 3

Loongson 3 interconnection routing

Loongson 3 interconnection routing adopts simple x-y routing method. In other words, when routing, first X, then Y, take four chips as an example, ID

The Numbers are 0, 01, 10, 11. If a request is made from 11 to 00, route 11 to 00, starting with X $^{\wedge}$ 2


We go from 11 to 10, then we go from 10 to 00 in the Y direction. When the request response returns from 00 to 11, the route goes first in the X direction, from 00 to 01, and then in the Y direction, from 01 to 11. As you can see, these are two different routing lines. Because of the characteristics of this algorithm, we will take a different approach when building the interconnection between two chips.

Two - piece loong core 3 interconnection structure

Because of the nature of the fixed routing algorithm, there are two different approaches to building a two-chip interconnection. The first is the use of 8-bit HT bus interconnection. In this mode of interconnection, only 8-bit HT interconnection can be used between two processors. The Numbers of the two chips are 00 and 01 respectively. According to the routing algorithm, we can know that when the two chips visit each other, they all pass through the 8-bit HT bus consistent with the four-chip interconnection. As follows:

Figure 9-3 8-bit interconnection structure of two pieces of loong core no. 3

However, our HT bus can be in 16-bit mode at its widest, so the connection mode that maximizes the bandwidth should be 16

Bit interconnection. In loongson iii, as long as the HT0 controller is set to 16-bit mode, all commands sent to the HT0 controller will be sent to HT0_LO instead of to HT0_HI or HT0_LO according to the routing table as before, so that we can use the 16-bit bus when interconnecting. Therefore, we only need to properly configure the 16-bit mode of CPU0 and CPU1 and properly connect the high-low bit bus to interconnect using the 16-bit HT bus. This interconnection structure can also use the 8-bit HT bus protocol to access each other. The resulting interconnection structure is as follows:

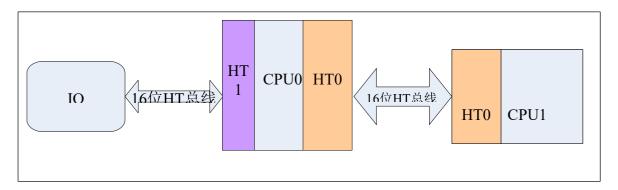


Figure 9-4 16-bit interconnection structure of two pieces of loongson 3

10 Low speed IO controller configuration

Loongson 3 I/O controller includes PCI/ pci-x controller, LPC controller, UART controller, SPI controller, GPIO and configuration register. These I/O controllers share a AXI port, and CPU requests are decoded to the corresponding device.

10.1 PCI controller/PCI - X

Loongson 3's PCI/pci-x controller can either control the entire system as the main bridge or work on the PCI/pci-x bus as a common PCI/pci-x device.Its implementation conforms to pci-x 1.0b and PCI 2.3 specifications.The loongson 3's PCI/ pci-x controller also has a PCI/ pci-x arbitrator built in.

The configuration header for the PCI/ pci-x controller is located at 256 bytes starting at 0x1FE00000, as shown in table 13-1.

The byte 3	2 bytes	1 byte	Byte 0	addr			
The D	evice ID	Vend	or ID	ess 00			
The	Status		he	04			
	The Class Code	Com	mand Revision ID	08			
BIST	The Header Type	Latency Timer	CacheLine Size	0 c			
	The Base A	Address Register 0		10			
	The Base A	Address Register 1		14			
	The Base A	Address Register 2		18			
	The Base A	Address Register 3		1 c			
	The Base A	Address Register 4		20			
	The Base A	Address Register 5		24			
				28			
Subsy	stem ID	Subsystem V	Vendor ID	2 c			
		I		30			
			"Capabilities Pointer	34			
				38			
Maximum Latency	A Minimum Grant	Interrupt Pin	Interrupt Line	3 c			
	Implementation S	pecific Register (ISR40)		40			
	Implementation S	pecific Register (ISR44)		44			
Implementation Specific Register (ISR48)							
Implementation Specific Register (ISR4C)							
Implementation Specific Register (ISR50)							
	Implementation S	pecific Register (ISR54)		54			
	Implementation S	pecific Register (ISR58)		58			

Table 10-1 PCIX controller configuration header

PCIX Command Register	E0
PCIX Status Register	E4

Loongson 3A1000's PCIX controller supports three 64-bit Windows, including {BAR1, BAR0}, {BAR3, BAR2},

{BAR5, BAR4} three pairs of register configuration Windows 0, 1, 2 base addresses. The size, enabling, and other details of the window are controlled by the other three corresponding registers, PCI_Hit0_Sel, PCI_Hit1_Sel, and PCI_Hit2_Sel. See table 2 for the specific bit fields.

Α	The field	acce	Rese	instr
dom	name	ss	t	uctio
ain			val	ns
			ue	
REC	5_40			
31	tar_read_io	Read and write	0	The target side receives access to IO or the unprefetched region
		(write 1		
		Qing)		
30	tar_read_discard	Read and write	0	The delay request on the target side is discarded
		(write 1		
		Qing)		
				Target accesses when to give
29	tar_resp_delay	Read and	0	delay/split 0: after timeout
		write		1: immediately
				Target accesses the retry policy
28	tar_delay_retry	Read and	0	0: according to internal logic (see 29 bits)
		write		1: try again immediately
27	tar_read_abort_en	Read and write	0	If target times out for an internal read request, do you want to respond with target-abort
"	Reserved	-	0	
24	tar_write_abort_en	Read and write	0	If target times out for an internal write request, do you want to respond with target-abort
23	tar_master_abort	Read and write	0	Whether master-abort is allowed

Table 10-2 PCI control registers

				Target subsequent delay timeout
Lift	tar_subseq_timeout	Read	000	000:8 cycles
up		and write		Others: not supported
				Target initial delay timeout
				PCI mode
				0:16 cycles
				1-7: disable the counter
				8-15:8 to 15 cycles
				The timeout count is fixed at 8 cycles in PCIX mode, where the configuration has the greatest impact
He	tar_init_timeout	Read	0000	Delay access number
hath		and write		0: 8 delay access
		write		8: 1 delay access
				9: 2 delay access
				10: 3 delay access
				11: 4 delay access
				12: 5 delay access
				13: 6 delay access
				14: 7 delay access
				15: 8 delay access
	tar_pref_boundary	Read and write		Prefetching boundary configuration (in 16 bytes)
Indeed			000	FFF: 64KB to 16byte FFE:
,			000 h.	64KB to 32byte
				FF8:64 KB to 128 byte
				Configuration using tar_pref_boundary
3	tar_pref_bound_en	Read	0	0: prefetch to device boundary
		and write		1: using tar_pref_boundary
2	Reserved	-	0	
				Target split write control
1	tar_splitw_ctrl	Read and write	0	0: blocks access other than Posted Memory Write
				1: block all access until split is completed
				Disable mater access timeout
0	mas_lat_timeout	Read	0	0: allows master access timeout
		and write		1: not allowed
REC	6_44			
31:0	Reserved	-	-	
REC	<u>3</u> _48	1		
31:0	tar_pending_seq	Read	0	The request number vector that
		and	Ĩ	target has not processed can be
		write		marked with 1
	6_4C			
charm	Reserved	-	-	
29	mas_write_defer	Read	0	Allow subsequent reads to override previous incomplete writes
		and		(for PCI only)
		write		

28	mas_read_defer	Read and	0	Allow subsequent reads and writes to override previous incomplete reads
		write		(for PCI only)
				The maximum number of external IO requests
27	mas_io_defer_cnt	Read	0	Zero: by the control
		and write		1:1.
				Master supports maximum number of external reads (for PCI only)
they	mas_read_defer_cnt	Read and	010	Zero: 8
		write		1-7:1-7
				Note: a dual address cycle access accounts for two items
Ephro n;	err_seq_id	read- only	00 h	The target/master error number
15		read-	0	Target /master error command type
15	err_type	only	0	Zero:
				Wrong module
14	err_module	read-	0	0: target
		only		1: master
13	system_error	Read and write	0	Target /master system error (write 1 clear)
12	data_parity_error	Read and write	0	Target /master data parity error (write 1 clear)
11	ctrl_parity_error	Read and write	0	Target /master address odd and even wrong (write 1 clear)

10:0	Reserved	-	-	
REG	50	•		
31:0	mas_pending_seq	Read and write	0	The request bit vector that the master didn't finish processing The corresponding bit can be written 1
REC	<u>5</u> _54			
31:0	mas_split_err	Read and write	0	Split returns the error request bit vector
REC	<u>3_</u> 58			
charm	Reserved	-	-	
then	tar_split_priority	Read and write	0	Target split returns the priority Zero is the highest, three is the lowest
But after	mas_req_priority	Read and write	0	The external priority of master Zero is the highest, three is the lowest
25	Priority_en	Read and write	0	Arbitrate algorithm (arbitrate between master's access and target's split return) 0: fixed priority 1: rotary
Where upon certain	reserve	-	-	
17	mas_retry_aborted	Read and write	0	Master retry cancel (write 1 clear)
16	mas_trdy_timeout	Read and write	0	Master TRDY timeout count
"	mas_retry_value	Read and write	00 h	Number of master retries 0: infinite retry 1-255:1-255
away	mas_trdy_count	Read and write	00 h	Master TRDY timeout counter 0: disable 1-255:1-255

Before initiating configuration space reads and writes, the application should configure the PCIMap_Cfg register to tell the controller the type of configuration operation to initiate and the value on the high 16-bit address line. The configuration header for the corresponding device can then be accessed by reading and writing to the 2K space starting at 0x1fe80000. The device number is obtained by encoding from low to high priority according to PCIMap_Cfg[15:0].

The configuration action address generation is shown in figure 10-1.

130

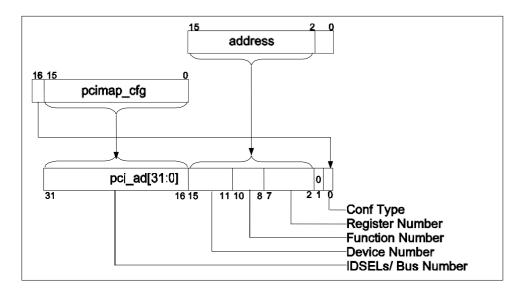


Figure 10-1 configure read and write bus address generation

The PCI/PCIX arbitrator implements two-stage rotation arbitration, bus docking and isolation of damaged master devices. Its configuration and status are shown in the PXArb_Config and PXArb_Status registers. PCI/PCIX bus request and reply line assignment is shown in table 13-3.

Request and reply lines	describe
0	Internal integrated PCI/PCIX controller
7:1	External requests 6~0

Table 10-3 PCI/PCIX bus request and reply line allocation

The route-based arbitration algorithm provides two levels, the second level as a whole as a member of the first level scheduling together. When multiple devices apply for the bus at the same time, the first level device is transferred once per cycle, and the highest priority device in the second level can get the bus.

The mediators are designed to be switched whenever conditions permit, which can make them abnormal for some PCI devices that do not conform to the protocol.Using a forced priority allows these devices to occupy the bus through continuous requests.

Bus docking refers to whether one of the devices is selected to give a permit signal when no device requests to use the bus. Directly initiating bus operations can improve efficiency for devices that are already permitted.Loongson 2F's PCI arbitrator offers two docking modes: the last master and the default master.If you can't dock on special occasions, you can set the mediator to dock to the default master device 0 (internal controller) with a dependency delay of 0.

10.2 LPC controller

LPC controller has the following characteristics: Comply with LPC1.1 specification Support for LPC access timeout counters Memory Read, Memory write access types are supported Firmware Memory Read, Firmware Memory Write access type (single byte) I/O read and I/O write access types are supported Support for Memory access type address translation Support for the Serizlized IRQ specification, providing 17 interrupt sources

The address space distribution of LPC controller is shown in table 4:

Address name	Address range	The size of the
LPC Boot	0 x1fc0_0000 x1fd0_0000 0	1 mbyte
LPC Memory	0 x1c00_0000 x1e00_0000 0	32 mbyte
LPC I/O	0 x1ff0_0000 x1ff1_0000 0	64 kbyte
LPC Register	0 x1fe0_0200 x1fe0_0300 0	256 byte

Table 10-4 address space distribution of LPC controller

The LPC Boot address space is the address space first accessed by the processor when the system is started. This address space supports LPC Memory or Firmware Memory access types.The type of access emitted at system startup is controlled by LPC_ROM_INTEL pins. LPC_ROM_INTEL pins send out LPC Firmware Memory access when pulled up, and LPC_ROM_INTEL pins send out LPC Memory access type when pulled down.

The LPC Memory address space is the address space that the system accesses with Memory/Firmware Memory. The type of Memory access issued by an LPC controller is determined by the LPC controller's configuration register, LPC_MEM_IS_FWH. The address sent by the processor to this address space can be translated. The converted address is set by the LPC controller's configuration register LPC_MEM_TRANS.

The access that the processor sends to the LPC I/O address space is sent to the LPC bus

according to the LPC I/O access type. The address is 16 bits below the address space.

The LPC controller configuration registers have a total of 3 32-bit registers. The meaning of the configuration register is shown in table 13-5:

A domain	The field name	acces s	Reset value	instructions					
	REG0								
REG0 [hands]	SIRQ_EN	Read and write	0	SIRQ enables control					
REG0 [take]	LPC_MEM_TRANS	Read and write	0	LPC Memory space address translation control					
REG0 [15:0]	LPC_SYNC_TIMEOUT	Read and write	0	LPC access timeout counter					
	R	REG1							
REG1 [hands]	LPC_MEM_IS_FWH	Read and write	0	LPC Memory space Firmware Memory access type Settings					
REG1 [17:0]	LPC_INT_EN	Read and write	0	LPC SIRQ interrupt enablement					
	R	REG2							
REG2 [17:0]	LPC_INT_SRC	Read and write	0	LPC SIRQ interrupts source indication					
	R	REG3							
REG3 [17:0]	LPC_INT_CLEAR	write	0	LPC SIRQ interrupt clear					

Table 10-5 LPC configuration register meanings

10.3 UART controller

UART controllers have the following characteristics Full duplex asynchronous data receive/send Programmable data format 16 bit programmable clock counter Receive timeout detection is supported A multi-interrupt system with arbitration Work in FIFO mode only Register and function compatible NS16550A

This module has two parallel working UART interfaces, the function registers are exactly the same, but the base address is different.

The physical base address of the UART0 register is 0x1FE001E0. The physical base address of UART1 register is 0x1FE001E8.

10.3.1 Data register (DAT)

Chinese name: data transfer register register bit width: [7:0]

Offset: 0x00 Reset value: 0x00

A domain	A domain name	A wide	access	describe
away	Tx FIFO	8	W.	Data transfer register

10.3.2 Interrupt enabled register (IER)

Chinese name: interrupt enabled register register bit width: [7:0]

Offset: 0x01 Reset value: 0x00

A domain	A domain name	A wide	access	describe
The log	Reserved	4	RW	reserve
3	IME	1	RW	Modem status interrupted to enable '0' off '1' on
2	ILE	1	RW	Receiver line status interruption enables' 0 ' off 1 ' on

1	ITxE	1	RW	Transfer save register for air break enable '0' close '1' - - hit
				open
0	IRxE	1	RW	Receive valid data interrupt enables' 0 ' close' 1 ' open

10.3.3 Interrupt identification register (IIR)

Chinese name: interrupt source register

Register bit width: [7:0]

Offset: 0x02

Reset value: 0xc1

A domain	A domain name	A wide	access	describe
The log	Reserved	4	R	reserve
3:1	II	3	R	Interrupt source representation bits, as shown in the table below
0	INTp	1	R	Interrupt representation bit

Bit 3	2 -	Bit 1	priority	Interrupt type	The interrup t source	Interrupt reset control
0	1	1	1 st	Receiving line state	Parity, overflow, or frame error, or Interrupt interrupted	Read the LSR
0	1	0	2 nd	Received valid data		FIFO has a low number of characters In the trigger value
1	1	0	2 nd	Receive a timeout	There is at least one character in FIFO, but no operation, including read and write operations, in four character times As a	Read receive FIFO
0	0	1	3 rd	Transmission save send The store is empty	The transfer save register is empty	Write data to THR or More IIR
0	0	0	4 th	Modem state	CTS, DSR, RI or DCD.	Read MSR

Interrupt control menu

10.3.4 FIFO control register (FCR)

Chinese name: FIFO control

register register bit width: [7:0]

Offset:	0x02
---------	------

Reset value: 0xc0

A domain	A domain name	A wide	access	describe
but	TL	2	W.	The trigger value of '00' 1 byte '01' 4 bytes for receiving FIFO's interrupt application '10' 8 bytes' 11 ' 14 bytes
0	Reserved	3	W.	reserve
2	Txset	1	W.	'1' clears the content of sending FIFO and reset its logic
1	Rxset	1	W.	'1' clears the contents of the received FIFO and reset its logic
0	Reserved	1	W.	reserve

10.3.5 Line control register (LCR)

Chinese name: circuit control register register bit width: [7:0]

Offset: 0x03

Reset value: 0x03

A domain	A domain name	A wide	access	describe
7	dlab	1	RW	Frequency divider latch access bit '1' - access operation frequency divider latch '0' - access operation normal register
6	BCB	1	RW	Interrupt control bit '1' - the output of the serial port is set to 0(interrupted state). '0' - normal operation
5	.spb	1	RW	Specifies parity bits '0' - do not specify parity bits '1' - if the LCR[4] bit is 1, the transmission and check parity bits are 0.IftheLCR[4]bits0,thetransmissionandcheckparity bitis1.

4	eps	1	RW	Parity bit selection
				'0' - has an odd number of 1's in each character
				(including data and parity bits)
				'1' - there are an even number of 1's in each character
3	PE	1	RW	Parity bit enabled
				'0' - no parity bits
				'1' - the parity bit is generated on the output, and
				the parity bit is judged on the input
2	sb	1	RW	Defines the number of bits that generate the stop bit
				'0' - 1 stop bit
				'1' - 1.5 stop bits at 5 character length, others
				The length is 2 stop bits
1-0	bec	2	RW	Sets the number of bits per character
				'00' 5 '01' 6
				'10' - 7 '11' - 8 '

10.3.6 MODEM control register (MCR)

Chinese name: Modem control register register bit width: [7:0]

Offset: 0x04

Reset value: 0x00

A domain	A domain name	A wide	access	describe
7:5	Reserved	3	W.	reserve

龙芯 3A1000 处理器用户手册 第一部分_

	龙芯 3A1000	处理器用户	∍手册	第一部分
--	-----------	-------	-----	------

4	Loop	1	W.	Loop mode control bit
				'0' - normal operation
				'1' - loop mode.In loopback mode, TXD output is
				always 1, and the output shift register is connected
				directly to the input shift register. The other links
				are as follows.
				DTR 🗆 DSR RTS
				Out1 🗆 RI
				Out2 🗆 DCD
3	OUT2	1	W.	Connect to DCD input in loopback mode
2	The OUT1	1	W.	Connect to RI input in loop mode
1	RTSC	1	W.	RTS signal control bit
0	DTRC	1	W.	DTR signal control bit

10.3.7 Line status register (LSR)

Chinese name: line status register register bit width: [7:0] Offset: 0x05

Reset value: 0x00

A domain	A domain name	A wide	access	describe
7	The ERROR	1	R	Error representation bit '1' - at least one with a parity bit error, frame error, or interrupt. '0' - no errors
6	TE	1	R	The null transport represents the bit '1' - transfer FIFO and transfer shift registers are empty. Zero when writing data to the transmitted FIFO '0' has data

LOONGSU	DN TECHNOLOGY			龙芯 3A1000 处理器用户手册 第一部分
5	TFE	1	R	Transmission of FIFO bit empty represents bit 'l' the current transmission FIFO is empty, and when data is written to the transmission FIFO, it will be zero
4	BI	1	R	'0' has data Interrupts interrupt bits '1' - received start bit + data + odd and even bit + stop bit are all 0, that is, there is interrupt interrupt '0' no interruptions
3	FE	1	R	Frame errors represent bits '1' - received data without stop bits '0' - no errors
2	PE	1	R	A parity bit error represents a bit '1' - there is a parity error in the received data '0' - no parity errors
1	OE	1	R	Data overflow represents bits '1' data overflow '0' - no overflow
0	Dr.	1	R	Receiving data effectively represents bits '0' - no data in a FIFO '1' - data in FIFO

When this register is read, LSR[4:1] and LSR[7] are cleared, LSR[6:5] is cleared when writing data to transmit FIFO, and LSR[0] judges the receiving FIFO.

10.3.8 MODEM status register (MSR)

Chinese name: Modem status register register bit width: [7:0] Offset: 0x06 Reset value: 0x00

Reset value. 0x00					
A domain	A domain name	A wide	access	describe	
7	CDCD	1	R	DCD input the inverse of the value, or in loop mode to Out2	
6	CRI	1	R	The inverse of the RI input value, or connected to OUT1 in loopback mode	
5	CDSR	1	R	The inverse of the DSR input value, or in loopback	
138	•	•	•	龙芯中科技术有限公司	

龙心中科技术有限公司

Loongson Technology Corporation Limited

龙芯 3A1000 处理器用户手册 第一部分

				mode connected to DTR
4	CCTS	1	R	Invert the input value of the CTS, or connect to the RTS in loopback mode
3	DDCD	1	R	DDCD indicating a
2	TERI	1	R	RI edge detection. RI state changes from low to high
1	DDSR	1	R	DDSR indicating a
0	DCTS	1	R	DCTS indicating a

10.3.9 Frequency divider latch

Chinese name: frequency division latch 1

Register bit width: [7:0]

Offset: 0x00

Reset value: 0x00

A domain	A domain name	A wide	access	describe			
away	LSB	8	RW	Store the lower 8 bits of the frequency divider latch			
Chinese nemes frequency division lately 2							

Chinese name: frequency division latch 2 Register bit width: [7:0] Offset: 0x01 Reset value: 0x00

A domain	A domain name	A wide	access	describe
away	The MSB	8	RW	Store the high 8 bits of the frequency divider latch

10.4 SPI controller

SPI controller has the following characteristics:

Full duplex synchronous serial port data transmission

Support for variable-length byte transfers up to 4

Master mode support

A mode failure generates an error flag and issues an interrupt request

Double buffer receiver

Polarity and phase programmable serial clock

SPI can be controlled in wait mode

The SPI controller module register physical address is 0x1FE001F0.

10.4.1 Control register (SPCR)

Chinese name: control

register register bit width:

[7:0]

Offset: 0x00

Reset value: 0x10

A domain	A domain name	A wide	access	describe
7	Spie	1	RW	Interrupt output to make the signal highly efficient
6	The spe	1	RW	The system works to make the signal highly efficient
5	Reserved	1	RW	reserve
4	MSTR	1	RW	Select bit in master mode, this bit is always 1
3	cpol	1	RW	Clock polarity
2	cpha	1	RW	Clock phase 1 is in opposite phase and 0 is the same
1-0	SPR	2	RW	Sclk_o frequency divider setting, to be used with sper's spre

10.4.2 Status register (SPSR)

Chinese name: status

register register bit width:

[7:0]

Offset: 0x01

Reset value: 0x05

A domain	A domain name	A wide	access	describe
7	spif	1	RW	The interrupt sign bit 1 indicates that there is an interrupt request, and if you write 1, it will clear zero
6	wcol	1	RW	Write register overflow bit 1 indicates overflow, write 1 reset
when	Reserved	2	RW	reserve
3	wffull	1	RW	Write register full flag 1 to indicate full
2	wfempty	1	RW	Write register empty flag 1 to indicate empty
1	rffull	1	RW	Read register full flag 1 to indicate full
0	rfempty	1	RW	Read register empty flag 1 to indicate empty

10.4.3 Data register (TxFIFO)

Chinese name: data transfer

register register bit width: [7:0]

Offset: 0x02

Reset value: 0x00

A domain	A domain name	A wide	access	describe
away	Tx FIFO	8	W.	Data transfer register

10.4.4 External register (SPER)

Chinese name: external

register register bit width:

[7:0]

Offset: 0x03

Reset value: 0x00

A domain	A domain name	A wide	access	describe
but	icnt	2	RW	How many bytes have been transmitted before the interrupt request signal is sent 00 1 byte 01 2 bytes 10-3 bytes 11-3 bytes
5-2	Reserved	4	RW	reserve
1-0	spre	2	RW	Set the frequency division ratio with the Spr

Frequency division coefficient:

spre	00	00	00	00	01	01	01	01	10	10	10	10
SPR	00	01	10	11	00	01	10	11	00	01	10	11
Frequency division coefficient	2	4	16	32	8	64	128	256	512	1024	2048	4096

10.5 IO controller configuration

The configuration register is used to configure the address window of the PCI/ pic-x controller, the arbitrator, and the GPIO controller. These registers are listed in table 10-6 and detailed descriptions of registers are given in table 10-7. This part of the register is base address 0x1FE00100.

address	registe	instructions
00	PonCfg	The electric configuration
04	GenCfg	General configuration
08	reserve	
0 c	reserve	
10	PCIMap	PCI mapping
14	PCIX_Bridge_Cfg	PCI/X bridge related configuration
18	PCIMap_Cfg	PCI concatenates the read and write device address
1 c	GPIO_Data	GPIO data
20	GPIO_EN	GPIO direction
24	reserve	
28	reserve	
2 c	reserve	
30	reserve	
34	reserve	
38	reserve	
3 c	reserve	
40	Mem_Win_Base_L	Prefetch window base address low 32 bits
44	Mem_Win_Base_H	Prefetch window base address height 32 bits
48	Mem_Win_Mask_L	Prefetch window mask lower 32 bits
4 c	Mem_Win_Mask_H	Prefetch window mask height 32 bits
50	PCI_Hit0_Sel_L	PCI window 0 controls low 32 bits
54	PCI_Hit0_Sel_H	PCI window 0 controls the height of 32 bits

Tabla	10.6 10	aantral	ragistars
Table	10-010	control	registers

LOONGSON TE	CHNOLOGY	龙芯 3A1000 处理器用户手册 第一部分
58	PCI_Hit1_Sel_L	PCI window 1 controls the low 32-bit
5 c	PCI_Hit1_Sel_H	PCI window 1 controls the high 32-bit
60	PCI_Hit2_Sel_L	PCI window 2 controls low 32 bits
64	PCI_Hit2_Sel_H	PCI window 2 controls the high 32-bit
68	PXArb_Config	PCIX arbitrator configuration
6 c	PXArb_Status	PCIX arbitrator state
70		
74		
78		
7 с		
80	Chip Config	Chip configuration register
84		
88		
8 c		
90	Chip Sample	Chip sampling register

Table 10-7 registers are described in detail

A domain	The field name	acce ss	Reset value	instr uctio ns
CR00: P	onCfg			
15:0	pcix_bus_dev	read- only	Lio_ad [away]	The total amount used by the CPU in the PCIX Agent mode Line and equipment number
"	reserve	read- only	Lio_ad [or]	
Ephron;	pon_pci_configi	read- only	pci_configi	PCI_Configi pin value
came	reserve	read- only		
CR04: re	eserve			
31:0	reserve	read- only	0	
CR08: r	eserve			
31:0	reserve	read- only	0	
CR10: P	CIMap			
5-0	trans_lo0	Read and write	0	The PCI_Mem_Lo0 window maps the address six bits higher
but	trans_lo1	Read and	0	The PCI_Mem_Lo1 window maps the address six bits higher

LOONG	SON TECHNOLOGY		龙	芯 3A1000 处理器用户手册 第一部分
		write	/~	
	turn - 1-2	Read	0	The PCI_Mem_Lo2 window maps the
	trans_lo2	and	0	address to a height of 6 bits
		write		
all	reserve	read-	0	
		only		
CR14: I	PCIX_Bridge_Cfg			
5-0	pcix_rgate	Read	6 'h18	PCIX mode to DDR2 read number threshold
		and		
6	pcix_ro_en	write Read	0	The PCIX bridge allows writing over reading
0	peix_io_en	and	0	The FEIX bruge anows writing over reading
		write		
all	reserve	read-	0	
CD 10 1		only		
	PCIMap_Cfg		1	
15:0	dev_addr	Read	0	PCI configuration reads and writes when the
		and write		AD line is 16 bits high
16	conf type	Read	0	Configure the types of reads and writes
10	com_type	and	0	configure are types of reads and writes
		write		
31:17	reserve	read-	0	
CP1C:	GPIO Data	only		
	_	D 1		
15:0	gpio_out	Read and	0	GPIO outputs data
		write		
Caused	gpio_in	Read	0	GPIO enters data
the		and		
CR20.0	GPIO EN	write		
	_	Deed		If the instant and have in the sectors
15:0	gpio_en	Read and	16 'hFFFF	High is the input and low is the output
		write		
Caused	reserve	read-	0	
the		only		
CR3C:	reserve			
31:0	reserve	read-	0	reserve
		only		
CR24, 2	2 c, 30,34,38: reservations			
As shown	in table 11			
CR50, 6	50 (54/58, 5 C / : _Sel_ PC	CI_Hit * *		
0	reserve	read-	0	
0		only	0	
2:1	pci_img_size		2 'bl1	00:32; 10:64; Others: invalid
		and		
2	C	write	0	DesCatabian 1
3	pref_en	Read and	U	Prefetching can make
		write		
4	reserve	read-	0	
		only		
62:12	bar_mask	Read	0	Window size mask (high 1, low 0)
		and		
62	hurst acr	write Read	1	Whether to allow burst transmission
63	burst_cap	and	1	

			,=-	
		write		
CR68: F	XArb_Config		•	
0	device en	Read	1	External device allowed
	-	and		
		write		
1	disable_broken	Read	0	Disable damaged master devices
		and		
		write		The bus is docked to the default main device
2	default_mas_en	Read and	1	0: dock to the last main device
		write		1: dock to the default main device
0	default master	Read	0	The bus is docked with the default main
		and		device number
		write		
				The delay from the beginning of no device
				request bus to the triggering of docked
		D 1	0.11.1	default device behavior
but	park_delay	Read and	2 'bl1	00:0 cycle
		write		01:8 cycles
				10:32 cycle
	1 1	Read	8 'h01-2	11:128 cycles
	level	and	8 n01-2	A device in the first stage
		write		
Ephron;	rude dev	Read	0	Force priority devices
		and		
		write		
				The PCI device corresponding to the bit of 1 can be obtained after the bus
				To occupy the bus with continuous requests
away	reserve	read-	0	
CP6C+I	PXArb Status	only		
	_		1	
away	broken_master	read-	0	Damaged master device (reset when changin
10:8	Last mostor	only read-	0	disabled policy) Finally, the main device of the bus is used
10.8	Last_master	only	0	Thiany, the main device of the bus is used
lustful	reserve	read-	0	
		only		
CR80: C	Chip config			
The 2-0	Freq_scale_ctrl	Read	3 'b111	Processor core frequency division
		and		
		write Read		
3	DDR_Clksel_en	and	1 'b0	Whether to use software to configure DDR
		write		octave
8	Disable ddr2 confspace	Read	1 'b0	Whether to disable DDR configuration space
		and		
2		write Read	1 1 0	
9	DDR_buffer_cpu	and	1 'b0	Whether to turn on the DDR read access
		write		buffer
12	Core0_en	Read	1 'b1	Whether to enable processor core 0
	_	and		· · · ·
		write Read		
13	Core1_en	Read	1 'b1	Whether to enable processor core 1 龙芯中科技术有限公司

			龙芯	3A1000 处理器用户手册 第一部分
		and write		
14	Core2_en	Read and write	1 'b1	Whether to enable processor core 2
15	Core3_en	Read and write	1 'b1	Whether to enable processor core 3
16	Mc0_en	Read and write	1 'b1	Whether to enable DDR controller 0
17	Mc1_en	Read and write	1 'b1	Whether to enable DDR controller 1
18	DDR_reset0	Read and write	1 'b1	Software reset DDR controller 0
19	DDR_reset1	Read and write	1 'b1	Software reset DDR controller 1
22	HT0_en	Read and write	1 'b1	Whether HT controller 0 is enabled
23	HT1_en	Read and write	1 'b1	Whether to enable HT controller 1 1: on 0: disable
througho ut	DDR_Clksel	Read and write	5 'b11111	Software configuration DDR clock frequency doubling relationship (when DDR Clksel en is 1)
take	HT_freq_scale_ctrl0	Read and write	3 'b111	HT controller 0 frequency division
That which	HT_freq_scale_ctrl0	Read and write	3 'b111	HT controller 1 frequency division
35	Mc0_prefetch_disable	Read and write	1 'b0	Whether or not to disable MC0 prefetch (which has different performance effects on different program behaviors)
36	Mc1_prefetch_disable	Read and write	1 'b0	Whether to disable MC1 prefetch (which has different performance effects on different program behaviors)
other		read- only		reserve
CR90: C	hip Sample	only		l
15:0	Pad2v5_ctrl	Read and write	16 'h780	2 v5pad control
Caused the	Pad3v3_ctrl	Read and write	16 'h780	3 v3pad control
47:32	Sys_clksel	read- only		On board frequency doubling setting
spoilers	Bad_ip_core	read- only		Whether 4 processor cores are bad or not
53:52	Bad_ip_ddr	read- only		Whether 2 DDR controllers are bad
57:56	Bad_ip_ht	read- only		Is the 2 HT controllers bad
		51113	1	

龙芯 3A1000 处理器用户手册 第一部分

A 102-96	Thsens0_out	read- only	The temperature sensor has a temperature of 0, which is used to monitor the temperature near the second-level cache with an accuracy of $\pm/-6$ °C
103	Thsens0_overflow	read- only	Temperature sensor 0 temperature overflow (over 128 degrees)
A 110- 104	Thsens1_out	read- only	Temperature sensor 1 temperature, used to monitor the temperature near the processor core, precision is +/-6 degrees Celsius
111	Thsens1_overflow	read- only	Temperature sensor 1 temperature overflow (over 128 degrees)
other		read- only	reserve

龙芯 3A1000 处理器用户手册 第一部分

The second part

System software programming guide

11 Configuration and use of interrupts

11.1 Interrupted flow

The loongson 3A1000 process for handling interrupts, from external interrupt requests to kernel handling of interrupts, is the same. The diagram below shows the flow chart of the interrupt handling of the 3a-690e board card.

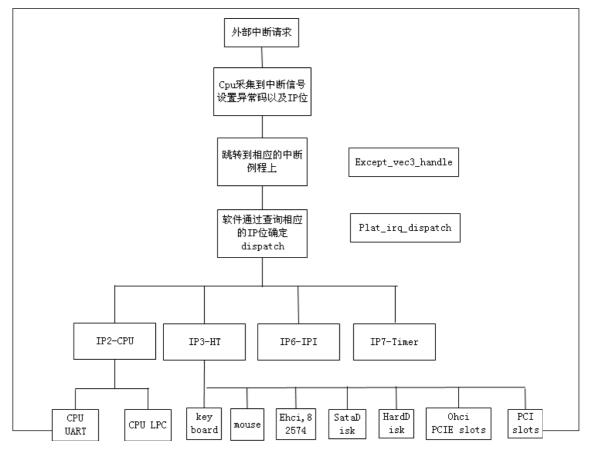


Figure 11-1 3a-690e interrupt flow chart

11.2 Interrupt routing and interrupt enabling

The loongson 3A1000 chip supports up to 32 interrupt sources, which are managed in a unified manner. As shown in the figure below, any IO interrupt source can be configured to enable or disable, trigger, and route the target processor core interrupt pins.

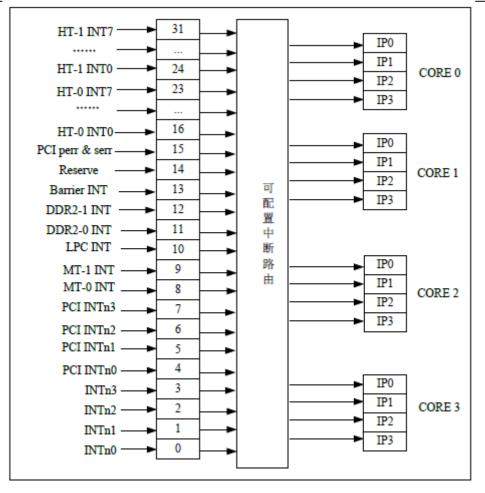


Figure 11-2 schematic diagram of interru 1

11.2.1 Interrupt routing

With four processor cores integrated into the loson 3A1000, the 32-bit interrupt source described above can be configured to select the target processor core to interrupt.Further, the interrupt source can choose to route to any of the processor core interrupts INT0 through INT3, IP2 through IP5 corresponding to CP0_Status.In other words, IP0~IP3 of CORE0~CORE3 as shown in the figure above corresponds to IP2~IP5 of CP0_Status. Each of the 32 I/O interrupt sources corresponds to an 8-bit routing controller, whose format and address are shown in tables 1 and 2 below. The routing register USES a vector approach for routing, such as 0x48 to indicate routing to INT2 of processor no. 3.

A domain	instructions
3-0	Routing the processor core vector number

The log Routing the processor core interrupt pin vector number

The name of the	Address f offset	describe	The name of the	Address offset	describe
Entry0	0 x1400	Sys_int0	Entry16	0 x1410	HT0 - int0
Entry1	0 x1401	Sys_int1	Entry17	0 x1411	HT0 - int1
Entry2	0 x1402	Sys_int2	Entry18	0 x1412	HT0 - int2
Entry3	0 x1403	Sys_int3	Entry19	0 x1413	HT0 - int3
Entry4	0 x1404	Pci_int0	Entry20	0 x1414	HT0 - int4
Entry5	0 x1405	Pci_int1	Entry21	0 x1415	HT0 - int5
Entry6	0 x1406	Pci_int2	Entry22	0 x1416	HT0 - int6
Entry7	0 x1407	Pci_int3	Entry23	0 x1417	HT0 - int7
Entry8	0 x1408	Matrix int0	Entry24	0 x1418	HT1 - int0
Entry9	0 x1409	Matrix int1	Entry25	0 x1419	HT1 - int1
Entry10	0 x140a	Lpc int	Entry26	0 x141a	HT1 - int2
Entry11	0 x140b	Mc0	Entry27	0 x141b	HT1 - int3
Entry12	0 x140c	Mc1	Entry28	0 x141c	HT1 - int4
Entry13	0 x140d	The Barrier	Entry29	0 x141d	HT1 - int5
Entry14	0 x140e	reserve	Entry30	0 x141e	HT1 - int6
Entry15	0 x140f	Pci_perr/serr	Entry31	0 x141f	HT1 - int7

Table 11-2 interrupt routing register addresses

For the convenience of understanding, the configuration of the 3a-690e and 3a-kd60 board CARDS on the interrupt route is given below:

A) 3 a - 690 e

The hardware connection is "CPU serial port + HT1 connecting the north and south bridge". The routing setting is:

/* Route the LPC interrupt to Core0 INT0, corresponding to Cp0 Status of IP2*/

* (volatile unsigned char *) 0 x90000003ff0140a = 0 x11;

/* Route the HT1 interrupt to Core0 INT1, corresponding to Cp0_Status of IP3*/

 $0 \times 90000003 \text{ ff} 01418 * (volatile unsigned char *) = 0 \times 21;$

 $0 \times 90000003 \text{ ff} 01419 * \text{(volatile unsigned char *)} = 0 \times 21;$

 $0 \times 90000003 \text{ff} 0141a * (volatile unsigned char *) = 0 \times 21;$

龙芯中科技术有限公司

Loongson Technology Corporation Limited

龙芯 3A100	0 处理器用户手力	册 第二部分
----------	-----------	--------

0 x90000003ff0141b * (volatile unsigned char *)	=	0 x21;

 $0 \times 90000003 \text{ff} 0141 \text{c} * (\text{volatile unsigned char }) = 0 \times 21;$

 $0 \times 90000003 \text{ ff} 0141 \text{ d} * (volatile unsigned char *) = 0 \times 21;$

- * (volatile unsigned char *) $0 \times 90000003 \text{ff} 0141 \text{e} = 0 \times 21$;
- * (volatile unsigned char *) 0 x90000003ff0141f = 0 x21;

B) 3 a - KD60

The hardware connection is "CPU serial port + PCI + CPU" 8259, and the routing is set as:

/* Route the LPC interrupt to Core0 INT0, corresponding to Cp0 Status of IP2*/

* (volatile unsigned char *) 0 x90000003ff0140a = 0 x11;

/* Route the I8259 interrupt to Core0 INT1, corresponding to Cp0_Status of IP3*/
*(volatile unsigned char *)(0x90000003ff01400) = 0x21;

/* Route PCI interrupt to Core0 INT3, corresponding to Cp0_Status of IP5*/
*(volatile unsigned char *)(0x90000003ff01404) = 0x81;

11.2.2 The interrupt enable

The interruption-related configuration registers control the corresponding interrupts in the form of bits. See table 11-3 for the connection and property configuration of interrupt control bits. The interrupt Enable configuration has three registers: Intenset, Intenclr, and Inten. The Intenset sets the interrupt enable, and the interrupt corresponding to the bit write 1 in the Intenset register is enabled. The Intenclr clears interrupts to enable, and the interrupt corresponding to the Intenclr register write 1 is cleared. The Inten register reads the current status of each interrupt enable. Interrupt signals in the form of pulses (such as PCI_SERR) are selected by the Intedge configuration register, with write 1 for pulse trigger and write 0 for level trigger. The interrupt handler can clear the pulse record by the corresponding bit of the Intenclr.

The name of the	Address offset	desc ribe
Intisr	0 x1420	32-bit interrupt status register
Inten	0 x1424	32-bit interrupt enabled status register
Intenset	0 x1428	The 32-bit setting enables the register
Intenclr	0 x142c	32-bit clear enable register
Intedge	0 x1438	32-bit trigger mode register
CORE0_INTISR	0 x1440	Routing to the 32-bit interrupt state of CORE0
CORE1_INTISR	0 x1448	Routing a 32-bit interrupt state to CORE1

Table 11-3 interrupt control bit connection and property configuration

		龙芯 3A1000 处理器用尸手册 第二部	纷
CORE2_INTISR	0 x1450	Routing a 32-bit interrupt state to CORE2	
CORE3_INTISR	0 x1458	Routing a 32-bit interrupt state to CORE3	

Not only do you need an enabling IO controller, specific to the connected IO, but you also need a single interrupt controller if it has its own interrupt controller

Only enable, such as LPC interrupt controller, HT interrupt controller, the specific register configuration can see the register manual.Some interrupt controllers that may need to be enabled are listed below:

/* Enable the IO interrupt controller, LPC (10) and HT (16 \sim 31) */

t=*(volatile unsigned int*)0x90000003ff01428;

(volatile unsigned int)0x90000003ff01428 = t | (0xffff << 16) | (0x1 << 10);

/* Enable LPC interrupt controller*/

(volatile unsigned int)(0xffffffffbfe00200 + 0x00)=0x80000000;

/* the 18-bit interrpt enable bit */

(volatile unsigned int)(0xfffffffbfe00200 + 0x04) = 0x0;

/* Enable HT interrupt, only used 7 interrupt vectors*/
(volatile unsigned int)0x90000EFDFB0000A0 = 0xffffff7f;

11.3 Interrupt to distribute

When an interrupt occurs, the hardware sets the cause register's Excode domain and the associated IP bits. Then into the software processing process, the software queries the Excode domain to determine which type of exception, to choose which exception handling routine to use. If it's the hardware interrupt we're talking about, it goes into the platform-specific interrupt dispatch function. The interrupt distribution function then performs primary interrupt distribution according to the IP bit and IM bit (interrupt masking) of the cause register, and then performs secondary distribution according to the bit field of the interrupt number, and then performs the specific do_IRQ interrupt operation.

At startup, the kernel maps each exception vector to each exception handler routine. There are 32 types of exceptions, and we're just going to talk about exception number 0, which is hardware interrupts.In the trap_init() function, the generic entry address for the exception is set to 0x80000180, which holds a function pointer of expect_vec3_generic, as shown in the kernel arch/ MIPS /kernel/ genex.s.Expect_vec3_generic () functions are entered into the corresponding routine functions based on the Excode code obtained.In trap_init(), the exception code 0, that is, the hardware interrupt, is related to the handle_int 125 龙芯中科技术有限公司 Loongson Technology Corporation Limited

routine. For handle_int, see kernel arch/ MIPS /kernel/ genex.s. Hanle_int eventually jumps to the plat_irq_diapatch() platform-specific interrupt distribution function, which does the interrupt level distribution.

Take 3a-690e as an example, IP0 and IP1 of Cause register correspond to soft interrupt, IP6 corresponds to intercore interrupt, IP7 corresponds to clock interrupt, IP2 corresponds to Cpu serial port and LPC interrupt, and IP3 corresponds to the interrupt of routing to HT1. HT1 is connected to the north bridge 690E, the north bridge is connected to the south bridge SB600, and the interrupts of the north and south Bridges are all controlled by the 8259 on the south bridge. The interrupts of each peripheral such as USB and sata are routed to the 8259 controller, as shown in arch/ MIPS /kernel/fixup_ev3a.c

In the godson3a_smbus_fixup function, where the Register is defined in AMD SB600 Register Reference handmanual. PDF. Pcibios_map_irq function is the scanning and interrupt number assignment of PCI and PCIE slots. Other functions in the file fixup_ev3a.c are mainly the interrupt number assignment of some fixed PCI devices. Details of interrupt allocation and routing to 8259 can be found in the code and notes of the file fixup_ev3a.c.

When the distribution is complete, run the do_IRQ() function and jump to the corresponding specific driver for execution.

12 Configuration and use of serial port

12.1 Optional serial port

As a communication interface, serial port is mainly used for system debugging. The principle of its work is to configure the serial port's baud rate, data bit, stop bit, check bit related registers, so that the serial port can send and receive bytes by bit.

Currently, there are two types of UART available on 3A1000: one is the UART of CPU, including UART0 and UART1. The base address of the serial port register of UART0 is 0xbfe001e0, and the base address of the serial port register of UART1 is 0xbfe001e8, with baud rates of 115200. There is also a class of UART for LPC, whose base address is 0xbff003f8, with a baud rate of 57600. In the setting, the data bits are all set to 8 bits, and the stop bit is 1 bit. There is no check and no flow control.

12.2 PMON's serial port configuration

In pmon, the macro USE_LPC_UART is used to distinguish between the two types of serial ports. The main files involved in setting up pmon are start.S and tgt machdep.c.

Take the CPU's UART0 as an example. First, there is a function to initialize the serial port in pmon's startup.s (see the UART controller section for the use of registers) :

The LEAF (initserial)

Lia0, GS3 UART BASE

Li	T1, t1	
sb	128, 3	// access the frequency division register
li	(a0) t1,	# divider, the highest possible baud rate
sb	0 x12	// frequency division register 1, which stores the lower 8 bits of the frequency division register, and the calculation
	T1, 0 (a0)	formula is
		// working clock /(baud rate *16), in this case, 33M/(115200*16)
li	T1, 0 x0	# divider, the highest possible baud rate
Sb	T1, 1	<pre>// frequency division register 2, store the high 8 bits of frequency division register</pre>
li	(a0) t1,	
sb	t1, 3 3	// the data bit is 8 bits
	(a0)	

Li T1, t1, 0 sb 1 (a0) // no interrupts are used Lit1, 71 Sbt1,2(a0)// set the FIFO control register jrra The nop END (initserial)

GS3_UART_BASE is also defined in the start.s file, 0xbfe001e0. In tgt_machdep.c, the structure ConfigEntry also gives the setting of UART, and the

function ns16550 is also the sending and receiving processing function of UART.

12.3 Serial port configuration for the Linux kernel

In the Linux kernel to a serial port configuration is mainly has three parts: include/asm/serial h, the arch/MIPS/kernel / 8250 - platform. C, the arch/MIPS/lemote ev3a/dbg_io. C.These three configuration files relate to the setting of the serial port base address, depending on the specific use of the serial port. In the kernel, there is also a macro definition CONFIG_CPU_UART in arch/ MIPS /Kconfig to select whether to choose LPC serial port or CPU serial port.Even if the CPU UART is selected, whether it is UART0 or UART1 still needs to check whether the above three files have correctly defined the serial port base address.

In the arch/MIPS/lemote ev3a/dbg_io. C is mainly used in the kernel boot process, the interrupt initialization phase, for the convenience of kernel debugging using a simple serial printing way, including function prom_printf () in the kernel debugging stage will often be used to, it will call putDebugChar () going to output characters one by one to print to the console.Include /asm/serial.h provides a macro definition for the serial driver/serial/8250.c, such as UART0, which USES the CPU, as follows:

 $\# \ define \ STD_SERIAL_PORT_DEFNS \ \ \\$

/ * UART CLK PORT IRQ FLAGS * /

{, baud_base = BASE_BAUD, irq = 58,

\

. Io type = SERIAL IO MEM}

The driver used is the standard 8250/16x50 series serial driver.The serial port interrupt 28 龙芯中科技术有限公司

Loongson Technology Corporation Limited

number is 58, according to the mining

CPU serial port or LPC serial port are used, and the distribution of interrupts is slightly different. The part about serial port interrupts in irq.c is as follows:

... .

} else if (pending & CAUSEF_IP2) {// For LPC

#ifdef CONFIG CPU UART

Do_IRQ (58);

the else

Irq = $(volatile unsigned int^*)(0xffffffffbfe00200 + 0x08);$ If

((irq & 0 x2))

Do_IRQ

(1); If ((irq & 0

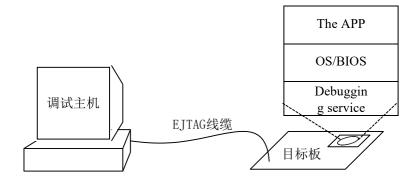
x1000))

Do IRQ (12);

If ((irq & 0 x10))

endif Do_IRQ (58);

If it is the serial port of CPU, directly deal with no. 58 interrupt, but if it is the LPC serial port, it needs to read the relevant bit field of LPC controller to judge whether the interrupt is the keyboard interrupt, the mouse interrupt or the serial port interrupt, and the serial port interrupt number is still no. 58.



13 EJTAG debugging

13.1 Introduce EJTAG

EJTAG(Enhanced JTAG) is a specification defined by MIPS according to the basic construction and function extension of IEEE1149.1 protocol. It is a hardware/software subsystem used to support on-chip debugging. The EJTAG specification is well integrated with the original MIPS architecture by defining a new debugging mode, including dedicated instructions, running modes, and address Spaces. The basic idea of debug mode is to use the exception handling mechanism so that the debugged software cannot be aware of the presence of the debugger.In addition, the processor extends the address space in debug mode to access debug control registers and debug interfaces mapped to memory regions.The following figure shows a common EJTAG debugging system composition, including:

- Debug Host: run the Debug application and control the EJTAG cable
- Target Board: contains the Board card of the debugged chip and provides EJTAG interface

Figure 13-1 EJTAG debugging system

The debug host can use EJTAG line to put the processor on the target board into debug mode to execute the debug service routine. The debugging service has two entries, 0xbfc00480 located in the BIOS and 0xff200200 located in the EJTAG debugging memory interface, which are selected by the debugging host.

The EJTAG specification maps two pieces of the processor's debug mode address space to the debug control register (drseg) and the debug memory interface (dmseg).When the processor performs the debugging service to access the debugging interface, the access requests issued are blocked in the debugging interface.At this point, the debug host is able to detect the memory interface's memory access request and respond to it.In simple terms, the debug service program can access a portion of the memory space located on the debug host.

龙芯 3A1000 处理器用户手册 第二部分

With the memory space controlled by the debugging host, the debugging service can perform almost any imaginable function, because the code of the debugging service program itself can be provided by the debugging host (currently loongson 3A1000 and 2G samples can't get a reference from dmseg, but they can execute memory access instructions).

The PC sampling function of EJTAG specification is also supported in longson 3a1000/2g.

13.2 EJTAG tool

13.2.1 Environment to prepare

- EJTAG wire, parallel port to 14 EJTAG port
- Linux debug host with parallel port and root access
- Add the debug service in PMON

13.2.2 PC sample

Running jtag_1/4/16 on the debug host completes a PC sampling of the processor core. The program suffix refers to the number of processor cores in EJTAG interface, one 2G is 1, one 3A1000 is 4, and four 3A1000 strings together are 16. PC sampling does not require debugging the server.

The PC sampling value in 3a1000/2g is not accurate, and there is jitter. Users should ignore the lower two bits of the sampling result. The real PC pointer in the processor core may be 0~4 instructions behind the program flow of the corresponding instruction of the sampled PC, that is, if the transfer is included, a real PC may fall near the transfer target.

PC sampling should not stand still without a regular cycle or a software-controlled stop clock. If it does, it means the processor is not running properly.

13.2.3 Read/write memory

Run pracc_1/4/16 and specify in the parameters the processor core number, access type, access address, value to write, and so on to perform the debugging service. Its working principle is to initialize a parameter area in the memory space of debugging according to the task to be completed, and control the execution of debugging service by cooperating with the debugging service program. The debug service first saves several registers to the debug host, then runs on these empty registers, reads out the relevant parameters and executes, and finally restores the previously saved registers.

It is important to note that this functionality requires that the processor core performing the debugging service also be able to execute instructions. If the operation is abnormal, there may be a hardware failure.

13.2.4 Execute instructions

Read the meaning of the bfc00480| value

```
cpu@ubuntu:~/ejtag$ ./pracc_4 0 0xfffffffbfc00480 d r
target = 0, addr = fffffffbfc00480, dword read
breaking ...
ctrl = 00049000
stat = 00008008
pracc write, size=3, address = 00000000000001f, value = fffffffff80e1060 |t3
pracc write, size=3, address = 000000000000027, value = fffffff8000b899 |t4
pracc write, size=3, address = 000000000000037, value = fffffff80110000 |t6
pracc write, size=3, address = 00000000000003f, value = fffffff800f7428 |t7
pracc write, size=3, address = 0000000000000047, value = 00000000340000e0|status
pracc write, size=3, address = 000000000000067, value = fffffff80120000 |a1
pracc write, size=3, address = 00000000000006f, value = 00000000000000 |a2
pracc read, size=3, address = 000000000000207, value = fff3ffffbfc00480
pracc write, size=3, address = 000000000000107, value = fff3ffffbfc00480
pracc write, size=3, address = 000000000000107, value = fffffffbfc00480
pracc write, size=3, address = 0000000000000020f, value = 3c08ff2040a8f800
return 3c08ff2040a8f800
   Write bfc00480.
cpu@ubuntu:/home/cpu/ejtag$ ./pracc_4 0 0xfffffffbfc00480 d w 0x0
target = 0, addr = fffffffbfc00480, dword write with 0000000000000000
press <enter> to confirm..
breaking ...
ctrl = 00049000
stat = 60008008
pracc write, size=3, address = 00000000000000f, value = 00000000000000
pracc write, size=3, address = 0000000000000017, value = 000000000000000
pracc write, size=3, address = 000000000000001f, value = ffffffff80e1060
pracc write, size=3, address = 000000000000027, value = ffffffff8000b899
pracc write, size=3, address = 0000000000002f, value = ffffffffffffff
pracc write, size=3, address = 000000000000037, value = ffffffff80110000
pracc write, size=3, address = 00000000000003f, value = ffffffff800f7428
pracc write, size=3, address = 0000000000000047, value = 00000000340000e0
pracc write, size=3, address = 000000000000004f, value = 0000000080034483
pracc write, size=3, address = 0000000000000057, value = 0000000040008000
pracc write, size=3, address = 0000000000005f, value = ffffffff8ec08c00
pracc write, size=3, address = 000000000000067, value = ffffffff8ec08400
pracc write, size=3, address = 00000000000006f, value = 000000000000000
pracc read, size=3, address = 00000000000000207, value = 000000000000000
pracc write, size=3, address = 0000000000000107, value = 000000000000000
pracc read, size=3, address = 000000000000217, value = fff3ffffbfc00480
```


龙芯 3A1000 处理器用户手册 第二部分 pracc write, size=3, address = 0000000000000107, value = 0000000000000000 pracc write, size=3, address = 000000000000107, value = fffffffbfc00480 pracc write, size=3, address = 00000000000021f, value = 000000000000000 pracc read, size=3, address = 000000000000000, value = 000000000000000 pracc read, size=3, address = 0000000000000017, value = 00000000000000000 pracc read, size=3, address = 00000000000001f, value = ffffffff80e1060 pracc read, size=3, address = 0000000000000027, value = ffffffff8000b899 pracc read, size=3, address = 000000000000002f, value = fffffffffffffffffff pracc read, size=3, address = 000000000000037, value = ffffffff80110000 pracc read, size=3, address = 0000000000003f, value = fffffff800f7428 debug service code annotations # start. S / * the Debug exception * / Bfc00480 align7 / * * / COP 0 DESAVE \$31 . Set mips64 // save the context Dmtc0t0, COP 0 DESAVE// saves a register for the dmseg pointer Luit0, 0 xff20 / / Sdt1, 0 x08 (t0) / / pressure stack Sdt2, 0 x10 (t0) Sdt3, 0 x18 (t0) Sdt4, 0 x20 (t0) Sdt5, 0 x28 (t0) Sdt6, 0 x30 (t0) Sdt7, 0 x38 (t0) Dmfc0t1, COP 0 STATUS REG// outputs several cp0 registers Sdt1, 0 x40 (t0) Dmfc0t1, COP 0 CONFIG sdt1, 0 x48 (t0) Dmfc0t1, COP 0 CAUSE REG sdt1, $0 \times 50 (t0)$ Sda0, 0x58(t0)// other registers of interest Sda1, 0 x60 (t0) Sda2, 0 x68 (t0) # define t19 # define t210 # define t311 # define t412 \#define dextu(dest, SRC, MSBD, DLSB) \ The word 6) |(0 x2))\#define dinsu(dest, SRC, DMSB, DLSB) \ Word (26) $(0 \times 1f \le ((SRC \& 0 \times 1f) \le 21) | ((dest \& 0 \times 1f) \le 16) | (((DMSB) \& 0 \times 1f) \le 16) | ((0 \times 1f) \le 16) | ((0$ <<11) | (((DLSB) & 0 x1f) < < 6) | (0 x6))

// exec_main Ldt1, 0x200(t0)// read parameter addr/size/count beqzt1, read_end

Sdt1, 0 x100 (t0) / / debug... Dextu (_t2_t1, 2-1, 48-32)

龙芯 3A1000 处理器用户手册 第二部分

sd T2, 0 x100 (t0) // the debug... Dextu (t3, t1, 9-1, 50-32) sd t3, 0x100(t0) // the debug... Dextu (t4, t1, 1-1, 47-32) // the debug... t4, 0x100(t0) sd // sign bit the dsubu T4, \$0, t4 extend Dinsu (t1, t4, 58-32, 48-32) // address back sdt1, 0x100(t0)// debug... // case t2 0,1,2,3-> lb,lh,lw,ld begzlt2, 1f Lbt5, 0x0(t1) addiut2, t2, minus 1 Begzlt2, 1 f Lht5, 0x0(t1)addiut2, t2, -1 Beqzlt2, 1 f Lwt5, 0x0(t1) addiut2, t2, -1 Ldt5, 0 x0 (t1) Sdt5, 0x208(t0)// reads return value Read end: //write Ldt1, 0x210(t0)// addr/size/count beqzt1, write end Ldt5, 0x218(t0)// write parameter Sdt1, 0 x100 (t0) / / debug... Dextu (t2 t1, 2-1, 48-32) Sdt2, 0 x100 (t0) / / debug... Dextu (t3 t1, 9-1, 50-32) Sdt3, 0 x100 (t0) / / debug... Dextu (t4 t1, 1-1, 47-32) Sdt4, 0 x100 (t0) / / debug... Dsubut4, \$0, t4// sign bit extend dinsu(t1, t4, 58-32, 48-32) // address back Sdt1, 0 x100 (t0) / / debug... // case t2 0,1,2,3-> sb,sh,sw,sd beqzlt2, 1f Sbt5, 0x0(t1) addiut2, t2, -1 Beqzlt2, 1 f Sht5, 0x0(t1) addiut2, t2, -1 Beqzlt2, 1 f Swt5, 0x0(t1)

1:

addiut2, t2, -1

Sdt5, 0 x0 (t1)

1: Sdt5, 0x218(t0)// write response Write_end:

// restor	// restore context		
ld	T1, 0 x08 (t0)		
ld	T2, 0 x10 (t0)		
L	T4, t3, 0 x18		
d	(t0) 0 x20		
ld	(t0)		
ld	T5, 0 x28 (t0)		
L	T7 has t6, 0		
d	x30 (t0), 0		
ld	x38 (t0)		
dmfc0	T0, COP_0_DESAVE		
deret			

//return stack

// debug exception returned

13.2.5 Online GDB debugging

Due to the bugs in the current sample, the online debugging function needs to make some changes in the common MIPS debugging platform and add the corresponding debugging service program. This functionality has not yet been implemented.

14 Configure the translation in the address window

Loongson 3A1000 adopts a two-stage crossover switch structure, and the two-stage crossover switch window can be configured separately to control sending a specific address to a specific receiving end for processing. In addition, the HyperTransport controller also has internal control over the chip's internal and external accessible address Windows.

14.1 First and second level cross switch address window configuration method

Each primary port on the crossover switch has eight address Windows to configure.Each address window is composed of three 64-bit registers, BASE, MASK and MMAP. BASE is aligned with K bytes, that is, the space divided by each address window is at least 1KB. MASK is the window MASK; MMAP is the mapped address of the window; meanwhile, [2:0] represents the number of the corresponding target slave port; MMAP[4] represents the allowed reference; MMAP[5] represents the allowed block read; MMAP[7] represents the enabled window.

The judgment of window hit is as follows:

Main port address & MASK == BASE

The formula of translation from port address after mapping is as follows: Slave port address = primary port address & (~(MASK))|MMAP & MASK

Note that MMAP[4] and MMAP[5] must be 1 for a level 1 crossover switch. For secondary cross-switches, slave ports that do not allow Cache access or referential access can set MMAP[4] or MMAP[5] to 0.

In addition, if a level 1 cross-switch is used to map the level 2 Cache address, the mapped address, i.e., the "slave port address", must be the same as the pre-mapped address, i.e., the "primary port address".Configurations mapped to HyperTransport addresses and secondary cross-switches are not subject to this constraint.

14.2 Level 1 cross switch address window

The level 1 crosswalk has the default route setting, which is not displayed by the address window configuration register, and only addresses that are not hit by any address window are interpreted by the default route.

For the primary port of the first-level crossover switch, that is, the primary device side that issues the

龙芯 3A1000 处理器用户手册 第二部分

request, it includes the following:

- 0 Primary port no. : processor core 0
- 1 Primary port no. 1: processor core 1
- 2 Main port no. : processor core 2
- 3 Main port no. : processor core 3
- 6 Primary port no. : HyperTransport 0
- 7 Primary port no. 1: HyperTransport 1

For the slave port of the first-level crossover switch, that is, the slave device side that issues the request, it includes the following:

- 0 Number from port: level 2 Cache 0
- 1 Number from port: level 2 Cache 1
- **2** Number from port: level 2 Cache 2
- **3** Number from port: level 2 Cache 3
- 6 Port number: HyperTransport 0
- 7 Port number: HyperTransport 1

The address window configuration of each primary port is independent of each other, with eight configurable Windows each.Configuration Windows take precedence

Descending, starting from configuration window 0, the first hit window routes the address. The priority order is as follows:

The highest	Configuration window 0	
	Configuration window 1	
	Configuration window 2	
	Configuration window 3	
	Configuration window 4	
	Configuration window 5	
	Configuration window 6	
	Configuration window 7	
The minimum	System default window	See the table below

The system default window takes effect only if all eight configuration Windows do not hit a particular address. That is to say, before the configuration window is configured, all read and write requests will be routed according to the "system default window". The "system default window" is explained in the following table:

龙芯 3A1000 处理器用户手册 第二部分

The starting address	End address	The target	instructions
0 xn000_0000_0000	0 xnfff_ffff_ffff	HyperTransport 0	When n! = when NODE_ID
0 x0000_0000_0000	0 x0bff_ffff_ffff	Level 2 Cache	Depending on the configuration
			of scid_sel, you choose which
			two are mapped to the different
			four levels
			In the Cache.See section 2.4 of the user's manual for details.
			For example,
			When $scid_sel = 0$,
			0x000: route to level 2 Cache 0
			0x020: route to level 2 Cache 1
			0x040: route to level 2 Cache 2
			0x060: route to level 2 Cache 3
			When scid_sel = 2,
			0x000: route to level 2 Cache 0
			0x400: route to level 2 Cache 1
			0x800: route to level 2 Cache 2
			0xc00: route to level 2 Cache 3
0 x0c00_0000_0000	0 x0dff_ffff_ffff	HyperTransport 0	
0 x0e00_0000_0000	0 x0fff_ffff_ffff	HyperTransport 1	

14.3 Level 1 cross switch address window configuration timing

The configuration of the address window of the level 1 cross switch is very strict for the window configuration that needs to route to the level 2 Cache request. Before and after the configuration, the data consistency between the level 2 Cache and the level 1 Cache should be guaranteed. In other words, the following situations are not allowed after the configuration:

There is a backup in the secondary Cache before configuration, and a backup in the primary Cache, but after configuration, requests for this backup address are routed to other slave ports.

This will eventually result in a level 1 or 2 Cache data mismatch. Therefore, the best time to configure the various Windows is before the system performs a Cache operation. In other cases if you need to configure a level 1 cross switch you have to make sure that this does not happen.

Note that changing the value of scid_sel after the Cache operation itself can cause this inconsistency, because the address space has changed with the mapped second-level Cache number.

14.4 Secondary cross-switch address window

The secondary crosswalk also has default routing, and all addresses that are not hit by

any address window are routed to slave port 3, the system configuration register space.

For the primary port of the secondary crosswalker, that is, the primary device end of the outgoing request, it includes the following:

- Primary port 0: level 2 Cache 0-3
- No. 1 primary port: PCI primary port

For the slave port of the secondary cross-switch, that is, the slave device side that issues the request, it includes the following:

- Port 0: memory controller 0
- No. 1 slave port: memory controller 1
- No. 2 slave port: low-speed device interface, including PCI slave port, LPC interface,
 UART interface, SPI interface and PCI register space
- No. 3 slave port: system configuration register

Compared with the first-level crossover switch, the second-level crossover switch has a weaker limit on the configuration of the address window, and the software is mainly responsible for ensuring that there will be no errors in the access content after the reconfiguration of the address window.

For example, the system address 0x0000_0000 -- 0x0000_0FFF_FFFF was previously mapped to 0x0000_0000_0000 -- 0x0000_0FFF_FFFF on memory controller 0, and some read and write operations were performed using this address to store some valid data. After the address window is configured, the system address 0x0000_2000_0000 is added -- 0x0000_2FFF_FFFF maps to 0x0000_0000_0000 -- 0x0000_0FFF_FFFF of memory controller 0.An access to 0x0000_2000_0000 at this time will result in the original enabled The value stored at address 0x0000_0000_0000_0000.

During this process, it is important to note that the contents of the second-level Cache are not changed according to the address window configuration, that is, if the original write access to 0x0000_0000_0000 is in Cache mode, it is likely that the access to 0x0000_20000_0000 will get an old value after the address window is updated.

14.5 Special handling of address window configuration

龙芯 3A1000 处理器用户手册 第二部分

Since the core of the loongson 3A1000 processor will be exposed to some guesswork, the guesswork may fall into any address space. However, not all devices are allowed to be accessed by guess, especially for PCI devices, a guess read access is likely to cause the destruction of a "read clear" register data, and it may also cause some illegal access to the address can not return normally, resulting in processor crash.

We prevent this by configuring the first - and second-level cross-switches, disabling some unguessable access to the address space. For example, we prevent guest-access to the PCI space $0x1000_0000$ by setting the secondary crossover switch as follows, but allow guest-access to $0x1FC0_0000$ at the same time.

	The BASE	MASK	MMAP
Windo w 0	0 x0000_0000_1000_0000	0 xffff_ffff_f000_0000	0 x0000_0000_1000_0082
Windo w 1	0 x0000_0000_1fc0_0000	0 xffff_ffff_fff0_0000	0 x0000_0000_1fc0_00f2

For a level 1 crossover switch, the mapping to the level 2 Cache address is also affected by scid sel, and the two should not conflict.

If you need to map an address space to a second-level Cache, consider the second-level Cache hash. This maps the address space to each level of the Cache. Since each address window can correspond to only one slave port, mapping the second-level Cache requires four address window mappings.

In addition, since the address window has a minimum unit of 1KB, you need to set the value of scid_sel to more than 2 if you want to configure the second-level Cache space at this time, namely, hash the address with more than 10 bits. In the example in the following table, a level 1 cross-switch is configured to map all address accesses issued by the processor core to a level 2 Cache.

Scid	sel	=	2

	The BASE	MASK	MMAP
Windo w 4	0 x0000_0000_0000_0000	0 x0000_0000_0000_0c00	0 x0000_0000_0000_00f0
Windo w 5	0 x0000_0000_0000_0400	0 x0000_0000_0000_0c00	0 x0000_0000_0000_04f1
Windo w 6	0 x0000_0000_0000_0800	0 x0000_0000_0000_0c00	0 x0000_0000_0000_08f2
Windo ws 7	0 x0000_0000_0000_0c00	0 x0000_0000_0000_0c00	0 x0000_0000_0000_0cf3

From this window we know that any address that has not been hit in window 0-3 will be hit in the four Windows, and according to the

Scid_sel hashes the entire address space into the four correct second-level caches.

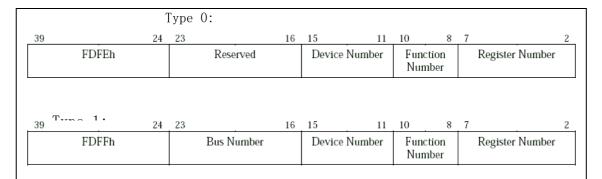
14.6 HyperTransport address window

The HyperTransport controller can not only send read and write access outward, but also realize DMA access of external devices to the internal memory of the processor. The two access address Spaces are independent of each other, as described below.

14.6.1 Processor core external access address window

There are four HyperTransport controllers in the chip, HT0_LO, HT0_HI, HT1_LO and HT1_HI. Among them, HT0_LO shares a physical interface with HT0_HI, and HT1_LO shares a physical interface with HT1_HI. When the chip pin HTx_8x2 is set low, only HTx_LO is visible to users, while the address space of HTx_HI is invalid. According to the default route of the first-level crossover switch, the address space of each controller is as follows:

Base address	End address	The size of the	define	instructions
0 x0c00_0000_0000	0 x0cff_ffff_ffff	One Tbytes	HT0_LO window	
0 x0d00_0000_0000	0 x0dff_ffff_ffff	One Tbytes	HT0_HI window	HT0_8x2 =1
0 x0e00_0000_0000	0 x0eff_ffff_ffff	One Tbytes	HT1_LO window	
0 x0f00_0000_0000	0 x0fff_ffff_ffff	One Tbytes	HT1_HI window	HT1_8x2 =1


Each HyperTransport controller has a 40-bit address space, according to the HyperTransport protocol, which will this

Base address	End address	The size of the	define
0 x00_0000_0000	0 xfc_ffff_ffff	1012 Gbytes	MEM space
0 xfd_0000_0000	0 xfd_f7ff_ffff	3968 Mbytes	reserve
0 xfd_f800_0000	0 xfd_f8ff_ffff	16 Mbytes	interrupt
0 xfd_f900_0000	0 xfd_f90f_ffff	1 Mbyte	PIC interrupt response
0 xfd_f910_0000	0 xfd_f91f_ffff	1 Mbyte	System information
0 xfd_f920_0000	0 xfd_faff_ffff	30 Mbytes	reserve
0 xfd_fb00_0000	0 xfd_fbff_ffff	16 Mbytes	HT controller configuration space
0 xfd_fc00_0000	0 xfd_fdff_ffff	32 Mbytes	I/O space
0 xfd_fe00_0000	0 xfd_ffff_ffff	32 Mbytes	HT bus configuration space
0 xfe_0000_0000	0 xff_ffff_ffff	8 Gbytes	reserve

The 40-bit addresses are divided into the following:

Among them, MEM space, I/O space and HT bus configuration space correspond to the three access forms on the traditional PCI space, namely PCI MEM access, PCI IO access and PCI configuration access. HT controller configuration space mainly provides HT interrupt vector and internal window configuration and other functions.

HT bus configuration space, according to the external device "bus number", "device number", "function number", "register offset" to the following rules for direct read and write access to the address.

14.6.2 External devices access the address window on the processor chip memory DMA

To protect the memory data in the processor chip, the HyperTransport controller provides a set of Windows for DMA access to external devices, namely the "receive address window" in section 9.5.4 of the user manual, and only the DMA places that fall into this set of Windows

The address is actually operated on in the memory space of the chip, otherwise it will give an error reply to the peripheral that initiated the access.

This set of Windows is determined by the following parameters. The window hit rule is as follows:

Hit = ht_rx_image_en &&

(DMA address &ht_rx_image_mask)==(ht_rx_image_base& ht_rx_image_mask)

Address_out = ht_rx_image_trans_en?

Ht_rx_image_trans | DMA address; ht_rx_image_mask: DMA address the priority of different address Windows decreases in turn.

14.6.3 Low speed device address window

Low-speed device space includes PCI, LPC, UART, SPI and other devices. The internal address of this space is divided as follows:

Address name	Address range	The size of the
LPC Memory	0 x1dff_ffff x1c00_0000-0	32 MByte
LPC Boot	0 x1fcf_ffff x1fc0_0000-0	1 MByte
PCI I/o space	0 x1fdf_ffff x1fd0_0000-0	1 MByte
PCI controller configuration space	0 x1fe0_00ff x1fe0_0000-0	256 Byte
IO register space	0 x1fe0_01df x1fe0_0100-0	256 Byte
UART 0	0 x1fe0_01e7 x1fe0_01e0-0	8 Byte
UART 1	0 x1fe0_01ef x1fe0_01e8-0	8 Byte
SPI	0 x1fe0_01ff x1fe0_01f0-0	16 Byte
LPC Register	0 x1fe0_02ff x1fe0_0200-0	256 Byte
PCI configuration space	0 x1fe8_ffff x1fe8_0000-0	64 KByte
LPC I/O	0 x1ff0_ffff x1ff0_0000-0	64 Kbyte
PCI MEM	other	

14.7 Address space configuration example analysis

The following sections describe the configuration of PMON facing a two-stage crossover switch. In the following example, the HT device is connected using the HT1 interface and the HT0 interface is suspended.

14.7.1 A level 1 cross switch example 1

	The BASE	MASK	MMAP
Windo w 0	0 x0000_0000_1800_0000	0 xffff_ffff_fc00_0000	0 x0000_0efd_fc00_00f7
Windo w 1	0 x0000_0000_1000_0000	0 xffff_ffff_f800_0000	0 x0000_0e00_1000_00f7
Windo w 2	0 x0000_0000_1e00_0000	0 xffff_ffff_ff00_0000	0 x0000_0e00_0000_00f7
Windo w 3			
Windo w 4	0 x0000_0c00_0000_0000	0 xffff_fc00_0000_0000	0 x0000_0c00_0000_00f7
Windo w 5			
Windo w 6	0 x0000_1000_0000_0000	0 x0000_1000_0000_0000	0 x0000_1000_0000_00f7
Windo ws 7	0 x0000_2000_0000_0000	0 x0000_2000_0000_0000	0 x0000_2000_0000_00f7

One configuration of a level 1 crossover switch is as follows:

Let's analyze what each configuration window does.

Window 0, converts the address of 0x1800_0000 to 0x0000_0EFD_FC00_0000 and routes to the HT1 controller. In this way, the HT IO space and HT configuration space that originally needed 64-bit address to be accessed can be mapped directly with 32-bit address space, and these Spaces can be accessed with 32-bit address after mapping.

	Pre-conversion address	Converted address	instructions
Address 0	0 x0000_0000_18xx_xxxx	0 x0000_0efd_fcxx_xxxx	HT I/o space
Address 1	0 x0000_0000_19xx_xxxx	0 x0000_0efd_fdxx_xxxx	
Address 2	0 x0000_0000_1axx_xxxx	0 x0000_0efd_fexx_xxxx	HT configuration space: Type 0
Address 3	0 x0000_0000_1bxx_xxxx	0 x0000_0efd_ffxx_xxxx	HT configuration space: Type 1

Window 1, converts the address of 0x1000_0000 to 0x0000_0E00_1000_0000 and routes to the HT1 controller. This actually maps parts of the HT MEM space that previously needed to be accessed using 64-bit addresses directly using 32-bit address Spaces, which can then be accessed using 32-bit addresses. Although the entire HT MEM space is not mapped, up to 128MB of HT MEM space can already be used here.

	Pre-conversion address	Converted address	instructions
Address	0 x0000_0000_1xxx_xxxx	0 x0000_0e00_1xxx_xxxx	HT MEM space

0

龙芯 3A1000 处理器用户手册 第二部分

Window 2, converts the address 0x1E00_0000 to 0x0000_0E00_0000_0000 and routes to the HT1 controller. In this way, the minimum 16MB address of HT MEM space that previously required 64-bit address access is mapped directly using 32-bit address space, and these Spaces can be accessed using 32-bit address after mapping.the

Therefore, this part of the address should be mapped, because some traditional devices need to use this reserved space for fixed decoding, such as video card devices and so on.

	Pre-conversion address	Converted address	instructions
Addres 0	s 0 x0000_0000_1exx_xxxx	0 x0000_0e00_1exx_xxxx	HT MEM space is 16MB low

The setting of the previous Windows is to directly use 32-bit address in PMON, and to achieve the access of HT space and HT device without TLB conversion, so as to facilitate the compatible design of the software version. In Linux system, since 64-bit address can be directly used for access, it is not required to convert these addresses. However, it is important to note that, based on how Linux handles HT MEM Spaces, the transformation of HT MEM Spaces is still required to simplify access to 32-bit addressing peripherals.

The remaining Windows are used to route all addresses of unresponsive devices to the HT1 controller, which responds. These addresses do not appear spontaneously during normal program execution, but due to the processor core's guess execution, any access to the address may occur, which may cause the processor to crash if the correct response is not obtained. The HT controller in loongson 3A1000 can correctly identify and handle such access. So you need to route all of these potential guess accesses to the HT controller.

Addresses other than these exceptions are routed to the secondary Cache using the default routing method, which is then forwarded to the secondary cross-switch.

14.7.2 A level 1 cross switch example 2

Another configuration of the level 1 crossover switch is as follows:

Scid	sel	= 2	,

	The BASE	MASK	MMAP
Windo w 0	0 x0000_0000_1800_0000	0 xffff_ffff_fc00_0000	0 x0000_0efd_fc00_00f7
Windo w 1	0 x0000_0000_1000_0000	0 xffff_ffff_f800_0000	0 x0000_0e00_1000_00f7
Windo w 2	0 x0000_0000_1e00_0000	0 xffff_ffff_ff00_0000	0 x0000_0e00_0000_00f7
Windo w 3	0 x0000_0e00_0000_0000	0 xffff_fe00_0000_0000	0 x0000_0e00_0000_00f7
Windo w 4	0 x0000_0000_0000_0000	0 x0000_0000_0000_0c00	0 x0000_0000_0000_00f0
Windo w 5	0 x0000_0000_0000_0400	0 x0000_0000_0000_0c00	0 x0000_0000_0000_04f1
Windo w 6	0 x0000_0000_0000_0800	0 x0000_0000_0000_0c00	0 x0000_0000_0000_08f2
Windo ws 7	0 x0000_0000_0000_0c00	0 x0000_0000_0000_0c00	0 x0000_0000_0000_0cf3

龙芯中科技术有限公司 Loongson Technology Corporation Limited

In this configuration, the first three Windows are the same as the previous configuration, which I won't cover here.

Window 3 routes all 0x0000_0E00_0000_0000 addresses to the HT1 controller, which would be the default route. This is configured here because in Windows 4-7, all addresses are routed to four different level 2 caches, so the default route is no longer valid.

The configuration of Windows 4-7 is explained in section 1.5, the most important of which is that the routing to the secondary caches should be consistent with the configuration of scid_sel.The purpose of this configuration is the same as the first configuration, to prevent some address that is not responding to the device from causing the processor to crash.

14.7.3 Example 1 of a two-level cross switch

One configuration of the secondary crosswise switch is as follows. Only one memory controller is used in this configuration. Use on memory

	The BASE	MASK	MMAP
Windo w 0	0 x0000_0000_1000_0000	0 xffff_ffff_f000_0000	0 x0000_0000_1000_0082
Windo w 1	0 x0000_0000_1fc0_0000	0 xffff_ffff_fff0_0000	0 x0000_0000_1fc0_00f2
Windo w 2	0 x0000_0000_0000_0000	0 xffff_ffff_f000_0000	0 x0000_0000_0000_00f0
Windo w 3			
Windo w 4			
Windo w 5			
Windo w 6			
Windo ws 7			

256 MB of space.

Window 0 opens uncache and non-fetchable access to the low-speed device space, so that you can ensure that any access that falls into this window is the access your application needs to make.

Window 1 opens all types of access to the BOOT space in the low-speed device space, that is, normal access, including cache access and picker access.

Window 2 opens the lower 256MB space on memory controller 0, allowing all types of access.All other accesses are routed to the system configuration register space as the default route.

Combined with the configuration of a level 1 cross switch in 1.8.1, the full chip address space is obtained as follows:

	The starting address	End address	instructions
Address 0	0 x0000_0000_0000_0000	0 x0000_0000_0fff_ffff	Memory controller 0
Address 1	0 x0000_0000_1000_0000	0 x0000_0000_17ff_ffff	HT1 MEM space
Address 2	0 x0000_0000_1800_0000	0 x0000_0000_19ff_ffff	HT1 IO space
Address 3	0 x0000_0000_1a00_0000	0 x0000_0000_1bff_ffff	HT1 configuration space
Address 4	0 x0000_0000_1c00_0000	0 x0000_0000_1dff_ffff	LPC Memory
Address five	0 x0000_0000_1fc0_0000	0 x0000_0000_1fcf_ffff	LPC Boot

Address 6	0 x0000_0000_1fd0_0000	0 x0000_0000_1fdf_ffff	PCI I/o space
Address 7	0 x0000_0000_1fe0_0000	0 x0000_0000_1fe0_00ff	PCI controller configuration space
Address 8	0 x0000_0000_1fe0_0100	0 x0000_0000_1fe0_01df	IO register space
Address 9	0 x0000_0000_1fe0_01e0	0 x0000_0000_1fe0_01e7	UART 0
Address 10	0 x0000_0000_1fe0_01e8	0 x0000_0000_1fe0_01ef	UART 1
Address 11	0 x0000_0000_1fe0_01f0	0 x0000_0000_1fe0_01ff	SPI
Address 12	0 x0000_0000_1fe0_0200	0 x0000_0000_1fe0_02ff	LPC Register
Address 13	0 x0000_0000_1fe8_0000	0 x0000_0000_1fe8_ffff	PCI configuration space
Address 14	0 x0000_0000_1ff0_0000	0 x0000_0000_1ff0_ffff	LPC I/O
Address 15	0 x0000_0c00_0000_0000	0 x0000_0fff_ffff_ffff	HT1 controller, various Spaces
Address 16	0 x0000_1000_0000_0000	0 x0000_3fff_ffff_ffff	HT1 controller, guess space
Address the 17th	Other address		System configuration space

14.7.4 Example 2 of a secondary cross switch

Another configuration of the secondary crosswise switch is as follows. Two memory controllers are used in this configuration. Each memory controller USES 1GB of memory space

-	The BASE	MASK	MMAP
Window O	0 x0000_0000_1000_0000	0 xffff_ffff_f000_0000	0 x0000_0000_1000_0082
Window 1	0 x0000_0000_1fc0_0000	0 xffff_ffff_fff0_0000	0 x0000_0000_1fc0_00f2
Window 2	0 x0000_0000_0000_0000	0 xffff_ffff_f000_0000	0 x0000_0000_0000_00f0
Window 3			
Window 4	0 x0000_0000_8000_0000	0 xffff_ffff_c000_0000	0 x0000_0000_0000_00f0

Window 0 opens uncache and non-fetchable access to the low-speed device space, so that you can ensure that any access that falls into this window is the access your application needs to make.

Window 1 opens all types of access to the BOOT space in the low-speed device space, that is, normal access, including cache access and picker access.

Window 2 opens the lower 256MB space on memory controller 0, allowing all types of access.

4 opened the window all the 1 gb of space on the memory controller 0, 0 x8000_0000-0 xbfff_ffff address system used for access, it is important to note that the system zero

x8000_0000-0 x8fff_ffff x0000_0000 space and 0-0 x0fff_ffff space collocated, in order to guarantee the correctness of the data, the system software must make the pledge that we shall use only one address to access this for Linux, for example,0x0000_0000 on the system must be used

The address of 0x0FFFF_FFFF, then, for this space, 0x8000_0000-8fff_ffff access is Prohibited.

Window 6 opens all 1GB of space on memory controller 1, which is accessed by the system using 0xC0000 0000 -- 0xFFFF FFFF.

Combined with the configuration of the one-level cross-switch in 1.8.2, the full chip address space distribution is obtained as follows:

	The starting address	End address	instructions
Address 0	0 x0000_0000_0000_0000	0 x0000_0000_0fff_ffff	Memory controller 0
Address 1	0 x0000_0000_1000_0000	0 x0000_0000_17ff_ffff	HT1 MEM space
Address 2	0 x0000_0000_1800_0000	0 x0000_0000_19ff_ffff	HT1 IO space
Address 3	0 x0000_0000_1a00_0000	0 x0000_0000_1bff_ffff	HT1 configuration space
Address 4	0 x0000_0000_1c00_0000	0 x0000_0000_1dff_ffff	LPC Memory
Address five	0 x0000_0000_1fc0_0000	0 x0000_0000_1fcf_ffff	LPC Boot
Address 6	0 x0000_0000_1fd0_0000	0 x0000_0000_1fdf_ffff	PCI I/o space
Address 7	0 x0000_0000_1fe0_0000	0 x0000_0000_1fe0_00ff	PCI controller configuration space
Address 8	0 x0000_0000_1fe0_0100	0 x0000_0000_1fe0_01df	IO register space
Address 9	0 x0000_0000_1fe0_01e0	0 x0000_0000_1fe0_01e7	UART 0
Address 10	0 x0000_0000_1fe0_01e8	0 x0000_0000_1fe0_01ef	UART 1
Address 11	0 x0000_0000_1fe0_01f0	0 x0000_0000_1fe0_01ff	SPI
Address 12	0 x0000_0000_1fe0_0200	0 x0000_0000_1fe0_02ff	LPC Register
Address 13	0 x0000_0000_1fe8_0000	0 x0000_0000_1fe8_ffff	PCI configuration space
Address 14	0 x0000_0000_1ff0_0000	0 x0000_0000_1ff0_ffff	LPC I/O
Address 15	0 x0000_0000_8000_0000	0 x0000_0000_bfff_ffff	Memory controller 0
Address 16	0 x0000_0000_c000_0000	0 x0000_0000_ffff_ffff	Memory controller 1
Address the 17th	0 x0000_0e00_0000_0000	0 x0000_0fff_ffff_ffff	HT1 controller, various Spaces
Address 18	Other address		System configuration space

15 System memory space distribution design

15.1 System memory space

Within the godson 3 a1000 processor has two memory controller, if able to address space distribution on the two memory controller, the system average access delay and average access bandwidth will bring benefit, but is limited by cross number configuration window switch on, certain rules must be taken to address the space distribution methods to make certain designs.

Based on the above considerations, the following rules can be used to design the memory address space in order to maintain the different memory space sizes of the Linux system and to ensure that the memory space distribution is simple and beautiful.Of course, you can also customize the memory space distribution rules according to the needs of the system designer.

- (1) Regardless of memory size, 0x0000_0000-0x0FFF_FFFF must be kept at the lower 256MBSpace;
- (2) To set aside the necessary direct access address space for the IO device, 0x1000_0000 0x1FFF_FFF

Reserve the address space not used as a space;

(3) Therefore, the rest of 1GB and above memory space is defined according to the following formula:

Base = Size + 0x1000 0000

Limit = Size + size-1

Where, Base and Limit are the Base address and high address of this space

respectively, and Size is the Size of all memory.

For example, if the memory size is 1GB, the address space in the system is stored in the following table:

	The starting address	End address	instructions
Address 0	0 x0000_0000_0000_0000	0 x0000_0000_0fff_ffff	0-256 MB
Address 1	0 x0000_0000_5000_0000	0 x0000_0000_7fff_ffff	256 MB, 1 gb

If the memory size is 2GB, the address space stored in the system is shown in the following table:

	The starting address	End address	instructions
Address 0	0 x0000_0000_0000_0000	0 x0000_0000_0fff_ffff	0-256 MB
Address 1	0 x0000_0000_9000_0000	0 x0000_0000_ffff_ffff	256 MB to 2 gb

If the memory size is 4GB, the address space stored in the system is shown in the following table:

	The starting address	End address	instructions	
--	----------------------	-------------	--------------	--

Address 0	0 x0000_0000_0000_0000	0 x0000_0000_0fff_ffff	0-256 MB
Address 1	0 x0000_0001_1000_0000	0 x0000_0001_ffff_ffff	256 MB - 4 gb

And so on.

In addition, to make the two memory controllers interleavable, we configure the memory address space on the secondary crosswise switch as follows.

instructions		window		
Used to enable access to the BIOS space		0	The BASE	0 x0000000_1fc00000
			MASK	0 xfffffff_fff00000
			MMAP	0 x0000000_1fc000f2
Used to enable a	ccess to a PCI space	1	The BASE	0 x0000000_1000000
(only non-referen	ntial UNCACHE access is		MASK	0 xffffffff_f0000000
allowed)			MMAP	0 x0000000_1000082
Used to enable	MC0 single channel	2	The BASE	0 x0000000_0000000
access to the	256 MB and above		MASK	0 xfffffff_f0000000
lower 256M			MMAP	0 x0000000_00000f0
space of the		3		
chip	Dual channel	2	The BASE	0 x0000000_0000000
	256MB x 2 and above		MASK	0 xfffffff_f0000400
	(interleaved with address [10])		MMAP	0 x0000000_00000f0
		3	The BASE	0 x0000000_0000400
			MASK	0 xfffffff_f0000400
			MMAP	0 x0000000_00000f1
	MC0 single channel 256M	4		
		5		
		6		
		7		
Used to enable	MC0 single channel	4	The BASE	0 x0000000_20000000
access to the	512M		MASK	0 xfffffff_f000000
memory high			MMAP	0 x0000000_100000f0
address space		5		
		6		
		7		
	MC0 single channel 1G	4	The BASE	0 x00000000_40000000
			MASK	0 xffffffff_c0000000
			MMAP	0 x0000000_00000f0
		5		
		6		
		7		

	1		1
MC0 single channel 2G	4	The BASE	0 x0000000_80000000
		MASK	0 xffffffff_80000000
		MMAP	0 x0000000_000000f0
	5		
	6		
	7		
Double channel 256M x	4	The BASE	0 x0000000_20000000
2 (use address [10]		MASK	0 xffffffff_f0000400
interleaving)		MMAP	0 x00000000_000004f0
	5	The BASE	0 x0000000_20000400
		MASK	0 xffffffff_f0000400
		MMAP	0 x0000000_000004f1
	6		
	7		
Dual channel 512M x 2	4	The BASE	0 x0000000_40000000
(use address [10]		MASK	0 xffffffff e0000400
interleaving)		MMAP	0 x0000000 000000f0
	5	The BASE	0 x00000000_40000400
		MASK	0 xfffffff_e0000400
		MMAP	0 x0000000 000000f1
	6	The BASE	0 x0000000 6000000
		MASK	0 xffffffff e0000400
		MMAP	0 x0000000 000004f0
	7	The BASE	0 x00000000 60000400
	,	MASK	0 xffffffff e0000400
		MMAP	0 x0000000 000004f1
Dual channel 1G x 2	4	The BASE	0 x0000000 8000000
(use address [10]	·	MASK	0 xffffffff c0000400
interleaving)		MMAP	0 x0000000 00000000
	5	The BASE	0 x0000000 80000400
	5	MASK	0 xffffffff c0000400
			—
	(MMAP The DASE	0 x00000000_000000f1
	6	The BASE	0 x0000000_c0000000
		MASK	0 xfffffff_c0000400
		MMAP	0 x0000000_000004f0
	7	The BASE	0 x00000000_c0000400
		MASK	0 xfffffff_c0000400
		MMAP	0 x00000000_000004f1
Dual channel 2G x 2	4	The BASE	0 x00000001_00000000
(use address [10] interleaving)		MASK	0 xfffffff_80000400

	MMAP	0 x00000000_000000f0
5	The BASE	0 x00000001_00000400
	MASK	0 xfffffff_80000400
	MMAP	0 x00000000_000000f1
6	The BASE	0 x00000001_80000000
	MASK	0 xffffffff_80000400
	MMAP	0 x0000000_000004f0
7	The BASE	0 x00000001_80000400
	MASK	0 xffffffff_80000400
	MMAP	0 x00000000_000004f1

15. 2 The mapping relationship between the system memory space and the peripheral DMA space

With this configuration in place, let's move on to the use of memory addresses for DMA.The traditional PCI DMA space exists at the address above 0x8000_0000. When the device conducts DMA operations, the access of 0x8000_0000 is mapped to the space of 0x0000_0000, which is then mapped to system memory one by one.

In loongson 3A1000, in order to solve the problem of using DMA space conversion for large memory, the following provisions are made.

(1) When the system memory space 0x0000_0000 -- 0x0FFF_FFFF is used as a DMA space, the peripheral USES 0x8000_0000 -- 0x8FFF_FFFF for access;

(2) Other system memory Spaces can be used as DMA Spaces without the need for address translation. Therefore, taking 2GB of memory space as an example, the following address translation table can be obtained:

	instructions		The starting address	End address
Address	0-256 MB	System space	0 x0000_0000_0000_0000	0 x0000_0000_0fff_ffff
0		The DMA space	0 x0000_0000_8000_0000	0 x0000_0000_8fff_ffff
Address	256 MB -	System space	0 x0000_0000_9000_0000	0 x0000_0000_ffff_ffff
1	2 gb	The DMA space	0 x0000_0000_9000_0000	0 x0000_0000_ffff_ffff

When using the HyperTransport interface, the above address translation method can be

configured using the HyperTransport "receive address window" configuration.See section 1.6.2.Use two sets of address Windows to accomplish this conversion.

	instructions	Window enable register	Window base register
Window O	0-256 MB	0 xc000_0000	0 x0080_fff0
Window 1	256 MB to 2 gb	0 xc000_0080	0 x0080_ff80

Window 0 converts the address 0x8000_0000 -- 0x8FFF_FFFF to 0x0000_0000 -- 0x0FFF_FFFF access.

Window 1 converts the address of 0x8000_0000 -- 0xFFFF_FFFF to 0x8000_0000 -- 0xFFFF_FFFF

Access. From the priority rule hit by the window, you can tell the actual address of 0x8000 0000 -- 0x8FFF FFFF

On is only mapped by window 0, so the address that window 1 handles is actually 0x9000 0000 -- 0xFFFF FFFF.

15. 3 Other mapping methods for system memory space

The system memory space mapping method described in the previous two sections is only an effective reference method, and the system designer can also redefine the memory mapping rules according to his own needs.

For example, the memory space is all concentrated in the low address, while the IO address and system configuration space are mapped to the higher space.

16 Memory allocation for system X

X system memory allocation problem, describes the video card memory allocation problem. In the 3a-690e, the graphics card is integrated inside the northbridge 690e and is a PCIE device. The display core of the card is the ATI X1250, which integrates 128M of video memory internally, and also supports the way of sharing video memory, which can be up to 128M. The display process of the graphics card is as follows: the CPU transmits the instructions and data related to drawing to the graphics card through the PCIE bus. The GPU then completes the image processing process according to the requirements of the CPU and saves the final image data in the video memory.

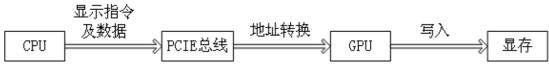


Figure 16-1 graphics card processing image display process

In the case of using separate video memory, the process is simpler because the video memory is inside the video card, which can directly write content to the video memory.For Shared video memory, the process is a little more complicated. After the GPU tells the CPU the video memory address to be written, there will be two situations: first, the video memory address is a PCI spatial address. The CPU will write the content directly to the PCIE bus, and the PCIE will do the address translation again, which will be converted to the actual video memory address, that is, the physical address. Two, the video memory address is the memory address. At this point, the CPU will write the desired content directly to the video memory location.Obviously, the second option is more efficient for the Shared memory approach.

Let's talk more about how the second way of sharing video memory is implemented in PMON Chinese.To extend our PCI

Space, the TLB mapping we used. In PMON's bonito. h, we define it this way:

define BONITO PCILO BASE0x10000000

define BONITO PCILO BASE VA0xd0000000

define BONITO PCIIO BASE0x18000000

define BONITO PCIIO BASE VA0xb8000000

It means to divide the 256M PCI space (0x1000000~0x2000000) into two parts: 0x1000000~0x17ffffff for mem space and 0x18000000~0x20000000 for IO space. The virtual

address 0xd0000000 to the physical address 0x10000000 of the mem space is transformed by manually populating TLB.In 3a-690e, if the memory is 2G, the PCI address of the video memory is actually 0x10000000, and the corresponding memory address is

0xf8000000, if memory is 1G, the PCI address of video memory is actually 0x10000000, the corresponding memory address is

0x78000000, which is also implemented by TLB mapping. The code for TLB mapping is as follows:

Lit0, 15

Lit3,0xf0000000# entry_hi, the starting address for the virtual address that

needs to be mapped, lia0, 0x3f000000

Bleumsize, a0, 1f// to determine whether the memory is 1gb or 2gb, if it is 1gb, skip to 1 to execute

The nop

Lit4, 0x0000f000//2G case, 0xf0000000 to 0xf0000000 b2f/ / jump to 2

The nop

1:

Lit4, 0x00007000//1G case, 0xf0000000 to 0x70000000

2:

. Set m	nips64			
Dsllt4,	t4, 10			
. Set m	iips3			
ori	T4, t4, 0 x1f			
li	T5, (0 x1000000 >> 6)	# 16M stride, 16M for one page		
li	T6, 0 x2000000	# 32 m VPN2 stride		
. Set mips64				

1:

Dmtc0t3, COP_0_TLB_HI// fill in the TLB table entry Daddut3, t3, t6 Dmtc0t4, COP_0_TLB_LO0 daddut4, t4, t5 Dmtc0t4, COP_0_TLB_LO1 daddut4, t4, t5 . Set mips3 Addiut1 t0, 16 Mtc0t1, COP_0_TLB_INDEX# 16MB page nop The nop The nop nop tlbw i Bnez t0, 1b// total mapping size 16*16=256M addiu t0, t0, -1

In this way, when the video card accesses the memory, we can use the address 0xf8000000 as the starting address of the memory, so that it actually USES the high end of the memory. This is set in the structure body of ati_nb_cfg in rs690_struct.c. Set system_memory_tom_lo to 0x1000M, which is 0x100000000. If the video memory is 128M, then the starting address is 0x1000m-128m = 0xf8000000, which is the virtual address of the video memory mentioned above. So far, the video card directly access video memory is achieved.