

Loongson 1C300 Processor User Manual

Version 1.0

April, 2014 Loongson Technology Corporation Limited

Reading Guide

Loongson 1C300 Processor User's Manual mainly introduces the architecture and register of Loongson 1C300. For more information about LS232 high-performance processor core integrated by Loongson 1C300, please refer to *Loongson LS232 Processor User Manual*. Loongson 1C300 is hereinafter referred to as Loongson 1C.

Revision history

Date	Edit	Version	Change
Mar. 14, 2013	R&D Centre	0.0.1	First draft
Jun. 16, 2013	R&D Centre	0.0.2	
Mar. 29, 2013	R&D Centre	0.0.3	Supplement the description of DWT and interrupt configuration register; revise the description of modules such as CAMIF, UART and OTG.
Apr. 15, 2013	R&D Centre	0.1	Address space revision
Apr. 26, 2013	R&D Centre	0.2	
Feb. 12, 2014	R&D Centre	0.3	Modify and typeset
Feb. 28, 2014	R&D Centre	0.9	Modify 1C2 changes after revision
Apr. 21, 2014	R&D Centre	1.0	Add the descriptions on pull-up/pull-down in the pin Add the description of SRAM pin and revise some errors. Chip name is updated as Loongson 1C 300

Content

1 Overview	
1.1 System Structure Chart	10
1.2 Main Functions of the Chip	10
1.2.1 Processor core	10
1.2.2 SDRAM Controller	11
1.2.3 SRAM/NOR FLASH Controller	11
1.2.4 NAND Controller	11
1.2.5 Clock generator	11
1.2.6 I ² S controller	
1.2.7 AC97 controller	
1.2.8 LCD controller	
1.2.9 Camera interface	
1.2.10 MAC controller	
1.2.11 USB2.0 controller	
1.2.12 SPI controller	
1.2.13 I ² C controller	12
1.2.14 UART controller	
1.2.15 GPIO	
1.2.16 PWM controller	
1.2.17 RTC	
1.2.18 CAN controller	
1.2.19 SDIO controller	
1.2.20 ADC controller	
2 Definition of Pin	
2.1 Agreement	
2.2 LCD Interface	
2.3 SDRAM Interface	
2.4 SRAM/NOR Flash Interface	
2.5 I2S Interface	
2.6 I 2C Interface	
2.7 UART Interface	
2.8 PWM Interface	
2.9 ADC Interface	
2.10 SPI Interface	
2.11 EJTAG Interface	
2.12 CAMERA Interface	
2.13NAND Interface.	
2.14 MAC Interface	
2.15 OTG Interface	
2.16 USB Port	
2.17 RTC Interface	
2.18 Clock Configuration Signal	
2.19 Power Ground	
2.20 Initialization Signal	
3 Register Definition	. 20
3.1 Base Register Definition	20
3.2 Each Module Register Definition	21
4 Clock Structure	. 26
4.1 Clock Architecture	
4.2 Clock Signal Description	
5 Chip Configuration and Control	
5.1 Address space allocation	
5.1 Address space anocation	
5.2 Chip Configuration Register (CONFREG)	
5.2.1 FLL/SDRAW Frequency configuration register	
J.2.2 OF UTCAMERATION IEquency configuration register	

 \leq

5.2.3 SDRAM parameter register	29
5.2.4 SHUT CTRL register	
5.2.5 MISC_CTRL register	31
5.2.6 cpu_throt register	
5.2.7 UART multiplex configuration register	32
5.2.8 GPIO0 Configuration Register (corresponding GPIO[31:0])	33
5.2.9 GPIO1 configuration register (corresponding GPIO[63:32])	33
5.2.10 GPIO2 configuration register (corresponding GPIO[95:64])	34
5.2.11 GPIO3 configuration register (corresponding GPIO[127:96])	34
5.2.12 PAD[31:0] pin multiplex relation configuration register	34
5.2.13 PAD[63:32] pin multiplex relation configuration register	
5.2.14 PAD[95:64] pin multiplex relation configuration register	
5.2.15 PAD[127:96] pin multiplex relation configuration register	36
5.3 Interrupt Configuration Register	
6 SDRAM Controller	. 42
6.1 Overview	42
6.2 Register Description	42
6.3 Software Configuration Description	
6. CONFIG_VALID	
7 SRAM Controller	
7.1 Overview	
7.2 Configuration Register.	
8 Camera Interface	
8.1 Overview	
8.2 Interface protocol	
8.3 Register Description	
8.4 Configuration Operations	
8.4.1 Access memory mode	
8.4.2 Configuration order	
9 I2S Controller	
9.1 Overview	
9.2 Interface protocol.9.3 Dedicated Register.	
9.4 Configuration Operations	
10 Display Controller (DC)	
10.1 Overview	
10.2.1 Frame buffer configuration register	
10.2.2 Frame buffer address register 0	
10.2.3 Frame buffer address register 1	
10.2.4 Frame buffer span register	
10.2.5 Color dithering configuration register	
10.2.6 Color vibrance lookup table low-bit register	
10.2.7 Color dithering lookup table high-bit register	
10.2.8 Color dithering description	
10.2.9 LCD panel configuration register	
10.2.10 Horizontal display with register	
10.2.12 Vertical display height register	
10.2.13 Field synchronization configuration register	
10.2.13 Field synchronization configuration register	
10.2.15 Gamma correction catalog register	
10.2.16 Gamma correction value register	
10.2.17 Gamma correction instructions	
11 MAC Controller	
11.1 DMA Register Description	

 \leq

11.1.1 Register0 (Bus Mode Register)	59
11.1.2 Register2 (Receive Poll Demand Register)	
11.1.3 Register2 (Receive Poll Demand Register)	60
11.1.4 Register3 (Receive Descriptor List Address Register)	60
11.1.5 Register4 (Transmit Descriptor List Address Register)	60
11.1.6 Register5 (Status Register)	60
11.1.7 Register0 (Bus Mode Register)	
11.1.8 Register7 (Interrupt Enable Register)	
11.1.9 Register8 (Missed Frame and Buffer Overflow Counter Register)	
11.1.10 Register9(Receive Interrupt Watchdog Timer Register)	
11.1.1 Register0 (Bus Mode Register)	
11.1.12 Register11 (AXI Status Register)	
11.1.13 Register18 (Current Host Transmit Descriptor Register)	
11.1.14 Register19 (Current Host Receive Descriptor Register)	
11.1.15 Register20 (Current Host Transmit Buffer Address Register)	
11.1.16 Register21 (Current Host Receive Buffer Address Register)	
11.2 MAC Controller Register Description	
11.2.1 Register0 (MAC Configuration Register)	
11.2.2 Register1 (MAC Frame Filter)	
11.2.3 Register2 (Hash Table High Register)	
11.2.4 Register3 (Hash Table Low Register)	
11.2.5 Register4 (GMII Address Register)	
11.2.6 Register5 (GMII Data Register)	
11.2.7 Register6 (Flow Control Register)	
11.2.9 Registero (Flow Control Register)	
11.2.9 Register? (VErit Register)	
11.2.10 Register14 (Interrupt Status Register)	
11.2.11 Register15 (Interrupt Mask Register)	
11.2.12 Register16 (MAC Address0 High Register)	
11.2.13 Register17 (MAC Address0 Low Register)	
11.2.14 Register18 (MAC Address1 High Register)	
11.2.15 Register19 (MAC Address1 Low Register)	
11.2.16 Register 48 (AN Control Register)	
11.2.17 Register49 (AN Status Register)	
11.2.17 Register50 (Auto-Negotiation Advertisement Register)	
11.2.19 Register51 (Auto-Negotiation Link Partner Ability Register)	
11.2.20 Register52 (Auto-Negotiation Expansion Register)	
11.2.21 Register54 (SGMII/RGMII Status Register)	
11.2.22 Register448 (Time Stamp Control Register)	
11.2.23 Register449 (Sub-Second Increment Register)	
11.2.24 Register 450 (System Time - Seconds Register)	
11.2.25 Register 451 (System Time - Nanoseconds Register)	
11.2.26 Register 452 (System Time - Seconds Update Register)	
11.2.27 Register 453 (System Time - Nanoseconds Update Register)	
11.2.28 Register 454 (Time Stamp Addend Register)	
11.2.29 Register 455 (Target Time Seconds Register)	
11.2.30 Register 456 (Target Time Nanoseconds Register)	
11.2.31 Register 457 (System Time - Higher Word Seconds Register)	
11.2.32 Register 458 (Time Stamp Status Register)	
11.2.32 Register 459 (PPS Control Register)	
11.2.34 Register 460 (PPS Auxiliary Time Stamp - Nanoseconds Register)	
11.2.35 Register 461 (PPS Auxiliary Time Stamp - Seconds Register)	
11.3 DMA Descriptor	
11.3.1 Basic Format of DMA Descriptor	
11.3.2 DMA receive descriptor	
11.3.2.1 RDES0	
11.3.2.2 RDES1	

y

11.3.2.3 RDES2	81
11.3.2.4 RDES3	81
11.3.3 DMA transmit descriptor	81
11.3.3.1TDES0	
11.3.3.2TDES1	
11.3.3 3TDES2	
11.3.3.4TDES3	
11.4 Software Programming Guide	
11.5 IEEE 1588 Support	
12 USB Controller	
12.1 Overview	
12.2 USB Host Controller Register	
12.2.1 EHCI relevant registers	
12.2.2 Capability register	
12.2.3 Operational Register	
12.2.4 EHCI implementation relevant register	
12.3 OHCI Relevant Register	
12.3.1 Operational Register	90
12.3.2 OHCI implementation relevant register	
13 OTG Controller	
13.1 Overview	
13.2 Register Description	92
13.2.1 Global Control and Status Registers (Global CSR Map)	93
13.2.2 Host Mode Control and Status Register (Host Mode CSR)	
13.2.3 Device Mode Control and Status Register (Device Mode CSR)	94
13.2.4 Data FIFO Access Register MAP (DFIFO Access Register MAP)	94
13.2.5 Power and Clock Gating CSR Map	95
13.3 Register Description	95
13.3.1 Register access characteristics	
13.3.2 Global register	96
13.3.3 Host mode register	.115
13.3.4 Device Mode Register	
13.3.5 Power consumption and clock gating register	
14 Common Use with DMA	
14.1 DMA Controller Structural Description.	
14.2 DMA Register	
14.2.1 ORDER ADDR IN	
14.2.2 DMA ORDER ADDR	
14.2.3 DMA_SADDR	
14.2.4 DMA_DADDR	
14.2.5 DMA_LENGTH	
14.2.6 DMA_STEP_LENGTH	
14.2.7 DMA_STEP_TIMES	
14.2.9 DMA_STEL_TIMES 14.2.8 DMA_CMD	
14.3 Multiple Modules Use DMA Configuration Description	
15 SPIO Controller	
15.1 SPI Controller Structure	
15.2 Configuration Register.	
15.2.1 Control register (SPCR)	
15.2.2 Status register (SPSR)	
15.2.3 Data register (TxFIFO/RxFIFO)	
15.2.4 External register (SPER)	
15.2.5 Parameter control register (SFC_PARAM)	
15.2.6 Chip selection control register (SFC_SOFTCS)	
15.2.7 Timing sequence control register (SFC_TIMING)	
15.3 Interface Time Sequence	
15.3.1 Timing sequence of SPI Master controller interface	.145

V

15.3.2 SPI Flash access timing sequence	
15.4 User's Manual	
15.4.1 Read and write operations of SPI master controller	
15.4.2 Hardware SPI flash head	
15.4.3 Mixed access to SPI Flash and SPI master controller	147
16 SPI1 Controller	. 148
16.1 SPI Master Controller Structure	148
17 AC97 Controller	
17.1 Overview (1C2 without the module)	
17.1 Overview (1C2 without the module)	
17.2 AC77 Controller Register	
17.2.2 OCC register	
17.2.3 ICC register	
17.2.4 Codec register access command	
17.2.5 Interrupt status register/interrupt mask register	
17.2.6 Interrupt status / clear register	152
17.2.7 OC Interrupt clear register	
17.2.8 IC Interrupt clear register	
17.2.9 CODEC WRITE interrupt clear register	
17.2.10 CODEC READ interrupt clear register	
18 I2C Controller	
18.1 Overview	
18.2 I2C Controller Structure	
18.3 I2C Controller Register Description	
18.3.1 Frequency division latch low-byte register (PRERIo)	
18.3.2 Frequency division latch high-byte register (PRERhi)	
18.3.3 Control register (CTR) 18.3.4 Transmit data register (TXR)	
18.3.5 Receive data register (RXR)	
18.3.6 Command control register (CR)	
18.3.7 Status register (SR)	
19 UART Controller	
19.1 Overview	
19.2 Controller Structure19.3 UART0 Split Configuration Introduction	
19.3 OARTO Spin Computation Infoduction	
19.4.1 Data register (DAT) 19.4.2 Interrupt enable register (IER)	
19.4.3 Interrupt identification register (IIR) 19.4.4 FIFO control register (FCR)	139
19.4.5 Line control register (LCR)	100
19.4.6 MODEM control register (MCR)	161
19.4.7 Line status register (LSR)	161
19.4.8 MODEM status register (MSR)	
19.4.9 Fractional frequency latch	
19.5 USART Register Description	
19.5.1 Control register (CR)	
19.5.2 Mode register (MR)	
19.5.2 FI/DI parameter register (FIDIR)	163
20 NAND Controller	
20 NAND Controller Structural Description	
20.1 NAND Control Structural Description	
20.2 NAND Control Register Configuration Description	
20.2.2 Page offset address register (ADDR_C)	
20.2.3 Page address register (ADDR_C)	
20.2.5 Tage address register (ADDR_R)	

 \leq

20.2.5 ID register (ID_L)	166
20.2.6 ID and status register (STATUS & ID_H)	166
20.2.7 Parameter configuration register (NAND_PARAMETER)	166
20.2.8 Operating number register (NAND_OP_NUM)	167
20.2.9 Map register (CS_RDY_MAP)	167
20.2.10 DMA read and write data register (DMA_ADDRESS)	167
20.3 NAND ADDR Description	
20.4 Examples of Nand-flash Read and Write Operations	170
20.5 NAND ECC Description	
20.6 NAND BOOT description	
21 RTC	
21.1 Overview	
21.2 Register Description	
21.2.1 Register address list	
21.2.1 Register address list	
21.2.3 SYS_TOYWRITE1	173
21.2.5 STS_TOTWRITET	
21.2.5 SYS TOYREAD1	
21.2.5 SYS_TOYMATCH0/1/2 (no register in 1C2)	
21.2.7 SYS_RTCCTRL (no register in 1C2) 21.2.8 SYS_TOYMATCH0/1/2 (no register in 1C2)	174
22 SDIO Controller	
22.1 Function Overview	
22.2 SDIO Protocol Overview	
22.3 Register Description	177
22.4 Software Programming Instructions	
22.4.1 SD Memory card software programming instructions	
22.4.2 SDIO card software programming instructions	
23 CAN Controller 1	86
23.1 Overview	
23.2 CAN Controller Structure	186
23.3 Standard Mode	
23.3.1 Standard mode address list	187
23.3.2 Control register (CTR)	188
23.3.3 Command register (CMR)	188
23.3.4 Status register (SR)	188
23.3.5 Interrupt register (IR)	189
23.3.6 Acceptance Code Register (ACR)	
23.3.7 Acceptance Mask Register (AMR)	
23.3.8 Transmit buffer list	
23.3.9 Receive buffer list	
23.4 Extension Mode	
23.4.1 Extension mode address table	190
23.4.2 Mode register (MOD)	
23.4.3 Command register (CMR)	
23.4.4 Status register (SR)	
23.4.5 Interrupt register (IR)	
23.4.6 Interrupt enable register (IER)	
23.4.7 Arbitration Loss Capture Register (IER)	
23.4.8 Error Alarm Limit Register (EMLR)	
23.4.9 RX Error Count Register (RXERR)	
23.4.10 TX Error Count Register (TXERR)	
23.4.11 Acceptance filter	
23.4.12 RX message count register (RMCR)	
23.5 Public Register	
23.5.1 Bus timing register 0 (BTR0)	
23.5.2 Bus timing register 1 (BTR1)	
	- / !

y

23.5.3 Output Control Register (OCR)	195
24 ADC Controller	
24.1 Overview	196
24.2 Register Description	
24.3 Configuration Operations	
25 PWM Controller	
25.1 Overview	
25.2 PWM Register description	
26 Watchdog (WDT)	
26.1 Overview	
26.2 Description of WATCHDOG Register	
26.2.1 Watchdog Enable Register (WDT_EN)	
26.2.2 Watchdog Set Register (WDT_SET)	
26.2.3 Watchdog Timer (WDT_timer)	
27 High-precision Timer (HCNTR)	
27.1 Overview	
27.2 Register Description	

V

List of Figures

Figure 1-1 Architecture chart of Loongson 1C	10
Figure 4-1 System clock architecture	26
Figure 8-1 Camera interface (CAMIF) functional diagram	46
Figure 8-2 ITU-R BT.601 input sequence	46
Figure 8-3 ITU-R BT.656 input sequence	
Figure 8-4 Storage mode	50
Figure 9-1 I2S interface block diagram	51
Figure 9-2 I2S transmission protocol.	52
Figure 10-1 Display controller output sequencing	57
Figure 11-1 Basic format of DMA descriptor (little end 32bit bus)	
Figure 11-2 Basic format of DMA descriptor (little end 32bit bus)	78
Figure 11-3 Basic format of DMA receive descriptor (small end 32bit bus)	79
Figure 11-4 Basic format of DMA transmit descriptor (little tailing end 32-bit bus)	81
Figure 11-5 Period clock synchronization process	85
Figure 11-6 Slave proactive synchronization process	85
Figure 12-1 USB host controller module	87
Figure 13-1 OTG CSRs address mapping	
Figure 15-1 SPI controller architecture	. 143
Figure 15-2 Timing sequence of SPI Master controller interface	. 145
Figure 15-3 SPI Flash standard read timing sequence	. 146
Figure 15-4 SPI Flash rapid read timing sequence	. 146
Figure 15-5 SPI Flash directional I/O read timing sequence	. 146
Figure 18-1 I2C Master Controller architecture	. 154
Figure 19-1 UART controller architecture	. 157
Figure 21-1 RTC block architecture diagram	. 172
Figure 22-1 Schematic diagram of SD card multi-block write operation	. 176
Figure 22-2 Schematic diagram of SD card multi-block read operation	. 176
Figure 22-3 Schematic diagram of SD Memory card initialization process	. 184
Figure 23-1 CAN master controller architecture	. 186
Figure 24-1 Schematic diagram of ADC single conversion/continuous conversion	. 201
Figure 26-1 Watchdog architecture chart	. 205

 \leq

List of Tables

Table 2-1 Signal Type Code	14
Table 4-1 Loongson 1C clock signal	
Table 8-1 ITU-R BT.656 reference code	
Table 8-2 The fourth byte XY value	
Table 15-1 SPI frequency division factor	144
Table 19-1 Configuration and function multiplexing of UART split	
Table 20-1 NAND address space diagram	
Table 22-1 Command format in SD mode	

1 Overview

Loongson 1C chip is a cost-effective single chip system based on LS232 processor core, and is applicable to fields such as biological recognition of fingerprints and Internet of Things sensing.

1C includes the floating point processing unit, and can effectively enhance the processing ability of system floating point data. The memory interface of 1C supports several types of memories and allows the flexible system design. It supports 8-bit SLC NAND or MLC NAND FLASH, and provides the storage expansion interface of high capacity.

1C has provided various serial peripheral interfaces and on-chip modules for developers, including Camera controller, USB OTG 2.0 and USB HOST 2.0 interfaces, AC97/I2S controller, LCD controller, ADC controller, high-speed SPI interface, full-function UART interface, and owns the sufficient computing ability and multi-application connecting ability. It integrates RTC function, and is used to maintain the real time clock.

1.1 System Architecture Chart

Hierarchical bus architecture is adopted inside Loongson 1C. Processor core, memory controller, graphic display controller, CAMERA interface module and AXI_MUX are interconnected by crossbar OTG, MAC, USB and DMA controllers and SPI are connected to crossbar via AXI_MUX. Low-speed peripherals (I2C, I2S, PWM, UART, etc.) are connected to crossbar via AXI2APB.

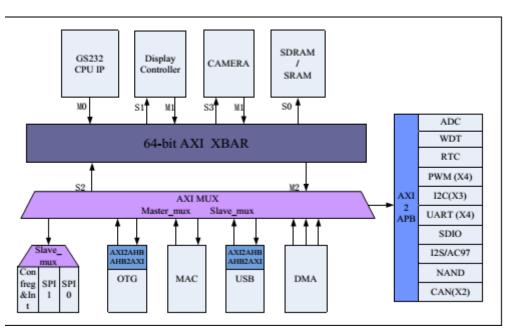


Figure 1-1 Architecture chart of Loongson 1C

1.2 Main Functions of the Chip

1.2.1 Processor core

- Instruction sets of single core LS232 and MIPS32 are compatible, and the dominant frequency is 300MHZ.
- It supports the highly effective dual-issue technology (one clock tick performs two instructions)
- It supports the out-of-order issue and execution technologies such as register renaming, dynamic scheduling, and branch prediction
- 5-stage pipeline(instruction fetch, coding, issue, execution, write back and submit) microarchitecture
- 16KB data cache and 16KB instruction cache
- It integrates 64bit floating point processing unit, supports the fully pipelining of 64bit floating point additive and multiplying operation. Its hardware has accomplished the floating point division operation.

1.2.2 SDRAM Controller

- SDRAM operation, operating frequency of 45~133MHz
- It supports the bus width of 8/16bit parallel data.
- It supports the auto-refresh and self-refresh functions, and page mode.

1.2.3 SRAM/NOR FLASH Controller

- SRAM and NOR Flash direct link interface, working frequency of 66~133MHz
- It supports the chip select pin of static memory, and can be configured separately.
- It supports the bus width of 8bit/16bit parallel data.

1.2.4 NAND Controller

- It supports the single capacity of 4GB NAND FLASH at most
- It supports the FLASH of 512 bytes, 2K byte page, 4K byte page and 8K byte page.
- Hardware ECC generation, detection and indication (software error correction)
- It supports the data reading speed of 8~10MB/S and writing speed of 5MB/s from Flash
- It supports the boot from NAND Flash
- Support mode of little endian

1.2.5 Clock generator

- It has one standard PLL input interface, and supports the external crystal as chip clock input.
- It supports the on-chip output and can configure one way of clock for off-chip peripherals.
- PLL configurable frequency software

1.2.6 I²S controller

- It supports I²S input in master mode
- It supports I^2S output in master mode
- It supports the width of 8, 16, 18, 20, 24 and 32 bits.
- It supports audio data of mono and stereo
- It supports the sampling frequency of (16, 22.05, 32, 44.1 and 48) kHz
- It supports DMA transmission mode

1.2.7 AC97 controller

- Variable sampling rate AC97 coder and decoder interfaces (48KHz and below)
- It supports the stereo PCM and single-track MIC input
- It supports 2-channel stereo PCM output
- It support DMA and interrupt operation
- It supports 16, 18 and 20bits sampling precision, and variable sampling rate.
- It supports 16bits, and 16 entry FIFOs for each channel.

1.2.8 LCD controller

- It support 16/24-bit pixel mode
- It supports the display output of RGB444/555/565/888
- It supports the pixel of 1024x768, 800x600, 640-x480 and 320-x240
- It supports DMA transmission mode

1.2.9 Camera interface

- It supports ITU-R BT.601/656 8bit input.
- It supports RAW RGB, RGB565 and YUV4:2:2 data input.
- It supports YUV, RGB888, RGB0888 and RGB565 outputs

- It supports the pixel zooming of 320x240 and 640x480
- It supports the pixel input of 2Kx2K at most, and the pixel can be configured.
- It supports DMA transmission mode

1.2.10 MAC controller

- It supports 10/100Mbps PHY device, including 10 Base-T, 100 Base-TX, 100Base-FX and 100 Base-T4;
- It's completely compatible with IEEE standard 802.3
- It's completely compatible with 802.3x full duplex flow control and half-duplex back pressure flow control
- It supports VLAN frames
- It supports DMA transmission mode
- It supports standard media independent interface (MII)
- It supports the standard simplified MII interface (RMII), and may connect the external PHY chip.

1.2.11 USB2.0 controller

- One USB OTG2.0 controller
- One USB HOST2.0 controller
- It supports high-speed and full-speed mode
- It supports DMA transmission mode
- It's compatible with USB Rev 1.1 and USB Rev 2.0 protocols

1.2.12 SPI controller

- It supports two-way independent SPI interface, and each way of SPI interface supports four chip selects.
- Follow specifications of serial peripheral interface (SPI)
- It supports synchronous, serial and full duplex communication
- It supports SPI master mode
- 8-bit in per transmission
- It supports inquiries and interrupt transmission mode
- It supports the SPI nor flash boot.
- It supports SPI interface two-way input and output, and the maximum data transmission speed is 24~96 Mbps.
- It supports the minimum communication rate as low as 25KB, and facilitates the matching of special device.

1.2.13 I²C controller

- Three-channel standard I^2C bus interface
- It supports configuration of master, slave or master / slave mode
- Programmable bus clock frequency

1.2.14 UART controller

- It supports two full-function serial ports. Therein, the full-function serial port 0 can multiplex four two-wire serial interfaces or two four-wire serial interfaces, and supports the smart card protocol.
- RxD0, TxD0, RxD1, TxD1, RxD2 and TxD2 based on interrupt operation;
- UART channel 0, 1 and 2 with IrDA 1.0
- UART channel 0 and 1 with RTS0, CTS0, RTS1 and CTS1

1.2.15 GPIO

- It supports 105 GPIO at most
- All GPIO (except boot and system configuration) is defaulted as input after reset
- All GPIO support interrupt function
- Each GPIO pin supports the level-triggered and edge-triggered modes, and can be configured independently.
- GPIO base pin rate up to 4MHz

1.2.16 PWM controller

- Four-way 32bits can configure PWM timer.
- It supports timer function
- It supports counter function

1.2.17 RTC

- Timing is accurate to 0.1 second
- It supports the external crystal as RTC clock input.
- It supports the operation powered by external battery, and later by battery after powered off.
- The special power pin may be connected to the battery or 3.3V main power supply.
- Provide seconds, minutes, hours, days, months and years

1.2.18 CAN controller

2-channel independent CAN controller

- It's compatible with CAN2.0A and CAN2.0B protocols (the passive expansion frame in PCA82C200 compatible mode)
- It supports CAN protocol extensions
- Bit rate up to 1Mbits / s

1.2.19 SDIO controller

- channel independent CAN controller
- It's compatible with SD Memory 2.0/MMC/SDIO 2.0 protocol.
- It supports SDIO start

1.2.20 ADC controller

- Sampling rate up to 1MHz at most
- 4-channel ADC input
- It supports 4-wire and 5-wire touch screens
- It supports continuous sampling and single sampling
- It supports analog watchdog

2 Definition of Pin

2.1 Conventions

The instructions of Loongson 1C pin in this chapter use the following protocols: The input and output types of signals are represented by code. See Table 2-1.

Table 2-1 Signal Type Code			
Code	Description		
А	Simulation		
DIFF I/O	Two-way difference		
DIFF IN	Difference input		
DIFF OUT	Difference output		
Ι	Input.		
I/O	Bidirectional		
0	Output		
OD	Open-drain output		
Р	Power supply		
G	Ground		

2.2 LCD Interface

Signal name	Туре	Pull-up/pull- down	Description
LCD CLK	0	PU	LCD clock signal
LCD_HSYNC	0	PU	LCD horizontal synchronizing
			signal
LCD_VSYNC	0	PU	LCD vertical synchronizing signal
LCD_EN	0	PU	LCD enable signal
LCD_DAT[15:0]	0	PU	LCD data signal

[Notes] In QFP100 package, LCD interface can't be used. In QFP176 encapsulation, LCD may use 16bit and 24bit mode. In 16bit mode, the pin won't be multiplexed; in 24bit mode, the low bit needs to multiplex CAM DAT [7:0] or MAC signal.

2.3 SDRAM Interface

Signal name	Туре	Pull-up/ pull-down	Description
SD_CLK	Ο	-	SDRAM clock signal
SD_CKE	Ο	-	SDRAM clock enable signal
SD_CSn	Ο	-	SDRAM chip selection signal, active low
SD_RASn	0	-	SDRAM line gating signal, effective low level
SD_CASn	0	-	SDRAM column selection signal, active low
SD_WE	0	-	SDRAM read-write signal, writing as low level
SD_BA[1:0]	0	-	Bank signal of SDRAM, four banks in total
SD_ADDR[12:0]	0	-	SDRAM address signal
SD_DATA[15:0]	I/O	-	SDRAM data signal
SD_DQM[1:0]	0		SDRAM data mask signal

2.4 SRAM/NOR Flash Interface

Signal name	Туре	Pull-up/ pull-down	Description
SRAM_CSn	0	-	SRAM chip selection signal, active low
SRAM_WEn	0	-	SRAM writing enable signal, active low
SRAM_OEn	0	-	SRAM reading enable signal, active low
SRAM_OEn	0	-	SRAM reading enable signal, active low
SRAM_DATA[15:0]	I/O	-	SRAM data signal
SRAM_BHE	0		SRAM high Byte Data desired signal
SRAM_BLE	0		SRAM low Byte Data effective signal

2.5 I2S Interface

Signal name	Туре	Pull-up/ pull-down	Description
I2S_MCLK	0	PU	I2S clock signal
I2S_BCLK	0	PU	I2S bit clock signal
I2S_LRCK	0	PU	I2S channel selection signal
I2S_DI	Ι	PU	I2S data serial input signal
I2S_DO	0	PU	I2S data serial output signal

[Notes] In QFP100 package, I2S interface isn't introduced, and needs to be multiplexed with MAC pin. In QFP176 package, I2S interface is introduced, and can be directly used.

2.6 I 2C Interface

	Signal name	Туре	Pull-up/	Description
			pull-down	
	I2C[2:0]_SCL	0	No elicitation	I ² C serial clock
	I2C[2:0]_SDA	I/O	No elicitation	I ² C serial data
Ļ	$\frac{12C[2.0]}{5DA}$			

[Notes] In QFP100 and QFP176 packages, I2C interface isn't introduced, and needs to be multiplexed with MAC, EJTAG, LCD or CAM pin.

2.7 UART Interface

Signal name	Туре	Pull-up/ pull-down	Description
UART0_TX	0	PU	UART0 data transmission
UART0_RX	Ι	PU	UART0 data reception
UART0_RTS	Ι	PU	UART0 reception request
UART0_CTS	Ι	PU	UART0 reception permission
UART0_DSR	Ι	PU	UART0 device ready
UART0_DTR	0	PU	UART0 data terminal ready
UART0_DCD	Ι	PU	UART0 carrier detection
UART0_RI	Ι	PU	UART0 ringing tips

[Notes] In QFP100 package, there is no full-function serial interface, and only two-wire type. In QFP176D

package, the full-function serial interface can be directly used.

2.8 PWM Interface

Signal name	Туре	Pull-up/	Description
		pull-down	
PWM0	0	PU	PWMO impulse output
PWM1	0	PU	PWM1 impulse output
PWM2	0	No elicitation	PWM2 impulse output
PWM3	0	No elicitation	PWM3 impulse output

[Notes] In QFP100 package, PWM isn't introduced and needs to be multiplexed with others. In QFP176 package, PWM0 and PWM1 can be directly used, and PWM2 and PWM3 need to be multiplexed with others.

2.9 ADC Interface

Signal name	Туре	Pull-up/ pull-down	Description
ADC REXT	Ι	-	ADC reference resistor
ADC_VREF	Ι	-	ADC reference voltage
ADC_VDDA	Ι	-	ADC analog power supply
ADC_VSSA	Ι	-	ADC analog ground
ADC_D0	Ι	-	ADC Channel Zero sampling input
ADC_D1	Ι	-	ADC Channel 1 sampling input
ADC_XP	Ι	-	The 2 nd channel sampling input of
			touch screen X+/ADC
ADC_YP	Ι	-	The 3rd channel sampling input of
			touch screen X+/ADC

[Notes] The AD interface can only be used In QFP176A package.

2.10 SPI Interface

Signal name	Туре	Pull-up/ pull-down	Description
		puii-dowii	
SPI_SCK	0	PU	SPI clock output
SPI[3:0]_CSn	0	PU	SPI chip selection 0 to 3
SPI_MOSI	0	PD	SPI data output
SPI_MISO	Ι	PD	SPI data input

2.11 EJTAG Interface

Signal name	Туре	Pull-up/	Description
		pull-down	
EJTAG_SEL	Ι	PU	JTAG selection(0: JTAG, 1: EJTAG)
			JTAG pin function multiplex (when
JTAG_SEL	Ι	PU	the bit is 1, select the multiplex
			function)
EJTAG_TCK	Ι	PU	JTAG clock
EJTAG_TDI	Ι	PU	JTAG data input
EJTAG_TMS	Ι	PU	JTAG mode
EJTAG_TRST	Ι	PU	JTAG reset, to be pull down
EJTAG TDO	0	PU	JTAG data output

[Notes] EJTAG_SEL select whether is JTAG or EJTAG JTAG_SEL is used to choose JTAG multiplex function. Please don't be confused.

2.12 CAMERA Interface

Signal name	Туре	Pull-up/ pull-down	Description
CAM_CLKOUT	0	PU	Camera reference clock output
CAM_PCLK_I	Ι	PU	Camera pixel clock input
CAM_HSYNC	Ι	PU	Camera horizontal synchronization
			signal
CAM_VSYNC	Ι	PU	Camera vertical synchronizing signal
CAMDATA[7:0]	Ι	PU	Camera data input

[Notes] In QFP100 packaging, CAM isn't bounded out and needs to be multiplexed with NAND and MAC. In QFP176 package, CAM can be directly used.

2.13NAND Interface

Signal name	Туре	Pull-up/ pull-down	Description
NAND_CLE	0	PD	NAND command latch
NAND_ALE	0	PD	NAND address latch
NAND_RD	0	PD	NAND read signal
NAND_WR	0	PD	NAND write signal
NAND_CE	0	PD	NAND chip selection 0
NAND_RDY	Ι	PD	NAND ready 0
NAND_D [7:0]	I/O	PD	NAND address / data lines

2.14 MAC Interface

Signal name	Туре	Pull-up/ pull-down	Description
MAC TXCK	0	PU	MII clock transmission
MAC_TXEN	0	PU	MII control transmission
MAC_TXD[3:0]	0	PU	MII data transmission
MAC_RXCK	Ι	PU	MII clock reception
MAC_RXDV	Ι	PU	MII control reception
MAC_RXD[3:0]	Ι	PU	MII data reception
MAC_MDCK	0	PU	SMA interface clock
MAC_MDIO	I/O	PU	SMA interface data
MAC_COL	Ι	PU	MAC Collision detection
MAC_CRS	Ι	PU	MAC carrier wave detection

[Notes] In QFP package, MAC can only use RMII mode. In QFP176 package, MII and RMII modes can be used.

2.15 OTG Interface

Signal name	Туре	Pull-up/ pull-down	Description
OTG_DVDD			OTG digital power
OTG_DVSS			OTG digital ground
OTG_VDD33			OTG analog power supply
OTG_VSS33			OTG analog ground
OTG_REXT			OTG reference resistor
OTG_DP	DIFF I/O	-	OTG differential signal line D +
OTG_DM	DIFF I/O	-	OTG differential signal line D –
OTG_VBUS			OTG_VBUS
OTG_ID			OTG_ID

2.16 USB Port

Signal name	Туре	Pull-up/ pull-down	Description
USB_DVDD			USB digital power
USB_DVSS			USB digital ground
USB_VDD33			USB analog power supply
USB_VSS33			USB analog ground
USB_REXT			USB reference resistor
USB_DP	DIFF I/O	-	USB differential signal line D +
USB_DM	DIFF I/O	-	USB differential signal line D –

[Notes] In QFP100 package, USB HOST can't be used. In QFP176 package, it can be used.

2.17 RTC Interface

Signal name	Туре	Pull-up/pull-	Description
		down	
RTC_CLK_I	Ι	-	RTC oscillator input, connect 32.768K
			oscillator
RTC_CLK_O	0	-	RTC crystal oscillator output
VR_VDDA			RTC power supply

2.18 Clock Configuration Signal

Signal name	Туре	Pull-up/pull-	Description
		down	
XTALI	I		System clock crystal oscillator input, connect to 24M
XTAL0	0	-	System clock crystal oscillator output

2.19 Power Ground

Signal name	Туре	Pull-up/pull-	Description
		down	
PLL_VDD33	Р		Core PLL analog power supply
PLL_VSS33	G		Core PLL analog ground
PLL_VDD12	Р		Core PLL digital power supply
PLL_VSS12	G		Core PLL digital ground
CORE_VDD	Р		Core voltage power supply
CORE_VSS	G		Core voltage ground
IO_VDD	Р		IO power supply

2.20 Initialization Signal

Loongson 1C has three starting modes: SPI FLASH, NAND FLASH and SDIO. Multiplex function pin obtains the configuration message from the pull-up and pull-down values during system reset for the software to judge the powered state.

T 1 1 A 1	0 0	• 1
Table 2-1	Configuration	signal
14010 2 1	Comparation	i bigiiai

-18-

Pin name	Signal name	Description
NAND_D [3:0]	start_freq	CPU PLL frequency configuration in hardware control mode
		The frequency calculation formula shall be:

		$Freq = 6*(4*NAND_D[3:0] + 40)$
NAND_D [5:4]	boot_sel	Boot selection is different in QFP100 and QFP176 packages (in QFP100 packages, the control signal of NAND isn't
		bonded to the pin)
		In QFP100 package, boot sel is
		00: Reserved
		01: it indicates the boot from SPI flash
		10: it indicates the boot from NAND flash (multiplex
		SDRAM pin)
		11: it indicates the boot from NAND flash (multiplex MAC
		pin)
		In QFP176 packaging, boot_sel is
		00: Reserved
		01: it indicates the boot from SPI flash
		10: it indicates the boot from NAND flash
		11: it indicates the boot from SDIO
NAND_D [7:6]	nand_type	In NAND boot, configure the capacity of NAND flash
		00: it indicates that the capacity is equal to 2Gb (2KB page)
		01: it indicates that capacity is 1Gb (2KB page)
		10: it indicates that the capacity is 512Mb (512 Bytes page)
		11: it indicates the capacity is low and equal to 256MB (512
		Bytes page)
NAND_CLE	rs_rd_cfg	In NAND boot, whether to adopt ECC, select NAND only in
		boot_sel
		Flash valid at startup
		When the bit is 0, it indicates the non-ECC boot of NAND
		When the bit is 1, it indicates the ECC boot of NAND
SPI0_CLK	usb_retclksel	Clock selective signal of USB_HOST and USB_OTG
		When the bit is 1, it indicates the clock is provided by PLL.
		When the bit is 0, it indicates the clock is provided by
		external oscillator.

3 Register Definition

3.1 Base Register Definition

Register name	Address	RW (read/write) (R/W)	Function description	Reset value
Base register				
START_FREQ	0xbfe7_8030	R/W	PLL frequency configuration and SDRAM frequency division factor	
CLK_DIV_PARAM	0xbfe7_8034	R/W	CPU/CAMERA/DC frequency division factor	0x0
CBUS CONFSIGNALS	0xbfd0 0400	R/W		0x0
CBUS_SD_CTRL0	0xbfd0_0410	R/W	SDRAM parameter configuration register	0x001438a3
CBUS_SD_CTRL1	0xbfd0_0414	R/W		0x80000080
SHUT CTRL	0xbfd0 0420	R/W		0x0
MISC_CTRL	0xbfd0_0424	R/W	Function multiplexing register 0	
cpu throt	0xbfe7_c010	R/W	CPU dynamic frequency reduction register	0x0
Interrupt register				
INTISR0	0xbfd0_0140	R	Interrupt status register 0	0x0
INTEN0	0xbfd0_0144	R/W	Interrupt enable register 0	0x0
INTSET0	0xbfd0_0148	R/W	Interrupt setting register 0	0x0
INTCLR0	0xbfd0_014c	R/W	Interrupt clear register 0	0x0
INTPOL0	0xbfd0_0150	R/W	Interrupt triggering level flag	r
			register 0	0x0
INTEDGE0	0xbfd0_0154	R/W	Interrupt triggering edge flag register 0	, 0x0
INTISR1	0xbfd0 0158	R	Interrupt status register 1	0x0
INTEN1	0xbfd0_015c	R/W	Interrupt enable register 1	0x0
INTSET1	0xbfd0 0160	R/W	Interrupt setting register 1	0x0
INTCLR1	0xbfd0_0164	R/W	Interrupt clear register 1	0x0
INTPOL1	0xbfd0 0168	R/W	Interrupt triggering level flag register 1	0x0
INTEDGE1	0xbfd0 016c	R/W	Interrupt triggering edge flag register 1	0x0
INTISR2	0xbfd0 0170	R	Interrupt status register 2	0x0
INTEN2	0xbfd0 0174	R/W	Interrupt enable register 2	0x0
INTSET2	0xbfd0 0178	R/W	Interrupt setting register 2	0x0
INTCLR2	0xbfd0 017c	R/W	Interrupt clear register 2	0x0
INTPOL2	0xbfd0 0180	R/W	Interrupt triggering level flag register 2	9 0x0
INTEDGE2	0xbfd0 0184	R/W	Interrupt triggering edge flag register 2	
INTISR3	0xbfd0 0188	R	Interrupt status register 3	0x0
INTEN3	0xbfd0_018c	R/W	Interrupt enable register 3	0x0
INTSET3	0xbfd0 0190	R/W	Interrupt setting register 3	0x0
INTCLR3	0xbfd0_0194	R/W	Interrupt clear register 3	0x0
INTPOL3	0xbfd0_0198	R/W	Interrupt triggering level flag register 3	

0xbfd0,010a	R/W	Interrupt triggering edge flag	0x0
	D		0x0 0x0
		1 0	0x0 0x0
			0x0 0x0
		1 8 8	0x0 0x0
0xbfd0_01b0	K/ W	register 4	0x0
0xbfd0_01b4	R/W		0x0
0.0100_0104			UNU
0xbfd0_01c0	R/W	GPIO configuration register 0	0xffe00040
_			
			UXU
0xbfd0_01d0	K/ W	GPIO output enable register 0	
0xbfd0_01d4	R/W	GPIO output enable register 1	0xfc00 3f3f
	R/W	GPIO output enable register 2	0x1ff0 3fff
0X0100_0108	D/W/		0X1110_5111
0xbfd0_01dc			0x0
0xbfd0_01e0			0x0
0xbfd0_01e4	R/W	GPIO input register 1	0x0
0xbfd0_01e8	R/W	GPIO input register 2	0x0
0xbfd0_01ec	R/W	GPIO input register 3	0x0
0xbfd0_01f0	R/W	GPIO output register 0	0x0
0xbfd0_01f4	R/W	GPIO output register 1	0x0
0xbfd0_01f8	R/W	GPIO output register 2	0x0
0xbfd0_01fc	R/W	GPIO output register 3	0x0
ister			
0xbfd0_11c0	R/W	First multiplexed register 0	0x0
0xbfd0_11c4	R/W	First multiplexed register 1	0x0
0xbfd0_11c8	R/W	First multiplexed register 2	0x0
0xbfd0 11cc	R/W	First multiplexed register 3	0x0
0xbfd0_11d0	R/W	Second multiplexed register 0	0x0
0xbfd0 11d4	R/W	Second multiplexed register 1	0x0
0xbfd0 11d8	R/W	Second multiplexed register 2	0x0
	R/W		0x0
0xbfd0 11e4	R/W	1 0	0x0
0xbfd0 11e8	R/W	1 8	0x0
0xbfd0 11ec	R/W	· · · · · ·	0x0
		1 0	0x0
		1 0	0x0
		1 5	0x0
		1 0	
0xbfd0_11fc	R/W	Fourth multiplexed register 3	0X0
	0xbfd0_01b4 0xbfd0_01c0 0xbfd0_01c4 0xbfd0_01c8 0xbfd0_01c8 0xbfd0_01c6 0xbfd0_01c6 0xbfd0_01c6 0xbfd0_01d0 0xbfd0_01d4 0xbfd0_01d8 0xbfd0_01d6 0xbfd0_01d6 0xbfd0_01e0 0xbfd0_01e8 0xbfd0_01e8 0xbfd0_01e8 0xbfd0_01e8 0xbfd0_01e6 0xbfd0_01e6 0xbfd0_01e7 0xbfd0_116 0xbfd0_11c4 0xbfd0_11c4 0xbfd0_11c8 0xbfd0_11c8 0xbfd0_11c4 0xbfd0_1	0xbfd0 019c 0xbfd0 01°0 R 0xbfd0 01°4 R/W 0xbfd0 01°8 R/W 0xbfd0 01ac R/W 0xbfd0 01ac R/W 0xbfd0 01b0 R/W 0xbfd0 01b0 R/W 0xbfd0 01c0 R/W 0xbfd0 01c4 R/W 0xbfd0 01c8 R/W 0xbfd0 01c8 R/W 0xbfd0 01c4 R/W 0xbfd0 01c4 R/W 0xbfd0 01c4 R/W 0xbfd0 01c4 R/W 0xbfd0 01d4 R/W 0xbfd0 01d4 R/W 0xbfd0 01e0 R/W 0xbfd0 01e0 R/W 0xbfd0 01e0 R/W 0xbfd0 01e4 R/W 0xbfd0 01e4 R/W 0xbfd0 01e4 R/W	Oxbfd0 019c register 3 0xbfd0 01°0 R Interrupt status register 4 0xbfd0 01°4 R/W Interrupt enable register 4 0xbfd0 01°8 R/W Interrupt clear register 4 0xbfd0 01ac R/W Interrupt triggering level flag register 4 0xbfd0 01b0 register 4 0xbfd0 01b4 register 4 0xbfd0 01c R/W 0xbfd0 01c4 R/W 0xbfd0 01d4 PIO configuration register 1 0xbfd0 01d4 R/W 0xbfd0 01d4 PIO output enable register 1 0xbfd0 01dc R/W 0xbfd0 01dc PIO 0xbfd0 01dc

3.2 Each Module Register Definition

Register name	Address	R/W	Function description	Reset value
SDRAM interface				

SD_CONFIG[31:0]	0xbfd0_0410	R/W	SDRAM parameter0x30d0db5a configuration register
SD CONFIG[63:32]	0xbfd0 0414	R/W	SDRAM parameter0x50
$SD_CONTO[03.32]$	0x0100_0414	IX/ VV	configuration register
PWM0			comparation register
CNTR	0xbfe5 c000	R/W	Basic counter 0x0
HRC	0xbfe5 c004	R/W	High pulse timing0x0
		10, 11	reference register
LRC	0xbfe5 c008	R/W	Low pulse timing0x0
			reference register
CTRL	0xbfe5 c00c	R/W	Control register 0x0
PWM1			
CNTR	0xbfe5_c010	R/W	Basic counter 0x0
HRC	0xbfe5_c014		High pulse timing0x0
		R/W	reference register
LRC	0xbfe5_c018		Low pulse timing0x0
		R/W	reference register
CTRL	0xbfe5_c01c	R/W	Control register 0x0
PWM2		1	
CNTR	0xbfe5_c020	R/W	Basic counter 0x0
HRC	0xbfe5_c024	R/W	High pulse timing
			reference register 0x0
LRC	0xbfe5_c028	R/W	Low pulse timing
			reference register 0x0
CTRL	0xbfe5_c02c	R/W	Control register 0x0
PWM3			
CNTR	0xbfe5_c030	R/W	Basic counter 0x0
HRC		R/W	High pulse timing
	0xbfe5_c034	-	reference register 0x0
LRC	0 1 6 5 0 0 0	R/W	Low pulse timing
CTDI	0xbfe5_c038	D /III	reference register 0x0
CTRL DS interfect	0xbfe5_c03c	R/W	Control register 0x0
I2S interface	0-1-6-(0000	D/W	120 identificant sister 0-0
IISVersion	0xbfe6_0000 0xbfe6_0001	R/W	I2S identify register 0x0
IISConfig	0xb1e6_0001	R/W	I2S configuration0x0 register
IISState	0xbfe6 0002	R/W	I2S status register 0x0
IISRxData	0xbfe6 0003	R/W	I2S data reception0x0
IISKXDala	0x0100_0003	IX/ VV	register
IISTxData	0xbfe6 0004	R/W	I2S data transmission0x0
IISTADuu	000100_0004	10/ **	register
AC97			
CSR	0xbfe6 0000	R/W	Configuration status0x0
			register
OCC0		R/W	Output channel0x4141
	0xbfe6 0004		configuration register
	_		0
OCC1	0xbfe6_0008		Reserved
OCC2	0xbfe6_000c		Reserved
ICC		R/W	Input channel0x410000
	0xbfe6_0010		configuration register
CODEC_ID	0xbfe6_0014		Codec ID register
CRAC			Codec register access0x0
	0xbfe6_0018		command
OC0	0xbfe6_0020		Output sound track 0
OC1	0xbfe6_0024		Output sound track 1

-22-

OC2	0xbfe6 0028		Reserved
0C2 0C3	0xbfe6 002c		Reserved
OC4	0xbfe6 0030		Reserved
OC5	0xbfe6 0034		Reserved
OC6	0xbfe6 0038		Reserved
0C0 0C7	0xbfe6 003c		Reserved
OC10	0xbfe6 0040		Reserved
ICO	0xbfe6_0044	-	Reserved
IC0 IC1	0xbfe6_0044		Reserved
IC1 IC2			
	0xbfe6_004c	D /117	Input sound track 2
INTRAW	0xbfe6_0054	R/W	Interrupt status register
INTM	0xbfe6_0058	R/W	Interrupt mask 0x0
INT_CLR	0xbfe6 005c	R	Interrupt status / clear0x0 register
INT OC CLR		R	OC Interrupt clear0x0
	0xbfe6_0060		register
INT_IC_CLR	0xbfe6 0064	R	IC Interrupt clear0x0 register
INT CW CLR		R	CODEC write0x0
	0xbfe6 0610		interrupt clear register
INT CR CLR	00100	R	CODEC read interrupt0x0
	0xbfe6 006c		clear register
RTC			
sys toywrite0		W	TOY low 32-bit value
555_t05 Willeo	0xbfe6 4024		read-in
sys toywrite1	0.0100_1021	W	TOY high 32-bit value
555_t05 willer	0xbfe6 4028		read-in
sys_toyread0	0.0100_1020	R	TOY low 32-bit value
sys_toyreado	0xbfe6 402C	I.	read-out
sys toyread1		R	TOY high 32-bit value
bjb_tojicuui	0xbfe6 4030		read-out
SDIO interface			
sdi con	0xbfe6_c000	R/W	SDIO control register 0x0
sdi pre	0xbfe6 c004	R/W	SDIO prescale0x1
sur_pro		10,11	register
sdi cmd arg	0xbfe6 c008	R/W	SDIO command0x0
	0.0100_0000	1.0, 11	parameter register
sdi cmd con	0xbfe6 c00c	R/W	SDIO command0x0
		L () Y Y	control register
sdi cmd sta	0xbfe6 c010	R	SDIO command status0x0
		μ. L	register
sdi rsp0	0xbfe6 c014	R/W	SDIO response0x0
sur_rsho	070100_0014	IX/ VV	-
edi ren1	0xbfe6 c018	R/W	register 0 SDIO response0x0
sdi_rsp1	0x0100_0018	IX/ W	1
adi ran?	0 $v $ $b $ $f $ $c $ $0 $ $1 $ c	D /117	register 1 SDIO response0x0
sdi_rsp2	0xbfe6_c01c	R/W	1
adi ran?	$0_{\rm w} h f_{\rm e} (-0.20)$	D /117	register 2
sdi_rsp3	0xbfe6_c020	R/W	SDIO response0x0 register 3
sdi dtimer	0xbfe6 c024	R/W	SDIO timing register 0x1388
sdi_bsize	0xbfe6_c028	R/W	SDIO block size0x0
adi dat	0-1-6-(02)	D /117	register
sdi_dat_con	0xbfe6_c02c	R/W	SDIO data control0x0
- 1: 1-4 4	0-1.0.0.020	D /117	register
sdi_dat_cnt	0xbfe6_c030	R/W	SDIO data counter 0x0

-23-

sdi dat sta	0xbfe6 c034	R	SDIO data status0x0
Sul_uu_su		i c	register
sdi_fsta	0xbfe6_c038	R	SDIO FIFO status0x0 register
sdi_int_mask	0xbfe6_c03c	R/W	SDIO interrupt mask0x0 register
sdi_wdat	0xbfe6_c040	R/W	SDIO (data register) 0x0
sdi_int_en	0xbfe6_c064	RW	SDIO interrupt enable0x0 register
ADC interface	·		
adc_cnt	0xbfe7_4000	R/W	Frequency division0x400010 and sampling interval register
adc_s_ctrl	0xbfe7_4004	R/W	Single sampling0x0 control register
adc_c_ctrl	0xbfe7_4008	R/W	Continuous sampling0x0 control register
x_range	0xbfe7_4010	R/W	Touch screen X0x3ff0000 direction threshold
y_range	0xbfe7_4014	R/W	Touch screen Y0x3ff0000 direction threshold
awatchdog_range	0xbfe7_4018	R/W	Analog watchdog0x3f0000f threshold
axis	0xbfe7_401c	R/W	Touch screen0x0 coordinates
adc_s_dout0	0xbfe7_4020	R/W	Result of single0x0 sampling by channel 0 and channel 1
adc_s_dout1	0xbfe7_4024	R/W	Result of single0x0 sampling by channel 2 and channel 3
adc_c_dout	0xbfe7_4028	R/W	Continuous sampling0x0 results
adc_debounce_cnt	0xbfe7_402c	R/W	Touch screen0x640 debouncing time
adc_int	0xbfe7_4030	R/W	ADC interrupt flag0x0 and control
NAND	1	1	
NAND_CMD	0Xbfe7_8000	R/W	NAND command0x0 register
ADDR_C	0Xbfe7_8004	R/W	NAND page offset0x0 address register
ADDR_R	0Xbfe7_8008	R/W	NAND page address0x0 register
NAND_TIMING	0Xbfe7_800C	R/W	NAND timing0x412 sequence register
ID_L	0Xbfe7_8010	R	NAND low ID0x0 register
STATUS & ID_H	0Xbfe7_8014	R	NAND high ID0x0 register
NAND_PARAMETER	0Xbfe7_8018	R/W	NAND grain0x parameter register
NAND_OP_NUM	0Xbfe7_801C	R/W	NAND reading and 0x800 writing number register
CS_RDY_MAP	0Xbfe7_8020	R/W	NAND grain RDY 0x0

-24-

			Signal	
DMA access address	0Xbfe7_8040	R/W	NAND read-write0x0	
			data register	
CAMERA interface				
DMA_ADDR0_CONFIG	0xbc28_0000	R/W	Frame buffer base0x0 address 0	
DMA_ADDR1_CONFIG	0xbc28_0008	R/W	Frame buffer base0x0 address 1	
DMA_ADDR2_CONFIG	0xbc28_0010	R/W	Frame buffer base0x0 address 2	
DMA_ADDR3_CONFIG	0xbc28_0018	R/W	Frame buffer base0x0 address 3	
Camif_config_pix	0xbc28_0020	R/W	Floating resolution0x0 ratio pixel	
Camif_config_uoffset	0xbc28_0028	R/W	U base address 0x0	
Camif_config_voffset	0xbc28_0030	R/W	V base address 0x0	
Camif_config	0xbc28_0038	R/W	Status register 0x0	
HCNTR interface				
hcntr_ctrl	0xbfe7_c000	R/W	Timer control register 0x0	

4 Clock Architecture

4.1 Clock Architecture

The clock architecture of Loongson 1C is shown in the figure below, and the clock from XTALI/O is sent to two USBPHY and one PLL. After frequency division, PLL generates the work clock of main modules such as CPU, SDRAM, MAC and USB; modules such as USB, MAC and OTG use their respective clock in interface (or reference clock)

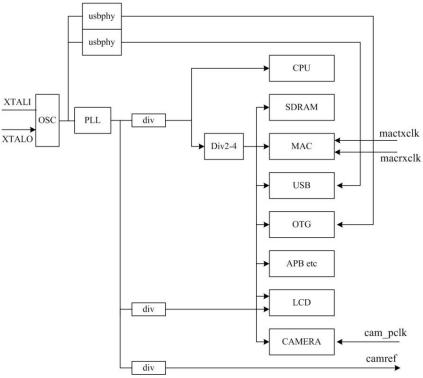


Figure 4-1 System clock architecture

4.2 Clock Signal Description

Table 4-1 has introduced all clock pins of Loongson 1C.

Table 4-1 Loongson 1C clock signal

Signal name	Frequency	Туре	Description	
	(Hz)			
XTALI XTALO			PLL and USBPHY reference clocks are	
		I/O	connected to 24MHz crystal.	
MACTXCLK		Ι	MAC reference clock transmission	
MACRXCLK		Ι	MAC reference clock reception	
CAM_PCLK		Ι	Camera pixel clock	

5 Chip Configuration and Control

5.1 Address space allocation

The address space of Loongson 1C is divided into three levels, including the address space of modules above the first-level AXI crossbar module, that of all modules under AXI_MUX, and that of on-APB modules.

Table 5-1 Space assignment of AXI modules			
Address space	Equipment	Note	
$0x0000_{0000} - 0x0fff_fff$	SDRAM	256MB	
$0xbc28_0000 - 0xbc2f_ffff$	CAMERA_IF	512K	
$0xbc30_0000 - 0xbc3f_ffff$	DC	1MB	
0xbf00_0000 – 0xbfff_ffff	AXI MUX	16MB	

Table 5-2 Address assignment of all AXI modules				
Address space	Equipment	Note		
0xbd00,0000 – 0xbd7f,ffff	SPI0-memory	8MB		
0xbe00,0000 – 0xbe3f,ffff	SPI1-memory	4MB		
0xbfc0_0000 - 0xbfcf_ffff	Boot	1MB is mapped to SPI		
		or NAND by means of		
		system booting.		
0xbfd0_0000 – 0xbfdf_ffff	CONFREG	1MB		
0xbfe0_0000 – 0xbfe0_ffff	OTG	64KB		
0xbfe1_0000 - 0xbfe1_ffff	MAC	64KB		
0xbfe2_0000 - 0xbfe2_ffff	USB	64KB		
0xbfe4_0000 - 0xbfe7_ffff	APB-devices	256KB		
0xbfe8,0000 – 0xbfeb,ffff	SPI0-IO	256KB		
0xbfec,0000 – 0xbfef,ffff	SPI1-IO	256KB		

Table 5-3 Address assignment of all AXI modules

Address space	Modules	Note
0xbfe4_0000-0xbfe4_3fff	UART0	16KB
0xbfe4_4000-0xbfe4_7fff	UART1	16KB
0xbfe4_8000-0xbfe4_bfff	UART2	16KB
0xbfe4_c000-0xbfe4_c0ff	UART3	16KB
0xbfe4_c400-0xbfe4_c4ff	UART4	256B
0xbfe4_c500-0xbfe4_c5ff	UART5	256B
0xbfe4_c600-0xbfe4_c6ff	UART6	256B
0xbfe4_c700-0xbfe4_c7ff	UART7	256B
0xbfe4_c800-0xbfe4_c8ff	UART8	256B
0xbfe4_c900-0xbfe4_c9ff	UART9	256B
0xbfe4_ca00-0xbfe4_caff	UART10	256B
0xbfe4_cb00-0xbfe4_cbff	UART11	256B
0xbfe5_0000-0xbfe5_3fff	CAN0	16KB
0xbfe5_4000-0xbfe5_7fff	CAN1	16KB
0xbfe5_8000-0xbfe5_bfff	I2C-0	16KB
0xbfe5_c000-0xbfe5_ffff	PWM	16KB
0xbfe6_0000-0xbfe6_3fff	AC97/I2S	16KB
0xbfe6_4000-0xbfe6_7fff	RTC	16KB
0xbfe6_8000-0xbfe6_bfff	I2C-1	16KB
0xbfe6 c000-0xbfe6 ffff	SDIO	16KB
0xbfe7_0000-0xbfe7_3fff	I2C-2	16KB
0xbfe7_4000-0xbfe7_7fff	ADC	16KB
0xbfe7_8000-0xbfe7_bfff	NAND	16KB

0xbfe7_c000-0xbfe7_	ffff	HCNTR	16KB

5.2 Chip Configuration Register (CONFREG)

There is a dedicated configuration register module (CONFREG) in Loongson 1C chip, which is used for some basic configurations and multiplex relations in chip. The following is a list of registers and instructions.

5.2.1 PLL/SDRAM Frequency configuration register

Register name	Address	R/W	Function description	Reset value
START_FREQ	0xbfe78030	R/W	PLL Configuration	
			frequency and	
			SDRAM frequency	
			coefficient	

START_FREQ	Bit	Default values	Description
PLL_VALID	31	0	PLL valid bit of clock multiplier factor
Reserved	30:24	0	
FRAC_N	23:16	0	PLL fractional part of clock multiplier factor
M_PLL	15:8		Integer part of PLL clock multiplier factor (theoretically, it may reach 255, but had better not exceed 100)
Reserved	7:4	0	
RST_TIME	3:2		Resetting time after PLL frequency configuration completion 00: Indicate no reset 01: Indicate 0x100 CLK 10: Indicate 0x400 CLK 10: Indicate 0xff0 CLK
SDRAM_DIV	1:0		Frequency division factor from CPU to SDRAM 00: Indicate 2 fractional frequency 01: Indicate 4 fractional frequency 10 or 11: Indicate 3 fractional frequency

Notes: the frequency division factor N of PLL is fixed as 4, and the calculation formula of PLL frequency is shown as follows:

 $Freq_PLL = XIN * (M_PLL + FRAC_N)/4$

5.2.2 CPU/CAMERA/DC frequency configuration register

Register name	Address	Read / Write (R / W)	Function description	Reset value
CLK_DIV_PARAM	0xbfe7_8034		CPU/CAMERA/DC frequency division	
			factor	

CLK_DIV_PARAM	Bit	Default values	Description
PIX_DIV	31:24		DC frequency coefficient of pixel clock PIX_DIV[7] is the significant bit value of configuration parameter. When it's 1, PIX_DIV[6:0] is valid.

			PIX_DIV[6:0] is the frequency division factor. When it's 0, there is no frequency
			division, and it ranges from 1 to 27.
CAM_DIV	23:16	0x24	CAMERA clock frequency coefficient
			CAM_DIV[7] is the significant bit of
			configuration parameter. When it's 1,
			CAM_DIV[6:0] is valid.
			CAM_DIV[6:0] is the frequency
			division factor. When it's 0, there is no
			frequency division, and it ranges from 1
			to 127.
CPU_DIV	15:8	0x2	CPU clock frequency coefficient
_			CPU DIV[7] is the significant bit of
			configuration parameter. When it's 1,
			CPU_DIV[6:0] is valid.
			$CP\overline{U}$ $DIV[6:0]$ is the frequency
			division factor. When it's 0, there is no
			frequency division, and it ranges from 1
			to 127.
Reserved	7:6	0	
PIX_DIV_VALID	5	0	DC pixel clock frequency coefficient
			valid
PIX_SEL	4	0	DC pixel clock selection signal
			When it's 1, select fractional frequency
			clock
			When it's 0, select the crystal oscillator,
			and input clock (bypass mode)
CAM_DIV_VALID			
	3	0	CAMERA valid clock frequency
	3	0	CAMERA valid clock frequency coefficient
CAM SEL	3	0	coefficient
CAM_SEL		-	
CAM_SEL		-	coefficient CAMERA clock selection signal
CAM_SEL		-	coefficient CAMERA clock selection signal When it's 1, select fractional frequency
CAM_SEL		-	coefficient CAMERA clock selection signal When it's 1, select fractional frequency clock
CAM_SEL CAM DIV VALID		-	coefficient CAMERA clock selection signal When it's 1, select fractional frequency clock When it's 0, select the crystal oscillator, and input clock (bypass mode)
CAM_DIV_VALID		0	coefficient CAMERA clock selection signal When it's 1, select fractional frequency clock When it's 0, select the crystal oscillator, and input clock (bypass mode) CPU valid clock frequency coefficient
	2	0	coefficient CAMERA clock selection signal When it's 1, select fractional frequency clock When it's 0, select the crystal oscillator, and input clock (bypass mode) CPU valid clock frequency coefficient CPU clock selection signal
CAM_DIV_VALID	2	0	coefficient CAMERA clock selection signal When it's 1, select fractional frequency clock When it's 0, select the crystal oscillator, and input clock (bypass mode) CPU valid clock frequency coefficient CPU clock selection signal When it's 1, select fractional frequency
CAM_DIV_VALID	2	0	coefficient CAMERA clock selection signal When it's 1, select fractional frequency clock When it's 0, select the crystal oscillator, and input clock (bypass mode) CPU valid clock frequency coefficient CPU clock selection signal

Freq_PIX = Freq_PLL/PIX_DIV; Freq_CAM = Freq_PLL/CAM_DIV; Freq_CPU = Freq_PLL/CPU_DIV; Freq_SDRAM = Freq_CPU/SDRAM_DIV;

5.2.3 SDRAM parameter register

Register name	Address	Read / Write	Function	Reset value
		$(\mathbf{R} / \mathbf{W})$	description	
SD_CONFIG[31:0]	0xbfd0_0410	R/W	SDRAM	0x001438a3
			parameter	
			configuration	
			register	
SD_CONFIG[63:32]	0xbfd0_0414	R/W	SDRAM	0x80000080
			parameter	
			configuration	

-29-

	register	

See Chapter 7 for instructions and configuration of SDRAM parameter register

5.2.4 SHUT_CTRL register

Register name	Address	Read / Write (R / W)	Function description	Reset value
shut_ctrl	0xbfd0_0420		Each module switch register	0x0

SHUT_CTRL	Bit	Default	Description
	21.20	values	
UART_split	31:30	0	Full-function serial port uart0 partition
			scheme.
			00: Used as full-function serial port
	20.26	0	01: Used as 2 four-wire serial ports
OUTPUT_CLK	29:26	0	Clock output configuration. Each bit indicates a clock output
			When the Obit is 1, it indicates the
			PIX CLK output of DC; when the 1 st
			bit is 1, it indicates the CAMERA
			clock output from SPI0_CS pin; when
			the 2^{nd} bit is 1, it indicates the
			CAMERA clock output from PWM0
			pin; when the 3^{rd} bit is 1, it indicates
			the clock output of crystal clock.
ADC shut	25	0	ADC module shutdown, valid at 1
SDIO shut	23	0	SDIO module shutdown, valid at 1
DMA2 shut	23	0	DMA2 module shutdown, valid at 1
DMA2_shut	23	0	DMA2 module shutdown, valid at 1 DMA1 module shutdown, valid at 1
DMA1_shut	22	0	DMAO module shutdown, valid at 1 DMAO module shutdown, valid at 1
SPI1 shut	20	0	SPI1 module shutdown, valid at 1
SPI0 shut	19	0	SPI0 module shutdown, valid at 1
I2C2 shut	19	0	I2C2 module shutdown, valid at 1
	10	0	In addition, for the UARTO
			full-function multiplex configuration
			bit, please refer to 5.2.6 UART
			multiplex configuration register
I2C1 shut	17	0	I2C1 module shutdown, valid at 1
I2C0 shut	16	0	I2C0 module shutdown, valid at 1
AC97 shut	15	0	AC97 module shutdown, valid at 1
I2S shut	13	0	I2C module shutdown, valid at 1
UART3 shut	13	0	UART3 module shutdown, valid at 1
UART2 shut	12	0	UART2 module shutdown, valid at 1
UART1 shut	11	0	UART1 module shutdown, valid at 1
UART0 shut	10	0	UART0 module shutdown, valid at 1
CAN1 shut	9	0	CAN1 module shutdown, valid at 1
CAN0 shut	8	0	CAN0 module shutdown, valid at 1
ECC shut	7	0	NAND ECC function off, and when it's
	,	0	1, it's effective.
MAC shut	6	0	MAC module shutdown, valid at 1
USBHOST shut	5	0	USBHOST module shutdown, valid at
	Ĩ	Ĩ	1
USBOTG shut	4	0	USBOTG module shutdown, valid at 1

SDRAM_shut	3	0	SDRAM module shutdown, valid at 1
SRAM_shut	2	0	SRAM module shutdown, valid at 1
CAM_shut	1	0	CAMERA module shutdown, valid at 1
LCD_shut	0	0	LCD module shutdown, valid at 1

5.2.5 MISC_CTRL register

Register name	Address	Read / Write (R / W)	Function description	Reset value
misc_ctrl	0xbfe6_4024		Multiplexing function register	

MISC_CTRL	Bit	Default values	Description
USBHOST_RSTn	31	0	USBHOST module software reset
PHY_INTF_SEL_i	30:28	0	MAC module MII interface configuration signal 000: MII mode 100: RMII mode
Reserved	27:26	0	
AC97_EN	25	0	AC97 and I2S multiplex options. When the bit is 1, AC97 is used. When the bit is 0, I2S is used.
SDIO_DMA_EN	24:23	0	SDIO uses DMA. When the bit is 0, DMA isn't used. When the bit is 1, DMA0 is used. When the bit is 2, DMA1 is used. When the bit is 3, DMA2 is used.
ADC_DMA_EN	22	0	ADC uses DMA, When the bit is 1, it's significant.
Reserved	21:18	0	
SDIO_USE_SPI1	17	0	SDIO uses SPI1 pin. When the bit is 1, it's signifant.
SDIO_USE_SPI0	16	0	SDIO uses SPI0 pin. When the bit is 1, it's significant.
SRAM_CTRL	15:0	0	SRAM configuration parameters. See SRAM.

5.2.6 Cpu_throt register

Register name	Address	Read / Write	Function	Reset value
		(R / W)	description	
cpu_throt	0xbfe7_c010		CPU dynamic downclock control register	0x0

cpu_throt	Bit	Default values	Description
Reserved	31:4	0	
cpu_throt	3:0	0xf	CPU frequency reduction coefficients. This configuration is only effective for CPU frequency, and has no influence on bus clock and SDRAM clock. cpu_throt is described as follows:

0xf: Keep CPU frequency unchanged.
0xe: Reduce to 15/16 of the origination
frequency
0xd: Reduce to 14/16 of the origination
frequency
0xc: Reduce to 13/16 of the origination
frequency
0xb: Reduce to 12/16 of the origination
frequency
0xa: Reduce to 11/16 of the origina
frequency
0x9: Reduce to $10/16$ of the original
frequency
0x8: Reduce to $9/16$ of the origina
frequency
0x7: Reduce to $8/16$ of the origina
frequency 0.5 . Boltzer to $7/16$ of the original
0x6: Reduce to 7/16 of the origina
frequency 0x5: Reduce to 6/16 of the origination
frequency
0x4: Reduce to 5/16 of the original
frequency
0x3: Reduce to 4/16 of the original
frequency
0x3: Reduce to $3/16$ of the original
frequency
0x1: Reduce to $2/16$ of the original
frequency
0x0: Reduce to $1/16$ of the original
frequency

5.2.7 UART multiplex configuration register

Register name	Address	Read / Write (R / W)	Function description	Reset value
uart0_full_func	0xbfd0_0420		Whether to multiplex uart4~uart6 into the full function or self function of uart0	0x0
uart8_full_func	0xbfe4_c904		Whether to multiplex uart9~uart11 into the full function or self function of uart8	0x0

UART0_FULL_FUNC	Bit	Default values	Description
	31:19	0	misc_ctrl[31:19]
uart0_full_func	18	0	When the bit is 0, uart4~uart6 is used as
			the self signal of uart4~6, and I2C2
			module is opened.
			When the bit is 1, uart4~uart6 is used as
			the self signal of uart0, and I2C2 module

		is opened.
17:0	0	misc_ctrl[17:0]

UART8_FULL_FUNC	Bit	Default values	Description
	7:1	0	In common with MSR [7:1]
uart8_full_func	0	0	When the bit is 0, uart9~uart11 is used as the self signal of uart8~11 When the bit is 1, uart9~uart11 is used as the self signal of uart8, and I2C2 module is closed.

5.2.8 GPIO0 Configuration Register (corresponding GPIO[31:0])

Register name	Address	Read / Write	Function description	Reset value
		(R / W)		
GPIO_CFG0	0xbfd0_10c0	R/W	GPIO0 configuration	0xfc00_3f3f
			register	
			1 indicates the	
			configuration is GPIO,	
			and 0 indicates ineffective.	
GPIO_EN0	0xbfd0_10d0	R/W	GPIO0 output enable	0xfc00_3f3f
			register	
			1 indicates the input, and	
			0 indicates the	
			configuration is input.	
GPIO_IN0	0xbfd0_10e0	R	GPIO0 input register	0x0
GPIO_OUT0	0xbfd0_10f0	R/W	GPIO0 output register	0x0
	_		High output at 1	
			Low output at 0	

If the GPIO[16] output is configured 1, it's necessary to configure GPIO_CFG[16] as 1, then GPIO_EN[16] as 1, and GPIO_OUT[16] as 1. Similarly, GPIO0~GPIO127 input or output can be configured.

5.2.9 GPIO1 configuration register (corresponding GPIO[63:32])

Register name	Address	Read / Write (R / W)	eFunction description	Reset value
GPIO_CFG1	0xbfd0_10c4	R/W	GPIO1 configuration register 1 indicates the configuration is	0x0
			GPIO, and 0 indicates ineffective.	
GPIO_EN1	0xbfd0_10d4	R/W	GPIO1 output enable register 1 indicates the input, and 0 indicates the configuration is input.	0x0
GPIO_IN1	0xbfd0_10e4	R	GPIO1 input register	0x0
GPIO_OUT1	0xbfd0_10f4	R/W	GPIO1 output register High output at 1 Low output at 0	0x0

5.2.10 GPIO2	configuration	register	(corresponding GPIO[95:64])	
--------------	---------------	----------	-----------------------------	--

Register name	Address		Function description	Reset value
		(R / W)		
GPIO_CFG2	0xbfd0_10c8	R/W	GPIO2 configuration	0x0
			register	
			1 indicates the	
			configuration is GPIO,	
			and 0 indicates	
			ineffective.	
GPIO_EN2	0xbfd0_10d8	R/W	GPIO2 output enable	0x0
			register	
			1 indicates the input,	
			and 0 indicates the	
			configuration is input.	
GPIO_IN2	0xbfd0_10e8	R	GPIO2 input register	0x0
GPIO_OUT2	0xbfd0_10f8	R/W	GPIO2 output register	0x0
_	_		High output at 1 and	
			low output at 0	

5.2.11 GPIO3 configuration register (corresponding GPIO[127:96])

Register name	Address	Read / Write (R / W)	Function description	Reset value
GPIO_CFG3	0xbfd0_10cc	R/W	GPIO3 configuration	0x0
			Register	
			1 indicates the	
			configuration is GPIO, and	
			0 indicates ineffective.	
GPIO_EN3	0xbfd0_10dc	R/W	GPIO3 output enable	0x0
			register	
			1 indicates the input, and 0	
			indicates the configuration	
			is input.	
GPIO_IN3	0xbfd0_10ec	R	GPIO3 input register	0x0
GPIO_OUT3	0xbfd0_10fc	R/W	GPIO3 output register	0x0
			High output at 1	
			Low output at 0	

5.2.12 PAD[31:0] pin multiplex relation configuration register

Register name	Address	Read /	Function description	Reset value
		Write (R / W)		
CBUS_FIRST0	0xbfd0_11c0	R/W	PAD[31:0] 1 st multiplex	0x0
			register. When the bit is 1, it	
			indicates the corresponding	
			PAD is configured as the 1 st	
			multiplex, and when the bit is 1,	
			it indicates ineffective.	
CBUS_SECOND0	0xbfd0_11d0	R/W	PAD[31:0] 2 nd multiplex	0x0
			register. When the bit is 1, it	
			indicates the corresponding	
			PAD is configured as the 2 nd	
			multiplex, and when the bit is 0,	
			it indicates ineffective.	
CBUS_THIRD0	0xbfd0_11e0	R/W	PAD [31:0] No.	0x0

-34-

		The 3 rd multiplex register, when the bit is 1, it indicates the corresponding PAD is configured as the 3 rd multiplex, and when the bit is 0, it indicates ineffective.	
CBUS_FOURTHT0 0xbfd0_1	1f0 R/W	PAD[31:0] 4 th multiplex register. When the bit is 1, it indicates the corresponding PAD is configured as the 4 th multiplex, and when the bit is 0, it indicates ineffective.	0x0
CBUS_FIFTHT0 0xbfd0_1	200 R/W	PAD[31:0] 5 th multiplex register. When the bit is 1, it indicates the corresponding PAD is configured as the 5 th multiplex, and when the bit is 0, it indicates ineffective.	0x0

1C chip pin has several multiplex relations, and has six functions and one GPIO multiplex relation at most. See multiplex relation table in Chapter VII of data book. The multiplexed relationship of each pin is prioritized as follows:

1st multiplex>2nd multiplex>3rd multiplex>4th multiplex>5th multiplex>GPIO multiplex>default function For example, to use the 4th multiplex function of PAD[21], it's necessary to configure CBUS_FIRST0[21]~ CBUS_THIRD0[21] as 0 and CBUS_FOURTH0[21] as 1. If to use default function, it's necessary to configure CBUS_FIRST0[21]~ CBUS_FOURTH0[21] and GPIO[21] as 0.

5.2.13 PAD[63:32] pin multiplex relation configuration register

Register name	Address	Read / Write (R / W)	Function description	Reset value
CBUS_FIRST1	0xbfd0_11c4	R/W	PAD[63:32] the 1 st multiplex register, bit	0x0
			When the bit is 1, it indicates that corresponding PAD configuration is the 1 st multiplex. When the bit is 0, it indicates ineffective.	
CBUS_SECOND1	0xbfd0_11d4	R/W	PAD[63:32] 2 nd multiplex register. When the bit is 1, it indicates the corresponding PAD is configured as the 2 nd multiplex, and when the bit is 0, it indicates ineffective.	0x0
CBUS_THIRD1	0xbfd0_11e4	R/W	PAD[63:32] 3 rd multiplex register. When the bit is 1, it indicates the corresponding PAD is configured as the 3 rd multiplex, and when the bit is0, it indicates ineffective.	
CBUS_FOURTHT1	0xbfd0_11f4	R/W	PAD[63:32] 4 th multiplex register. When the bit is 1, it indicates the corresponding PAD is configured as the 4 th multiplex, and when the bit is 0, it indicates ineffective.	
CBUS_FIFTHT1	0xbfd0_1204	R/W	PAD[63:32] 5 th multiplex	0x0

register. When the bit is 1, it	
indicates the corresponding	
PAD is configured as the 5^{th}	
multiplex, and when the bit is	
0, it indicates ineffective.	

5.2.14 PAD[95:64] pin multiplex relation configuration register

Register name	Address	Read / Write (R / W)	Function description	Reset value
CBUS_FIRST2	0xbfd0_11c8	R/W	PAD[95:64] 1 st multiplex register. When the bit is 1, it indicates the corresponding PAD is configured as the 1 st multiplex, and when the bit is 1, it indicates ineffective.	0x0
CBUS_SECOND2	0xbfd0_11d8	R/W	PAD[95:64] 2^{nd} multiplex register. When the bit is 1, it indicates the corresponding PAD is configured as the 2^{nd} multiplex, and when the bit is 0, it indicates ineffective.	0x0
CBUS_THIRD2	0xbfd0_11e8	R/W	PAD[95:64] 3 rd multiplex register. When the bit is 1, it indicates the corresponding PAD is configured as the 3 rd multiplex, and when the bit is0, it indicates ineffective.	0x0
CBUS_FOURTHT2	0xbfd0_11f8	R/W	PAD[95:64] 4^{th} multiplex register. When the bit is 1, it indicates the corresponding PAD is configured as the 4^{th} multiplex, and when the bit is 0, it indicates ineffective.	0x0
CBUS_FIFTHT2	0xbfd0 1208	R/W	PAD [95:64] No. The 5 th multiplex register, when the bit is 1, it indicates the corresponding PAD is configured as the 5 th multiplex, and when the bit is 0, it indicates ineffective.	0x0

5.2.15 PAD[127:96] pin multiplex relation configuration register

Register name	Address	Read / Write (R / W)	Function description	Reset value
CBUS_FIRST3	0xbfd0_11cc	R/W		0x0
CBUS_SECOND3	0xbfd0_11dc	R/W	register PAD[127:96] 2 nd multiplex register	0x0
CBUS_THIRD3	0xbfd0_11ec	R/W		0x0
CBUS_FOURTHT3	0xbfd0_11fc	R/W	PAD[127:96] 4 th multiplex register	0x0
CBUS_FIFTHT3	0xbfd0_120c	R/W	PAD[127:96] 5^{th} multiplex register. When the bit is 1, it indicates the corresponding PAD is configured as the 5^{th} multiplex, and when the bit is 0, it indicates ineffective.	0x0

-36-

5.3 Interrupt Configuration Register

There are five groups in total in interrupt register which correspond to five interrupt bits in CAUSE register of CPU. Each group consists of status register, enable register, set register, clear register, level selection register and edge selection register. Each bit of these five registers is in one-to-one correspondence. All PIO[104:0] can be used as interrupt status register, and special interrupt register is distributed in INT0_SR and INT1_SR. The first group of interrupt registers

Register name	Address	Read / Write (R / W)	Function description	Reset value
INT0_SR	0xbfd0_1040	R	When the bit of interrupt status register 0 is 1, it indicates that the corresponding bit generates interrupt. When it's 0, it indicates no interrupt.	0x0
INT0_EN	0xbfd0_1044	R/W	When the bit of interrupt status register 0 is 1, it indicates that the corresponding bit of enable generates interrupt. When it's 0, it indicates it's forbidden.	0x0
INT0_SET	0xbfd0_1048	R/W	When the bit of interrupt status register 0 is 1, it indicates the interrupt setting. When it's o, it's ineffective.	0x0
INT0_CLR	0xbfd0_104C	R/W	When the bit of interrupt clear register is 1, it indicates clearing interrupt. When it's o, it's ineffective.	0x0
INT0_POL	0xbfd0_1050	R/W		0x0
INT0_EDGE	0xbfd0_1054	R/W	Interrupt edge selection register 0 When the bit is 1, it indicates the edge trigger, and when it's 0, it indicates the level trigger.	0x0

Register name	Address	Read / Write (R / W)	Function description	Reset value
INT0_SR	0xbfd0_1040		Interrupt status register 0	0x0

INT0_SR	Bit	Default	Description
		values	
NAND_int	31	0	NAND interrupt status bit
SDIO_int	30	0	SDIO interrupt status bit
UART3_int	29	0	UART3 interrupt status bit

Reserved	28:24	0	
RTC_int	23:21	0	RTC interrupt status bit
PWM_int	20:17	0	Corresponding 4-channel PWM interrupt status bit
Reversed	16	0	
DMA_int	15:13	0	Corresponding 3-channel DMA interrupt status bit
Reversed	12:11	0	
I2S_AC97_int			I2S or AC97 interrupt status bit. When ac97_en is
	10	0	1, the bit is AC97 interrupt status bit, or it is I2S
			interrupt status bit.
SPI1_int	9	0	SPI1 interrupt status bit
SPI0_int	8	0	SPI0 interrupt status bit
CAN1_int	7	0	CAN1 interrupt status bit
CAN0_int	6	0	CAN0 interrupt status bit
UART2_int	5	0	UART2 interrupt status bit
UART1_int	4	0	UART1 interrupt status bit
UART0_int	3:0	0	UART0 interrupt status bit

The second group of interrupt registers

Register name	Address	Read /	Function description	Reset value
		Write (R / W)		
INT1_SR	0xbfd0_1058	R	Interrupt status register 1	0x0
			In common with INT0_SR	
INT1_EN	0xbfd0_105c	R/W	Interrupt enable register 1	0x0
			In common with INT0_EN	
INT1_SET	0xbfd0_1060	R/W	Interrupt setting register 1	0x0
			In common with INT0_SET	
INT1_CLR	0xbfd0_1064	R/W	Interrupt clear register 1	0x0
			In common with INT0_CLR	
INT1_POL	0xbfd0_1068	R/W	Interrupt polarity selection	0x0
			register 1	
			In common with interrupt	
			polarity selection register 0	
INT1_EDGE	0xbfd0_106c	R/W	Interrupt edge selection register	0x0
			1	
			Interrupt edge selection register	
			0	

Register name	Address	Read / Write (R / W)	Function description	Reset value
INT1_SR	0xbfd0_1058	R	Interrupt status	
			register 1	

INT1_SR	Bit	Default values	Description
Gpio[105:96]	31:22	0	GPIO[105:96] as interrupt input,
			interrupt status bit
Reserved	21:20	0	
I2C_int0	19	0	I2C0 interrupt status bit
I2C_int1	18	0	I2C1 interrupt status bit
I2C_int2	17	0	I2C2 interrupt status bit
Reserved	16	0	
UART11_int	15	0	UART11 interrupt status bit
UART10_int	14	0	UART10 interrupt status bit
UART9_int	13	0	UART9 interrupt status bit
UART8_int	12:9	0	UART8 interrupt status bit

-38-

UART7 int	8	0	UART7 interrupt status bit
UART6 int	7	0	UART6 interrupt status bit
UART5 int	6	0	UART5 interrupt status bit
UART4_int	5	0	UART4 interrupt status bit
cam_int	4	0	CAMERA interrupt status bit
mac_int	3	0	MAC interrupt status bit
otg_int	2	0	OTG interrupt status bit
ohci_int	1	0	USB_OHCI interrupt status bit
ehci_int	0	0	USB_EHCI interrupt status bit

The third group of interrupt registers

Register name	Address	Read / Write (R / W)	Function description	Reset value
INT2_SR	0xbfd0_1070	R	Interrupt status register 2	0x0
			In common with INT0_SR	
INT2_EN	0xbfd0_1074	R/W	Interrupt enable register 2	0x0
			In common with INTO EN	
INT2_SET	0xbfd0_1078	R/W	Interrupt setting register 2	0x0
			In common with INTO SET	
INT2_CLR	0xbfd0_107c	R/W	Interrupt clear register 2	0x0
			In common with INTO CLR	
INT2_POL	0xbfd0_1080	R/W	Interrupt polarity selection register 2	0x0
			Interrupt polarity selection register 0	
INT2_EDGE	0xbfd0_1084	R/W	Interrupt edge	0x0
			selection register 2 In common with	
			interrupt edge selection register 2	

Register name	Address	Read / Write (R / W)	Function description	Reset value
INT2_SR	0xbfd0_1070		Interrupt status register 2	0x0

INT2_SR	Bit	Default values	Description
GPIO[31:0]	31:0		GPIO[31:0] as interrupt input, interrupt status bit

The fourth group of interrupt registers

Register name	Address	Read / Write (R / W)	Function description	Reset value
INT3_SR	0xbfd0_1088	R	Interrupt status register 3 In common with INTO SR	0x0
INT3_EN	0xbfd0_108c	R/W	Interrupt enable register 3 In common with INT0 EN	0x0
INT3_SET	0xbfd0_1090	R/W	Interrupt setting register 3 In common with INTO SET	0x0
INT3_CLR	0xbfd0_1094	R/W	Interrupt clear register 3 In common with INT0 CLR	0x0
INT3_POL	0xbfd0_1098	R/W	Interrupt polarity selection register 3 In common with INT0 POL	0x0
INT3_EDGE	0xbfd0_109c	R/W	Interrupt edge selection register 3 In common with INT0 EDGE	0x0

Register name	Address	Read / Write (R / W)	Function description	Reset value
INT3_SR	0xbfd0_1088		Interrupt status register 3	0x0

INT3_SR	Bit	Default	Description	
		values		
GPIO[64:32]	31:0		GPIO[63:32] is as interrupt input,	
			interrupt status	
			Bit	

The fifth group of interrupt registers

Register name	Address	Read / Write (R / W)	Function description	Reset value
INT4_SR	0xbfd0_10a0	R	Interrupt status register 4 In common with INT0 SR	0x0
INT4_EN	0xbfd0_10a4	R/W	Interrupt enable register 4 In common with INT0 EN	0x0
INT4_SET	0xbfd0_10a8	R/W	Interrupt setting register 4 In common with INT0_SET	0x0
INT4_CLR	0xbfd0_10ac	R/W	Interrupt clear register 4 In common with	0x0

			INT0_CLR	
INT4_POL	0xbfd0_10b0		Interrupt polarity	0x0
			selection register 4	
			In common with	
			INT0_POL	
INT4_EDGE	0xbfd0_10b4	R/W	Interrupt edge	0x0
			selection register 4	
			In common with	
			INT0_EDGE	

Register name	Address	Read / Write (R / W)	Function description	Reset value
INT4_SR	0xbfd0_10a0		Interrupt status register 4	0x0

INT4_SR	Bit	Default values	Description
GPIO[95:64]	31:0		GPIO[95:64] is as interrupt input, interrupt status Bit

6 SDRAM Controller

6.1 Overview

The SDRAM memory controller integrated by Loongson 1C processor implement general memory read/write/sleep operations, support 8/16bit data width, and the maximum capacity is 1GB (1C2 supports 2GB).

6.2 Register Description

SDRAM has one 64bit configuration register SD_CONFIG[63:0], and the effective one is [41:0]. The configuration register of system allocation is SD_CONFIG [63:0] and the address is $0x0410 \sim 0x0414$. It's defined as follows:

Register name	Address	Read /	Function description	Reset value
		Write (R / W)		
SD_CONFIG[31:0]	0xbfd0_0410		SDRAM parameter configuration register	0x00143803
SD_CONFIG[63:32]	0xbfd0_0414		SDRAM parameter configuration register	0x80000080

SD_CONFIG	Bit	Default values	Description
CONFIG_VALID	41		Valid configuration register
HANG_UP	40		Flag suspended bit
DEF_SEL	39		Adopt default configuration
TWR	38:37		Precharge time of grains after writing
TREF	36:25		Auto refresh period of grains
TRAS	24:21		Minimum line opening time of grains
TRFC	20:17		Auto refresh time of grains
TRP	16:14		Precharge time of grains
TCL	13:11		Data reading delay of grains
TRCD	10:8		Delayed line command to list command of grains
SD_BIT	7:6		Bit width of grains
SD_CSIZE	5:3	3'h0	Column numbers of grains
SD_RSIZE	2:0	3'h0	Line numbers of grains

6.3 Software Configuration Description

SD_CONFIG register is defined as follows:

1. SD_RSIZE, SD_CSIZE

The effective value of SD_RSIZE is 00, 01, 10 and 11 which correspond to 2K, 4K, 8K and 16K respectively.

The effective value of SD_CSIZE is 00, 01, 10, 11 and 111 which correspond to 512, 1K, 2K, 4K and 256 respectively.

Above two configurations need to correspond to particles, and the column number is larger than line number. Thus the effective configuration is:

Column/line	00	01	10	11
00	2Kx512	4Kx512	8Kx512 (not common)	16Kx512 (not common)
01	2Kx1K	4Kx1K	8Kx1K	16Kx1K (not common)

-42-

10	No	4Kx2K	8Kx2K	16Kx2K
11	No	No	8Kx4K	16Kx4K
111	2Kx256	4Kx256	8Kx256 (not common)	16Kx256 (not common)

2. SD_BIT

The effective value of SD_BIT is 00, 01 and 10 which correspond to 8bit, 16bit and 32bit respectively.

3. TRCD, TCL, TRP, TRFC, TRAS, TREF, TWR

These particles are related to the physical characteristics of particles, and are physical time which needs converting into cycle number based on frequency. Some parameters of typical frequency value are listed as follows:

	150	133	100	75	33
Frequency (MHZ)					
TRCD	3	3	2	2	1
TCL	3	3	3	2	2
TRP	3	3	2	2	1
TRFC	9	8	6	5	2
TRAS	7	6	5	4	2
TREF	'h926	'h818	'h620	'h494	'h204
TWR	2	2	2	1	1

4. DEF_SEL

When the bit is 1, it adopts the default configuration (133MHZ configuration). When the bit is 0, it adopts the external input configuration. When the default configuration is adopted, the register configuration of external input is ineffective.

5. HANG_UP

When the bit is 1, it notifies that the controller enters in the suspende state, and after completing the operation in array, SDRAM enters into the sleep state, and exit from the sleep state after HANG_UP is 0. When it exits from the sleep state, it needs to refresh all lines by at least 240~480us. SD_CONFIG register only has one bit under normal work.

6. CONFIG_VALID

When the bit is 1, the register configuration is effective; when the bit is 1, it's recommended to configure parameters first, and then set 1 bit high.

Notes: In the configuration of two registers, the low bit 0x410 must be written first, and then high 0x414. Or, when the SDRAM controller is writing 0x414, 0x410 initialization data will be seen as configuration parameter, and 0x410 data written later will be ineffective. In this way, SDRAM configuration is wrong and can't work normally. It's recommended to write the register three times, and the highest bit is set to 1 last time, and register enable is configured. (Valid bit in 0x414)

7 SRAM Controller

7.1 Overview

SRAM memory controller integrated by Loongson 1C processor is multiplexed with SDRAM pin, which support 32MB at most, and 8/16bits data width. SRAM controller can be used in IO device in the same interface sequence with SRAM.

7.2 Configuration Register

There is only one internal configuration register, and its configuration is shown as follows:

Register name	Address	Read / Write	Function	Reset value
		(R / W)	description	
MISC_CTRI[15:0]	0xbfe6_4024	R/W	SRAM	0x0004
			parameter	
			configuration	
			register	

SRAM_CTRL	Bit	Default values	Description
SRAM_EN	15	0x0	SRAM enable. When the bit is 1, SDRAM interface is
			used as SRAM. When the bit is 0, it's used as SDRAM
			interface.
reserved	14:8	0x0	It must be 0 if reserved
SRAM_WIDTH16	7	0x0	ROM operation data with. When the bit is 1, it
			indicates 16 bits. When the bit is 0, it indicates 8 bits.
ROM_INIT_CNT	6:2	0x21	The count initial of RAM operation is used to adjust
			the phase of output signal, and ranges from 0 to 0x1f.
CLOCK_PERIOD	1:0	0x0	The count step value of SRAM operation is used to
			adjust the time length of adjusting output signal and
			operation speed.
			00: Stepping at 1, the slowest
			01: Stepping at 2
			10: Stepping at 4
			11: Stepping at 8, the fastest

8 Camera Interface

8.1 Overview

Camera Interface supports the input of ITU-R BT.601/656 YCbCr 8-bit standard and RGB565/888 8-bit standard. The input video frequency is 640x480 and 320x240 and any other pixel modes. It supports the zomming out by one time in 640x480 resolutions in RGB565/888 and ITU-R BT.601 modes. The rest pixel doesn't support the zooming out, and there is the output in the format of yuv4:2:2/rgb565/rgb888/rgb0888 by choice.

Functional characteristics of Camera interface controller includes:

- It supports the external interface of ITU-R BT.601/656 8-bit and RGB565/RGB888 8-bit modes.
- Support configuration by any resolution input;
- Only 640x480 supports the zooming out by one time.

• Output format: YCbCr 4:2:2, RGB565, RGB888 and RGB0888 (32bits). When the output format is RGB565/ YCbCr 4:2:2, the input pixels must be integral times of 32; the output format is RGB888/RGB0888, and the input pixel is integral times of 16.

• It supports the input of ITU-R BT.601/656 8-bit in any pixel into the output in the format of RGB (565/0888), and doesn't support the conversion of RGB input into YCbCr4:2:2 output;

• The output area has four sections, each of which can accommodate the address space of one frame image, and can configure the base address of address space, offset address of u and v component storage in the format of YCbCr4:2:2

- It support the conversion of RGB565 into RGB565;
- It support the conversion of RGB888 into RGB888 and RGB0888;
- It support the conversion of BT601 into RGB565, RGB0888 and YUV;
- It supports the conversion of BT656 into RGB565, RGB0888 and YUV;
- It supports the zooming out by one time of 640*480 pixel (except the format of TU-R BT.656);
- It supports the matrix display of the output in the format of RGB.

Interface block diagram of the module:

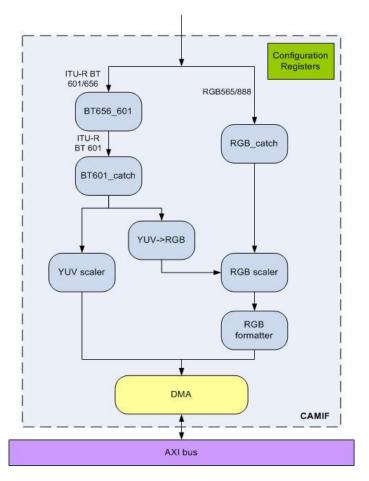
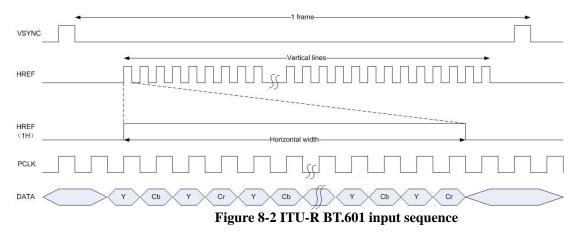


Figure 8-1 Camera interface (CAMIF) functional diagram

8.2 Interface Protocol

PCLK: 1bit input signal; Camera processor driven pixel clock.


VSYNC: 1bit input signal; Camera processor driven frame sync signal.

HREP: 1bit input signal; Camera processor driven frame sync signal.

DATA: 8bit input signal; pixel data initiated by Camera processor.

ITU-R BT.601 8-bit input sequence is shown in Figure 1. Therein, the data input sequence may be YCbY Cr or YCrYCb or CrYCbY or CbYCrY.

RGB565/RGB888 8-bit input sequence and ITU-R BT.601 8-bit input sequence are consistent, and the data input sequence is different. For RGB888, the data input sequence may be R G B or B G R. For RGB565, the data input sequence may be R5G3 G3B5 or B5G3 G3R5. RGB565/RGB888 and ITU-R BT.601 input mode can set the line effective and frame effective high and low levels based on low two bits of status register.

LOONGSON

ITU-R BT.656 input sequence is shown in Figure 8-3. Therein, the data input sequence can be Y CbYCr or YCrYCb or CrYCbY or CbYCrY. SAV is the line start code, and EAV is end code. The definition of reference code is shown in Table 8-1, and the definition of XY value is shown in Table 8-2. Only when XY is 80, 9D combination or C7, DA combination, it's effective line data.

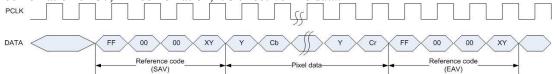


Figure 8-3 ITU-R BT.656 input sequence

Data bit number	The first	The second	The third	The fourth		
	character (3FF)	character (000)	character (000)	character (XYZ)		
7(MSB)	1	0	0	1		
6	1	0	0	F		
5	1	0	0	V		
4	1	0	0	Н		
3	1	0	0	Р3		
2	1	0	0	P2		
1	1	0	0	P1		
0	1	0	0	PO		

Table 8-1 ITU-R BT.656 reference code

In Field 1, F is 0; in Field 2, it's 1. V other positions 0; vertical blanking interval is 1 H is 0 in SAV and 1 in EAV.

P0, P1, P2, P3: protection byte (see Table 8-2)

Table 8-2 The fourth byte	e XY value
1 (07) (07)	

MSBLSB								XY16 hex
1	F	V	Н	P3	P2	P1	P0	
1	0	0	0	0	0	0	0	80
1	0	0	1	1	1	0	1	9D
1	0	1	0	1	0	1	1	AB
1	0	1	1	0	1	1	0	B6
1	1	0	0	0	1	1	1	C7
1	1	0	1	1	0	1	0	DA
1	1	1	0	1	1	0	0	EC
1	1	1	1	0	0	0	1	F1

8.3 Register Description

The configuration of the configuration register of base address of frame buffer DMA_ADDRi_CONFIG (i=0,...,3) is defined as follows:

Register name	Address	Read /	Function	Reset value
		Write (R / W)	description	
DMA_ADDR0_CONFIG	0x1c280000		Frame buffer base address 0	32'h0
DMA_ADDR1_CONFIG	0x1c280008			32'h0
DMA_ADDR2_CONFIG	0x1c280010		Frame buffer base address 2	32'h0
DMA_ADDR3_CONFIG	0x1c280018		Frame buffer base address 3	32'h0

DMA_ADDRi_CONFIG	Bit	Default values	Description
Frame buffer base address	31:0		The software allocates the base address of four buffers, and the hardware places 4 fame data from address 0 to address 3, and then address 0 circularly. Each buffer size as a frame image size. It's used for DMA to read data and adopts the physical address.

The configuration of video pixel configuration register CAMIF_CONFIG_PIX is defined as follows. Therein, except 640x480 and 320x240, the rest video resolution needs to be defined by the configuration of CAMIF_CONFIG_PIX register.

Register name	Address	Read / Write (R /	Function	Reset value
		W)	description	
CAMIF_CONFIG_PIX	0xbc280020		Video resolution configuration register	32'h0

CAMIF_CONFIG_PIX	Bit	Default values	Description
Floating pixel resolution line number y	23:12		For example, for the pixels of 1280x720, the pixel line number is configured to 720.
Floating pixel resolution column number x	11:0		For example, for the pixels of 1280x720, the pixel column number is configured to 1280.

U and V base address configuration register (CAMIF_CONFIG_UOFFSET and CAMIF_CONFIG_VOFFSET) is defined as follows. The video resolution except 640x480 and 320x240, the configuration buffer needs to specify the storage base address of U and V components in frame buffer in the format of YUV4:2:2 through base address configuration register. However, in RGB output display, the offset of CAMIF_CONFIG_UOFFSET configuration array display address is namely the address interval between lines in an image. For example, the 640x480 image is displayed in 1280x720 screen, and there are uoffset=(1280-640)x pixel bytes.

Register name	Address	Read / Write (R / W)	Function description	Reset value
CAMIF_CONFIG_UOFFSET	0xbc280028	R/W	U base address	32'h0
CAMIF_CONFIG_VOFFSET	0xbc280030	R/W	V base address	32'h0

CAMIF_CONFIG_UOFFSET	Bit	Default	Description
		values	
U base address configuration	31:0	32'h0	1/2 of frame buffer in the format of YUV4:2:2 is u
register			component
-			Base address. For example, in 1280x720 resolution,
			voffset is decimal 1280x720, and the unit is byte.
CAMIF_CONFIG_VOFFSET	Bit	Default	Description
		values	
V base address configuration	31:0	32'h0	3/4 of frame buffer in the format of YUV4:2:2 is u
register			component
			Base address. For example, in 1280x720 resolution,
			voffset is decimal 1280x720 x3/2, and the unit is byte.

CAMIF_CONFIG configuration is the control register of starting and closing camera module, and is defined as follows:

Register name	Address	Read /	Function	Reset value
---------------	---------	--------	----------	-------------

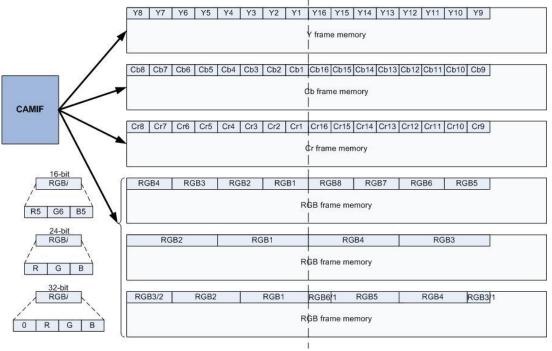
LOONGSON

		Write (R / W)	description	
CAMIF_CONFIG	0xbc280038	R/W	Status register	32'h0

CAMIF_CONFIG	Bit	Default values	Description		
CONFIG PARA CLR	31:31	1'b0	1: Start CAMERA		
			0: Close CAMERA		
CONFIG BUF FULL	23:20	4'b0	Four frame buffers from low to high		
			1: filled		
			0: never written or writing		
CONFIG PARA H WD	19:16	4'b0	Wait valid Hsync delay beats		
CONFIG PARA OUTPU	14:13	2'b0	0: YUV422		
T D ATA MODE			1: RGB565		
			2: RGB888		
			3: RGB0888		
CONFIG_PARA_INPUT_	12:11	2'b0	0: RGB		
DAT A MODE			1: ITU-R BT.601		
_			2: ITU-R BT.656		
CONFIG_PARA_SCALE	10:9	2'b0	0: no scaling		
MODE			1: zoom out by one time. When the pixel is configurable,		
			it's configured to 0.		
CONFIG PARA 640X48	8:7	2'b0	0: 320x240		
0			1: 640x480		
			2: Configurable pixels		
CONFIG PARA SINGL	6:6	1'b0	1: Single field		
EFIE LDEN			0: Non-single field (frame mode with 0)		
CONFIG PARA YUV O	5:4		Permutation format of YUV422		
RDE R			0: YCbYCr		
			1: YCrYCb		
			2: CrYCbY		
			3: CbYCrY		
CONFIG PARA BGR E	3:3	1'b0	1: RGB is arranged as BGR		
N			0: RGB is arranged as RGB (the conversion of ITU-R		
			BT.601/656 into RGB is effective)		
CONFIG_PARA_RGB_F	2:2	1'b0	0: Input format of RGB is 565		
ORM AT			1: Input format of RGB is 888		
CONFIG PARA HS	1:1	1'b0	1: HSYNC active low		
			0: HSYNC active high		
CONFIG_PARA_VS	0:0	1'b0	1: VSYNC low active		
			0: VSYNC high active		

Notes: when the input format is ITU-R BT.656, Config_para_hs, Config_para_vs is only configured to 0.

8.4 Configuration Operations


8.4.1 Memory Accessing Mode

Output data of Camera interface controller, and its frame memory hierarchy is as follows:

The frame memory of CAMIF output consists of four cyclic memory spaces. For YCbCr output, each memory space consists of three memory spaces: brightness Y, chroma Cb and Cr. The start address of yuv3 component storage correspond to base address, 1/2 address and 3/4 address in space; for RGB output, each memory space stores each RGB pixel in sequence.

The storage mode of output data of Camera interface controller in memory is as follows: Storage mode of little endian is adopted in frame storage. AXI bus width is 64-bit. When the output is in the format of YCbCr, each Y or Cb or Cr has one byte, and is arranged in each corresponding area of frame address; when the output is RGB565, each pixel has two bytes; when the output is RGB888 (32bits), each pixel has four bytes; when the output is

-49-

RGB888 (24bits), each pixel has three bytes. As is shown in Figure 8-4.

Figure 8-4 Storage mode

8.4.2 Configuration order

Before operation, CAMERA interface needs to configure some registers based on different conversion modes, and after the system reset, the register is default value. Only after the register configuration, can the module work. The working procedures of configuring CAMERA interface are as follows:

1. Read the status register message of Camera interface and obtain the 30th bit. When the bit is 1, it indicates the inside DMA is under idle status, and the following work configurations can be conducted. It's because DMA needs to interact with memory, and when we control the CAMERA interface work and stop, DMA can't stop in real time.

2. In working configuration, the base addresses of four address spaces to be stored are configured first. If for any pixel configuration and the output of YUV format, U and V addresses are required. Finally, the status register is configured, and its 31st bit is configured to 1, and then it can start work.

3. During work, CAMERA interface will send an interrupt to CPU after filling out one frame address space or covering the data in DMA module buffer. After the software receives the interrupt, the 23-20 and 28bit of status register can be inquired. The above 5 bits are all 0 in booting Camera interface, and then become 1 from high to low after filling out 23-20bits of one frame address space. When filling out one frame address space, the bit corresponding to the space becomes 0, and the software can query the status register to judge the storage of frame address space. When the data is covered, 28bit will be set to 1.

4. When the software wants to stop the operation of Camera interface, the 31st bit of the status register needs writing to 1. Under such circumstance, the Camera interface will stop analyzing the input in Camera, and DMA will stop sending any data to frame address space. After receiving all sent request responses, the 30th bit of the status register is set to 1.

5. When the application software of Camera interface is interrupted by other interrupts, the configuration request of closing Camera interface is added to interrupt hander. Restart it after waiting for recovery (firstly, the 31^{st} bit of the status register is written to 0, and then 30^{th} value is read. When the bit is 1, 1 is written to the 29^{th} bit. And then the 30^{th} bit is read, when the bit is 0, 1 is written to the 31^{st} bit). Don't close Camera interface, and judge the stored information of frame address space and accept or reject the image based on the information of status register.

9 I2S Controller

9.1 Overview

Via APB interface, the data width of I2S controller in 1C is 32 bits, and it supports DMA transmission and several companies² codec chip. I2S controller only supports the master mode, and I2S generates bit clock signal and left and right sound channel selection clock signal.

I2S features include:

- It supports the audio data sampling bit width of 8, 16, 20, 24 and 32.
- It supports the left and right sound channel processing word width of 8, 16, 20, 24 and 32.
- It includes two buffer FIFOs, and the buffer capacity of FIFO is 8 bytes.

• The interrupt processing mode of I2S is configurable, and after I2S transmit and receiver interrupt functions are enabled, if it needs to write when the buffer fifo of two channel is full, and or it needs to read when the buffer fifo is empty, send the interrupt signal to CPU.

• I2S can provide the system clock for codec chip and the clock frequency is configurable. Interface block diagram of the module:

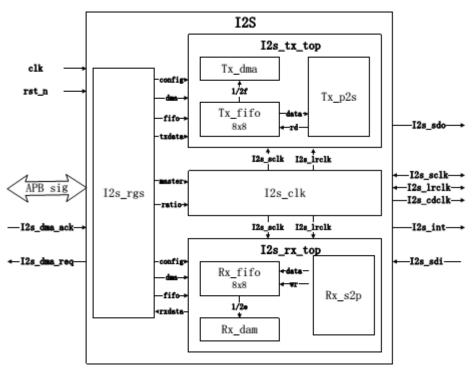


Figure 9-1 I2S interface block diagram

9.2 Interface Protocol

The operating time sequence of I2S receiver and transmitter is shown in Figure 9-2. The transmit operation sequential routine in the format of I2S of the receiver and transmitter is that the next frame data are transmitted in the 2nd bit clock after the signal selection signal changes, and the data transmits MSB bit first and then LSB bit. The bit width processed by receiver and transmitter may be inconsistent, and if the bit width of the data transmitted by transmitter is shorter than that of the supported data, LSB fill zero and send them. Or, some LSB data may be ignored; similarly, for receiver, when the bit width of the received data is smaller than that processed by it, LSB will fill zero and send them. Or, some LSB data may be ignored. Thus, for the received data, MSB is fixed, but LSB depends on the word length of the data to be received and transmitted, and the word length bit width configured by system.

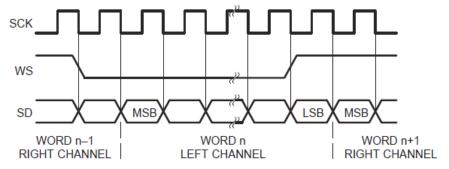


Figure 9-2 I2S transmission protocol

9.3 Dedicated Register

Register name	Address	Read / Write (R	Function	Reset value
		/ W)	description	
IISVersion	0xbfe6_0000	R/W	I2S identify	32'h0
			register	
IISConfig	0xbfe6_0004	R/W	I2S configuration	32'h0
			register	
IISControl	0xbfe6_0008	R/W	I2S control	32'h0
			register	
IISRxData	0xbfe6 000c	R/W	I2S receive data	L
	_		register (used for	-
			DMA receive data)	32'h0
IISTxData	0xbfe6_0010	R/W	I2S transmit data	l
	_		register (used for	-
			DMA send data)	32'h0

I2S includes five registers, and is as defined by the figure below.

The receive flag register allows the main control computer to read relevant operation information of the receiver. It identifies the address bit width of IIS, data bit width and version number.

IISVersion	Bit	Default values	Description
ADRW	9:8	2'h0	Address bus width:
			00: Address width 8-bit
			01: Address width 16-bit
			10: Address width 32-bit
			11: Address width 64-bit
DATW	5:4	2'h0	Data width
			00: Address width 8-bit
			01: Address width 16-bit
			10: Address width 32-bit
			11: Address width 64-bit
VER	3:0	4'h0	I2S version number

The receive configuration register configures the sound channel word length of I2S, the sampling depth of video data, and frequency division factor of each clock.

IISConfig	Bit	Default values	Description
LR_LEN	31:24	'h0	Word length handled by left and right sound tracks.

RES_DEPTH	23:16	'h0	Sampling depth settings: IIS sampling data length, effective scope of 8-32. If the transmitted or received data width is smaller than sampling data length, 0 is filled to low bit; if the transmitted or received data width is larger than sampling data length, the low bit is ignored.
SCLK_RATIO	15:8	'h0	Bit clock (BCLK) frequency coefficient: Bit clock frequency division factor, frequency division number is the bus clock frequency divided by 2x(RATIO+1)
MCLK_RATIO	7:0	'h0	System clock (MCLK) frequency division factor, system clock frequency division factor. The frequency division number is the bus clock frequency divided by 2x(RATIO+1)

The control register is used to configure the operation enable signal of IIS, buffer the store status of FIFO and relevant information state of information.

IISControl	Bit	Default	Description
		values	
MASTER	15	'h0	1: IIS working in master mode
MSB LSB	14	'h0	1: High-order on the left end
			0: High-order on the right end
RX EN	13	'h0	When the bit of controller receive enable is 1, it's
_			effective and starts to receive data.
TX_EN	12	'h0	When the bit of controller transmit enable is 1, it's
			effective and starts to transmit data.
RX_DMA_EN	11	'h0	DMA receiver enable, valid at 1
Reserved	10:8		
		'h0	
TX_DMA_EN	7	'h0	DMA transmitter enable, valid at 1
Reserved	6:2	'h0	
RX INT EN	1	'h0	When the bit of RX interrupt enable is 1, it's enable
			interrupt. And when the bit is 0, it's forbidden.
TX_INT_EN	0	'h0	When the bit of TX interrupt enable is 1, it's enable
			interrupt. And when the bit is 0, it's forbidden.

9.4 Configuration Operations

For the normal operation of I2S, it's necessary to firstly configure CODEC chip, and then configuration register and control register of I2S controller.

1C chip communicates through I2C interface and CODEC chip. For CODEC chip as the slave device in I2C bus, detailed address, register and configuration method, please refer to the data manual of CODEC chip. After the configuration of CODEC, it's necessary to configure I2S controller. Some configuration messages are written to label register (I2SVersion) for search. First configure I2SConfig register, and then I2SControl register.

I2Sconfig register suggests that the configuration of LR_LEN and RES_DEPTH is the same, to avoid lost data or empty data during transmission. Based on the sampling frequency, sampling depth and frequency multiplying factor of CODEC, BCK clock is calculated via the formula below:

BCK = 256xfs (or 512xfs) or (768xfs); (see CODEC manual recommended configuration in details) BCK_RATIO= Freq_SDRAM / (256 x fs) /2-1;

The computational formula is as follows if in dual-channel:

SCK = RES_DEPTH x 2 xfs;

SCK_RATIO = Freq_SDRAM / (RES_DEPTH x 2 x fs) /2 - 1;

Wherein fs is the configured sampling frequency. In transmitting and reading data, DMA is configured first and then controller to avoid lost data. See Section 14.3 for the configuration method of DMA multiplexing

10 Display Controller (DC)

10.1 Overview

Display controller fetches the frame buffer output from memory to external display interface. The characteristics supported by display controller of Loongson 1C include:

•One-way DVI display, it supports 1024x768@60Hz at most.

•Five data formats: RGB444, RGB555, RGB565, RGB888, RGB8888

• Output dithering and gamma correction

10.2 Register Definition and Description

10.2.1 Frame buffer configuration register

Register name	Address		R/W		Descrip	tion	Reset value
frameBufferConfi g	0xbc30_12	24	R/W	Frame	buffer	configuration	32'h0
	0			register			
frameBufferConfi g	bit	Descr	iption				Initial value
Reset	20	Soft re	eset when t	he value	is changed	d into 0 from 1	0
Gamma	12	Write	1 enable ga	0			
Output Enable	8	Write	1 enable di	0			
Format	2:0	Color	depth form	nat:			0
		0: non	e				
		1: RG	B444				
		2: RG	B555				
		3: RGB565					
		4: RGB888					
		5: RG	B8888				

10.2.2 Frame buffer address register 0

Register name	Address		R/W	Description	Reset value
frameBufferAddr0	0xbc30126	50	R/W	Frame buffer address register 0	32'h0
frameBufferAddr0	bit	Descri	iption		Initial value
Address	31:0	Physic	cal address	of buffer 0 in memory	0

10.2.3 Frame buffer address register 1

Register name	Address		R/W	Description	Reset value	
frameBufferAddr1	0xbfe51580		R/W	Frame buffer address register 1	32'h0	
frameBufferAddr1	bit	Descri	iption		Initial value	
Address		The physical address of buffer 1 in memory (it0 needs to be the same with frame buffer address register 0)				

10.2.4 Frame buffer span register

Register name	Address		R/W	Description	Reset value
frameBufferStride	0xbc30128	30	R/W	Frame buffer span register	32'h0
frameBufferStride	bit	Descri	iption	Initial value	
Stride		When stride 120 by	the form needs to r ytes.	ber of bytes in buffer line. at of RGB888 (24bit) is used, round up to an integer based on at of RGB8888 (32bit) is used,	

-54-

stride needs to round up to an integer based on	
128 bytes.	

10.2.5 Color dithering configuration register

Register name	Address		R/W	Descrip	tion		Reset value
ditherConfig	0xbc30136	50			•	configuration	32'h0
				register			
ditherConfig	bit	Descri	iption	Initial value			
Enable	31	Write	1 enable co	0			
RedSize	19:16	Red d	omain widt	0			
GreenSize	11:8	Green domain width					0
BlueSize	3:0	Blue d	lomain wid	th			0

10.2.6 Color vibrance lookup table low-bit register

Register name	Address		R/W	Description	Reset value
ditherTableLow	0xbc301	380	R/W	Color dithering lookup low-bit register	table32'h0
ditherTableLow	bit	Descr	iption		Initial value
Y1_X3	31:28	Comp	arison va	alue at coordinate (3,1)	0
Y1_X2	27:24	Comp	arison va	alue at coordinate (2.1)	0
Y1_X1	23:20	Comp	arison va	alue at coordinate (1.1)	0
Y1_X0	19:16	Comp	arison va	alue at coordinate (0.1)	0
Y0_X3	15:12	Comp	arison va	alue at coordinate (3.0)	0
Y0_X2	11:8	Comp	arison va	alue at coordinate (2.0)	0
Y0_X1	7:4	Comp	arison va	0	
Y0_X0	3:0	Comp	arison va	alue at coordinate (0.0)	0

10.2.7 Color dithering lookup table high-bit register

Register name	Address		R/W	Description		Reset value
ditherTableHigh	0xbc3013a	ı0	R/W	Color dithering lo	ookup table	32'h0
				high-bit register		
ditherTableLow	bit	Descri	ption			Initial value
Y3_X3	31:28	Comp	arison valu	e at coordinate (3.3)		0
Y3_X2	27:24	Comp	arison valu	0		
Y3_X1	23:20	Comp	arison valu	e at coordinate (1.3)		0
Y3_X0	19:16	Comp	arison valu	e at coordinate (0.3)		0
Y2_X3	15:12	Comp	arison valu	e at coordinate (3.2)		0
Y2_X2	11:8	Comp	arison valu	e at coordinate (2.2)		0
Y2_X1	7:4	Comp	arison valu	0		
Y2_X0	3:0	Comp	arison valu	e at coordinate (0.2)		0

10.2.8 Color dithering description

The function of color dithering is used to enhance the pixel value based on certain rules. In the below example, the implementation procedures of color dithering function will be explained.

Firstly, to determine which data to enhance (namely, 1 is added to the data bit), and it's necessary to configure register Display Dither Configuration. For example, the configuration RedSize is 6 (between 1 and 8, including 1 and 8), it indicates enhancing the 6th bit in MSB bit, namely, the RedColor[2] of RedColor[7:0] is enhanced. It's also true of GreenSize and BlueSize.

Secondly, it's necessary to build the lookup table, namely, configuration register Display Dither Table. The lookup table includes 16 items, namely, 16 thresholds, and four bit width for each item.

The lookup table is indexed through the lowest 2 bits x[1:0] of x-coordinate and the lowest 2 bits y[1:0] of y-coordinate of screen pixel counter, and one threshold U[3:0] is obtained.

The lowest four bits of the pixel corresponding to screen (x, y) location is compared with the found threshold. If RedColor[3:0] > U[3:0] and RedColor[7:2] isn't 6 'b111111, 1 is added to RedColor[2] bit, and the color is enhanced.

10.2.9 LCD panel configuration register

Register name	Address		R/W	Description	Reset value
panelConfig	0xbc3013	c0	R/W	LCD panel configuration register	32'h101
panelConfig	bit	Descri	iption		Initial value
ClockPol	9	Clock	polarity, w	vrite 1 negation	0
ClockEn	8	Clock	enable, wr	ite 1 enable	1
DEPol	1	Data e	enable pola	rity, write 1 negation	0
DE	0	Data e	enable, writ	te 1 enable	1

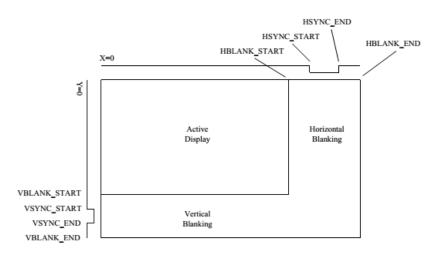
10.2.10 Horizontal display width register

Register name	Address		R/W	Description	Reset value
HDisplay	0xbc3014a0		R/W	Horizontal display width register	32'h0
HDisplay	bit	Descri	ption		Initial value
Total			pixel numb splay area)	0	
Display			umber of j y screen lin	0	

10.2.11 Line synchronization configuration register

Register name	Address		R/W	Description		Reset value
HSync	0xbc30140	00	R/W	Line	synchronization	32'h40000000
				configuration	register	
HSync	bit	Description				Initial value
Pol	31	Line s	ynchroniza	0		
Pulse	30	Line s	ynchroniza	1		
End	27:16	The n	umber of	end of the line	0	
		synch				
Start		The number of pixels at the start of the line				0
		synch	ronization			

10.2.12 Vertical display height register


Register name	Address		R/W	Descrij	ption			Reset value
VDisplay	0xbc30148	0	R/W	Vertica	ıl displ	ay height	register	32'h0
VDisplay	bit	Descri	iption					Initial value
Total	26:16	total	pixel nui	nber o	of on	e display	column	0
		(including non-display area)						
Display	10:0	The number of pixels in the display area of the0						
		display screen column						

10.2.13 Field synchronization configuration register

Register name	Address		R/W	Description		Reset value
VSync	0xbc3014a0		R/W	Field	synchronization	32'h40000000
				configuration	register	
VSync	bit	Descri	iption			Initial value
Pol	31	Field s	synchroniza	0		
Pulse	30	Field s	synchroniza	1		

End	26:16	The number of pixels at the end of the field	0
		synchronization	
Start	10:0	The number of pixels at the start of the field	0
		synchronization	

10.2.14 Output sequencing

Figure 10-1 Display controller output sequencing

10.2.15 Gamma correction catalog register

Register name	Address		R/W	Description	Reset value	
GammaIndex	0xbc3014a0		R/W	Gamma correction catalog register	32'h0	
GammaIndex	bit	Descri	ption	Initial value		
Index		It indicates Gamma adjustment from which option in0 color values of 0-255, and it's generally set to 0. It's only configured one time, and later the hardware will automatically increase the value.				

10.2.16 Gamma correction value register

Register name	Address		R/W	Description	Reset value		
GammaData	0xbc30150	00	R/W	Gamma correction value register	32'h0		
GammaIndex	bit	Descri	Initial value				
Red	23:16	The re	ed area of	0			
		indicat	indicated by Gamma Index is adjusted to the value				
		of the current domain					
Green	15:8	The green area of Gamma adjustment. The value0					
		indicated by Gamma Index is adjusted to the value					
		of the current domain					
Blue	7:0	The blue area of Gamma adjustment. The value0					
		indica					
		of the	current do	main			

10.2.17 Gamma correction instructions

The Gamma adjustment module includes three lookup tables, one responsible for red, one for green, and one for blue.

Lookup table can be rewritten by register. Lookup table can only be written.

One Gamma adjustment is as follows: (primary color, adjustment color) In the setup of Gamma color lookup table, the register should be configured in the sequence of color value.

Firstly, configure register Gamma Index to 0, indicating that the gamma adjustment starts from 0, and then the Gamma Data register is configured 256 times to complete the configuration: 0, 2, 5, 6.....

11 MAC Controller

11.1 DMA Register Description

Loongson 1C has integrated one MAC controller. The DMA controller integrated inside MAC cooperates with MAC data transmission; this DMA controller can't be used by other modules, and MAC can't use other external DMAs. MAC controller register include MAC register and DMA register. The start address of MAC register is 0xbfe1_0000, and that of DMA register is 0xbfe1_1000.

The significance of DMA register and MAC register is introduced in the below.

Parameter name	Bit	Default values	Description
Register0 (Bus Mode	Register		00
Reserved	31:27	0x0	Reserved, read only
MB: Mixed Burst	26	0x0	When the bit is high, and FB bit is low, AXI master adopts the INCR access mode when the burst access length is longer than 16bit, and adopts the FIX access mode when the burst access length is or shorter than 16. Users need not care about this bit setting.
AAL:	25	0x0	When this bit and FB bit are both high, all accesses of
Address-Aligned			AXI interface will be aligned to LS bit of the initial
Beats			address. If FB bit is 0, the initial access address isn't aligned, and the rest is aligned. Users need not care about this bit setting.
8XPBL Mode	24	0x0	When the bit is high, the maximum burst data
If enable PBLX8 mode			transmission length of MAC DMA is 8,16,32,64,128 or 256. The maximum burst length depends upon PBL. Users need not care about this bit setting.
USP:Use Separate PBL	23	0x0	When this bit is high, PBL value only applies to TxDMA. When this bit is low, PBL value only applies to TxDMA and RxDMA. Users need not care about this bit setting.
RPBL: RxDMA PBL	22:17	0x01	It indicates the maximum burst transmission length in the first RxDMA transmission. Can only be 1, 2, 4, 8,
RxDMA burst transmission length			16 and 32, and other values are ineffective.
FB Fixed Burst	16	0x0	It assigns whether AXI Master interface adopts FIX
Fixed-length burst transfer length enable			burst transmission mode. Users need not care about this bit setting.
PR: Rx:Tx priority ratio	15:14	0x0	Effective when DA bit is 0. 00: 1: 1 01: 2: 1 10: 3: 1 11: 4: 1
PBL: Programmable Burst Length	13:8	0x21	Users need not care about this setting.

-59-

11.1.1 Register0 (Bus Mode Register)

ATDS: Alternate Descriptor size Whether to use 32 bytes size descriptor	7	When the bit is 1, the 32-byte descriptor is used. When the bit is 0, the 16-byte descriptor is used.
DSL: Descriptor Skip Length	6:2	Set 2 descriptor distances When the value is 0, it's the size of DMA descriptor by default.
DA:DMA Arbitration scheme	1	0: adopt the alternative arbitration mechanism between RxDMA and TxDMA 1: 1: RxDMA priority is higher than TxDMA priority See specific ratio for PR value.
SWR:Software Reset	0	If this bit is set high, DMA controller will reset MAC internal register and logic. The bit is automatically cleared when reset is finished.

11.1.2 Register2 (Receive Poll Demand Register)

Register1 (Transmit Poll Demand Register)Offset: 0x04						
TPD: Transmit Poll31:0 Demand	0x0	Write any value to this value, sending DMA controller will read the descriptor corresponding to register 18. If the descriptor is invalid, DMA transmission will terminate. If the descriptor is valid, DMA transmission will continue.				

11.1.3 Register2 (Receive Poll Demand Register)

Register2 (Receive Pol	l Demand Register	r) 0x08
RPBL: Receive Poll3	1:0 0x0	Write any value to this value, receiving DMA
Demand		controller will read the descriptor corresponding to register 18. If the descriptor is invalid, DMA transmission will terminate. If the descriptor is valid, DMA transmission will continue.

11.1.4 Register3 (Receive Descriptor List Address Register)

Register3 (Receive Descriptor List Address Register)Offset: 0x0C						
Start of Receive List	31:0	0x0	Starting address of directional reception descriptor			

11.1.5 Register4 (Transmit Descriptor List Address Register)

Register4 (Transmit Descriptor List Address Register)Offset: 0x10					
Start of Transmit List	31:0	0x0	Starting address of directional transmission descriptor		

11.1.6 Register5 (Status Register)

Register5 (Status Registe	Register5 (Status Register) Offset: 0x14					
Reserved	31:30		Reserved, read only			
TTI: Time-Stamp Trigger	29	0x0	Timestamp module triggering an interrupt. Read only.			
Interrupt						
GPI: MAC PMT	28		Power supply management module triggering an interrupt. Read only.			

Interrupt			
GMI:MAC MMC	27	0x0	MMC module triggering an interrupt. Read only.
Interrupt			
GLI: MAC Line interface	26	0x0	MAC module PCS or RGMII module trigger interrupt
Interrupt			Read only
EB: Error Bits	25:23	0x0	23: 1'b1 TxDMA error during data transmission
			1'b0 RxDMA error during data transmission
			24:1 'b1 reading transmission error
			1'b0 writing transmission error
			25:1 'b1 descriptor access error
	22.20	0.0	1'b0 data cache access error
	22:20	0x0	3'b000: transmit stop; reset or stop command transmitting
Process State			3'b001: in progress; obtain transmit descriptor
			3'b010: in progress; status of waiting for transmission
			3'b011: in progress; read data from transmitting buffer,
			and send to transmit FIFO (TxFIFO)
			3'b100: write-in timestamp status
			3'b10-1: reserved
			3'b110: suspended; the traditional descriptor can't be used for the transmit buffer underflows
			3'b111: operation; close transmit descriptor.
RS: Receive	19:17	0x0	3'b000: stop; reset or receive the stop command
Process State			3'b001: operation; obtain the receive descriptor
			3'b010: reserved
			3'b011: run; waiting to receive the package.
			3'b100: pause; receive descriptor unavailable;
			3'b101: operation; close the receive descriptor.
			3'b110: timestamp writing status.
			3'b111: operation; transfer the receive buffer from package content to system memory
NIS: Normal Interrupt	16	0x0	Prompt system if there is a normal interrupt.
-			
Summary	15	ΟνΟ	Prompt system if there is a normal interrupt.
AIS: Abnormal	15	040	
Interrupt Summary			
ERI: Early Receive	14	0x0	Prompt: DMA controller write the first data in package
Interrupt Receive			to receive buffer
FBI: Fatal Bus Error	13	0x0	Prompt bus error. See [25:23] for specific information.
Interrupt			When this bit is set
-	12:11	0x0	DMA engine stopping bus access operation. Reserved
Reserved			

ETI: Early Transmit Interrupt	10	0x0	Prompt that the Ethernet frame to be transmitted has been completely transmitted to the transmit FIFO in MTL module
RWT: Receive Watchdog Timeout	9	0x0	Prompt that one over 2048-byte Ethernet frame is received (when the huge frame is enabled, it prompts that one over 10240bytes Ethernet frame has been received)
RPS: Receive Process Stopped	8	0x0	Indicate reception process stop
RU: Receive Buffer Unavailable	7	0x0	Indicate unavailable reception buffer
RI: Receive Interrupt	6	0x0	Indicate frame reception completion The status information received by frame has been written to the descriptor. Reception in running status
UNF: Transmit Underflow	5	0x0	Receive underflow exists in indicate frame transmission process
OVF: Receive Overflow	4	0x0	Receive overflow exists in indicate frame receive process
TJT:Transmit Jabber Timeout	3	0x0	
TU: Transmit Buffer Unavailable	2	0x0	It prompts that the next descriptor in transmission list can be accessed by DMA controller.
TPS: Transmit Process Stopped	1	0x0	Prompt transmission process stop
TI: Transmit Interrupt	0	0x0	Prompt the completion of frame transmission and the 31 st bit set of the first descriptor

11.1.7 Register0 (Bus Mode Register)

Register6 (Operation Mode Register)Offset: 0x18					
Reserved	31:27	0x0	Reserved		
DT	26	0x0	When the bit is 1, MAC won't abandon the Ethernet		
Close and abandon			frame with checksum error		
the Ethernet frame					
with TCP/IP					
Checksum error					
RSF: Receive Store	25	0x0	When the bit is 1, the MTL module only receively the		
and Forward			Ethernet frame completely stored in the receive		
			FIFO.		
DFF: Disable	24	0x0	When the bit is 1, don't wash out any Ethernet frame		
Flushing of Received			if the receive DMA is unavailable in receive		
Frames			descriptor or buffer.		
RFA[2]: MSB of	23	0x0	100: maximum value minus 5KB		
Threshold for			101: maximum value minus 6KB		
Activating Flow			110: maximum value minus 7KB		
Control			111: reserved		
			(Note: a maximum value of 8KB)		
RFD[2]: MSB of	22	0x0	100: maximum value minus 5KB		
Threshold for			101: maximum value minus 6KB		

-62-

Deactivating Flow			110: maximum value minus 7KB
Control			111: reserved
Control			(Note: a maximum value of 8KB)
TSF: Transmit Store	21	0x0	When the bit is 1, the content that the frame sends all
and Forward	21	0.00	enters in the transmit FIFO of MTL.
	20	0x0	When the bit is 1, the transfer control logic is reset to
FIFO	20	0.00	the default, and will cause the sent data in FIFO to be
FIFO			
D	10.17	0.0	completely lost.
Reserved	19:17	0x0	Reserved
TTC:Transmit	16:14	0x0	When the frame size exceeds this value, MTL will
Threshold Control			transmit this frame.
			000: 64 bytes
			001: 128 bytes
			010: 192 bytes
			011: 256 bytes
			100: 40 bytes
			101: 32 bytes
			110: 24 bytes
			111: 16 bytes
ST:Start/Stop	13	0x0	When this bit is 1, the transmission enters into the
Transmission	1.5	UAU	
			running state. When this bit is 0, the transmission
Command			enters into the halted state.
	12:11	0x0	00: Maximum value minus 1KB
deactivating flow	r		01: Maximum value minus 2KB
control			10: Maximum value minus 3KB
			11: Maximum value minus 4KB
			(Maximum value of 8KB)
RFA:Threshold for	10:9	0x0	00: Maximum value minus 1KB
Activating flow	r		01: Maximum value minus 2KB
control			10: Maximum value minus 3KB
			11: Maximum value minus 4KB
			(Maximum value of 8KB)
EFC: Enable HW	8	0x0	When the bit is 1, the hardware flow control circuit
flow control	0	UXU	based on receive FIFO will be effective.
FEF:Forward Error	7	0x0	
	/	0X0	When the bit is 1, the error frame is received (error
Frames			frame includes CRC error collision error, Jumbo
	-		frame, Watchdog timeout, overflow, and the like.)
FUF:Forward	6	0x0	When the bit is 1, the receive FIFO will receive the
Undersized Good			Ethernet frame without error but smaller than 64
Frames			bytes.
Receive error-free	5		
small frames			
Reserved	5	0x0	Reserved
RTC: Receive	4:3	0x0	The content that MTL transmits in receive FIFO has
Threshold Control		-	exceeded the set size.
Contra Control			00: 64 bytes
			01:32 bytes
			5
			10: 96 bytes
		0.0	11: 128 bytes
OSF: Operation	2	0x0	When the bit is high, DMA can start to process the
Second Frame			second Ethernet frame when the status of the first
			Ethernet frame has been written.
SR:Start/Stop	1	0x0	When the bit is set high, the receiving enters into the
Receive			running state. When the bit is set low, the receiving
			enters into the halted state.
Reserved	0	0x0	Reserved
	5	0/10	

-63-

11.1.8 Register7 (Interrupt Enable Register)

Register7 (Interrupt E	nable Re	egister)Offso	et: 0x1C
		0x0	Reserved
NIE:Normal Interrupt	16	0x0	When the bit is 1: if the bit of the normal interrupt
Summary Enable			enable is 0: the normal interrupt disable
AIE: Abnormal	15	0x0	When this bit is 1: abnormal interrupt enable. When
Interrupt Summary			this bit is 0: abnormal interrupt disable.
Enable			1
ERE: Early Receive	14	0x0	When this bit is high: early receive interrupt enable
Interrupt Enable			
FBE:Fatal Bus Error	13	0x0	When the bit is high: bus fatal error interrupt enable
Enable			
Reserved	12:11	0x0	Reserved
ETE: Early Transmit	10	0x0	When this bit is high: early enable transmission
Interrupt Enable			interrupt
RWE: Receive	9	0x0	When this bit is high: enable receive watchdog timeout
Watchdog Timeout			interrupt.
Interrupt Enable			
RIE: Receive	8	0x0	When this bit is high: enable receive stopped interrupt.
Stopped Interrupt			
Enable			
RUE: Receive	7	0x0	When the bit is high, enable the receive buffer
Buffer Unavailable			unavailable interrupt.
Interrupt Enable			
RIE: Receive	6	0x0	When this bit is high: enable receive interrupt.
Interrupt Enable			
UNE: Underflow	5	0x0	When the bit is high: enable transmit FIFO underflow
Interrupt Enable			interrupt
Transmit FIFO			
underflow interrupt			
enable			
OVE: Overflow	4	0x0	When the bit is high: enable receive FIFO overflow
Interrupt Enable			interrupt
Receive FIFO			
overflow interrupt			
enable			
TJE: Transmit	3	0x0	When the bit is high: enable Jabber timeout interrupt
JabberTimeout			
Enable			
TUE:Transmit Buffer	2	0x0	When the bit is high: enable transmit buffer
Unavailable Enable	_		unavailable interrupt
TSE: Transmit	1	0x0	When this bit is high: enable transmit stopped
Stopped Enable			interrupt.
TIE: Transmit	0	0x0	When this bit is high: enable transmission interrupt
Interrupt Enable			

11.1.9 Register8 (Missed Frame and Buffer Overflow Counter Register)

Register8 (Missed Fra	Register8 (Missed Frame and Buffer Overflow Counter Register)Offset: 0x02					
Reserved	31:29	0x0	Reserved			
Overflow bitfor FIFO	28	0x0	FIFO overflow indicating bit			
Overflow Counter						
Indicates the number	27:17	0x0	Indicate missing frame numbers of the application			
of frames missed by			programs			
the application						

-64-

Overflow	bit for	16	0x0	Indicates the number of missed frame has exceeded the
Missed	Frame			maximum value
Counter				
Indicates the	e number	15:0	0x0	Indicates the number of frames missed by the controller
of frames n	nissed by			due to the Host Receive Buffer being unavailable
the controlle	er due to			
the Host	Receive			
Buffer	being			
unavailable				

11.1.10 Register9(Receive Interrupt Watchdog Timer Register)

Register9(Receive Interrupt Watchdog Timer Register)Offset: 0x24				
Reserved	31:8	0x0		
RIWT: RI Watchdog Timer count	7:0		When the Watchdog is set, it indicates the count in the unit of the clock cycle x 256 When DMA receives the data packet, and the count starts when the RI bit in status register is 0, when the Watchdog timer times out, RI bit is set to 1. The domain resets when RI bit is 1	

11.1.1 Register0 (Bus Mode Register)

Register10 (AXI Bus	Register10 (AXI Bus Mode Register)Offset: 0x28				
EN_LPI: Enable LPI (LowPower Interface)	31	0x0	When the bit is 1, the low power interface is enabled, and the system receives the LPI request from AXI system clock controller. When the bit is 0, the low power interface is disabled, and the system will refuse the LPI request forever.		
UNLCK_ON_MGK_ RWK:Unlock on Magic Packet or Remote Wake Up		0x0	When the bit is 1, if MAC is in low power state, it can return to the working state only by magic packet or remote wakeup; when the bit is 0, MAC is under low power state, it can return to the working state via any packet.		
Reserved	29:23	0x0			
WR_OSR_LMT: AXI Maximum Write Outstanding Request Limit	22:20	0x0	This bit has set up the maximum outstanding request number sent by AXI interface write operation.		
AXI maximum outstanding Write out request					
Reserved	19	0x0			
WR_OSR_LMT: AXI Maximum Read Outstanding Request Limit		0x0	This bit has set up the maximum outstanding request number sent by AXI interface read operation.		
Reserved	15:13	0x0			
AXI_AAL: Address-Aligned Beats	12	0x0	This bit is only-read, and is the same with AAL bit 0.		
Reserved	11:8	0x0			
BLEN256: AXI Burst Length 256		0x0	Only when AXI_BURST_LENGTH is configured to 256, can this bit be significant; when the bit is 1, it indicates that AXI supports the request of Burst length of 256; or, it" be reserved.		
BLEN256: AXI Burst	0	0x0	Only when AXI_BURST_LENGTH is configured to		

-65-

Length 128		128, can this bit be significant; when the bit is 1, it
		indicates that AXI supports the request of Burst length
		of 128; or it is be reserved.
BLEN256: AXI Burst5	0x0	Only when AXI_BURST_LENGTH is configured to
Length 64		64, can this bit be significant; when the bit is 1, it
		indicates that AXI supports the request of Burst length
		of 64; or it will be reserved.
BLEN256: AXI Burst4	0x0	Only when AXI_BURST_LENGTH is configured to
Length 32		32, can this bit be significant; when the bit is 1, it
		indicates that AXI supports the request of Burst length
		of 32; or it will be reserved.
BLEN256: AXI Burst3	0x0	Only when AXI_BURST_LENGTH is configured to
Length 16		16, can this bit be significant; when the bit is 1, it
		indicates that AXI supports the request of Burst length
		of 16; or, it" be reserved.
BLEN256: AXI Burst2	0x0	Only when AXI_BURST_LENGTH is configured to 8,
Length 8		can this bit be significant; when the bit is 1, it indicates
		that AXI supports the request of Burst length of 8; or it
		will be reserved.
BLEN256: AXI Burst1	0x0	Only when AXI_BURST_LENGTH is configured to 4,
Length 4		can this bit be significant; when the bit is 1, it indicates
		that AXI supports the request of Burst length of 4; or,
		it" be reserved.
UNDEF: AXI0	0x0	When the bit is 1, it indicates that AXI interface can
Undefined Burst		send the request of any Burst length. When the bit is 0,
Length		it indicates that AXI supports the request length that
		bit7-1 defines to be 256/128/64/32/16/8/4 or 1.

11.1.12 Register11 (AXI Status Register)

Register11 (AXI Status Register)Offset: 0x2C					
Reserved	31:2	0x0			
	1	0x0	When the bit is 1, it indicates that the current AXI is sending read request.		
	0	0x0	When the bit is 1, it indicates that the current AXI is sending read request.		

Register12- Register18: Reserved

11.1.13 Register18 (Current Host Transmit Descriptor Register)

Register18 (Register18 (Current Host Transmit Descriptor Register)Offset: 0x48						
Host	Transmit	31:0	0x0	Read only			
Descriptor	Address						
Pointer							

11.1.14 Register19 (Current Host Receive Descriptor Register)

Register19 (Register19 (Current Host Receive Descriptor Register)Offset: 0x4C					
Host	Receive	31:0	0x0	Read only		
Descriptor	Address					
Pointer						

11.1.15 Register20 (Current Host Transmit Buffer Address Register)

Register20 (Current Host Transmit Buffer Address Register)Offset: 0x05

LOONGSON

Host Transmit Buffer	31:0	0x0	Read only
Address Pointer			

11.1.16 Register21 (Current Host Receive Buffer Address Register)

Register21 (Current Host Receive Buffer Address Register)Offset: 0x54						
Host Receive Buffer	31:0	0x0	Read only			
Address Pointer						

11.2 MAC Controller Register Description

11.2.1 Register0 (MAC Configuration Register)

Parameter name	Bit	Default values	Scope	Description
Register0 (MAC Conf	iguratio	n Register)	Offset: 0x0	0000
	31:26	0x0	Reserved	
TCH: Transmit	24	0x0	When the bi	it is high, it'll transmit messages such as
Configuration in			duplex mod	e, link speed, link and link
RGMII			connection/	disconnection to PHY through RGMII
			interface.	
WD: Watchdog	23	0x0	When the bi	it is high, MAC will disable the watchdog
Disable				D, and can receive the Ethernet frame as
			large as 163	84 bytes.
JD: Jabber Disable	22	0x0	When the bi	it is high, MAC will close the Jabber timer
			during trans	mission, and can send the Ethernet frame as
			large as 163	84 bytes.
BE: Frame Burst	21	0x0	When the bi	it is high, MAC enables the frame burst
Enable			transmissio	n mode.
JE: Jumbo Frame	20	0x0		it is high, MAC enables the Jumbo frame
Enable				arge as 9018 bytes).
IFG: Minimum	19:17	0x0	Set the mini	mum inter-frame gap during transmission
Inter-Frame Gap			process	
			000: 96 bit-	time
			001: 88 bit-	time
			010: 80 bit-	time
			• • • •	
			111: 40 bit-	time
DCRS: Disable	16	0x0	When the bi	it is high, MAC will ignore the detection of
Carrier Sense During			CRS signal	in half-duplex mode.
Transmission		0.0	0. CMIL (10	
PS: Port Select	15	0x0	0: GMII (10	• /
EEQ. Grand	1.4	0.0	1: MII(10/1	00Mbps)
FES: Speed Fast Ethernet speed	14	0x0	0: 10Mbps	
prompt			1.10014	
-	10		1: 100Mbps	
DO: Disable Receive Own	13	0x0		it is high, MAC doesn't receive the valid
	10			me of gmii_txen_o in half-duplex mode.
LM: Loopback Mode	12	0x0		it is high, GMII/MII works in loopback
			mode.	
DM: Duplex Mode	11	0x0	when the b	it is high, MAC works in full-duplex mode,

-67-

			and it can send and receive the Ethernet frame
			simultaneously in full-duplex mode.
IPC: Checksum	10	0x0	When the bit is high, MAC hardware computes the
Offload Enable			received payload of Ethernet frame. It also checks the
			checksum of IPV4 head
DR: Disable Retry	9	0x0	When the bit is high, when encountering the collision,
			MAC won't retransmit the Ethernet frame, and only
			report the collision error.
LUD: Link Up/Down	8	0x0	0: Link disconnect
			1: Link connection
ACS: Automatic	7	0x0	When the bit is 1, MAC eliminates the Pad and FCS in
Ethernet frame			the received Ethernet frame.
Pad/CRC Stripping			
BL: Back-Off Limit	6:5	0x0	The back-off limit decides the slot-based delay time
			00: $k = \min(n, 10)$
			01: k=min(n,8)
			10: k=min(n,4)
			11: k=min(n,1)
DC Deferral Check	4	0x0	
			When the bit is 1, enable deferral detection function
TE: Transmitter	3	0x0	When the bit is 1, enable MAC transfer function
Enable			
RE: Receiver Enable	2	0x0	When the bit is 1, enable MAC receive function
Reserved	1:0	0x0	Reserved

11.2.2 Register1 (MAC Frame Filter)

Register1 (MAC Fram	ne Filter)Offset: 0x0	004
RA: Receive All	31	0x0	When the bit is 1, MAC receive module transmits all received frames to application, and ignore source
			address/target address filtering mechanism.
Reserved	30:11	0x0	Reserved
HPF: Hash or Perfect		0x0	When the bit is 1, the Ethernet frame in Hashor Perfect
Filter	10		Filter system is sent to application.
			When the bit is 0, only the Ethernet frame in Hashor Perfect Filter system is sent to application.
SAF: Source Address	9	0x0	MAC CORE compares the source address domain in
Filter Enable			the received Ethernet frame and the value in SA register, and if they are matching, the SAMatch bit in receive status register is set to high. When the bit is 1, the source address matching fails, and MAC CORE will lose the Ethernet frame. When the bit is 0, no matter whether the source address matching result receives MAC CORE, the matching result will be written to receive status register.
SAIF: SA Inverse Filtering	8	0x0	When the bit is 2, the Ethernet frame matching the source address in SA register will mark that the source address matching fails. When the bit is 0, the Ethernet frame mismatching the source address in SA register will mark that the source address matching fails.
PCF: Pass Control Frames	7:6	0x0	00: MAC filters all control frames 01: MAC receives all control frames except pause
			frame

			10: M AC receives all control frames.
			11: MAC receives the control frame based on address
			filtering.
DBF: Disable	5	0x0	When the bit is 1, all received broadcast frames are
Broadcast Frames			filtered.
			Receive all broadcast frames when this bit is 0
PM: Pass All	4	0x0	Receive all multicast frames when this bit is 1
Multicast			Filter all multicast frames when this bit is 0
DAIF: DA Inverse	3	0x0	When the bit is 1, inverse target address matching is
Filtering Target			conducted for unicast and multicast
address inverse			When the bit is 0, inverse target address matching is
filtering			conducted for unicast and multicast
HMC: Hash	2	0x0	When the bit is 1, the received multicast will conduct
Multicast			the target address filtering based on the contents in
			Hash table.
HUC: Hash Unicast	1	0x0	When the bit is 1, the received unicast will conduct the
			target address filter based on the contents in Hash table.
PR:Promiscuous	0	0x0	Receive all Ethernet frames.
Mode			

11.2.3 Register2 (Hash Table High Register)

Registe	Register2 (Hash Table High Register)Offset: 0x0008				
HTH:	Hash	Table31:0	0x0	Hash Table High 32-bit	
High					

11.2.4 Register3 (Hash Table Low Register)

Register3 (Hash Table Low Register)Offset: 0x0C				
HTL:HashTable Low 31:0	0x0	Hash Table Low 32-bit		

11.2.5 Register4 (GMII Address Register)

Register4 (GMII Addı	ess Reg	ister)Offset:	0x0010
	31:16	0x0	Reserved
PA: Physical Layer	15:11	0x0	This domain chooses to assess which on in 32 PHYs.
Address			
GR GMII Register	10:6	0x0	This domain chooses to access which GMII
The register in PHY			configuration register in PHY
device to access			
Reserved	5	0x0	Reserved
CR:CSRClock Range	4:2	0x0	This domain decides whether MDC clock is clk_csr_i
			clock frequency ratio.
			0000 clk_csr_i/42
			0001 clk_csr_i/62
			0010 clk_csr_i/16
			0011 clk_csr_i/26
			0100 clk_csr_i/102
			0101 clk_csr_i/124
			0110, 0111 Reserved
GW: GMII Write	1	0x0	When the bit is 1, write operation is conducted to PHY
			via GMII data register.
			When the bit is 0, read operation is conducted to PHY
			via GMII data register.

-69-

GB GMII Busy	0	0x0	Before the write operation in registers 4 and 5, this bit
			should be written to 0. Before the register 4 is written,
			this bit must be set to 0 first. When accessing to PHY
			register, the application needs to set the bit to 1, and it
			indicates that the write or read operation is under
			progress in GMII interface.

11.2.6 Register5 (GMII Data Register)

Register5 (GMII Data Register)Offset: 0x0014			
Reserved	31:16	0x0	Reserved
GD: GMII Data	15:0		This domain has saved 16 data in managing the read access or the write access of PHY.

11.2.7 Register6 (Flow Control Register)

Register6 (Flow Control Register)Offset: 0x0018				
	31:16	0x0	This field has saved the pause time domain in filling	
			out transmission control frame.	
Reserved	15:8	0x0	Reserved	
DZPQ: Disable		0x0	When the bit is 1, the generation of Zero-Quanta Pause	
Zero-Quanta Pause	-		is disabled	
	6	0x0	Reserved	
PLT: Pause Low	5:4	0x0	This domain is used to set the pause time threshold.	
Threshold			00: Pause time reduces 4 time slots	
			01: Pause time reduces 28 time slots	
			10: Pause time reduces 144 time slots	
			11: Pause time reduces 256 time slots	
			(one time slot is the transmission time of 512bytes or	
			64bit in GMII/MII interface)	
UP Unicast Pause	3	0x0	When the bit is 1, MAC will detect the pause based on	
Frame Detect			the station unicast address	
	2	0x0	When the bit is 1, MAC will analyze the received stop	
Control Enable			frame, and pause the frame transmit based on the time	
			specified by pause frame	
	-			
TEF: Transmit Flow	1	0x0	In full-duplex mode, when the bit is 1, MAC enables	
Control Enable			the transmission of pause frame.	
			In half-duplex mode, when the bit is 1, MAC enables	
	0	0.0	the backpressure operation.	
FCB / BPA: Flow	U	0x0	When the bit is 1, in full-duplex mode, the pause frame	
Control			is transmitted or in half-duplex mode, the backpressure	
Busy/Backpressure			operation is initiated.	
Activate				

11.2.8 Register7 (VLAN Tag Register)

Register7 (VLAN Tag	Register7 (VLAN Tag Register)Offset: 0x1C			
Reserved	31:17	0x0	Reserved	
ETV: Enable 12-Bit	16	0x0	When the bit is 1, Enable 12-Bit VLAN Tag	
VLAN Tag			Comparison instead of 16-bit VLANTag to compare	
Comparison			and filter Ethernet frames.	
VL:VLAN Tag	15:0	0x0	This domain saves the VLAN Tag in the format of	
Identifier for Receive			802.1Q, and uses it to compare the 15 and 16-bit	
Frames			VLAN Tag in the received Ethernet frame.	

11.2.9 Register8 (Version Register)

Register8 (Version Register)Offset: 0x02				
Reserved	15:8	0x0	Reserved	
Version	7:0	0x0	0X35	

11.2.10 Register14 (Interrupt Status Register)

Register14 (Interrupt S	Register14 (Interrupt Status Register)Offset: 0x0038			
Reserved	15:8	0x0	Reserved	
MMCReceive Check	7	0x0	When the MMC Receive Checksum Offload register	
sum Offload Interrupt			generates any interrupt, this bit is set to 1.	
Status MMC				
MMC Transmit	6	0x0	When MMC transmit interrupt register generates any	
Interrupt Status			interrupt, this bit is set to 1.	
MMCReceive	5	0x0	When MMC receive interrupt register generates any	
Interrupt Status			interrupt, this bit is set to 1.	
MMC InterruptStatus	4	0x0	When any bit of 7:5 is high, this bit is set to 1.	
PMT Interrupt Status	3	0x0	In Power Down state, when the magic frame or	
			Wake-on-LAN is received, this bit is set to 1.	
PCS	2	0x0	When the RGMII PHY interface finishes the	
Auto-Negotiation			negotiation automatically, this bit is set to 1.	
PCS Link Status	1	0x0	In the event of any change in the link status of RGMII	
Changed			PHY interface, this bit is set to 1.	
RGMIIInterrupt	0	0x0	In the event of any change in the link status of RGMII	
Status			interface, this bit is set to 1.	

11.2.11 Register15 (Interrupt Mask Register)

Register15 (Interrupt]	Mask Re	gister)Offse	et: 0x0C
Reserved	15:10	0x0	Reserved
TimeStamp Interrupt	9	0x0	When the bit is 1, the Time stamp interrupt is disabled.
Mask			
Timestamp interrupt			
enable			
Reserved	8:4	0x0	Reserved
PMT Interrupt Mask	3	0x0	When the bit is 1, the interrupt caused on power
			management is disabled.
PCSAN Completion	2	0x0	When the bit is 1, PCS auto negotiation complete
Interrupt Mask			interrupt is disabled.
PCSLinkStatus	1	0x0	When the bit is 1, the interrupt caused by the change in
Interrupt Mask			PCS link status is disabled.
RGMIIInterrupt	0	0x0	When the bit is 1, the interrupt caused by RGMII is
Mask			disabled.

11.2.12 Register16 (MAC Address0 High Register)

Register16 (MAC Address0 High Register)Offset: 0x0040			
MO: Always 1	31	0x0	Reserved
Reserved			
Reserved	30:16	0x0	Reserved
MAC	15:0	0x0	Store the MAC address used to receive address filtering

Address0[47:32] MAC address high 16-bit	and transmit flow control frame.
---	----------------------------------

11.2.13 Register17 (MAC Address0 Low Register)

Register17 (MAC Address0 Lo	ow Register)Offset: 0x0044
MAC Address0[31:0]31:0	0x0	Store the MAC address used to receive address filtering
MAC address low		and transmit flow control frame.
32-bit		

11.2.14 Register18 (MAC Address1 High Register)

Register18 (MAC Add	dress1 H	igh Registe	er)Offset: 0x0048
AE:Address Enable	31	0x0	When the bit is 1, the address filtering module uses the
			2 nd MAC address for complete address filtering. When
			the bit is 0, the address filter module doesn't use the 2^{nd}
			MAC address for address filter.
SA:Source Address	30	0x0	When the bit is 1, MAC address 1 is used to compare
Source MAC address			the source MAC address of receive frame.
			When the bit is 0, MAC address 1 is used to compare
			the target MAC address of receiving frame.
MBC: Mask Byte	29:24	0x0	This domain is used to compare the byte mask control
Control			bit in each MAC address. For example, the 29 th bit is
			used to mask [15:8] in mask register 18.
Reserved	23:16	0x0	Reserved
MAC	15:0	0xFFFF	
Address1[47:32]			
The second MAC			
address high 16-bit			

11.2.15 Register19 (MAC Address1 Low Register)

Register19 (MAC Addre	ss1 Low Registe	r)Offset: 0x0C
MAC Address1[31:0]31:	:0 0x0	
The second MAC		
address low 32-bit		

11.2.16 Register48 (AN Control Register)

Register48 (AN Contr	Register48 (AN Control Register)Offset: 0x0C				
Reserved	31:19	0x0	Reserved		
SGMII RAL Control	18	0x0	Reserved		
Reserved					
LR: Lock to	17	0x0	When the bit is 1, PHY will lock its phase-locked loop		
Reference			to the 125MHz reference clock.		
ECD: Enable Comma	16	0x0	When the bit is 1, the pause detect and word		
Detect			resynchronization of PHY are enabled		
Reserved	15	0x0	Reserved		
ELE: External	14	0x0	When the bit is 1, enable PHY enters into loopback		
Loopback Enable			mode.		
Reserved	13	0x0	Reserved		
ANE:	12	0x0	When the bit is 1, MAC will automatically negotiate		
Auto-Negotiation			with the link.		
Enable					
Reserved	11:10	0x0	Reserved		
RAN: Restart	9	0x0	When the bit is 1, the auto-negotiation restarts.		
Auto-Negotiation					
Reserved	8:0	0x0	Reserved		

Register49 (AN Statu	Register49 (AN Status Register)Offset: 0x1c280018			
Reserved	31:9	0x0	Reserved	
ES: Extended Status	8	0x0	It's only-read, because MAC supports the expansion state message.	
Reserved	7:6	0x0	Reserved	
ANC: Auto-Negotiation Complete	5	0x0	It's read-only, indicates that auto-negotiation is completed.	
Reserved	4	0x0	Reserved	
ANA: Auto-Negotiation Ability	3	0x0	It's only-read, because MAC supports the auto-negotiation.	
LS: Link Status	2	0x0	When this bit is set to 1, indicating the link is connected. When this bit is 0, indicating the link is disconnected.	
Reserved	1:0	0x0	Reserved	

11.2.17 Register49 (AN Status Register)

11.2.18 Register50 (Auto-Negotiation Advertisement Register)

Register50 (Auto-Neg	otiation	Advertisem	ent Register)Offset: 0x0C
Reserved	31:16	0x0	Reserved
NP: Next Page	15	0x0	It's only read to 0, because MAC doesn't support the
Support			next page.
Reserved	14	0x0	Reserved
RFE: Remote Fault	13:12	0x0	When 2bit indicates the link opposite end is wrong, see
Encoding			subsection 37.2.1.5 in IEEE802.3z for specific codes.
Reserved	11:9	0x0	Reserved
PSE:Pause Encoding	8:7	0x0	See subsection 37.2.1.4 in IEEE802.3z
HD: Half-Duplex	6	0x0	When the bit is 1, it indicates MAC supports the
Half-duplex			half-duplex.
FD Full-Duplex	5	0x0	When the bit is 1, it indicates MAC supports the
			full-duplex.
Reserved	4:0	0x0	Reserved

11.2.19 Register51 (Auto-Negotiation Link Partner Ability Register)

Register51 (Auto-Neg	otiation	Link Partne	er Ability Register)Offset: 0x1c280018
Reserved	31:16	0x0	Reserved
NP: Next Page	15	0x0	When the bit is 1, it indicates more nexpage messages
Support			are available. When the bit is 0, it indicates the next
			page exchange is unavailable.
ACK: Acknowledge	14		It indicates that in auto-negotiation, the link opposite
			end successfully receives the basic page of MAC
RFE: Remote Fault	13:12	0x0	See subsection 37.2.1.5 in IEEE802.3z
Encoding			
Reserved	11:9	0x0	Reserved
PSE:Pause	8:7	0x0	See subsection 37.2.14 in IEEE802.3z
Encoding			
Opposite end pause			
status coding			
HD: Half-Duplex	6	0x0	Indicate that opposite end can be run in half-duplex
			mode.
FD Full-Duplex	5	0x0	Indicate that opposite end can be run in full-duplex
			mode.

			-
Deeenaal	N-U	0×0	December
Reserved	<u>4</u> -0		Reserved
	1.0	UAU	

11.2.20 Register52 (Auto-Negotiation Expansion Register)

Register52 (Auto-Neg	gotiation	n Expansi	ion Register)Offset: 0x0D
Reserved	31:3	0x0	Reserved
NPA: Next Page Ability	2	0x0	It's only read to 0, because MAC doesn't support the next page.
NPR: New Page Received	1	0x0	When the bit is 1, it indicates that MAC receives the new page.
Reserved	0	0x0	Reserved

11.2.21 Register54 (SGMII/RGMII Status Register)

Register54 (SGMII/RGMII Status Register)Offset: 0x0D				
Reserved	31:4	0x0	Reserved	
Link Status	3	0x0	When this bit is set to 1, indicating the link is connected. When this bit is set to 0, indicating the link is disconnected.	
Link Speed	2:1	0x0	Indicate current link speed 00: 2.5MHz 01: 25MHz 10: 125MHz	
Link Mode	0	0x0	0: Half-duplex 1: Full-duplex	

IEEE1588 register:

11.2.22 Register448 (Time Stamp Control Register)

Register448 (Time Stamp Control Register)Offset: 0x0700				
Reserved	31:20	0x0	Reserved	
ATSFC: Auxiliary	19	0x0	When the bit is 1, reset the pointer of Auxiliary	
SnapshotFIFO Clear			Snapshot FIFO, clear FIFO. After this, the bit is 0.	
TSENMACADDR:	18	0x0	When the bit is 1, the received PTP package will go	
EnableMAC			through the MAC destination address filter (DA Fiter)	
addressfor PTP frame			in MAC, and the mismatching PTP packet will be	
filtering			abandoned.	
TSCLKTYPE: Select	17:16	0x0	The domain is coded according to the following types:	
the type of clock			00: Ordinary clock	
node			01: Boundary clock	
			10: End-to-End Transparent clock	
			11: Peer-to-peer Transparent clock	
TSMSTRENA:	15		When the bit is 1, Snapshot records messages Relevant	
Enable Snapshot for			to Master; when the bit is 0, Snapshot records messages	
Messages Relevant to			Relevant to Slave.	
Master				

TSEVNTENA: Enable Time Stamp Snapshot for Event Messages		0x0	When the bit is 1, Snapshot only records the Event Message; when the bit is 0, Snapshot records all messages.
TSIPV4ENA: Enable TimeStamp Snapshot for IPv4 frames	-	0x0	When the bit is 1, the Time Stamp Snapshot of IPv4 frame is enabled.
TSIPV4ENA: Enable TimeStamp Snapshot for IPv4 frames		0x0	When the bit is 1, the time stamp snapshot of IPv6 frame is enabled.
TSIPENA:Enable TimeStamp Snapshot for PTP overEthernet frames		0x0	When the bit is 1, the PTP packet (PTP over Ethernet) in the format of Ethernet enables Time Stamp Snapshot; when the bit is 0, the PTP packet in the format of UDP-IP-Ethernet enables Time Stamp Snapshot.
TSCTRLSSR: Time Stamp Digital or Binary rollover control		0x0	When the bit is 1, Time Stamp Low register updates and adds the time stamp after its value exceeds 0x3B9A_C9FF; when the bit is 0, the Time Stamp Low register is reset to 0x7FFF_FFF.
TSENALL: Enable Time Stamp for All Frames		0x0	When the bit is 1, it indicates that all frames received by MACs enable the time stamp.
Reserved	7:6	0x0	Reserved
TSADDREG: Addend Reg Update	5	0x0	When the bit is 1, the value of Time Stamp Addend register is used to update PTP block for fine correction. When the updating finishes, this bit is 0.
TSTRIG: Time Stamp Interrupt Trigger Enable		0x0	When the bit is 1, if the system time is larger than the value of Target Time register, one time stamp interrupt is generated; after the generation of interrupt, this bit is reset to 0.
TSUPDT: Time Stamp Update	3	0x0	When the bit is 1, based on the values of Time Stamp High Update and Time Stamp Low Update registers, the system updates the current system time, and after this the bit is 0.
TSINIT: Time Stamp Initialize	2	0x0	When the bit is 1, based on the values of Time Stamp High Update and Time Stamp Low Update registers, the system initializes the current system time, and after this the bit is 0.
TSCFUPDT: Time Stamp Fineor Coarse Update Time Stamp Fineor Coarse updating		0x0	When the bit is 1, it indicates that the Time Stamp will adopt the Fine Update, and when the bit is 0, it indicates that the Time Stamp will use Coarse.
TSENA: Time Stamp Enable	1	0x0	When the bit is 1, it indicates the receive and transmit frame systems will enable the Time Stamp record; when the bit is 0, it indicates the Time Stamp record is stopped for receive and transmit frames, and the Time Stamp generator is paused; after the bit is set to 1, the Time Stamp Initialization starts (bit 2).

11.2.23 Register449 (Sub-Second Increment Register)

Register449 (Sub-Second Increment Register)Offset: 0x0704				
Reserved	31:8	0x0	Reserved	
SSINC: Sub-second	7:0	0x0	The value in this domain will be added to sub-second	
increment value			register	

11.2.24 Register 450 (System Time - Seconds Register)

Register 450 (System Time - Seconds Register)Offset: 0x0708				
TTSS: Time Stamp31:0	0x0	The value of this domain indicates the second count of		
Second		the current system time		

11.2.25 Register 451 (System Time - Nanoseconds Register)

Register 451 (System	Register 451 (System Time - Nanoseconds Register) Offset: 0x0C				
PSNT: Positive or Negative Time	31		This domain indicates the positive or negative time. When the bit is 1, it indicates the time is positive. When the bit is 0, it indicates the time is negative.		
TSSS: Time Stamp Sub Seconds	30:0	0x0	The value of this domain indicates the sub-second count of the current system time, and time precision is 0.46 nanosecond by default (when the TSCTRLSSR asserts the start precision to 1ns, the maximum is 0x3B9A_C9FF)		

11.2.26 Register 452 (System Time - Seconds Update Register)

Register 452 (System Time - Seconds Update Register)Offset: 0x0710				
TTSS: Time Stamp31:0	0x0	The value of this domain is the initial value of system		
Second		initialization or the increment in updating		

11.2.27 Register 453 (System Time - Nanoseconds Update Register)

Register 453 (System Time - Nanoseconds Update Register)Offset: 0x0714				
ADDSUB:Add or31 subtract time	0x0	This domain indicates adding or subtracting time. When the bit is 1, it indicates the updated register value is subtracted in updating. When the bit is 0, it indicates the updated register value is added.		
TSSS: Time Stamp30: Sub Seconds	0 0x0	The value of this domain indicates the sub-second count is added or reduced when the current system time updates, and the time precision is 0.46 nanosecond by default (when the TSCTRLSSR sets the start precision to 1ns, the maximum is 0x3B9A_C9FF)		

11.2.28 Register 454 (Time Stamp Addend Register)

Register 454 (Time Stamp Addend Register)Offset: 0x0718			
	31:0	0x0	The value of this domain indicates that the 32bit time
TAR: Time Stamp			value to add in system time synchronization
Addend Register			

11.2.29 Register 455 (Target Time Seconds Register)

Register 455 (Target Time Seconds Register)Offset: 0x1C				
TSTR: Target Time Seconds Register	31:0		This domain has saved the time in the unit of second. When the time stamp time matches or exceeds the value of this field and low bit register (reg 456) and includes MAC address matching, the system will generate an interrupt (the interrupt must be enabled in advance)	

11.2.30 Register 456 (Target Time Nanoseconds Register)

Register 456 (Target Time Nanoseconds Register)Offset: 0x02				
Reserve	31	0x0		
TSTR: Target Time Stamp Low Register	30:0		This domain has saved the time in the unit of second. When the time stamp time matches or exceeds the value of this field and low bit register (reg 455) and includes MAC address matching, the system will generate an interrupt (the interrupt must be enabled in	
			advance)	

11.2.31 Register 457 (System Time - Higher Word Seconds Register)

Register 457 (System Time - Higher Word Seconds Register)Offset: 0x24				
Reserve	31:16	0x0		
TSHWR:Time Stamp	15:0	0x0	This domain saves the time stamp of high 16bit (most	
Higher Word Register	-		significant bit)	

11.2.32 Register 458 (Time Stamp Status Register)

Register 458 (Time St	amp Sta	tus Register)Offset: 0x02
Reserve	31:28	0x0	
ATSNS:Auxiliary	27:25	0x0	This domain indicates the number of snapshots in
Time Stamp Number			FIFO, 4(3`b100) FIFO full, and 0(3`000) FIFO empty
of Snapshots			
ATSSTM: Auxiliary		0x0	When the bit is 1, it indicates the current FIFO is full
Time Stamp Snapshot	-		and has set the external trigger, and the last snapshot is
Trigger Missed			missed because of FIFO full; or, it's 0.
Reserve	23:3	0x0	
AuxiliaryTime	2	0x0	When the bit is 1, it indicates the snapshot is written to
StampTrigger			FIFO.
Snapshot			
TSTARGT:Time	1	0x0	When the bit is 1, the system time has exceeded or is
Stamp Target Time			equal to the value of target time stamp register
Reached			
TSSOVF:Time	0	0x0	When the bit is 1, it indicates the time of the current
StampSeconds			time stamp has overflowed (larger than
Overflow			0xFFFF_FFFF); or, it's 0.

11.2.33 Register 459 (PPS Control Register)

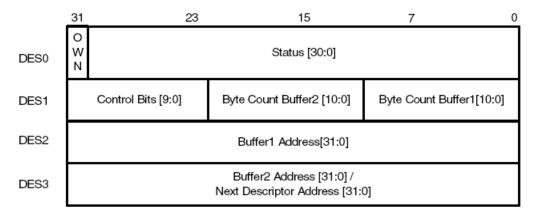
Register 459 (PPS Con	Register 459 (PPS Control Register)Offset: 0x0C				
Reserve	31:4	0x0			
PPSCTRL: Control the duration between		0x0	This domain sets the time interval of two PPS signals output, and is encoded as follows		
2-pulses of PPS signa			0000: 1.0s (Binary & Digital Rollover)		
output		0001: 0.5s (Binary Rollover) , 0.536s (Digital			
output		Rollover)			
			0010: 0.25 s (Binary Rollover) , 0.26s (Digital		
			Rollover)		
			0011: 0.125 s (Binary Rollover) , 0.26s (Digital		
			Rollover)		

	1111: 15.28µs (Binary Rollover), 32.77µs (Digital
	Rollover)

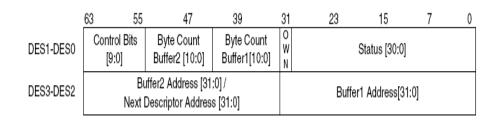
11.2.34 Register 460 (PPS Auxiliary Time Stamp - Nanoseconds Register)

Register 460 (PPS Auxiliary Time Stamp - Nanoseconds Register)Offset: 0x0730				
	31:0	0x0	Includes the low (nanosecond)32bit of Auxiliary Time	
			Stamp	

11.2.35 Register 461 (PPS Auxiliary Time Stamp - Seconds Register)


F	Register 460 (PPS Auxiliary Time Stamp - Seconds Register)Offset: 0x0730				
Γ		31:0	0x0	Include the low (nanosecond)32-bit of Auxiliary Time	
				Stamp	

11.3 DMA Descriptor


DMA descriptor is the interactive interface of MAC drive and hardware, and records the memory address and transfer status of data packet. Two data structures: Tx Descriptor and Rx Descriptor have been defined respectively. Two descriptors can freely select the connection in ring mode or chain mode for MAC.

11.3.1 Basic Format of DMA Descriptor

Each DMA descriptor includes two data buffers, two byte count buffer, and two pointer of data buffer address. Note: the descriptor address must guarantee that the connected system bus bit width is aligned and the system byte order is the same (little end by default)

11.3.2 DMA receive descriptor

CMAC subsystem needs at least two receive descriptors in operating mode to normally receive one network data packet. When processing one network data packet, its internal receive module always tries to obtain the next receive descriptor. Each network data packet is called one frame.

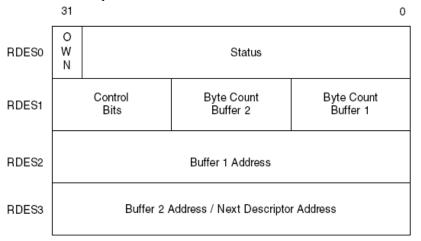


Figure 11-3 Basic format of DMA receive descriptor (small end 32bit bus)

11.3.2.1 RDES0

RDES0 includes the current receive frame status, length and all circumstances of the descriptor (owned by host or DMA). Details of RDES0 see table below.

RDES0 bit	a 4	
OWN	31	When the bit is 1, it indicates the descriptor belongs to DMA
All modes		control, and when the bit is 0, it indicates the descriptor belongs
		to DMA control. When DMA module finishes one transmission,
		the bit will be cleared automatically.
AFM: Destination	30	When the bit is 1, it indicates that the current data frame target
Address Filter 1		address doesn't comply with the internal frame target address
		filter of GMAC.
FR: Frame length	29:16	It indicates receiving the length of the current frame. When ES
Frame length		bit is 0, it's significant.
ES: Error Summary	15	It indicates whether the current frame is wrong, and its value is
		RDES[0], RDES[1], RDES[3], RDES[4], RDES[6], RDES[7],
		RDES[11] and RDES[14] bits or (OR) operation.
DE: Descriptor Error	14	When the bit is 1, it indicates that the buffer pointed by current
_		descriptor doesn't comply with the frame or OWN is 0 (host
		control)
SAF: Source Address	13	When the bit is 1, it indicates that the current data frame target
Filter Fail		address doesn't comply with the internal frame source address
		filter of GMAC.
LE: Length Error	12	When the bit is 1, it indicates that the length of the current
		receive frame doesn't comply with the default length. When the
		Frame Type bit is 1, and CRC Error bit is 0, it's significant.
OE: Over Flow Error	11	When the bit is 1, it indicates that when the frame is received,
		GMAC internal RxFIFO overflow.
VLAN: VLAN Tag	10	When the bit is 1, it indicates the frame type is VLAN.
FS: First Desciptor	9	When the bit is 1, it indicates the buffer pointed by current
		descriptor is the first saved buffer of the current receive frame.
LS: Last Descriptor	8	When the bit is 1, it indicates the buffer pointed by current

		descriptor is the last saved buffer of the current receive frame.
IPC Checksum	7	When the bit is 1, if IPC check function is enabled, it indicates
Error/Giant Frame		that the IPv4 head check value of the current frame doesn't
		comply with the value of frame internal check domain. If it's
		disabled, it indicates that the current frame is a giant frame
		(more than 1518 bytes long)
LC: Late collision	6	When the bit is 1, it indicates that in half-duplex mode, when
		the current frame receives, one late collision occurs.
FT: Frame Type	5	When the bit is 1, it indicates the current frame is an Ethernet
		frame. When the bit is 0, it indicates the current frame is a
		IEEE802.3 frame.
RIWT: Receive	4	When the bit is 1, it indicates the current clock value exceeds
Watchdog Timeout		the value of Watchdog circuit clock in receive module, namely,
		the receive frame timeout
RE: Receive Error	3	When the bit is 1, it indicates the internal module goes wrong
		when receiving the current frame. Internal signal
	-	Rxer is set to 1 and rxdv is set to 1
DE: Dribble bit Error	2	When the bit is 2, it indicates the length of the receive frame
		isn't an integer, namely, the total length is an odd bit. It's
	1	significant only in mii mode.
CE: CRC Error	1	When the bit is 1, it indicates the internal CRC goes wrong
		when receiving the current frame. Only in last
RX MAC:	0	descriptor(RDES0[8], this bit is significant.
Checksum/payload	0	When the bit is 1, it indicates when receiving the current frame, the internal RX MAC register block 1-15 has one address
Checksum Error		matching the current frame. When the bit is 0, it indicates the
CHECKSUIII EITOI		RX MAC register block 0 matches the receive frame destination
		address. When Full Checksum Offload Engine is enabled, if the
		bit is 1, it indicates the frame TCP/UDP/ICMP check error.
		When the bit is 1, it also indicates the current frame actual
		receive length doesn't comply with the internal record length.
		receive tengal account comply with the internal record length.

11.3.2.2RDES1

RDES1 has recorded the buffer size pointed by descriptor, and the organization form of the descriptor (ring or chain).

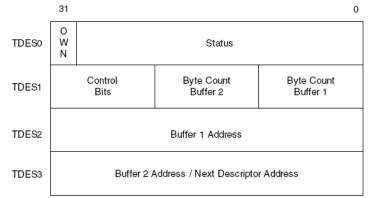
RDES1 bit		
Disable Intr in	31	When the bit is 1, it indicates after the frame receive completes,
Completion		the RI bit (CSR5[6]) in STATUS register won't be set. In this
		way, the host can't detect such interrupt.
Reserved	30:26	
RER: Receive End of	25	When the bit is 1, it indicates the descriptor is the last in the
Ring		ring descriptor link table, and the address of the next descriptor
		is the base address of the receive descriptor.
RCH: Second	24	When the bit is 1, it indicates that the second buffer address in
Address Chained The		descriptor points the address of the next descriptor. When the
second buffer also		bit is 0, it indicates the address points to the second buffer
points to the next		address. When the bit is 1, the value of RDES1[21-11] is
chain descriptor		insignificant, and RDES1[25] has a higher priority than
		RDES1[24](represent ring instead of chain)
Reserved	23:22	
RBS2: Receive2	21:11	This domain indicates the size of data buffer2. Based on the
Buffer Size 2		width 32/64/128 of the system bus, the size of buffer2 should be
		integral multiples of 4/8/16. Unknown results will be caused if
		there is no satisfaction. When the domain in RDES1[24] is 0,
		it's significant.

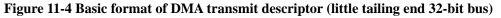
RBS2:	Receive	10:0	This domain indicates the size of data buffer1. Based on the
Buffer Size	1		width 32/64/128 of the system bus, the size of buffer1 should be
			integral multiples of 4/8/16. Unknown results will be caused if
			there is no satisfaction. This domain has always been valid. If
			the threshold is 0, DMA will automatically access buffer 1 or
			the next receive descriptor.

11.3.2.3RDES2

This domain has recorded the address of data receive buffer 1.

RDES2 bit	t	
Buffer1	Address31:0	The field has recorded the 32bit physical address of data receive
Pointer		buffer1. The physical address has no default alignment
		requirements. When CMAC DMA aligns the bus data 32/64/128
		bit, the low $2/3/4$ bit of the address is ignored.


11.3.2.4 RDES3


This domain has recorded the address of data receive buffer 2.

RDES3 bit			
	3	1:0	The field has recorded the 32-bit physical address of data receive
Buffer2	Address		buffer2. The physical address has no default alignment
Pointer			requirements. When CMAC DMA aligns the bus data 32/64/128
			bit. If the descriptor in connected by chain, the field records the
			address of the next descriptor.

11.3.3 DMA transmit descriptor

The formats of transit descriptor and receive descriptor are basically same. Each descriptor address need to be aligned based on bus width (32/64/126) bits).

11.3.3.1TDES0

TDES0 includes the state of transmit frame and messages of transmit descriptor.

TDES0 bit		
OWN	31	When the bit is 1, it indicates the descriptor belongs to DMA
		control, and when the bit is 0, it indicates the descriptor belongs

		to DMA control. When DMA module finishes one transmission, the bit will be cleared automatically.					
	30:18						
TTSS: Tx Time		When IEEE1588 function is enabled, if the bit is 1, it indicates					
Stamp Status		the time stamp message of this transmit frame has been saved in					
	17	TDES2 and TDES3. Or the bit shall be reserved					
IHE: IP Header	16	When the bit is 1, it indicates the internal check module finds the wrong IP head of this transmit frame, and won't change the domain.					
ES: Error Summary	15	It indicates whether the current frame is wrong, and its value is RDES[0], RDES[1], RDES[3], RDES[4], RDES[6], RDES[7], RDES[11] and RDES[14] bits or (OR) operation.					
JT: Jabber Timeout	14	When the bit is 1, it indicates GMAC transmit module encounters Jabber timeout.					
FF Frame Flushed	13	When the bit is 1, it indicates the software sends a refresh command, and cause DMA/MTL to refresh all internal frames.					
PCE: Payload	12	When the bit is 1, it indicates the internal loading check mode insert the check number in the transmit frame					
Checksum Error		It is an error. This bit is significant when the load check module is enabled					
LC: Loss of Carrier	11	When the bit is 1, it indicates the carried signal is lost during frame transmission (gmii_crs signal several cycles aren't set)					
NC: No Carrier	10	When the bit is 1, it indicates that the carried signal of PHY has been set during transmission.					
LC: Late Collision	9	When the bit is 1, it indicates that in half-duplex mode, when the current frame receives, one late collision occurs.					
EC: Excessive Collision	8	When the frame is 1, it indicates 16 collisions occur before the current frame is sent.					
VF: VLAN Frame	7	When the bit is 1, it indicates that the current transmit frame is a					
VLAN frames	6:3	VLAN frame.					
		This domain indicates the total collision number before the successful transmission of the current frame					
ED: Excessive	2	When this bit is 1, it indicates current frame transmission is					
Deferral		completed.					
UF: Underflow Error	1	When the bit is 1, it indicates that overflow error occurs in current frame transmission, namely, data transmission. buffer is too small or unavailable					
DB: Defered Bit	0	When the bit is 1, it indicates that the transmission is delayed,					
Frame Flushed		and it's only significant in half-duplex mode.					

11.3.3.2TDES1

TSESI includes the buffer size and other control and status bits of some descriptor ring/chain connection.

TDES1 bit		
IC: Interruption on		When the bit is 1, it indicates that after the frame transmit
Complete		finishes, the TI bit in STATUS register will be set (CSR5[0])
LS: Last Segment	30	When the bit is 1, it indicates the current buffer includes the last
		segment of one frame data (if the frame is divided into several
		segments)
FS: First Segment	29	When the bit is 1, it indicates the current buffer includes the
		first segment of one frame data (if the frame is divided into
		several segments)
CIC: Checksum	28:27	This domain controls whether the control internal module fills
Insertion Control		out check data in transmit frame.
		Value: 2'b00: No insertion checksum

-82-

	2'b01: Insertion IPV4 header checksum
	2'b10: When the pseudo-header exists, TCP/UDP/ICMP full
	check data are filled out.
	2'b11: TCP/UDP/ICMP full check data are always filled out.
DC Disable CRC 26	When the bit is 1, CMAC hardware doesn't add CRC check
	data at the end of each transmit frame.
TER: Transmit End25	When the bit is 1, it indicates the descriptor is the last in the
of Ring Descriptor	ring descriptor link table, and the address of the next descriptor
	is the base address of the transmission descriptor.
TCH: Second24	When the bit is 1, it indicates that the second buffer address in
Address Chained	descriptor points the address of the next descriptor. When the
The second buffer	bit is 0, it indicates the address points to the second buffer
address pointer	address. When the bit is 1, the value of RDES1[21-11] is
	insignificant, and RDES1[25] has a higher priority than
	RDES1[24](represent ring instead of chain)
DP: Disable Padding	When the bit is 1, it indicates the GMAC won't fill out the
23	empty data in data packet with the length smaller than 64 bytes
TTSE: Transmit Time22	When the bit is 1, the internal module will be started to compute
Stamp Enable	IEEE1588 hardware time stamp, and when TDES1[29] is 1, it's
	significant.
TBS2: Transmit21:11	This domain indicates the size of data buffer2. When
Buffer Size 2	TDES1[24] is 1, this domain is insignificant.
TBS1: Transmit10:0	This domain indicates the size of data buffer1. This domain has
Buffer Size 1	always been valid. If the threshold is 0, DMA will automatically
	access buffer 1 or the next receive descriptor.

11.3.3.3TDES2

This domain has recorded the address of data transmission buffer 1.

TDES2 bit		
Buffer1	Address31:0	The field has recorded the 32bit physical address of data receive
Pointer		buffer1. The physical address has no default alignment
Transmit	buffer1	requirements. When CMAC DMA aligns the bus data 32/64/128
address		bit, the low 2/3/4 bit of the address is ignored.

11.3.3.4TDES3

This domain has recorded the address of data transmission buffer 2.

TDES3 bit		
Buffer2	Address31	0 The field has recorded the 32-bit physical address of data receive
Pointer		buffer2. The physical address has no default alignment
Transmit address	buffer2	requirements. When CMAC DMA aligns the bus data 32/64/128 bit, the low 2/3/4-bit of the address is ignored. If the descriptor is connected by chain, this domain records the address of the next descriptor.

11.4 Software Programming Guide

DMA initialization:

- 1 Software reset (reset) MAC
- 2. Wait for reset completion (search DMA reg0[0])
- 3. Program the following domain of DMA reg0
- a. MIX-BURST and AAL(DMA reg0[26], [25])
- b. Fixed-burst or undefined-burst(DMA reg0[16])
- c. Burst-length and Burst-mode

- d. Descriptor Length (Only in ring, is it effective)
- e. Tx and Rx arbitration scheduling
- 4. Program AXI Bus Mode Reg
- a. If the Fixed-burst is selected, it's necessary to set the maximum burst length in the register.

5. It has created the transmit and receive descriptor chains respectively, and chosen ring mode or chain mode for connection, and their OWN bits of receive descriptor is set to 1 (owned by DMA)

6. Before the software enables DMA descriptor, it must guarantee three are at least three descriptors in transmit/send descriptor.

7. Write the starting address of the receive and transmit descriptor chain tables to DMA reg 3, 4

- 8. Configure the following bit in DMA reg6(DMA mode operation)
- a. Received/transmitted Store and Forward
- b. Received/transmitted threshold control
- c. Hardware flow control enable
- d. Error frame and unidentified correct frame skipping (forwarding enable)

e. OSF mode

- 9. Write 1 to DMA reg6(Status reg), and clear all interrupt requests
- 10. Write 1 to DMA reg7(interrupt enable reg), and enable all interrupts

11. Write 1 to DMA reg6[1], [13], enable transmit and receive DMA

MAC initialization:

1 Correctly configure the supporting PHY chips

- 2. Correctly configure MAC reg4(GMII Address Register), make it normally access PHY related register
- 3. Read MAC reg5(GMII Data Register) to obtain messages such as link, speed and mode (duplex) of the current PHY

4 Configure MAC address

- 5. If the harsh filtering is enabled, it's necessary to configure the hash filtering
- 6. Configure the following domain of MAC reg1(Mac Frame filter), conduct the frame filtering
- a. Receive all
- b. Promiscuous mode
- c. Hash or perfect filter
- d. Groupcast and multicast filter settings, etc.
- 7. Configure the following domain of MAC reg6(Flow control register)
- a. Pause time and other pause control bit
- b. Receive and transmit flow control bit
- C. Busy flow control / follow-up pressure enable
- 8. Configure the interrupt mask register (Mac reg15)
- 9. Rightly configure MAC reg0 based on previously obtained line message (link, speed, mode)

10. Configure MAC reg0[2], [3] to enable transmit and enable modules in MAC

General processes of transmit and receive:

1. After detecting transmit or receive interrupt, search the corresponding descriptor to judge whether it belongs to host, and read the data in descriptor

2. After finishing reading the data in descriptor, clear all descriptor bits and set their OWN bits, and make it continue transmitting/receiving data

3. If the current transmit or receive descriptors don't belong to DMA(OWN=0), the DMA module will enter into the suspended state. When the data need transmitting/receiving, write 1 to DMA Tx/Rx POLL register, and enable DMA module again Note: the receive descriptor should always belong to DMA(OWN=1) when idle.

4. Transmit and receive descriptors comply with the real-time information of corresponding buffer address, and can be obtained by searching DMA reg18, 19, 20, 21.

11.5 IEEE 1588 Support

MAC controller supports IEEE 1588 clock synchronous protocol. IEEE 1588 defines that the protocol with technologies such as LAN, distributed object to implement accurate clock synchronous proofreading, measuring and control systems. IEEE1588 protocol is widely applicable to support heterogeneous systems with different

LOONGSON

clock characteristics, and provide the full-system sub-second precision synchronization. The following two figures provide two different clock system synchronization based on IEEE1588 protocol. Figure 1 is the process where the host cycle sends the synchronous message to all slave devices in internet, and Figure 2 is the process that the slave synchronizes the host synchronously.

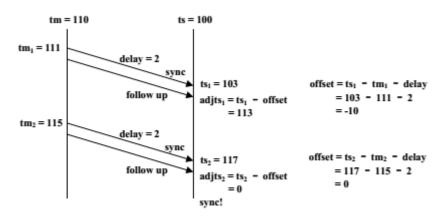


Figure 11-5 Period clock synchronization process

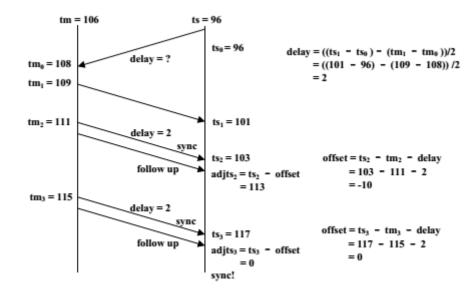


Figure 11-6 Slave proactive synchronization process

During the synchronization of master and slave devices, the sent message frame is called ptp (precious time protocol). See IEEE1588 protocol for the specific synchronization process. The entire clock synchronization proofreading process is basically finished in internet UDP protocol layer, and MAC controller hardware only needs to support the transmit and receive time functions of ptp packets, namely, the tm/s in above figure.

IEEE1588 software programming guide:

To enable IEEE1588 time stamp function, set Register 448 Time Stamp Control Register bit0 to 1. But in order to use the function normally, the following relevant initialization work must be completed in MAC initialization phase:

IEEE1588 initialization:

- 1. Set the bit9 of register 15 to 1, and switch off the system interrupt triggered by time stamp.
- 2. Set the bit0 of time stamp control register (reg 448) to 1, and enable time stamp function.
- 3. Set Register 449 Sub-Second Increment Register based on ptp clock frequency.
- 4. If you use Fine Correction approach, set register (Register 454 Time Stamp Addend register) and set the bit 5 of

time stamp control register (reg 448) to 1 (addend reg update)

- 5. The bit5 of rolling time stamp control register is set to 0.
- 6. Enable the Fine Update method by setting the bit1 of time stamp control register to 1 (if necessary).
- 7. Set the Time Stamp High Update and Time Stamp Low Update to corresponding values.

8. Set the bit2 of time stamp control register to 1 (time stamp initialization)

9. When writing the initial value to time stamp update register (registers 452 and 453 Time Stamp Update register), the time stamp counter starts to work.

10. Enable transmit and receive modules of MAC to correctly operate time stamp function.

Note: when IEEE1588 function is disabled, follow and execute the above process to restart it.

System clock correction:

To synchronize or update the system clock in a process (coarse correction method), the following procedures are adopted:

1. Write the offset (positive or negative) to time stamp update register (registers 452 and 453 Time Stamp Update registers)

2. Set the bit3 of time stamp control register (reg 448) to 1.

3. When the bit of TSUPDT (reg448bit3) becomes 0, system clock adds or subtracts the offset in time stamp update register in procedure 1.

12 USB Controller

12.1 Overview

Characteristics of USB host port 1C is as follows:

- It's **compatible** with USB Rev 1.1 and USB Rev 2.0 protocols
- It's compatible with OHCI Rev 1.0 and EHCI Rev 1.0 protocols
- Support the USB device at LS (Low Speed), FS (Full Speed) and HS (HighSpeed)
- Support one port, and suspend LS, FS or HS device.

USB host controller module includes a EHCI controller supporting HS device, and one OHCI controller supports FS and LS devices. Therein, the EHCI controller is in master control status, and only when FS or LS devices are suspended, can the control right be transferred to OHCI controller; only when FS or LS device is pulled up, will control right return to EHCI controller.

Meanwhile, the USB controller has integrated the AHB bus interface (compatible with AMBA Specification Revision 2.0) for the communication with memory/application. The interconnection architecture chart of USB controller and the outside is as shown in Figure 12-1:

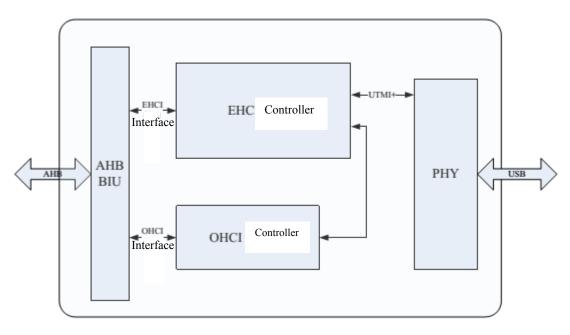


Figure 12-1 USB host controller module

12.2 USB Host Controller Register

12.2.1 EHCI relevant registers

EHCI relevant registers include Capacity register, Operational register and EHCI implementation relevant register. The USB host controller of 1C is compatible with EHCI Rev 1.0 protocol. For Capacity register and Operational register, please refer to Enhanced Host Controller Interface Rev 1.0 Specification. The base address of EHCI is equal to the base address of the below register plus offset.

12.2.2 Capability register

Name	Offset address	Width	Access	Note	
HCCAPBASE	0x00	32	RO	The value is 32'h01000010	by
				default.	

LOONGSON

HCSPARAMS	0x04	32	RO	The value is 32'h00001116 by
				default.
HCCPARAMS	0x08	32	RO	The value is 32'h0000A010 by
				default.

(Notes: USBBase is fixed as the starting address 0xbfe2_0000 of EHCI slave)

12.2.3 Operational Register

Name	Address	Width	Access	Note
USBCMD	0x10	32	R/W RO	USB host controller command register
USBSTS	0x14	32	R/W RO	USB host controller status register
USBINTR	0x18	32	R/W	Interrupt set register of USB host controller
FRINDEX	0x1C	32	R/W	USB host controller frame index register
CTRLDSSEGMENT	0x02	32	R/W	Store the address of EHCI control data structure
PERIODICLISTBASE	0x24	32	R/W	Store the initial address of period data frame table
ASYNCLISTADDR	0x28	32	R/W	Store the initial address of the next asynchronous queue to execute
CONFIGFLAG	0x05	32	R/W	Configuration mode register
PORTSC 1	0x54	32	R/W	Port 1 status and control register
PORTSC 2	0x58	32	R/W	Port 2 status and control register
PORTSC 3	0x5c	32	R/W	Port 3 status and control register
PORTSC 4	0x60	32	R/W	Port 4 status and control register
PORTSC 5	0x64	32	R/W	Port 5 status and control register
PORTSC 6	0x88	32	R/W	Port 6 status and control register

(Notes: USBOPBase is fixed as the starting address of EHCI slave + `h10)

12.2.4 EHCI implementation relevant register

EHCI implementation relevant register is described as follows.

Name	Address	Width	Access	Note
INSNREG00	0x90	32	R/W	Frame length configuration register
INSNREG01	0x94	32	R/W	Data packet buffer OUT/IN
				threshold register
INSNREG02	0x98	32	RO	Data packet buffer depth register
INSNREG03	0x9c	32	R/W	Reference to the detailed register
				description
INSNREG04	0xa0	32	R/W	For Debug
INSNREG05	0xa4	32	R/W	UTMI configuration (default setting),
				control and status registers
INSNREG06	0xa8	32	RO	AHB error status register
INSNREG07	0xa:	32	RO	AHB Master error address register

LOONGSON

INSNREG08	0xb0	32	RO	HSIC enable register

INSNREG00 register (disable)

INSNREG01 register

Bit field	Access	Reset value	Note
31:16	R/W		OUT threshold (the unit is 4 bytes). Once the data fetched from system memory reaches the OUT threshold, the USB transmission starts, at least 16bytes.
15:0	R/W		IN threshold (the unit is 4 bytes). Once the data fetched from Packet Buffer reaches the IN threshold, the USB transmission starts, at least 16bytes.

INSNREG02 register

Bit field	Access	Reset value	Note
31:12	Reserved	20'h0	Reserved
11:0	RO	12'h0020	Data packet buffer depth (the unit is 4 bytes)

INSNREG03 register

Bit field	Access	Reset value	Note
31:13	Reserved	19'h0	Reserved
12:10	RO	3'h0	When the field defines the extra delay of phy_clks, the delay is added to "Tx-Tx turnaround Delay".
9	RO	1'h0	Set 1: to force the host controller to obtain the cycle data frame table for each micro-frame in a frame Set 0: the host controller obtains the cycle data frame table from each micro-frame 0 in a frame
8:1	R/W	8'h0	The time can tolerate the offset, and the field is used to indicate the byte number to add for tolerating and computing the available time. To computer the available time is added for the future transmission elasticity, and the user program default doesn't need to change this field.
0	RO	1'h0	Break Memory Transaction mode Set to 1: enable this function Set to 0: disable this function

INSNRE04 register (it's only used for debugging, and the software doesn't need to change this register)

Bit field	Access	Reset value	Note
31:6	Reserved	26'h0	Reserved
5	R/W	1'h0	Set 1: disable automatic function. Namely, when the software
			clears Run/Stop bit, USB host controller wake up the
			Suspend port
			Set 0: enable automatic function. When the software rests
			Run/Stop bit, Suspend signal will be set to 1.
4	R/W	1'h0	Set 1: disable NAK reload repair
			Set 0: enable NAK reload repair
3	Reserved	1'h0	Reserved
2	R/W	1'h0	Set 1: shorten port enumeration time (simulation)
1	R/W	1'h0	Set to 1: 17, 15:4 and 2:0 bits in HCCPARAMS register can be
			written
0	R/W	1'h0	Set to 1: HCSPARAMS writable register

-89-

INSNREG05 register

Bit field	Access	Reset value	Note
31:18	Reserved	14'h0	Reserved
17	RO	1'h0	Set 1: it indicates a write operation is conducted for the
			register, and the hardware is executing.
			Set to 0: it indicates the hardware has completed the
			operations
16:13	R/W	5'h0	Port number
12	R/W	4'h1	VControlLoadM
			Set to 1: NOP
			Set to 0: Load
11:8	R/W	4'h0	VControl
7:0	RO	4'h0	VStatus

INSNREG06 register

Bit field	Access	Reset value	Note
31	R/W	1'h0	Once AHB make mistakes and is captured, set it 1, write 0 and
			clear this field.
30:12	Reserved	19'h0	Reserved
11:9	RO	3'h0	In the event of AHB error, the value of HBURST in control field
8:4	RO	5'h0	The burst expected beats of AHB error
3:0	RO	4'h0	In the current burst, the completed beats before AHB error

INSNREG07 register

Bit field	Access	Reset value	Note
31:0	RO	32'h0	AHB control segment address in error

INSNREG08 register

Bit field	Access	Reset value	Note
31:0	RO	1'b0	HSIC enable

12.3 OHCI Relevant Register

OHCI relevant registers include Operational register and OHCI implementation relevant register. The USB host controller of 1C is compatible with OHCI Rev 1.0 protocol. For Operational register details, please refer to Open Host Controller Interface Rev 1.0 Specification.

The base address of OHCI is 0xbfe280000 and the address of the below register is equal to the base address plus offset.

12.3.1 Operational Register

Name	Address	Width	Access	Note
HcRevision	0x00	32	-	Control and status
HcControl	0x04	32	-	
HcCommonStatus	0x08	32	-	
HcInterruptStatus	0x0C	32	-	
HcInterruptEnable	0x10	32	-	
HcInterruptDisable	0x14	32		

НсНССА	0x18	32	-	Memory pointer
HcPeriodCuttentED	0x1C	32	-	
HcControlHeadED	0x20	32		
HcControlCurrentED	0x24	32		
HcBulkHeadED	0x28	32		
HcBulkCurrentED	0x2C	32		
HcDoneHead	0x30	32		
HcRmInterval	0x34	32		Frame counter
HcFmRemaining	0x38	32		
HcFmNumber	0x3C	32		
HcPeriodicStart	0x40	32		
HcLSThreshold	0x44	32	—	
HcRhDescriptorA	0x48	32		Concentrator
HcRhDescriptorB	0x0C	32		
HcRhStatus	0x50	32		
HcRhPortStatus1	0x54	32		
HcRhPortStatus2	0x58	32		

12.3.2 OHCI implementation relevant register

Except the standard OHCI operation register, it has also implemented two additional registers (register offset 0x98 and 0x9C) to report the error state of AHB.

Name	Address	Width	Access	Note
INSNREG06	0x98	32	RO	AHB error status register
INSNREG07	0x9c	32	RO	AHB Master error address register

INSNREG06 register

Bit field	Access	Reset value	Note
31	R/W		Once AHB make mistakes and is captured, set it to 1, write 0 and clear this field.
30:12	RO		Reserved
11:9	RO	3'h0	In the event of AHB error, the value of HBURST in control field
8:4	RO	5'h0	The burst expected beats of AHB error
3:0	RO	4'h0	In the current burst, the completed beats before AHB error

INSNREG07 register

Bit field	Access	Reset value	Note
31:0	RO	32'h0	AHB control segment address in error

13 OTG Controller

13.1 Overview

1C OTG supporting characteristics are as follows:

- Support HNP and SRP protocols;
- Embedded DMA without occupying processor band width for the mobile data between OTG and external storage
- In device mode, HS device (480Mbps);
- In host mode, it only support HS device (480Mbps);

• In device mode, it supports two directional endpoints, with only the defaulted endpoint0 support control transmission;

- In device mode, it supports the transmission in 2 IN directions at most at the same time;
- In host mode, it supports 6 channels, and the software can set each channel direction.
- In host mode, it supports the periodic OUT transmission.

13.2 Register Description

The application reads and writes the control and status registers (CSRs) in OTG controller by AHB slave interface, and these registers are 32bit wide, and the register address is 32bit aligned.

Note: in host mode and device mode, the accessible register block only includes Core Global register block, Power and Clock Gating register block, Data FIFO Access register block and Host Port register block. When the OTG controller is in host or device mode, the register in another mode can't be accessed. In the event of illegal register read and write, the mode mismatch interrupt will occur, and such interrupt will be reflected in Core Interrupt Register.

When the OTG converts from one mode to another, the register in this mode must be reconfigured, because the status of the register after conversion is the same with that in restart.

The address mapping of CSR is fixed. The registers in Host mode and Device mode are located in different address spaces, and all registers all work in AHB clock field. The figure below displays the address mapping relation of CSR.

0000h	
	Core Global CSRs(1KB)
0400h	Host Mode CSRs(1KB)
0800h	Device Mode CSRs(1.5KB)
0E00h	Power and Clock Gating CSRs (1.5KB)
1000h	Device EP 0/Host Channel 0 FIFO (4KB)
2000h	Device EP 1/Host Channel 1 FIFO (4KB)
3000h	
7000h	Device EP 6/Host Channel 6 FIFO (4KB)
8000h	Reserved
20000h	Direct Access to Data FIFO RAM for Debugging
3FFFFh	(128KB)
mmo 12 1	OTC CSPs address manning

Figure 13-1 OTG CSRs address mapping

The following chapter has listed OTG all registers and their offset address, and their base address is 0xbfe0_0000.

13.2.1 Global Control and Status Registers (Global CSR Map)

No matter whether OTG works in host mode or Device mode, this register block can be accessed, and their corresponding offset addresses are shown in the table below:

Register abbreviated name	Offset address	Register name
GOTGCTL	000h	Control and Status Register
GOTGINT	004h	Interrupt Register
GAHBCFG	008h	AHB Configuration Register
GUSBCFG	00Ch	USB Configuration Register
GRSTCTL	010h	Reset Register
GINTSTS	014h	Interrupt Status Register
GINTMSK	018h	Interrupt Mask Register
GRXSTSR	01Ch	Receive Status Debug Read/Status Read and Pop
GRXSTSP	020h	Registers
GRXFSIZ	024h	Receive FIFO Size Register
GNPTXFSIZ	028h	Non-Periodic Transmit FIFO Size Register
GNPTXSTS	02Ch	Non-Periodic Transmit FIFO/Queue Status Register
GSNPSID	040h	Synopys ID Register
GHWCFG1	044h	User HW Config1 Register
GHWCFG2	048h	User HW Config2 Register
GHWCFG3	04Ch	User HW Config3 Register
GHWCFG4	050h	User HW Config4 Register
GDFIFOCFG	05Ch	DFIFO Software Config Register
HPTXFSIZ	100h	Host Periodic Transmit FIFO Size Register
DIEPTXFn	104h-3FFh	Device IN Endpoint Transmit FIFO Size Register

13.2.2 Host Mode Control and Status Register (Host Mode CSR)

Once OTG operates in Host mode, this register block will be reset.

Register	Offset address	Register name
abbreviated		
name		
HCFG	400h	Host Configuration
HFIR	404h	Host Frame Interval Register
HFNUM	408h	Host Frame Number/Frame Time Remaining Register
	40ch	Reserved
HPTXSTS	410h	Host Periodic Transmit FIFO/Queue Status Register
HAINT	414h	Host All Channels Interrupt Register
HAINTMSK	418h	Host All Channels Interrupt Mask Register
HPRT	440h	Host Port Control and Status Register
	444h-4FCh	Reserved
HCCHARn	500h	Moving the Host Core to Test Mode
HCSPLTn	504h	Host Channel-n Split Control Register (HCSPLTn
HCINTn	508h	Host Channel-n Interrupt Register (HCINTn)
HCINTMSKn	50Ch	Host Channel-n Interrupt Mask Register (HCINTMSKn
HCTSIZn	510h	Host Channel-n Transfer Size Register (HCTSIZn

-93-

HCDMAn	514h	Host Channel-n DMA Address Register
	518h	Reserved
HCDMABn	51Ch	Host Channel-n DMA Buffer Address Register
HCCHARn	520h–53Ch 540h-55h 6C0h—6DCh	Host Channel-n Characteristics Register
	6E0h-6FCh 6FDh-7FFh	

13.2.3 Device Mode Control and Status Register (Device Mode CSR)

Once OTG operates in Device mode, this register block will be reset.

U	lOffset address	sRegister name
name DCFG	800h	Device Configuration Register
	800h 804h	
DCTL		Device Control Register
DSTS	808h	Device Status Register
	41Ch	Reserved
DIEPMSK	808h	Device IN Endpoint Common Interrupt Mask Register
DOEPMSK	808h	Device OUT Endpoint Common Interrupt Mask
DOLIMISK	80811	Register
DAINT	808h	Device All Endpoints Interrupt Register
DAINTMSK	41Ch	Device All Endpoints Interrupt Mask Register
DVBUSDIS	808h	Device VBUS Discharge Time Register
DVBUSPULSE	41Ch	Device VBUS Pulsing Time Register
DTHRCTL	830h	Device Threshold Control Register
DIEPEPMSK	834h	Device IN Endpoint FIFO Empty Interrupt Mask
		Register
DIEPCTL0	900h	Device Control IN Endpint0 Control Register
	808h	Reserved
DIEPCTLn	920-AE0h	Device Endpoint-n Control Register
DIEPINTn	808h	Device Endoint-n Interrupt Register
	41Ch	Reserved
DIEPTSIZ0/DOEPTSIZ0	808h	Device Endpoint0 Transfer Size Register
DIEPTSIZn/DOEPTSIZn	808h	Device Endpointn Transfer Size Register
DIEPDMAn	808h	Device Endpoint-n DMA Address Register
DTXFSTSn	808h	Device IN Endpoint Transmit FIFO Status Register
DIEPDMAB0	41Ch	Device Endpoint-n DMA Buffer Address Register
DOEPCTL0	B00h	Device Control OUT Endpint0 Control Register
	B04h	Reserved
DOEPCTLn	B20-BE0h	Device Endpoint-n Control Register
DOEPINTn	B08h	Device Endoint-n Interrupt Register
	B0Ch	Reserved
DOEPTSIZ0	B10h	Device Endpoint0 Transfer Size Register
DOEPTSIZn	B10h	Device Endpointn Transfer Size Register
DOEPDMAn	B14h-CF4h	Device Endpoint-n DMA Address Register
DOEPDMAB0	B1Ch-CFCh	Device Endpoint-n DMA Buffer Address Register

13.2.4 Data FIFO Access Register MAP (DFIFO Access Register MAP)

No matter whether OTG operates in Host mode or Device mode, this register block can be accessed. This register block is used to read and write the FIFO of endpoint or channel in given direction. In host mode, the FIFO in channel direction is IN, and only the FIFO in this channel can be read; similarly, in host mode, the FIFO in

-94-

channel direction is OUT, and only the FIFO in this channel can be written.

Register name	Offset address	Read-write characteristics
Device IN Endpoint 0/Host	1000h-1FFCh	WO/RO
OUT Channel 0: DFIFO Write		
Access		
Device OUT Enpoint 0/Host IN		
Channel 0: DFIFO Read Access		
Device IN Endpoint 0/Host	2000h-2FFCh	WO/RO
OUT Channel 0: DFIFO Write		
Access		
Device OUT Enpoint 0/Host IN		
Channel 0: DFIFO Read Access		
Device IN Endpoint 14/Host		
OUT Channel 14: DFIFO Write		We be
Access	F000h-FFFCh	WO/RO
Device OUT Enpoint 14/Host		
IN Channel 14: DFIFO Read		
Access		WO/DO
Device IN Endpoint 15/Host	10000h-10FFCh	WO/RO
OUT Channel 15: DFIFO Write		
Access		
Device OUT Enpoint 15/Host		
IN Channel 15: DFIFO Read		
Access		

13.2.5 Power and Clock Gating CSR Map

No matter whether OTG operates in Host mode or Device mode, this register block can be accessed. This register block is used as power control and gating clock

0	Offset address	Description
abbreviated name		
PCGCCTL	E00h	Power and Clock Gating Control Register

13.3 Register Description

13.3.1 Register access characteristics

During the below description of register, one column of access characteristics are used to mark the read and write characteristics of these registers. The following contents will list the specific meaning of these access characteristics.

-95-

Read Only (RO)	Read only	
Write Only(WO)	Write only	
Read and Write(R_W)	Readable and writable	
Read, Write, and Self	Readable and writable; the controller can self clear, and clearing	
Clear(R W SC) conditions have been explained in each field below in detail.		
Read, Write, Self Set and Readable and writable; the controller can self set and clear, and		
Self Clear	and clearing conditions have been explained in each domain below in	
$(R_W_SS_SC)$	detail.	
Read, Self Set, and Write	Readable; OTG controller can self set the bit; when the software writes	
Clear	1 to the bit and complete clearing, no effect will be generated by	
R_SS_WC	writing 0 to this bit. Conditions for setting OTG bit has been explained	
	in each domain below in detail.	
Read, Write Set, and Self	Readable; OTG controller can write 1 to this bit and completes bit	

Clear	setting; when the software self clears, the software can't clear. Namely,
(R_WS_SC) no effect will be generated by writing 1 to this bit. Conditions for C	
	clearing have been explained in each domain below in detail.
Read, Self Set, and Self	Readable; OTG controller can self set and clear; when the software
Clear or Write Clean	writes 1 to the bit and completes clearing, no effect will be generated
(R_SS_SC_WC)	by writing 0 to this bit. OTG specific bit setting and clearing conditions
	are explained in each domain below in detail.

13.3.2 Global register

No matter OTG operates in host mode or Device mode, this register block can be accessed. When the OTG converts from one operating mode to another, it's unnecessary to instantiate these registers again.

Control and status register (GOTGCTL)

Offset address: 000h

OTG control and status register (GOTGCTL) controls OTG function and reflect its status.

file	Note	Operating mode	Reset value	characterist ics
31:21	Reserved file	Host; Device		RO
20	OTG version	Host;	1'b0	Rw
	 1'b0: Version 1.3; this version OTG supports the SRP of Data line pulsing and VBus pulsing. 1'b1: Version 2.0; this version OTG only supports the SRP of Data line pulsing. 			
19	 B-session valid(BSesVld) specifies the transceiver status in device mode. 1'b0: B-session illegal 1'b1: B-session legitimate In OTG mode, this bit is used to decide whether the device has been connected. 		1'b1	RO
18	 ssesion valid(ASesVld) specifies the status of transceiver in host mode. 1'b0: A-session illegal 1'b1: A-session legitimate In device mode, this bit is reserved. 	Host only	1'b0	RO
17	Long/ShortDebounceTime (DbncTime) specifies one debounce time finding the connection •1'b0: long debounce time is used as physical connection (100ms + 2.5us) •1'b1: short debounce time, used as soft connection (2.5us)		1'b0	RO
16	Connector ID status In a connection event, it indicates the ID status •1'b0: OTG working in the mode of Device A •1'b1: OTG working in the mode of Device B		1'b1	RO
15:12	Reserved domain	Host; Device		RO
11	Device HNP enable bit (DevHNPEn) •1'b0: HNP disable •1'b1: HNP enable	Device Only	1'b0	R_W
10	Host Set HNP enable bit	Host only	1'b0	R_W

	•1'b0: Host Set HNP isn't enabled		
	•1'b1: Host Set HNP enable		
9	HNP request Device Only	1'b0	R_W
	The software sets the bit and sends a HNP		_
	request to host. When the bit of		
	GOTGINT.HstNegSucStsChng is set, this		
	software is cleared by writing 0 to the bit.		
	When the bit of HstNegSucStsChng is 0,		
	OTG controller clears the bit.		
	•1'b0: No HNP request		
	•1'b1: HNP request		
8	HostNegotiationSuccess (HstNegScs) Device only	1'b0	RO
	When the host is exchanged (Host		
	Negotiation), OTG controller asserts the		
	bit.		
	•1'b0: host negotiation failure		
	•1'b1: host negotiation success		
7	B-Peripheral Session Valid valueDevice only	1'b0	R W
ľ	(BvalidOvVal)		
	When the bit of GOTGCTL.BvalidOvEn is		
	set, the bit of BValidOvVal is used reset		
	Bvalid signal.		
	iñ1'b0: When GOTGCTL.BvalidOvEn = 1,		
	the value of Bvalid signal is 0;		
	•1'b1: When GOTGCTL.BvalidOvEn=		
	1, the value of Bvalid signal is 1;		
6	B-Peripheral Session Valid reset enableDevice only	1'b0	R W
_	(BvalidOvEn)		
	This bit is used to make the software		
	override Bvalid signal by		
	GOTGCTL.BValidOvVal bit.		
	•1'b1: the Bvalid signal value received		
	from PHY is reset by BvalidOvVal.		
	•1'b0: Bvalid signal reset function is		
	disabled, and the Bvalid signal used by		
	OTG controller is namely the value		
	received from PHY.		
5	A-Peripheral Session Valid reset valueHost only	1'b0	R W
	(AvalidOvVal)		
	When the bit of GOTGCTL.AvalidOvEn is		
	set, the bit of AValidOvVal is used reset		
	Avalid signal.		
	•1'b0: When GOTGCTL.AvalidOvEn = 1,		
	the value of Avalid signal is 0;		
	•1'b1: When GOTGCTL.AvalidOvEn= 1,		
	the value of Avalid signal is 1;		
4	A-Peripheral Session Valid reset enableHost only	1'b0	R W
ľ	(AvalidOvEn) is used to make the software		[_ · · ·
	override Avalid signal Bvalid signal by		
	GOTGCTL.AValidOvVal bit.		
	•1'b1: the Avalid signal value received		
	from PHY is reset by AvalidOvVal.		
	•1'b0: Avalid signal reset function is		
	disabled, and the Avalid signal used by		
	OTG controller is namely the value		
	received from PHY.		
3	VBUS Valid reset value (VbvalidOvVal) Host only	1'b0	R W
۲			· ·

-97-

	When the bit of GOTGCTL.VbalidOvEn i	c		
	set, the bit of VbalidOvVal is used rese			
	vbus valid signal.			
	•1'b0: When GOTGCTL.VbalidOvEn = 1			
		- ,		
	the value of vbus valid signal is 0;			
	•1'b1: When GOTGCTL. VbalidOvEn = 1	- >		
-	the value of vbus valid signal is 1;		1.11.0	
2	VBUS Valid reset enable (AvalidOvEn)	Host only	1'b0	R_W
	This bit is used to enable the software t	0		
	override Bvalid signal b	У		
	GOTGCTL.BbValidOvVal bit.			
	•1'b1: The vbus valid signal receive	d		
	from PHY is reset by VbvalidOvVal.			
	•1'b0: vbus valid signal reset function i	S		
	disabled, and the value of vbus valid signa	l		
	used by OTG controller, namely, the valu	e		
	received from PHY			
1	Session Request (SesReq)	Device only	1'b0	R_W
	The software sends a session reques	st		
	through setting the SesReq Bit in USB bus	5.		
	When the bit of Host Negotiation Succes	s		
	Status Change in OTG interrupt controlle	er		
	is set, the software is cleared by writing			
	to the bit. When the bit o			
	HstNegSucStsChng is 0, OTG controlle	er		
	clears the bit.			
	•1'b0: No session request			
	•1'b1: Session request			
0	Session Request (SesReq)	Device only	1'b0	R W
-	•1'b0: Session request failure			[- · ·
	•1'b1: Session request success			

Interrupt register (GOTGINT) Offset address: 004h

Field	Note	Operating mode	Reset value	Access characteristics
31:20	Reserved field	Host; Device	value	RO
19		Host only	1'b0	R_SS_W C
18	1	Host; Device	1'b0	R_SS_W C
17	detects the Host Negotiation (HstNegDet): I After the Host Negotiation Request is found in bus, OTG controller asserts this bit.	Host; Device	1'b0	R_SS_W C
16:10	Reserved domain	Host and Device		RO
9	HstNegSucStsChng: Host Negotiation Successful Status Change. When the host negotiation request in bus succeeds or fails,	Host and Device	1'b0	R_SS_W C

	OTG controller will assert this bit. The software can determine whether the host negotiation succeeds by searching GOTGCTL.HstNegSus.			
8	Session request successful status change (SesReqSusStsChng) Session Request Success Status Change When the session request in USB bus succeeds or fails, OTG controller asserts this bit. The software can determine whether the session request succeeds by searching GOTGCTL.SesReqScs.		1'b0	R_SS_W C
7:3	Reserved domain	Host and Device	1'b0	RO
2	Session end detect (SesEndDet): Session End Detected When utmisrp_bvalid signal is pulled down, OTG controller asserts this bit.	Device	1'b0	R_SS_W C
1:0	Reserved domain	Host and Device		RO

AHB configuration register (GAHBCFG)

Offset address: 008h

This register is used to configure OTG controller in case of power on or change in operating mode, the configured contents mainly include system parameters related to AHB. After the initial configuration, the value of this register can't be modified. No matter the transaction is initiated in AHB bus or USB bus, this register needs reconfiguring.

Field	Note	Operating mode	Reset	Access characteristics
31:23	Reserved domain	Host; Device		RO
22	Notify All DMA Write Transactions	Host; Device	1'b0	R_W
	(NotiAllDmaWrit): NotifyAllDma Write			
	Transactions			
	It's used to enable DMA Done function of			
	all DMA write transactions (to			
	endpoint/Channel). Only when the bit of			
	GAHBCFG.RemMemSupp is 1'b1, this bit			
	is significant.			
	•1'b1: For all DMA write transactions,			
	OTG controller must assert dma_req,			
	int_dma_done, chep_last_transact and			
	chep_number signals in AHB bus. In order to finish certain channel/endpoint			
	transmission, OTG controller needs to wait			
	for the sys_dma_done signal of all write			
	transactions.			
	•1'b0: only for the last transaction in write			
	transaction, will OTG controller assert			
	int dma done signal. Similarly, in order to			
	finish certain channel/endpoint			
	transmission, OTG controller needs to wait			
	for the sys_dma_done signal of that DMA			
	write transactions.			
21	5 11	Host and Device	1'b0	R_W
	(RemMemSupp)			
	Enable the DMA write transfer wait system			
	DMA DONE signal function			
	•1'b1: When OTG DMA starts the			

	1	1	T	
	transfer towards the external memory	7		
	space, the output signal int_dma_req is	5		
	asserted. When this transfer is finished			
	OTG controller asserts int_dma_done			
	signal to indicate that the DMA write from	1		
	OTG controller is finished. Then, OTG			
	controller waits for the sys dma done			
	signal from system, so as to complete			
	certain channel/endpoint data transfer.			
	• It's unnecessary to assert int dma rec	1		
	and int_dma_done_signals; once_DMA			
	write transfer is finished, XferComp			
	interrupts and OTG controller continues			
	operating. It's unnecessary to wait for			
	sys_dma_done signal to finish data transfer.			
0			1'b0	D W
8	PTxFIFOEmpLvl:	Host only	1 00	R_W
	periodic TxFIFO Empty Level indicates			
	that the when the periodic TxFIFO empty			
	interrupt bit (GINTSTS.PTxFEMp) is			
	asserted. The bit is only used in slave mode.			
	•1'b0: GINTSTS.PTxFEMp interrupt bit			
	indicates when the periodic TxFIFO is half	I.		
	empty;			
	•1'b1: GINTSTS.PTxFEMp interrupt bit			
	indicates that the periodic TxFIFO is fully	7		
	empty			
7	NPTxFIFOEmpLvl:	Host and device	1'b0	R_W
	Non-periodic TxFIFO Empty Level is used	l		
	in slave mode.			
	It indicates when the TxFIFO empty	7		
	interrupt bit of IN endpoint is asserted.			
	Host mode:			
	•1'b0: GINTSTS.PTxFEMp interrupt bit			
	indicates the non-periodic TxFIFO half	ŧ		
	empty;			
	•1'b1: GINTSTS.PTxFEMp interrupt bit			
	indicates the non-periodic TxFIFO fully	7		
	empty;			
	Device mode:			
	•1'b0: DIEPINTn.TxFEmp interrupt bit	t		
	indicates the TxFIFO half empty of IN			
	endpoint;			
	•1'b1: DIEPINTn.TxFEmp interrupt bit	t		
	indicates the TxFIFO fully empty of IN			
	endpoint;			
6	Reserved domain	Host; Device	1	RO
5	DMA enable (DMAEn)	Host; Device	1'b0	R_W
	•1'b0: OTG working in Slave mode			
	•1'b1: OTG working in DMA mode			
4:1	Burst length (HBstLen)	Host; Device	4'b0	R_W
1.1	Burst type of AHB Master		100	<u>'</u> _''
	•4'b0000: Single			
	•4'b0001: INCR			
	•4'b0000: INCR4			
	•4'b0000: INCR8			
	•4'b0000: INCR16			
1				
	Others: Reserved			

-100-

0	Global interrupt mask (GlblIntrMsk)	Host; Device	1'b0	R_W
	For software interrupt mask No matter			
	whether the bit is asserted, OTG controller			
	always updates the interrupt status register.			
	•1'b0: Interruption is invisible to			
	software			
	•1'b0: Interruption is visible to software			

USB configuration register (GUSBCFG)

Offset address: 00Ch

This register is used to configure OTG controller in case of power on or change in operating mode, the configured contents mainly include parameters related to USB and USB-PHY. No matter the transaction is initiated in AHB bus or USB bus, this register needs reconfiguring. After the initial configuration, the value of this register can't be modified.

Field	Note	Operating mode	Reset value	Access characteristic s
31	Corrupt Tx package () Only for debugging, not writable 1	Host; Device	1'b0	WO
30			1'b0	R_W
29	If the Force Host Mode (ForceHostMod) writes 1, it indicates that the OTG controller will work in Host mode, regardless the value of utmiotg_iddig input pin. • 1'b0: Normal operating mode • 1'b1: Enforcement host mode After 1 is written to this bit, the software must wait for the effective time of at least 25ms. In the simulation environment in scale down mode, 500us is enough.		1'b0	R_W
28		Device only	1'b0	R_W
27: 23	Reserved	Host; Device		RO
22	TermSelDLinePulsing select (TermSelDLPulse) It's used in SRP process to select utmi_termselect data line pulse. •1'b0: It uses utmi_txvalid data line pulse (default) •1'b1: It uses utmi_termselect data line pulse		1'b0	R_W
21:16		Host; Device		RO
15	PHY low power clock select (PhyLpwClkSel) Choose to use 480MHz or 48Mhz (low power) PHY mode. In FS and LS modes, PHY always operate at 48MHz to save power.	,	1'b0	R_W

-101-

	•1'b0: 480MHz internal PLL clock			
	•1'b1: 48MHz external clock			
14	Reserved bit	Host; Device		RO
13:10	USB cycle time (USBTrdTime): USB Turnaround Time Sets the cycle time of PHY clock bit unit It specifies MAC request PFC (data FIFC controller) to clear the response time of obtaining		4'h5	R_W
	data in data FIFO. Its value must be set as follows: •4'h5: When MAC interface is the 16bit UTM+ •4'h6: When MAC interface is the 16bit UTM+		111.0	
9	 HNP-Capable(HNPCap) The software uses this to control the HNP function of OTG controller. 1'b0: Unavailable HNP function 1'b0: Available HNP function Note: if the HNP function is disabled by software the corresponding OTG signal of PHY domain must be fixed as the decided value (?) 	2	1'ъ0	R_W
8	 SRP-Capable(SRPCap) The software uses this to control the SRP function of OTG controller. •1'b0: Unavailable SRP function •1'b0: Available SRP function Note: if the SRP function is disabled by software the corresponding OTG signal of PHY domain must be fixed as the decided value 	,	1'b0	R_W
7:4	Reserved bit	Host; Device		RO
3	PHY interface (PHYIf) It's used to configure the interface of UTMI+PHY. •1'b0: 8bits •1'b1: 16bits If ULPI interface is selected, only 8bits can be set.	Host; Device	Configura ble	RO
2:0	 HS timeout calibration (TOutCal): HS Timeout The calibration unit is a PHY clock. It's used to correct the timeout between packets caused by PHY. Different PHY introducing different delay. For HS, the time-out value of USB standard is 736 -816 bit times; the software must set this domain based on enumerating speed. The bits time of each PHY clock is explained as follows: HS: One 30MHz PHY clock = 16bit times One 60MHz PHY clock = 16bit times 	5	3'h0	R_W

Reset register (GRSTCTL) Offset address: 010h

Field	Note	Operating	Reset value	Access
		mode		characteristics
31	AHB Master Idle(AHBIdle)	Host;	1'b1	RO
	It indicates that AHB Master state machine is in	Device		
	IDLE state.			
30	DMA request signal (DMAReq)	Host;	1'b0	RO
	It indicates that there is a DMA request in bus;	Device		
29:11	Reserved domain	Host;		RO

-102-

		Device		
10:6		Host;	5'h0	R W
	Debugging use indication must use the FIFO signal cleared by TxFIFO Flus. Only after TxFIFO bit is cleared by controller, can TxFNum be changed.	Device		
	•5'h0:			
	-Clear non-periodic TxFIFO in –host mode -Clear TxFIFO 0 in –device mode •5'h1: -Clear periodic TxFIFO in host mode			
	-Clear TxFIFO 0 in –device mode •5'h2: -Clear TxFIFO 0 in –device mode			
	•5'h3: -Clear TxFIFO 0 in –device mode			
	•5'H10: Clear all TxFIFOs (no matter in host mode or device mode)			
5		Host; Device	1'b0	R_WS_S C
	But this operation can't be performed when the transaction is under progress. Only when the			
	software confirms that OTG controller doesn't read or write TxFIFO, can this bit be written. Acknowledged method is as follows:			
	Read –NAK valid interrupt can make sure OTG controller doesn't read FIFO;			
	Write -GRSTCTL.AHBIdle can make sure OTG controller doesn't write FIFO			
	FIFO clear operations can be used in the following circumstances. For example, FIFO			
	needs to reset or convert in share FIFO mode and dedicated FIFO mode, and disables certain			
	device endpoint. Only after the software must wait for OTG controller to clear this bit, can other operations			
	be continued. It may take 8 hours, and use the slower clock between phy clk and hclk.			
4	RxFIFO flash (RxFFlsh) It's used to clear the entire RxFIFO, and this		1'b0	R_WS_S C
-	operation can't be conducted in case of transaction under progress. Only when the software confirms that OTG			
	controller doesn't read or write RxFIFO, can this bit be written.			
	Only after the software must wait for OTG controller to clear this bit, can other operations be continued. It may take 8 hours, and use the			
	slower clock between phy_clk and hclk.			
3		Host; Device		RO
2	Host Frame Counter Reset (FrmCntrRst) The software resets the frame number in OTG	Host	1'b0	R_WS_S C

-103-

	controller by this bit.			
	Once the frame number is reset, the frame			
	number of SOF sent by next OTG controller is			
	0.			
1	Reserved domain	Host;		RO
_		Device		
0	OTG controller soft restart	Host;	1'b0	R WS S
	The contents of resetting hclk and phy_clock			c^{-}
	clock domains are as follows:			
	• Clear all interrupts and CSR registers except			
	the following			
	-PCGCCTL.RstPdwn			
	-PCGCCTL.GateHclk			
	-PCGCCTL.PwrClmp			
1	-GUSBCFG.DDRSel			
	-GUSBCFG.PHYSel			
	-GUSBCFG.FSIntf			
	-GUSBCFGULPI UTMI Sel			
	-GUSBCFG.PHYIf			
	-HCFG>FSLSPclkSel			
	-DCFG.DevSpd			
	-GGPIO			
	-GPWRDN			
	-GADPCTL			
	• Status machines of all modules (except AHB			
	Slave unit) are set to IDLE status; clear all			
	TxFIFOs and RxFIFOs			
	• After completing the data of the last AHB			
	transfer, all AHB Master transactions are ended			
	at once. An immediate end to all USB			
	transaction			
	ñ PMU module (power management unit)			
	won't be reset, and the software can soft reset			
	OTG controller in any time. This bit is self			
	cleared, namely, the controller will self clear			
	after all necessary logics are reset. Based on			
	different states of controllers, this will spend			
	several hours. Once this bit is cleared, only			
	after waiting for three PHY clocks, can PHY			
	domain operate (sync delay). Before the			
	software starts any action, the AHBIdle bit			
	must be maintained at 1.			

Interrupt register (GITTSTS) Offset address: 014h

Field		Operating mode	Reset value	Access characteristics
31	 System recovery / remote wake-up interrupt (WkUpInt):Resume/Remote Wakeup Detected Interrupt The wakeup interrupt in suspended (L2) state. Device mode: only when the wakeup operation started by Host is found in USB bus, can this interrupt generate. Host mode: only when the wakeup operation started 		1'b0	R_SS_W C

-104-

	by device is found in USB bus, can this interrupt generate.	-		
30	 SessionRequest/New Session Detected Interrupt In Host mode, when the session request from device is found, the bit is set to 1. In device mode, when the utmisrp_bvalid signal is pulled high, the bit is set to 1. 		1'b0	R_SS_W C
29		Host	1'b0	R_SS_W C
28	Connector ID Status Change (ConIDStsChng) When the connector ID status changes, the bit is set 1.		1'b1	R_SS_W C
27	Reserved bit	Host; Device		RO
26	Periodic TxFIFO (PTxFEmp) When the periodic TxFIFO is half empty or full empty, and there is at least one request in cycle request queue, this bit is set 1, and whether it's set to 1 in half empty or full empty is decided by GAHBCFG.PTxFEmpLvl.		1'b1	RO
25	Host Channels Interrupt (HChInt) In Host mode, when there is a pending interrupt in some channel of OTG controller, it's set 1. The software must read HAINT register to determine the unprocessed interrupt channel number, and then read the corresponding HCINTn register to determine reasons for the interrupt. In order to clear this bit, the software must clear the corresponding status bit in HCINTn register.		1'b0	RO
24	Host port interrupt (PrtInt) In Host mode, if some port status of OTG controller changes, it's set to 1. The software must read HPRT register to determine the real reason for the interrupt. In order to clear this bit, the software must clear the corresponding status bit in HPRT register.		1'b0	RO
23	ResetDet: Reset Detected Interrupt In device mode, when the OTG controller in suspended state sends the next reset operation, the bit is set to 1. Only when the OTG controller is in device mode, and works in partial Power-down, or gating suspended status, can it is valid. When the OTG controller operates in Hibernation suspended state, the bit is significant.		1'b0	R_SS_W C
22	FetSusp: Data Fetch Suspended Valid only in DMA mode. When TxFIFO or request queue has no space, OTG will stop and obtain data for IN endpoint, and the bit is set to 1. In the endpoint mismatching algorithm, the software uses this interrupt		1'b0	R_SS_W C
21	Incomplete periodic transfer (incomplIP) In Host mode, when one incomplete periodic transaction is still waiting processing within the current frame time, the bit is set 1. In device mode, the incomplete real-time OUT transmission, if within the current frame time, there is at least one incomplete transmission in a real-time OUT	Device	1'b0	R_SS_W C

20	endpoint, the bit is set to 1. And EOPF bit			
	Incomplete real-time IN transmission	Device	1'b0	R_SS_W
	(incomplSOIN)			C^{-}
	If within the current frame time, there is at least one	;		
	incomplete transmission in a real-time IN endpoint,			
	the bit is set to 1. And EOPE bit			
9	OUT endpoint interrupt (OEPInt)	Device	1'b0	RO
	When there is one pending interrupt in OUT			
	endpoint, the bit of OTG controller is set to 1. The			
	software must read DAINT register to determine			
	which endpoint has the pending interrupt, and then			
	read DOEPINTn register to determine the causes of			
	this interrupt. In order to clear this bit, the software			
	must clear the corresponding status bit in			
	DOEPINTn register.			
8	IN endpoint (IEPInt)	Device	1'b0	RO
0	When there is one pending interrupt in IN endpoint,		100	RO
	the bit of OTG controller is set to 1. The software			
	must read DAINT register to determine which			
	endpoint has the pending interrupt, and then read			
	DOEPINTn register to determine the causes of this			
	interrupt. In order to clear this bit, the software			
	must clear the corresponding status bit in			
	DOEPINTn register.			
7	Reserved bit	Host; Device		RO
6	Reserved bit	Host; Device		RO
5	Periodic frame end (EOPF)	Device	1'b0	R SS W
5	When within the current frame time, the threshold		1 00	K_55_W C
	pointed by DCFG.PerFrInt is reached, the bit is set			C
4	Real-time OUT packet drop (ISOOutDrop)	Device	1'b0	R_SS_W C
•	If RxFIFO doesn't have enough space for real-time		100	n_55_;; c
	OUT endpoint to store the maximum package size			
	packet, the OTG controller can't write one real-time			
	OUT packet to FxFIFO. In case of such			
	circumstance, the bit is set to 1.			
3	EnumDone : Enumeration done	Device	1'b0	R SS W
5	When the speed enumeration ends, the bit is set 1.		1 00	C_55_W
	The software reads DSTS register, and obtains the			C
	specific enumeration speed.			
2	USB reset (USBRst)	Device	1'b0	R_SS_W
4	When there is one reset operation in USB bus, the		1 00	
	bit is set to 1.	1		C
1	USB suspend (USBSusp)	Device	1'b0	R SS W
1	When the OTG controller detects one suspended		1 00	к_55_w С
	operation in USB bus, the bit is set. If within a			C
	longer time, there is no activity in utmi linestate			
	kinnal line () (controllar ontary into the			
	signal line, OTG controller enters into the			
0	suspended state.		1%0	P SS W
0	suspended state. Early Suspend(ErlySusp)	Device	1'b0	R_SS_W
0	suspended state. Early Suspend(ErlySusp) When the USB is detected to enter into idle state for	Device	1'b0	R_SS_W C
	suspended state. Early Suspend(ErlySusp) When the USB is detected to enter into idle state for over 3ms, the OTG controller sets the bit to 1.	Device	1'b0	C ⁻ -
	suspended state. Early Suspend(ErlySusp) When the USB is detected to enter into idle state for	Device Host;	1'b0	R_SS_W C RO
9:8	suspended state. Early Suspend(ErlySusp) When the USB is detected to enter into idle state for over 3ms, the OTG controller sets the bit to 1. Reserved bit	Device Host; Device		C – RO
	suspended state. Early Suspend(ErlySusp) When the USB is detected to enter into idle state for over 3ms, the OTG controller sets the bit to 1. Reserved bit	Device Host; Device Device	1'b0 1'b0	C ⁻ -

	by clearing 0 DCTL.SGOUTNak bit.			
6	Global IN non-periodic NAK effective (GINNakEff) When it's effective after the software sets the bit of DCTL.SGNPInNak, the bit is set to 1	f	1'b0	RO
	Clear this bit by clearing 0 DCTL. SGNPInNak bit.			
5	Reserved bit	Host; Device		RO
4	RxFIFO non-empty (RxFLvl) When there is at least a packet in RxFIFO, the bit is set to 1.	Host; Device1	1'60	RO
3	Start of frame (Sof) In Host mode, when SOF transmits in USB bus, the OTG controller sets the bit to 1. The software writes 1 and clears this bit. In Device mode, when OTG controller receives SOFT token, the bit is set to 1. The software can obtain the current frame number by reading Device status register.		1'b0	R_SS_W C
2	OTG interrupt (OTGInt) It's set to 1, and indicates that the OTG protocol transaction occurs. The software can read GOTGINT register to determine the causes of interrupt. In order to clear this bit, the software must clear the corresponding status bit of GOTGINT register.		1'b0	RO
1	Mode mismatch interrupt (ModeMis) When the software tries to perform the next operation, the bit is set to 1. ¡ñ When OTG operates in device mode, it tries to access the register in host mode. When OTG operates in host mode, it tries to access the register in device mode.		1'b0	R_SS_W C
0	Current operating mode (CurMod) It indicates the operating mode of the current OTG controller. •1'b0: device mode •1'b1: host mode	Host; Device	1'b0	RO

Interrupt mask register (GINTMSK)

Offset address: 018h

This register and GINTSTS register are used at the same time. When some interrupt is masked, this interrupt will not be seen by software. Of course, the bit corresponding to GINTSTS is still set.

-107-

Field	Note	Operating mode	Reset value	Access characteristic
		moue		s
31	System recovery/remote wakeup interrupt mask bit (WkUpInt):Resume/RemoteWakeup Detected Interrupt Mask	Host; Device	1'b0	R_SS_WC
30	SessionRequest/New Session Detected Interrupt (SessReqIntMsk): Session Request/New Reset Detected Interrupt Mask	Host; Device	1'b0	R_SS_WC
29	DisconnIntMsk (disconnect interrupt mask)	Host	1'b0	R SS WC
28	Connector ID Status Change (ConIDStsChngMsk)	Host; Device	1'b1	R_SS_WC
27	Reserved bit	Host; Device		RO
26	Periodic TxFIFO Empty Mask (PTxFEmpMsk)	Host	1'b1	RO

25	Host Channels Interrupt mask (HChIntMsk)	Host	1'b0	RO
24	Host port interrupt mask (PrtIntMsk)	Host	1'b0	RO
23	ResetDetMsk: Reset Detected Interrupt Mask	Device	1'b0	R_SS_WC
22	FetSuspMsk: Data Fetch Suspended Mask	Device	1'b0	R_SS_WC
21	Incomplete periodic transfer mask (incomplIPMsk)	Host	1'b0	R_SS_WC
	Incomplete real-time OUT transmission mask	Device		
	(incomplSOOUTMsk)			
20	Incomplete real-time IN transmission mask bit	Device	1'b0	R_SS_WC
	(incomplSOINMsk)			
19	OUT endpoint interrupt mask (OEPIntMsk)	Device	1'b0	RO
18	IN endpoint interrupt mask (IEPIntMsk)	Device	1'b0	RO
17:16	Reserved bit	Host;		
		Device		RO
15	End of Periodic frame mask (EOPFMsk)	Device	1'b0	R_SS_WC
14	Read-time OUT packet Drop Mask (ISOOutDropMsk)	Device	1'b0	R_SS_WC
13	Enumeration done mask (EnumDoneMsk):	Device	1'b0	R_SS_WC
	Enumeration Mask			
12	USB reset mask (USBRstMsk)	Device	1'b0	R_SS_WC
11	USB suspended mask (USBSuspMsk)	Device	1'b0	R_SS_WC
10	Early Suspend mask (ErlySuspMsk)	Device	1'b0	R_SS_WC
9:8	Reserved bit	Host; Device		RO
7	Global OUTNAK valid mask (GOUTNakEffMsk)	Device	1'b0	RO
6	Global IN periodic NAK effective mask (GINNakEffMsk)	Device	1'b0	RO
5	Reserved bit	Host;		RO
		Device		
4	RxFIFO non-periodic mask (RxFLvlMsk)	Host;	1'b0	RO
		Device1		
3	Start of Frame Mask Bit (SofMsk)	Host;	1'b0	R SS WC
		Device		
2	OTG interrupt mask (OTGIntMsk)	Host;	1'b0	RO
		Device		
1	Mode mismatching interrupt mask (ModeMisMsk)	Host;	1'b0	R_SS_WC
		Device		
0	Current Operating Mode Bit (CurMod)	Host;	1'b0	RO
		Device		

Receive status debugging register/status read and pop register (GRXSTSR/GRXSTSP)

Read offset address: 01Ch

Pop offset address: 020h

The read operation of receive status debugging register is the first option of RxFIFO. The read operation of status read and pop register will pop the first option of RxFIFO.

The contents of receive status register have different explanations in host mode and device mode. If RxFIFO is empty, OTG controller will ignore the read and pop operations of this register, and return 32'h0000_0000. When the bit of GINTSTS.RxFLvl is 1, the software can only pop the receive Stastus FIFO.

NOTES: in different operating modes of OTG, all domains of this register have different explanations. Host mode

Field	Note	Reset	Access
		value	characteris
			tics

31:21	Reserved domain	1	RO
20:17	Package status (PktSts)	4'b0	RO
	Indicate the status of the received packet:		
	•4'b0010: IN data packet is received		
	•4'b0011: IN transmission end (triggered interrupt)		
	•4'b0101: Data toggle error (triggered interrupt)		
	•4'b0111: Channel halt (triggered interrupt)		
	•Others: reserved		
16:15	Data PID (DPID)	2'b0	RO
	Indicate received packet data PID		
	•2'b00:DATA0		
	•2'b10:DATA1		
	•2'b01:DATA2		
	•2'b11:MDATA		
14:4	Number of bytes (BCnt)	11'h0	RO
	Indicate the byte number o the received IN data packet		
3:0	Channel number (ChNum)	4'h0	RO
	Indicate the channel number of the currently received	l	
	data packet		

Device mode

Field	Note	Reset value	Access characteris tics
31:25	Reserved domain		RO
24:21	Frame number (FN)	4'h0	RO
	The lowest 4 bits of the frame number of the received		
	packet frame Only when it supports the real-time OUT		
	endpoint, is this domain effective.		
20:17	Package status (PktSts)	4'b0	RO
	Indicate the status of the received packet:		
	•4'b0001: Global OUT NAK (triggered interrupts)		
	•4'b0010: OUT data packet is received		
	•4'b0011: OUT transmission end (triggered interrupts)		
	•4'b0100: SETUP transaction end (triggered interrupt)		
	•4'b0110: SETUP data packet is received		
	•Others: reserved		
16:15	Data PID (DPID)	2'b0	RO
	Indicate the data PID of the received OUT packet		
	•2'b00:DATA0		
	•2'b10:DATA1		
	•2'b01:DATA2		
	•2'b11:MDATA		
14:4	Number of bytes (BCnt)	11'h0	RO
	Indicate the byte number o the received IN data packet		
3:0	Endpoint number (EPNum)	4'h0	RO
	Indicate the endpoint number of the currently received		
	data packet		

RxFIFO capacity register (GRXFSIZ)

Read offset address: 024h

The RAM size of RxFIFO which the software uses the register to allocate

Field	Note	Reset value	Access characteristics

31:16	Reserved domain		RO
15:0	RxFIFO depth (RxFDep) A 32-bits word as a unit. •The minimum value is 16 •The maximum value is 32768	533	R_W

Non-periodic TxFIFO capacity register (GNPTXFSIZ)

Read offset address: 028h

The RAM size and starting address which the software uses the register to allocate to non-periodic TxFIFO Note: no matter the OTG is in host operating mode or device operating mode, the register has different explanations.

In Host mode

Field	Note	Reset value	Access characteristi
			cs
31:16	Non-periodic TxFIFO depth (NPTxDep)	256	R_W
	A 32-bits word as a unit.		
	•The minimum value is 16		
	•The maximum value is 32768		
15:0	Non-periodic TxRAM starting address (NPTxStAddr)	533	R_W

In Device mode

Field	Note	Reset value	Access characteristics
31:16	TxFIFO0 Depth of IN endpoint It is effective only in Device mode and OTG_EN_DED_TX_FIFO = 1 •The minimum value is 16 •The maximum value is 32768	32	R_W
15:0	FIFO0 TxRAM initial address of IN endpoint	533	R_W

Synopsys ID register (GSNPSID)

Read offset address: 040h

The version number containing OTG controller

Field	Note	Reset value	Access characteristics
	Synopsys ID (SynopsysID) OTG controller version number	32'h4F54	RO

User HW Config1 register

Read offset address: 044h

User's hardware configuration register 2, specifying the endpont direction

Field	Note	Reset value	Access characteristics
31:14	Reserved domain	18'b0	RO

LOONGSON

13:0	Bits[13:12]:endpoint 6 direction	14'b0	RO
	Bits [11:10]: endpoint 5 direction		
	Bits[9:8]:endpoint 4 direction		
	Bits[7:6]:endpoint 3 direction		
	Bits[5:4]:endpoint 2 direction		
	Bits[3:2]:endpoint 1 direction		
	Bits[1:0]:endpoint 0 direction		
	•2'b00: Bidirectional endpoint		
	•2'b01: IN endpoint		
	•2'b10: OUT endpoint		
	•2'b11: Reserved		

User HW Config2 register

Read offset address: 048h User's hardware configuration register 2

Field	Note	Reset value	Access characteristi cs
[31:26]	Reserved domain	6'b0	RO
25: 24	Aperiodic request queue depth •2'b00: 2 •2'b01: 4 •2'b10: 8 •2'b11: 16	2'b10	RO
23: 22	Non-periodic request queue depth •2'b00: 2 •2'b01: 4 •2'b10: 8 •2'b11: 16	2'b10	RO
21	Reserved domain		RO
20	Enable multiple processors interrupt •1'b0: No •1'b1: Yes	1'b0	RO
19	Enable dynamic FIFO size •1'b0: No •1'b1: Yes	1'b1	RO
18	Enable periodic OUT channel •1'b0: No •1'b1: Yes	1'b1	RO
17:14	The number of Channel in the Host mode	4'd12	RO
13:10	The number of endpoint in device mode, expec endpoint 0		RO
9: 8	Full speed PHY interface type •2'b00: none •2'b01: FS has a dedicated pin •2'b10: Shared with UTMI + • 2'b11: shared with ULPI	2'b0	RO
7:6	HS PHY interface type •2'b00: none •2'b01: UTMI+ •2'b10: ULPI •2'b11: UTMI + and ULPI	2'b0	RO
5	PTP (point-to-point) •1'b0: No	1'b1	RO

	•1'b1: Yes		
4: 3	Architecture	2'b10	RO
	•2'b00: Only as slave unit		
	•2'b01: External DMA		
	•2'b10: Embedded DMA		
	•2'b11: Reserved		
2:0	Operating mode	3'b000	RO
	•3'b000: support the OTG of HNP and SRF		
	(host and device)		
	•3'b001: only support the OTG of SRP (hos		
	and device)		
	•3'b010: not support the OTG of HNP and	1	
	SRP (host and device)		
	•3'b011:support the device of SRP		
	•3'b100: the device of non-OTG		
	•3'b101: support the device of SRP		
	•3'b110: the host of non-OTG		
	•Others: reserved		

User HW Config3 register

Read offset address: 04Ch

User's hardware configuration register 3

Field	Note	Reset value	Access characteristics
[31:16]	DFIFO depth	16'd3072	RO
	•The minimum value is 32		
	•The maximum value is 32768		
15	OTG_ENABLE_LPM	1'b0	RO
	Specify whether the OTG supports LPM mode		
	●1'b0: No		
	•1'b1: Yes		
14		1'b0	RO
	Specify whether to support USB charging		
	function		
	•1'b0: No		
	•1'b1: Yes		
13		1'b0	RO
	Specify whether to support HSIC		
	•1'b0: No		
	•1'b1: Yes		
12	OTG_ADP_SUPPORT	1'b0	RO
	Specify whether to support ADP		
	•1'b0: No		
	•1'b1: Yes		
11		1'b0	RO
	Specify whether to support synchronous reset		
	•1'b0: No		
	•1'b1: Yes		
10	Remove some unnecessary features (OptFeature)	1'b1	RO
	• 1'b0: No		
	• 1'b1: Yes		
9	Whether to support vendor control interface	1'b0	RO
	(VndctlSupt)		
	The interface is used to access PHY internal		
	register.		
	•1'b0: No		

-112-

	• 1'b1: Yes	
8	Whether to support I2C interface (I2CIntSel) 1'b0	RO
	•1'b0: No	
	•1'b1: Yes	
7	OTG function enable (OtgEn) 1'b1	RO
	Specify whether to enable OTG function	
	•1'b0: No	
	•1'b1: Yes	
6: 4	Packet Counters width (PktSizeWidth) 3'b110	RO
	Indicate the maximum number of USB	
	controller send/ receive Packet in a transmission	
	•3'b000: 4bits	
	•3'b001: 5bits	
	•3'b010: 6bits	
	•3'b011: 7bits	
	•3'b100: 8bits	
	•3'b101: 9bits	
	•3'b110: 10bits	
	•Others: reserved	
3:0	TransferSizeCounters width(XferSizeWidth),4'b100	0 RO
	indicate the maximum size of data transmission	
	•4'b0000: 11bits	
	•4'b0001: 12bits	
	- 41-1000-101-it-	
	•4'b1000: 19bits	
	Others: Reserved	

User HW Config4 register Read offset address: 050h

Read offset address: 050h User's hardware configuration register 4

Field	Note	Reset value	Access characteristi cs
31	Reserved		RO
30	Wether to support Scatter/Gather DMA •1'b0: No •1'b1: Yes	1'b1	RO
29:26	In Device mode, the number of IN endpoint, including endpoint0 (INEps) •0: 1 IN endpoints •1: 2 IN endpoints •16: 16 IN endpoints	4	RO
25	For Device In endpoint enable dedicated TxFIFO •1'b0: No •1'b1: Yes	1'b1	RO
24	Whether to add the de-twitter logic to session_end signal •1'b0: No •1'b1: Yes	1'b1	RO
23	Whether to add the de-twitter logic to b_valid signal •1'b0: No	1'b1	RO

	•1'b1: Yes		
22	Whether to add the de-twitter logic to a_valid1't signal •1'b0: No •1'b1: Yes	b1	RO
21	Whether to add the de-twitter logic to 1'b vbus_valid signal •1'b0: No •1'b1: Yes	b1	RO
20	Whether to add the de-twitter logic to 1'b iddig_valid signal •1'b0: No •1'b1: Yes	b1	RO
19:16	Remove endpoint0£¬ control the number of4't ednpoints in device mode	b0	RO
15:14	UTMI + PHY data width 2'b • 2'b00: 8bits • 2'b01: 16bits • 2'b10: 8/16 bits software selectable • 2'b11: Reserved	b10	RO
13:7	Reserved domain		RO
6	Enable Hibernation 1't ¡ñ1'b0: No •1'b1: Yes	b0	RO
5	If AHB frequency lower than the minimum 1'th 60MHA(AhbFreq) •1'b0: No •1'b1: Yes	b0	RO
4	Whether to reduce part of the power1't consumption •1'b0: No •1'b1: Yes	b1	RO
3:0	Reserved field		RO

DFIFO software configuration register (GDFIFOCFG) Read offset address: 05Ch

Field	Note	Operating mode	Reset value	Access characteris
				tics
31:16	EPInfoBaseAddr	Host; Device	EPINFO_BASEADDR	R_W
	Initial address of Endpoint			
	controller			
15:0	GDFIFOCfg	Host; Device	3072	R_W
	Dynamic configuration of DFIFO			
	size			

Periodic TxFIFO capacity register in Host mode (GNPTXFSIZ) Read offset address: 0100h

Field	Note		Access
			characteristi cs
31:16	PTxFSize Periodic TxFIFO depth (NPTxDep) 32-bits word as a unit.	512	R_W

	•The minimum value is 16		
	•The maximum value is 32768		
15:0	PTxFStAddr	789	R_W
	Initial address of periodic TxFIFO in Host mode		_

IN endpoint TxFIFO1 capacity register in Device mode (DIEPTXF1) Read offset address: 0104h

Field	Note	Reset value	Access characteristi
31:16	INEPnTxFDep	256	cs R W
51.10			K_W
	IN endpoint TxFIFO1 depth£¬a 32-bit word as a	l	
	uint.		
	•The minimum value is 16		
	•The maximum value is 32768		
15:0	INEPnTxFStAddr	565	R_W
	Initial address of IN endpoint FIFO 1		

IN endpoint TxFIFO2 capacity register in Device mode (DIEPTXF2)

Read offset address: 0108h

Field	Note	Reset value	Access
			characteristics
31:16	INEPnTxFDep	256	R_W
	IN endpoint TxFIFO2 depth, 32-bit wor	ď	
	as a uint.		
	•The minimum value is 16		
	•The maximum value is 32768		
15:0	INEPnTxFStAddr	821	R_W
	Initial address of IN endpoint FIFO 2		

IN endpoint TxFIFO3 capacity register in Device mode (DIEPTXF3)

Read offset address: 010Ch

Field	Note	Reset value	Access characteristics
31:16	INEPnTxFDep IN endpoint TxFIFO3 depth, 32-bit word	512	R_W
	 as a uint. The minimum value is 16 The maximum value is 32768 		
15:0	INEPnTxFStAddr Initial address of IN endpoint FIFO 3	1077	R_W

13.3.3 Host mode register

This register block is only effective in Host mode, and can't be accessed in host mode.

Host mode configuration register (HCFG) Offset address: 400h

Field	Note	Reset value	Access characteristics
31:28	Reserved domain		RO
27	ModeChTimEn Whether to enable mode changes into ready timer.	1'b0	R_W

	Decide at the end of Resume state whether to enable		
	host controller to change 2'b10 into 00 of PHY opmode		
	signal after waiting for 200PHY clocks		
	•1'b0: No		
	•1'b1: Yes		
26	PerSchedEna	1'b0	R_W
	Whether to enable periodic schedule.		
	•1'b0: No		
	•1'b1: Yes		
25:24	FrListEn	2'b00	R/W
	Frame list number of terms		
	•2'b00: 8		
	•2'b01: 16		
	•2'b00: 32		
	•2'b00: 64		
23	DescDMA	1'b0	RO
	In Host mode, enable Scatter/gather DMA		
	Note: after resetting, this can only be modified once.		
	The following configurations are available:		
	•GAHBCFG.DMAEn = 0, HCFG.DescDMA = $0 \Rightarrow$		
	slave mode;		
	•GAHBCFG.DMAEn= 0, HCFG.DescDMA = 1 =>		
	illegal configuration;		
	GAHBCFG.DMAEn= 1, HCFG.DescDMA = 0 =>		
	Buffered DMA mode;		
	•GAHBCFG.DMAEn= 0, HCFG.DescDMA = 1 =>		
	Scatter/Gather mode;		
15:0	Reserved domain		RO

Host frame interval register (HFIR)

Offset address: 404h

Field	Note	Reset value	Access
			characteristics
31:17	Reserved field		RO
16	Reload control	1'b0	R_W
	Does it allow the dynamic reloading into HFIF	ર	
	register		
	•1'b0: No		
	•1'b1: Yes		
15:0	Frame interval (FrInt)	16'd60000	R_W
	The software uses this value to determine the interva	1	
	between two consecutive micro-SOFs In PHY clock	< C	
	bit units. Only after the bit of HPRT.PrtEnaPort is se	t	
	to 1, can this bit be changed. No changes can be made	e	
	after the initial configuration.		
	125us * (PHY clock frequency)		

Host frame number/rest frame time register (HFNUM)

Read offset address: 408h

Field	Note	Reset value	Access characteristics
			RO
	It indicates the rest time of the current microFrame in		

	the unit of PHY clock. When the bit is 0, the value of		
	HFIR.FrInt is reloaded, and one new SOF is sent in		
	USB bus		
15:0	Frame number (FrNum)	16'h3FFF	RO
	In a new SOF transfer, this domain adds 1, and when		
	reaching 16'h3FFF, it's reset to 0.		

Host periodic TxFIFO/Queue status register (HPTXSTS)

Offset address: 410h

Field	Note	Reset value	Access
			characteristics
31:24	PTxQTop	8'h0	RO
	The first item of periodic TxFIFO request (TOP) is used		
	for debugging.		
	•Bits [31]: Odd-even frame		
	-1'b0: Transmit in even frames		
	-1'b1: Transmit in odd frame		
	•Bits [30:27]: channel number		
	•Bits [26:25]: type		
	-2'b00: IN / OUT		
	-2'b01: 0 length packet		
	-2'b10: CSPLIT		
	-2'b11: invalid channel command		
	•Bits [24]: Terminate (the last item for the selected		
	channel)		
23:16	PTxQSpcAvali	8	RO
	Periodic Tx available request queue number of term.		
	It indicates the number of null terms in periodic request		
	queue, and the request queue includes IN and OUT.		
	•8'h0: queue full		
	•8'h1: 1 null terms		
	•8'h2: 2 null terms		
	0 0 0 0		
	•8'h8: 8 null terms		
	•Others: Reserved		
15:0	1	512	RO
	Periodic TxFIFO available number of term		
	A 32-bits word as a unit.		
	•16'h0: FIFO full		
	•16'h1: 1 null terms		
	•16'h200: 512 null terms		

Host interrupt register in all channels (HAINT)

Read offset address: 414h

Field	Note	Reset value	Access characteristics
31:16	Reserved domain		RO
	Channel interrupt (HAINT) One bit corresponds to one channel: Bits [11]: channel 11 ° ° ° Bits0 : channel 0	16'h0	RO

Host All Channel Interrupt Mask Register (HAINTMSK)

Read offset address: 414h

Field	Note	Reset value	Access
			characteristics
31:16	Reserved field		RO
	Channel Interrupt Mask (HAINTMSK)	16'h0	R_W
	One bit corresponds to one channel:		
	Bits [11]: channel 11		
	0 0 0		
	Bits 0: channel 0		

Host Port Control and Status Registers (HPRT) Read offset address: 440h

Field	Note	Reset value	Access
			characteristics
31:19	Reserved field		RO
18:17	1	2'b0	RO
	Port Speed		
	•2'b00: high speed		
	•2'b01: full speed		
	•2'b10: low speed		
	•2'b11: Reserved		
16:13		4'h0	R_W
	Port test control		
	When the software writes non-0 value to this domain,		
	the port enters into the test mode.		
	The corresponding Pattern occurs in port.		
	•4'b0000: Non-test mode		
	4'b0001: Test_J mode		
	•4'b0010: Test_K mode		
	•4'b0011: Test_SE0_NAK mode		
	•4'b0100: Test_Packet mode		
	•4'b0101: Test_Force mode		
	•Others: Reserved		
12	PrtPwr	1'b0	R_W_SC
	Port power supply.		
	•1'b0:power off		
	•1'b1:power on		
11:10	Port Line Status(PrtLnSts)	1'b0	RO
	•Bits [10]: D		-
	•Bits [11]: D		
9	Reserved		RO
8	Port reset (PrtRst)	1'b0	R W
7	Port suspend (PrtSup)	1'b0	R WS SC
6	Port restoration (PrtRes)	1'b0	R_W_SS_
0		100	SC SC
5	Port overcurrent change (PrtOvrCurrChng)	1'b0	R_SS_WC
	When PrtOvrCurrAct changes, OTG controller sets the		
	bit to 1		
4	Port Overcurrent Activity (PrtOvrCurrAct)	1'b0	RO
	●No		
	• Yes		
3		1'b0	R_SS_WC
	When PrtEna changes, OTG controller sets the bit to 1		

-118-

2	Port enable bit (PrtEna)	1'b0	R_SS_SC
	•1'b0: No		_WC
	●1'b1: Yes		
1	When PrtConnDet (Port connection detect) finds the	e1'b0	R_SS_WC
	device connection, it'll trigger interrupt by	7	
	GINTSTS.PrtInt. Write 1 for software and clear this bit.		
0	Port connection status (PrtConnSts)	1'b0	RO
	•No device is connected to this port		
	•Device is connected to this port		

Host Channel-n characteristic register (HCCHARn)

Channel_num: 0 <= n <= 11 Read the offset address: 500h + (Channel_num * 20h)

Field	Note	Reset value	Access characteristics
31	Channel enable (ChEna) When Scatter/Gather mode is enabled, •1'b0: Indicate the descriptor structure is not ready •1'b1: It indicates that the descriptor structure and data buffer have been prepared, and the channel can access the descriptor		R_WS_SC
	When Scatter/Gather mode is disabled, •1'b0: Channel disable •1'b1: Channel enable		
30	Channel disable (ChDis) Even if the transmission in channel hasn't finished, the software ware can stop the data transmission and receive in this channel by setting the bit to 1. The software must wait that the endpoint valid interrupt happens, can it think the channel has been invalid.		R_WS_SC_SS
29	Odd frames (OddFrm) The software notifies that OTG host must finish one transmission within odd micro Frame by setting the bit to 1. This domain is only valid to periodic transaction (real-time and interrupt) •1'b0: Even frames •1'b1: Odd frames		R_W
28:22	Device address (DevAddr)	7'h0	RW
21:20	MultiCount (MC) /ErrorCount(EC) When HCSPLTn.SpltEna is 1'b0, this domain indicates the number of transactions finished within each microFrame time for each periodic endpoint. For the non-periodic transmission, this domain is only used in DMA mode, and is used to specify the number of packets obtained by host for this channel before the DMA changes the arbitration. • 2'b00: Reserved • 2'b01: 1 transaction • 2'b11: 3 transaction When CSPLTn.SpltEna is 1'b1, the domain indicates the retransmission times in case of a periodic split transaction. At least set 2'b01	2'Ъ0	R_W
19:18	Endpoint type (EPType) •2'b00: Control	2'b0	R_W

	 2'b01: Real time 2'b10: Bulk 2'b11: Interrupt 		
17:16	Reserved		RO
15	Endpoint direction (EPDir) •1'b0: OUT •1'b1: IN	1'b0	R_W
14:11	Endpoint number	4'b0	R_W
10:0	Maximum packet size (MPS)	11'h0	R_W

Host Channel-n Split control register (HCSPLTn)

Channel_num: $0 \le n \le 11$

Read offset address: 504h + (Channel_num * 20h)

Field	Note	Reset value	Access characteristic s
31	Split enable	1'b0	R W
30:17	Reserved		RO
16	Do Complete Split It indicates OTG host must finish one complete split transmission	1'b0	R_W
15:14			R_W
13:7	Hub address (HubAddr)	7'b0	R_W
[6£°0]	Port address (PrtAddr)	7'h0	R_W

Host Channe-n interrupt register (HCINTn)

Channel_num: $0 \le n \le 11$

Read offset address: 508h + (Channel_num * 20h)

Field	Note	Reset	Access
		value	characteristics
31:14	Reserved		RO
13	Descriptor rollover interrupt (DESC_LST_ROLLIntr)		R_SS_WC
	Only when the Scatter/Gather DMA mode is enabled, this		
	domain is valid. The bit is set to 1 when the descriptor list in		
	corresponding channel rolls over.		
	For non-Scatter/Gather DMA mode, this domain set reserves		
	the field		
12	Excessive transaction error (XCS_XACT_ERR)	1'b0	R_SS_WC
	When the Scatter/Gather DMA mode is enabled, this domain		
	is valid. When three consecutive transactions go wrong, the		
	bit is set to 1.		
	For non-Scatter/Gather DMA mode, this domain set reserves		
	the field		
11	BNA(buffer unavailable) interrupt (BNAIntr)	1'b0	R_SS_WC

	When the Scatter/Gather DMA mode is enabled, this domain is valid. When the descriptor access isn't prepared, the bit is set to 1.	5	
	For non-Scatter/Gather DMA mode, this domain set reserves the field		
10	Data inversion error (DataTglErr)	1'b0	R SS WC
9	Frame overrun (FrmÖvrun)	1'b0	R SS WC
8	Bubble error (BblErr)	1'b0	R SS WC
7	Transaction error (XactErr)	1'b0	R SS WC
	When the error occurs in USB bus, the bit is set to 1:		
	•CRC verify unsuccessfully		
	• Time-out		
	•Bit stuffing error		
	• Wrong EOP		
6	Receive NYET handshake (NYET)	1'b0	R_SS_WC
5	Receive ACK handshake (ACK)	1'b0	R_SS_WC
4	Receive NAK handshake (NAK)	1'b0	R_SS_WC
3	Receive STALL handshake (STALL)	1'b0	R SS WC
2	AHB error (AHBErr)	1'b0	R_SS_WC
1	Channel halted (ChHltd)	1'b0	R_SS_WC
	For non- Scatter/Gather DMA mode, the abnormal end of	-	
	transmission caused by USB transmission error or software	;	
	sets invalid request, or the bit is set to 1 in normal end.		
	For Scatter/Gather DMA mode, if the transmission ends	5	
	because of the following reasons, the bit is set to 1:		
	• EOL setting in descriptor		
	• AHB error		
	• Excessive transaction error		
	 Invalid software setting request 		
	• Vacuole		
	• Stall		
0	EOT (end of transmission)	1'b0	R_SS_WC
	For Scatter/Gather DMA mode, it indicates completing the		
	process of the current descriptor, and the bit of the descriptor	-	
	IOC is set to 1.		
	For non- Scatter/Gather DMA mode, it indicates the		
	completion of transmission without any error.		

Host Channel-n interrupt mask register *(HCINTMSKn)

Channel_num: 0 <= n <= 11 Read offset address: 50Ch + (Channel_num * 20h)

Field	Note	Reset value	Access characteristics
31:14	Reserved		RO
13	Descriptor rollover interrupt mask bit (DESC_LST_ROLLIntrMsk) Only when the Scatter/Gather DMA mode is enabled, this domain is valid. For non-Scatter/Gather DMA mode, this domain set reserves the field		R_W
12	Reserved		RO
11	Reserved		RO
10	Data reverse error interrupt mask (DataTglErrMsk)	1'b0	R_W
9	Frame overrun interrupt mask (FrmOvrunMsk)	1'b0	R_W

8	Bubble error interrupt mask (BblErrMsk) 1'b0	R_W
7	Transaction error mask (XactErrMsk) 1'b0	R_W
6	Receive NYET handshake interrupt mask1'b0 (NYETMsk)	R_W
5	Receive ACK handshake interrupt mask1'b0 (ACKMsk)	R_W
4	Receive NAK handshake interrupt mask1'b0 (NAKMsk)	R_W
3	Receive STALL handshake interrupt mask1'b0 (STALLMsk)	R_W
2	AHB error interrupt mask (AHBErrMsk) 1'b0	R_W
1	Channel halted interrupt mask (ChHltdMsk) 1'b0	R_W
0	Transfer complete interrupt mask1'b0 (XferComplMsk)	R_W

Host Channel-n transfer size register (HCTSIZn)

Channel_num: 0 <= n <= 11

Read offset address: 510h + (Channel_num * 20h)

In Scatter/Gather DMA mode, various domains of this register is defined as follows:

Field	Note	Reset value	Access characteristics
31	Do ping(DoPng)	1'b0	RW
	It's only valid to OUT transmission, and when the bit is		_
	set to 1, it indicates the Host does the PING protocol.		
	If the bit is set to 1 in IN transmission, this channel will		
	be invalid		
30:29	PID(Pid)	2'b0	R_W
	•2'b00:DATA0		
	•2'b01:DATA2		
	•2'b10:DATA1		
	•2'b11: MDATA (non-control)		
28:16	Reserved domain	9'b0	RO
15:8	NTD (the number of transmitting descriptors)	8'h0	R_W
	(Non-real time transmission)		
	•0-1 descriptors		
	•63-64 descriptors		
	(Real-time transmission)		
	•7-8 descriptors		
	•15-16 descriptors		
	•31-32 descriptors		
	•63-64 descriptors		
	•127-128 descriptors		
	•255-256 descriptors		
7:0	SCHED INFO (scheduling information)	8'h0	R_W
	The corresponding bit represents the angle in the		_
	microFrame. Bit0 represents the scheduling in 1 st		
	microFrame Bits7 represents the scheduling in 8th	L	
	microFrame		
	8'b11111111 represents the scheduling of the		
	corresponding interrupt channel and one token is sent		
	every other microFrame in corresponding frame time.		
	8'b10101010 represents the scheduling of the		
	corresponding interrupt channel and one token is sent		
	every other microFrame in corresponding frame time.		
	Note, this domain is only valid for periodic	;	

LOONGSON

transmission.

In Non-Scatter/Gather DMA mode, various domains of this register are defined as follows:

Field	Note	Reset value	Access
			characteristics
31	Do ping(DoPng)	1'b0	R_W
	It's only valid to OUT transmission, and when the bit is		
	set to 1, it indicates the Host does the PING protocol.		
	If the bit is set to 1 in IN transmission, this channel will		
	be invalid		
30:29	PID(Pid)	2'b0	R_W
	•2'b00:DATA0		
	•2'b01:DATA2		
	•2'b10:DATA1		
	•2'b11: MDATA (non-control)		
28:19	Packet number (PktCnt).	10'h0	R_W
	Packet data of software write-in transmission.		
	When one transmission finishes, host will reduce the		
	domain by 1. Once it's 0, the software will receive the		
	interrupt and indicate the normal end.		
18:0	Transmission size (XferSize)	19'h0	R_W
	For OUT transmission, it specifies the number of bytes		
	transited by host; for IN transmission, it specifies the		
	number data bytes received by host.		

Host Channel-n DMA address register (HCDMAn)

Channel_num: 0 <= n <= 11

Read offset address: 514h + (Channel_num * 20h)

In IN/OUT transmission, the register is used to maintain the address of the current buffer. The starting address of DMA transmission must be double-word aligned.

-123-

Field	Note			Reset valu	ie Access characteristic
					S
Buffer DMA					
	DMA address (I				
31:0	Transaction-post				R_W
		Descripto	r DMA mode	9	
	DMA address (I	MAAddr)			
	Non-real time	transmission	save the	starting	
	address of 512-byte page The first descriptor			iptor in	
	descriptor list is in this address. OTG controll			ontroller	
	starts to process	1			
	Real-time tran	smission: sa	ve the add	ress of	
	2*(nTD+1) byte				
	the real-time de	-		ased on	
	nTD, as shown i		ow:		
31: N	31:N	N-1: 3	2:0		
(Real-time) 31:9	Base address	Offset	000		
(Non-real	nTD	N		23'h0	R/W
time)	7	6		25 110	
	15	7			
	31	8			
	63	9			
	127	10			
	255	11			

N-1: 3	Current transmission descriptor (CTD)		
(Real-time)	Non-real time transmission: its unit is descriptor	-	
	and the range is 0-63. It indicates the current		
8:	processing descriptor.	6'h0	R/W
(Non-real	Real-time transmission: based on the value of the		
time)	current micorFrame, it needs clearing by software.		
2:0	Reserved	3'h0	RO

Host Channel-n DMA Buffer address register (HCDMAn)

Channel_num: 0 <= n <= 11 Read offset address: 518h + (Channel_num * 20h) This is only valid in Scatter/Gather DMA mode

Field	Note		Access characteristics
31:0	Current buffer address.	Х	RO

Host Frame List base address register (HFLBAddr)

Offset: 41Ch

This is only valid in Scatter/Gather DMA mode

Field	Note	Reset value	Access characteristics
31:0	Initial address of frame list	32'h0	RO

13.3.4 Device Mode Register

This register block is only effective in device mode, and can't be accessed in host mode.

Device configuration register (DCFG)

Offset: 800h

After the initial configuration, the value of this register can't be modified.

Field	Note	Reset value	Access characteristics
31:26	Resume validity (ResValid)	6'd2	R_W
	This domain controls the switch time of OTG controller		
	from suspended state to resume. Clock period as a unit		
	Only when DCFG.Ena32KHzSusp is set to 1, this bit is	5	
	significant.		
25:24	Periodic schedule interval (PerSchIntvl)	2'b00	R_W
	Valid only in Scatter/Gather DMA mode.		
	It's used to specify the time allocated by DMA engine to		
	periodic IN endpoint to obtain data. Based on the number of	f	
	periodic IN endpoints, its value must be set to)	
	75%microFrame.		
	•When any periodic endpoint activates, DMA engine		
	allocates certain time for periodic IN endpoint to obtain	1	
	data.		
	•Ignore this domain when there is no periodic end node activity		
	•After the time is set, DMA engine begins to obtain data for	ſ	
	non-periodic endpoint.		
	●2'b00: 25% microFrame		
	●2'b01: 50% microFrame		
	●2'b10: 75% microFrame		
	•2'b11: Reserved		
23	In device mode, Scatter/Gather DMA mode (DescDMA) is	s1'b0	R_W

	enabled.		
	•GAHBCFG. DMAEn=0, DCFG. DescDMA=0 => from mode		
	•GAHBEFG. DMAEn=0, DEFG. DeseDMA=1 => illegal		
	•GAHBEFG. DMAEn=1, DCFG. DeseDMA=0 => buffer		
	DMA mode		
	•GAHBCFG.DMAEn=0,DCFG.DescDMA=0=>		
	Scatter/Gather DMA mode		
22:14	Reserved		RO
13		1'b0	R W
15	Only valid for descriptor DMA mode	100	<u></u>
	•1'b0: When the bulk OUT transfer ends, OTG controller		
	doesn't send out the NAK handshaking signal.		
	•1'b0: When the bulk OUT transfer ends, OTG controller		
	sends out the NAK handshaking signal.		
12:11		2'h0	R W
12.11	It indicates when one microFrame uses EOP interrupt to	-	<u></u>
	notify the software. This domain is used to decide whether		
	the current microFrame has finished all real-time transfers.		
	•2'b00: 80%		
	•2'b01: 85%		
	•2'b00: 90%		
	•2'b00: 95%		
10:4	Device address (DevAddr)	7'h0	R W
3	Reserved	1'b0	RŌ
2	Non-zero length Status OUT handshake (NZStsOUTHShk)		R_W
Γ	If OTG receives a non-zero data packet in OUT event in the		
	Status stage of control transfer, this domain is used to select		
	different handshaking signals controlled and transmitted by		
	OTG.		
	•1'b1: STALL		
	•1'b0: send out the received OUT data packet, and then		
	transmit the handshaking signal based on NAK and STALL		
	bits in device endpoint control register.		
1:0		2'b0	R_W
	•2'b00: HS(USB2.0 PHY)		
	•2'b01: FS(USB2.0 PHY)		
	•2'b10: LS(USB1.1 PHY)		
	•2'b11: FS(USB1.1 PHY)		

Device control register (DCTL) Offset: 808h

Field	Note	Reset value	Access characteristics
31:17	Reserved		RO
16	Send out NAK handshake in the case of babble	1'b0	R_W
15	For real-time endpoint, ignore frame number (IgnrFrmNum) •GAHBCFG. DMAEn=0, this domain is invalid •GAHBCFG. DMAEn=1, DCFG. DescDMA = 0: When the threshold mode is valid, this bit is invalid. Or, the software uses this bit to enable the periodic transfer interrupt. -1'b0 invalid periodic transmission interruption - When 1'b1receives ISOC IN token, it doesn't need to clear the packet. OTG controller ignores the frame number, when the packet is prepared and receives the corresponding token, this packet will be sent out. This domain is also used to enable		R_W

-125-

	periodic interrupt transmission		
	• GAHBCFG. DMAEn=1, DCFG. DescDMA = 1: Invalid		
	high-speed transmission		
14:13		2'h0	D W
14.15	Valid only in Scatter/Gater DMA mode. It is used to		R_W
	indicate the number of received and transmitted packets		
	before transferred to next endpoint. Valid only for aperiodic		
	end nodes.		
	•2'b00: Illegal		
	•2'b01: One package;		
	•2'b00: Two packages;		
	•2'b00: Three packages;		
	When DCFG.DescDMA =1, this domain will be		
	automatically changed to 2'h1		
12	Reserved domain		RO
11	Powr-on programming is done (PWROnPrgDone)	1'b0	R_W
	After recovering from power_down mode, when the register		
	programming is finished, the bit is set to 1.		
10	Clear Global OUT NAK (CGOUTNak)	1'b0	WO
	For the write to this bit, Clear Global OUT NAK		
9	Set Global OUT NAK(SGOUTNak)	1'b0	WO
	For the write to this bit, set Global OUT NAK		
8	Clear Global Non-periodic IN NAK (CGNPInNak)	1'b0	WO
	For the write to this bit, clear Global Non-periodic IN NAK		
7	Set Global Non-periodic IN NAK (SGNPInNak)	1'b0	WO
	For the write to this bit, set Global Non-periodic IN NAK		
6:4		3'b0	R_W
	•3'b000: Invalid Test mode		_
	•3'b001: Test_J mode		
	•3'b010: Test K mode		
	•3'b011: Test SE0 NAK mode		
	•3'b100: Test Packet mode		
	•3'b101: Test Force Enable mode		
	• Others: Reserved		
3		1'b0	RO
5	•1'b0: Based on FIFO status, NAK and STALL bit setup,		ito
	corresponding handshake is transmitted.		
	•1'b1: No matter whether RxFIFO has the null term, no		
	data is written in RxFIFO. Except SETUP event, all packets		
	send NAK handshake. Termination of all real-OUT packet.		
2	Global non-periodic IN NAK Status Bit	1'b0	RO
ŕ	•1'b0: Based on valid data of TxFIFO, corresponding		
	handshake is sent.		
	•1'b1: For all non-periodic IN endpoints, NAK handshake		
	signals are transmitted, no matter whether TxFIFO has		
	effective data.		
1		1'b0	P W
1	Soft disconnection (SftDisCon)	1 00	R_W
	If this bit is set to 1, the host can't see device connection,		
	and the device can't receive the USB signal.		
	• 1'b0: Normal operation		
	•1'b1: OTG controller will set the phy_opmode_o signal		
	in utmi+ interface to 2'b01, which will generate a		
	disconnect event to the USB host.	111.0	D W
0		1'b0	R_W
	When the bit is set to 1, the OTG controller will send a		
	remote wakeup signal to wake up the USB host.		

-126-

LOONGSON

Device status register (DSTS) Offset: 808h

Field	Note	Reset value	Access characteristics
[31:22]	Reserved		RO
21:8	Received SOF Frame Number (SOFN)	14'h0	RO
7:4	Reserved		RO
3	Serious error (ErrticErr)		RO
	Through this domain, the OTG controller reports serious error (because PHY goes wrong,		
	phy_rxvalid_i/phy_rxvldh_i or phy_rxactive_i setting exceeds 2ms). In the event of serious errors, the OTG controller will enter into the suspend mode, and		
	GINTSTS.ErlySusp bit is set to 1, and only the software can recover through soft break.		
2:1	Enumeration speed (EnumSpd)		RO
	•2'b00: HS(USB2.0 PHY)		
	•2'b01: FS(USB2.0 PHY)		
	•2'b10: LS(USB1.1 PHY)		
	•2'b11: FS(USB1.1 PHY)		
0	Suspending status (SuspSts)	1'b0	RO
	In Device mode, as long as the suspend status found in		
	USB bus, set it to 1. When utmi_linestate signal doesn't		
	activate within certain event, the OTG controller will		
	enter into the suspended state. The OTG controller will		
	exit from the suspended state if —:		
	• utmi_linestate signal activates		
	•The software writes 1 in DCTL.RmtWkUpSig bit.		

Device In Endpoint Common Interrupt Mask Register (DIEPMSK)

Field	Note	Reset value	Access characteristics
31:14	Reserved		RO
13	NAK Interrupt Mask Bit (NAKMsk)	1'h0	R_W
12:10	Reserved		RO
9	BNA Interrupt Mask Bit (BNAInIntrMsk) Valid only when descriptor is in the DMA mode	1'h0	R_W
8	FIFO Underflow Interrupt Mask Bit (TxFifoUndrnMSK)	1'b0	R_W
7	Reserved	1'b0	RO
6	IN endpoint NAK valid interrupt mask bit (INEPNakEffMsk)	1'b0	R_W
5	Receive the IN token interrupt mask bit mismatching EP (INTknEPMisMsk)	1'b0	R_W
4	When TxFIFO is empty and receives IN token interrupt mask bit (INTknTXFEmpMsk)	1'b0	R_W
3	Timeout interrupt mask bit (TImeOUTMsk) Valid only for non-real-time end node	1'b0	R_W
2	AHB error interrupt mask bit (AHBErrMsk)	1'b0	R_W
1	End nodes failure interrupt mask bit (EPDisbldMsk)	1'b0	R_W

LOONGSON

0	Transmission completion interrupt mask bit	1'b0	R_W	
	(XferCompIMsk)			

device Out Endpoint Common Interrupt Mask Register (DIEPMSK)

• Offset: 814h

Field	Note	Reset value	Access characteristics
31:15	Reserved		RO
14	NYET interrupt mask bit (NYETMsk)	1'b0	R_W
12	Bubble interrupt mask bit (BbleErrMsk)	1'b0	R_W
11:10	Reserved		RO
9	BNA interrupt mask bit (BnaOutIntrMsk)	1'b0	R_W
8	OUT packet error interrupt mask bit (OutPktErrMsk)	1'b0	R_W
7	Reserved		RO
6	Receives the back-to-back SETUP packet interrupt mask bit (Back2BackSETup)	1'b0	R_W
5	Reserved		RO
4	When the endpoint is invalid and receives OUT token interrupt mask bit (OUTTknEPdisMsk)	1'b0	R_W
3	SETUP phase completion interrupt mask bit (SetUPMsk)	1'b0	R_W
2	AHB error interrupt mask bit (AHBErrMsk)	1'b0	R_W
1	End nodes failure interrupt mask bit (EPDisbldMsk)	1'b0	R_W
0	Transmission completion interrupt mask bit (XferComplMsk)	1'b0	R_W

Device all endpoints common interrupt register (DAINT)

• Offset: 818h

Field	Note	Reset value	Access characteristics
21.16		1 (11 0	
31:16			RO
	1 OUT end node corresponding to 1 bit Bit 16		
	corresponding to the end node 0		
15:0	IN endpoint interrupt register bit (InEPInt)	16'h0	RO
	1 IN end node corresponding to 1 bit Bit 0 corresponding to the end node 0		

Device all endpoints common interrupt register (DAINTMSK)

Offset:81Ch

Field		Reset value	Access characteristics
31:16	OUT endpoint interrupt register bit (OutEPIntMsk) 1 OUT end node corresponding to 1 bit Bit 16	16'h0	R_W

	corresponding to the end node 0		
15:0	IN endpoint interrupt register bit (InEPIntMsk)	16'h0	R_W
	1 IN end node corresponding to 1 bit Bit 0 corresponding	5	
	to the end node 0		

Device VBUS Discharge Register (DVBUSDIS)

Offset: 828h

Field	Note	Reset value	Access characteristics
31:16	Reserved		RO
15:0	Device Vbus Discharge Time (DVBUSDis)	30MHZ:	R_W
	During SRP, the discharge time of Vbus after Vbus	16'h0B8F	
	impulse. In PHY clock bit units.	60MHZ:	
		16'h17D7	

Device VBUS Pulse Register (DVBUSPULSE)

Offset: 82Ch

Field	Note	Reset value	Access
			characteristics
31:12	Reserved		RO
11:0	Device Vbus Pulse Time ()	30MHZ:	R_W
	During SRP, the pulse time of Vbus. In PHY clock bit	12'h2c6	_
	units.	60MHZ:	
		12'h5b8	

Device threshold value control register (DTHRCTL)

Offset: 830h

Field	Note	Reset value	Access
			characteristics
31:28	Reserved		RO
27	Arbiter parking enable	1'b1	R_W
26	Reserved		RO
25:17	Receive threshold length (RxThrLen)	9'h8	R_W
16	Receive threshold enable (RxTHrEn)	1'b0	R_W
15:13	Reserved		RO
12:11	AHB threshold ratio (AHBThrRatio)	2'b0	R_W
10:2	Transmit threshold length (TxThrLen)	9'h8	R_W
1	Real-time IN Endpoint Threshold Value Enable	1'b0	R_W
	(ISOThrEn)		
0	Non-real Time IN Endpoint Threshold Value Enable	1'b0	R_W
	(NonISOThrEn)		

Device IN Endpoint FIFO Empty Interrupt Mask Register (DIEPEMPMSK) Offset: 834h

Field	Note	Reset value	Access characteristic
			s
31:16	Reserved		RO
	IN Endpoint Tx FIFO Empty Interrupt Mask Register (InEpTxfEmpMsk)		R_W
	As the interrupt mask bit of DIEPINTn, one bit corresponds to one endpoint.		

Bit0 corresponds to endpoint 0, and so on.

Device Control IN Endpoint 0 Control Register (DIEPCTL0)

Offset: 900h

Field	Note	Reset value	Access
			characteristi
31	End node enable (EPEna)	1'b0	cs R WS SC
51	• In Scatter/Gather DMA mode, in terms of IN Endpoint, this		K_W5_5C
	threshold 1 means that the descriptor and data buffer have been		
	prepared.		
	• In non- Scatter/Gather DMA mode, this threshold 1 means		
	that the data buffer has been prepared.		
	When OTG sets up the following interrupts, this bit will be		
	cleared 0.		
	• End node failure		
	Transmission completion		
30			R_WS_SC
	The software sets the bit to 1, and will stop transmitting data		
	to this endpoint even if the transfer isn't finished. The		
	software must wait that the endpoint valid interrupt happens,		
	can it think the endpoint has been invalid. When the OTG		
	controller sets endpoint valid interrupt, clear the bit to 0, and		
	only when EPEna bit is 1, set the bit to 1.		
29:28	This domain is valid only in DMA mode. Reserved		RO
29.28 27		1'b0	WO
27	Set 1, set the NAK bit corresponding to this endpoint to 1.	1 00	wO
26	Clear NAK (CNAK)	1'b0	WO
20	Set 1, set the NAK bit corresponding to this endpoint to 0.	1 00	WO
25:22		4'h0	R W
23.22	Set the FIFO number corresponding to IN endpoint 0.	+ 110	K_W
21	STALL handshake (Stall)	1'b0	R WS SC
- 1	When receiving SETUP packet, the software sets 1, and		n
	OTG controller clears 0. If NAK bit, global non-periodic IN		
	NAK and Global OUT NAK bit are all set to 1, the priority		
	of STALL bit will be the highest.		
20	Reserved		RO
19:18	Endpoint type (EPType)	2'h0	RO
	For the control node 2'b00		
17			RO
	•1'b0: Based on FIFO status, OTG controller sends out		
	Non-NAK handshake.		
	•1'b1: OTG controller transmission NAK handshake		
16	Reserved		RO
15	USB Active Endpoint (USBActEP)		RO
	If it has been 1, it means that the control endpoint 0 is		
14.2	always available.		DO
14:2 1:0	Reserved The maximum packet size (MPS)	2'h0	RO P W
1.0	The maximum packet size (MPS) •2'b00: 64B	∠ 110	R_W
	•2'b01: 32B		
	•2'b10: 16B		
	•2'b11: 8B		
L	~2011.0D		

-130-

Device Control OUT Endpoint 0 Control Register (DIEPCTL0)

Offset: B00h

Field		Reset	
		value	
31	End node enable (EPEna)	1'b0	R_WS_SC
	• In Scatter/Gather DMA mode, in terms of OUT Endpoint, this		
	threshold 1 means that the descriptor and data buffer have been prepared to receive data.		
	 In non- Scatter/Gather DMA mode, this threshold 1 means that the 		
	data buffer has been prepared.		
	When OTG sets up the following interrupts, this bit will be		
	cleared 0.		
	• SETUP time phase completion		
	End node failure		
	Transmission completion		
	In DMA mode, if OTG controller transfers SETUP data packet,		
	the bit must be set to 1.		
30	End node failure (EPDis)	1'b0	RO
50	The software can't invalidate OUT control node 0.	100	RO
29:28	Reserved		RO
27.20	Set NAk (SNAK)	1'b0	WO
27	Set 1, set the NAK bit corresponding to this endpoint to 1.	1 00	
26	Clear NAK (CNAK)	1'b0	WO
20	Set 1, clear the NAK bit corresponding to this endpoint to 1.	1 00	wo
25:22	Reserved		RO
23.22		1'b0	R WS SC
21	When receiving SETUP packet, the software sets 1, and OTG		K_W5_5C
	controller clears 0. If NAK bit, global non-periodic IN NAK and		
	Global OUT NAK bit are all set to 1, the priority of STALL bit		
	will be the highest. No matter whether this bit is set to 1, the		
	handshake signal that OTG controller corresponds to SETUP data		
	packet is always ACK.		
20		1'b0	R W
20	In snoop mode, when transferring the data to the memory, the		IXVV
	OTG controller doesn't check the correctness of OUT data		
	packet.		
19:18	A	2'h0	RO
17.10	For the control node 2'b00	2 110	ĸo
17		1'b0	RO
1 /	•1'b0: Based on FIFO status, OTG controller sends out		KO
	Non-NAK handshake.		
	•1'b1: OTG controller transmission NAK handshake		
16	Reserved		RO
15	USB Active Endpoint (USBActEP)	1'b1	RO
15	If it has been 1, it means that the control endpoint 0 is always		
	available.		
14:2	Reserved		RO
14.2		2'h0	R_W
1.0	•2'b00: 64B	2 110	¹ ¹ ¹
	•2'b01: 32B		
	•2 b01. 52B •2'b10: 16B		
	•2 b10: 16B •2'b11: 8B		
	■2 011. 0D	l	

Device endpoint-n control register (DIEPCTLn/DOEPCTLn)

- Endpoint_num: $1 \le n \le 6$
- ♦ Offset for IN: 900h + (Endpoint_num*20h)

♦ Offset for OUT: B00h + (Endpoint_num*20h)

Field	Note	Reset value	Access characteristics
31	End node enable (EPEna)	1'b0	R WS SC
-	Applied in IN / OUT terminal nodes.	100	R
	• In Scatter/Gather DMA mode, for IN endpoint, this threshold		
	1 means that the descriptor and data buffer have been prepared;		
	for OUT endpoint, the threshold 1 means that the descriptor and		
	data buffer have been prepared to receive data.		
	• In Scatter/Gather DMA mode, for IN endpoint, this threshold 1		
	means that the data buffer have been prepared to send data; for IN		
	endpoint, the threshold 1 means that the data buffer have been		
	prepared to receive data.		
	When OTG sets up the following interrupts, this bit will be		
	cleared 0.		
	• SETUP time phase completion		
	• End node failure		
	Transmission completion		
30	End node failure (EPDis)	1'b0	R_WS_SC
	Applied in IN / OUT endpoint.		
	The software sets the bit to 1, and will stop transmitting data to		
	this endpoint even if the transfer isn't finished. The software		
	must wait that the endpoint valid interrupt happens, can it think		
	the endpoint has been invalid. When the OTG controller sets		
	endpoint valid interrupt, clear the bit to 0, and only when EPEna		
	bit is 1, set the bit to 1.		
29	Set DATA1 PID (SetD1PID)	1'b0	WO
	It's only valid for interrupt/bulk IN and OUT endpoint. 1 is		
	written in this bit, DPID bit is set to DATA1. It's valid for both		
	descriptor DMA and non-descriptor DMA mode.		
28	Set DATA0 PID (SetD1PID)	1'b0	WO
	It's only valid for interrupt/bulk IN and OUT endpoint. 1 is		
	written in this bit, DPID bit is set to DATA0.		
	It's valid for both descriptor DMA and non-descriptor DMA		
	mode.		
27	Set NAk (SNAK)	1'b0	WO
	Applied in IN / OUT endpoint.		
	Set 1, set the NAK bit corresponding to this endpoint to 1.		
26	Clear NAK (CNAK)	1'b0	WO
	Applied in IN / OUT endpoint.		
	Set 1, clear the NAK bit corresponding to this endpoint to 1.		
25:22		4'h0	R_W
	Valid only for IN end nodes;		
	Set the FIFO number corresponding to IN endpoint.		
21	STALL handshake	1'b0	R_W
	It's only valid for non-control and non-real time IN/OUT		
	endpoint. Through the setup of this bit, stall all tokens from the		
	host. If the NAK bit, global non-periodic NAK and global OUT		
	NAK bit are all set to 1, the priority of STALL bit is the highest.		
	No matter whether this bit is set to 1, the handshake signal that		
	OTG controller corresponds to SETUP data packet is always		
	ACK.		
	Valid only for control end nodes.		
	When receiving SETUP packet, the software is set to 1, and the	;	
	OTG controller is cleared 0.		
	If the NAK bit, global non-periodic NAK and global OUT NAK		

-132-

	bit are all set to 1, the priority of STALL bit is the highest. No matter whether this bit is set to 1, the handshake signal that OTG controller corresponds to SETUP data packet is always ACK.	-	
20	Snoop mode (Snp) Valid only for OUT endpoint; In snoop mode, when transferring the data to the memory, the OTG controller doesn't check the correctness of OUT data packet.		R_W
19:18	Endpoint type (EPType) •2'b00: Control •2'b01: Real time •2'b10: Bulk •2'b11: Interrupt	2'h0	R_W
17	 NAK status (NAKSts) Apply to all IN/OUT endpoints. 1'b0: Based on FIFO status, OTG controller sends out Non-NAK handshake. 1'b1: OTG controller transmission NAK handshake 	1'b0	RO
16	End node data PID (DPID) Apply to interrupt/bulk IN and OUT endpoint. Include the PID of data packet received or sent by this endpoint. After this endpoint activates, the software must set the PID of the first packet received or sent by this endpoint. Use the SetD0PID and SetD1PID domains of this register to set DATA0 or DATA1 PID • 1'b0: DATA0 • 1'b1: DATA1		RO
	Odd-even frames (EO_FrNum) In the non-descriptor DMA mode, apply to the real-time IN/OUT endpoint. It appoints the frame number used by this endpoint to send or receive the real-time data. It's set by the SetEvnFr and SetOddFr domains of this register. • 1'b0: Even frames • 1'b1: Odd frames In the descriptor DMA mode, this domain bit remains the domain.		
15	USB active end nodes Applied in IN / OUT endpoints. It appoints in current configuration and interface, whether the endpoint activates.	1'b0	R_W_Sc
14:11	Reserved		RO
10:0		11'b0	R_W

Device endpoint-n interrupt register (DIEPCTLn / DOEPCTLn)

- ♦ Endpoint_num: 1 <= n <= 6</p>
- Offset for IN: 908h + (Endpoint_num*20h)
- Offset for OUT: B08h + (Endpoint_num*20h)

Field	Note	Reset value	Access
			characteristics
31:15	Reserved		RO
14	NYET interrupt (NYETIntrpt)	1'b0	R_SS_WC
13	NAK interrupt (NAKIntrpt)	1'b0	R_SS_WC
12	Bubble error interrupt (BbleErrIntrpt)	1'b0	R_SS_WC
11	Packet drop status (PktDrpSts)	1'b0	R_SS_WC

-133-

10	Reserved		RO
9	BNA (the buffer can't be used) interrupt (BNAIntr)	1'b0	R_SS_WC
8	FIFO underflow (TxFifoUndrn)	1'b0	R_SS_WC
7	TxFIFO empty (TxFEmp)	1'b0	R_SS_WC
6	IN endpoint NAK effectiveness (PNakEff)	1'b0	R_SS_WC
5	Receive IN token interrupt mismatching EP (INTknEPMis)	1'b0	R_SS_WC
4	When TxFIFO is empty and receives IN token interrupt (INTknTXFEmp)	1'b0	R_SS_WC
3	Overtime interrupt (TImeOUT) Valid only for non-real-time end node	1'b0	R_SS_WC
2	AHB error interrupt (AHBErr)	1'b0	R_SS_WC
1	End nodes failure interrupt (EPDisbld)	1'b0	R_SS_WC
0	Transmission completion interrupt (XferCompI)	1'b0	R_SS_WC

Device endpoint 0 transfer size register (DIEPTSIZ0/DOEPTSIZ0)

- ♦ Offset for IN: 910h
- ♦ Offset for OUT: B10h

For IN end nodes:

Field	Note	Reset	Access
		value	characteristics
31:15	Reserved		RO
20:19	The number of packets (PktCnt)	2'b0	R_W
	Indicate the number of packets in the number of transmission		
	size.		
	When reading a packet from TxFIFO, this domain decreases 1.		
18:7	Reserved domain	7'h0	R_W
6:0	Transmission size	7'h0	R_W
	It indicates the transfer size of endpoint 0 (in the unit of byte),		
	and when it exceeds this value, it will cause interrupt. It can be		
	set MPS of this end node. Every time one packet is written in		
	TxFIFO, this domain decreases 1.		

For OUT end nodes:

Field	Note	Reset	Access
		value	characteristics
31	Reserved		RO
30:29	Number of SETUP packets (SUPPktCnt)	2'b0	R_W
	It indicates the number of back-to-back SETUP packet		
	received by this endpoint.		
	•2'b01: One package		
	•2'b10: Two packages;		
	•2'b11: Three packages;		
28:20	Reserved domain	7'h0	R_W
19	The number of packets (PktCnt)	1'b0	R_W
	Every time one packet is written into RxFIFO, this domain		
	decreases to 0.		
18:7	Reserved		RO
6:0	Transmission size (XferSize)	7'h0	R_W

-134-

It indicates the transfer size of endpoint 0 (in the unit of byte),	
and when it exceeds this value, it will cause interrupt. It can	
be set MPS of this end node. When reading a packet from	
RxFIFO, this domain decreases 1.	

Device endpoint-n transfer size register (DIEPSIZn /DOEPSIZn)

- ◆Endpoint_num: 1 <= n <= 6
- ♦ Offset for IN: 910h + (Endpoint_num*20h)
- ♦ Offset for OUT: B10h + (Endpoint_num*20h)

Field	Note	Reset value	Access characteris
		value	tics
31:29	Reserved		RO
30:29	MC (MultiCount)	2'b0	R_W
	Valid only for IN end nodes.		_
	For the periodic IN endpoint, this domain indicates the number of packets transferred within one microFrame time. OTG controller		
	uses this domain as the real-time IN endpoint to calculate the data		
	PID.		
	•2'b01: One package;		
	•2'b10: Two packages;		
	•2'b11: Three packages;		
	For non-periodic IN endpoint, it indicates OTG controller must be		
	the number of packets obtained by this endpoint, when transferred		
	to the next endpoint appointed by DIEPCTLn.Nextep.		
	RxPID (received data PID) is only valid for the real-time OUT		
	endpoint, the data PID of the last packet received by this endpoint.		
	•2'b00: DATA0		
	•2'b01: DATA2		
	•2'b10: DATA1;		
	•2'b11: MDATA; SETUP packets (SUPCnt)		
	It's only valid for controlling OUT endpoint, indicating the number		
	of back-to-back SETUP packets received by this endpoint.		
	•2'b01: One package		
	•2'b10: Two packages;		
	•2'b11: Three packages;		
28:19		10'h0	R_W
	It indicates the packet count under this transfer size (PktCnt =		
	XferSize/MPS)		
	•IN endpoint: when one packet is read in TxFIFO, this domain reduces 1.		
	•OUT endpoint: when one packet is written in RxFIFO, this domain		
	reduces 1.		
18:0		19'b0	R_W
	Indicate the transfer size of the endpoint (in the unit of byte)		
	•When reading a packet from RxFIFO, this domain decreases 1.		
	• Every time one packet is written in TxFIFO, this domain decreases 1.		

Device endpoint-n DMA address register (DIEPDMAn/DOEPDMAn)

- ◆ Endpoint_num: 1 <= n <= 6
- ◆Offset for IN: 914h + (Endpoint_num*20h)

♦ Offset for OUT: B14h + (Endpoint_num*20h)

Field	Note	Reset value	Access characteristics
31:0	DMA address (DMAAddr)	Х	R_W
	Save the initial address of external storage allocated to		
	this endpoint.		
	• In non- Scatter/Gather DMA mode, it's the initial		
	address.		
	• In Scatter/Gather DMA mode, it's the base address of		
	the descriptor table		

Device endpoint-n DMA Buffer Address Register (DIEPDMABn/DOEPDMABn)

- ◆ Endpoint_num: 1 <= n <= 6
- ♦ Offset for IN: 91Ch + (Endpoint_num*20h)
- ♦ Offset for OUT: B1Ch + (Endpoint_num*20h)

Field	Note	Reset value	Access
			characteristics
31:0	DMA Buffer Address (DMABufferAddr)	Х	RO
	Save current buffer address. When the data is transferring in		
	this endpoint, the address will be updated in real time.		
	Valid only in Scatter/Gather DMA mode.		

Device IN Endpoint- nTxFIFO status register (DTXSTSn)

- ◆Endpoint_num: 1 <= n <= 6
- Offset918h + (Endpoint_num*20h)

Field	Note	Reset value	Access
			characteristics
31:16	Reserved		RO
[]	IN endpoint TxFIFO space available (INEPTxFSpcAvail) 32 bytes as unit. •16'h0: End node TxFIFO full •16'h1: One word available •••• •16'hn: N words available •Others: Reserved		RO

13.3.5 Power consumption and clock gating register

Power consumption and gating of clock control register (PCGCCTL)

♦ OffsetE00h

Field		Reset value	Access characteristics
31:9	Reserved		RO
8	Reset after suspended (ResetAfterSusp) If the host needs to reset after suspended, the soft needs to set this bit to 1 before clearing the clamp. If this bit isn't set to 1, the host will send out the reset signal after suspended.		R_W
7	Deep sleep (L1 Suspended) In L1 status, PHY enters into the deep sleep	1'b0	RO
6	PHY sleep (PhySleep)	1'b0	RO

	PHY into sleep status.		
5	Enable the sleep gating (Enbl_L1Gating) If the OTG controller can't set the bit to utmi_l1_suspend_n, after the bit setup, the gating can't apply to the internal clock in deep sleep		R_W
4	Reserved		RO
3	Reset power-down module (RstPdwnModule) In power-off, the software sets 1, and after power-on and PHY clock recovers, the software clear 0.	1'b0	R_W
2	Power supply isolation (PwrClmp) Before power off, the software sets the bit to 1 to isolate the power-on and power-off modules. Clear software to zero before power on		R_W
1	Gating Hclk (GateHclk) It sets 1, when the USB in suspended state, use gating clock to Hclk. When the USB recovers or the new dialogue starts, the software clears 0.		R_W
0	Stop Pclk (StopPclk) When the bit is set to 1, if the USB is under the suspended state, stop PHY clock. When the USB recovers or the new dialogue starts, the software clears 0.		R_W

14 General Purpose DMA

Loongson 1C processor includes a DMA module, and has three ways of DMA, which is used to operate block data or stream data and enhance the working efficiency of processor. One IC chip has five modules (SDIO, ADC, AC97, I2S, NAND), and will use the general DMA. Three ways of DMA are configured by software.

14.1 DMA Controller Structural Description

The process of DMA transferring data consists of three stages:

1. The pretreatment before transfer: the CPU finishes the following steps: configure the registers related to DMA descriptor.

2. Data transfer: it is finished automatically under the control of DMA controller.

3. Transmission completion process: transmit an interrupt request.

The DMA controller is limited to the data transfer in the unit of byte (4 bytes). It designs the next descriptor address register, source address register, destination address register, transfer data counter, transfer step-length interval, transfer cycle index, DMA control logic, and other essential registers. The cache size of DMA is 128Byte (32x4Byte) and is read in the unit of byte.

Through the configuration of DMA register, CUP saves the data from memory or equipment in cache memory, and writes the data in buffer in the corresponding internal memory or equipment, and finally sends DMA end of transmission signal. During the DMA transfer, the CPU can monitor the working condition of DMA at any time.

14.2 DMA Register

14.2.1ORDER_ADDR_IN

English name: this register is broadcast to the three-way DMA, and the selected DMA starts the work on the bit width of register based on the register configuration. [31:0]

Address: 0xbfd0_1160

Reset value: 0x00000000

Bit field	Bit field name	Bit width	Access	Description
31:6	Ask_addr	26	R/W	The high 26 bits and low 6 bits of first descriptor address of the selected DMA are 0; equivalently, the Ask_addr of 26 bits left shifts 6 bits.
5	Reserved	1		
4	dma_stop	1	R/W	User request to stop the DMA operation; Stop operation after the completion of current data reading and writing operations
3	dma_start	1	R/W	It can start to read the first DMA descriptor of descriptor chain; When the register related to the first descriptor is red back, this bit is reset.
2	Ask_valid	1	R/W	The user requests to write relevant information of current DMA operation to the specified memory address. After the user writes backs relevant information of DMA operation, this bit is cleared.
1:0	Dev_num	2	R	2'b00 nand flash 2'b01 AC97 read device 2'b10 AC97 write device

Note:

The address of the first descriptor is in ORDER_ADDR_IN register, and the register is configured by CPU, namely, Ask addr lef shifts 6 bits and composes the base address of the descriptor register.

In each DMA operation, the address and significant bit of the next descriptor saved by DMA_ORDER_ADDR register. If ask_valid=1, it indicates the CPU will monitor the DMA operation, and the value of DMA controller register is written back to the memory directed by ask_addr.

If dma_start=1, it indicates the DMA operation starts. The DMA reads the descriptor from the memory address directed by ask_addr, and starts to implement DMA operation based on descriptor information.

14.2.2DMA_ORDER_ADDR

English name: next descriptor address register Register bit width: [31:0] Base address: reset if the descriptor address is five bits lower. Offset address: 0x0 Reset value: 0x00000000

Bit field	Bit field name	Bit width	Access	Description
31:1	dma_order_addr	31	R/W	Next descriptor address register of internal memory
0	Dma_order_en	1	R/W	If descriptor is a valid signal

Notes: to store the address of the next DMA descriptor, dma_order_en is the enable bit of the next DMA descriptor. If the bit is 1, it indicates the descriptor is valid, and if the bit is 0, it indicates the descriptor is invalid. Don't perform operation, and the address of 16 bytes is aligned. In the configuration of DMA descriptor, the register stores the address of the next descriptor, and after the DMA operation is performed, determine whether to start the next DMA operation by judging dma_order_en signal.

14.2.3DMA_SADDR

English name: memory address register Register bit width: [31:0] Base address: reset if the descriptor address is five bits lower. Offset address: 0x4 Reset value: 0x00000000

Bit field	Bit field name	Bit width	Access	Description
31:0	dma_saddr	32	R/W	DMA operation memory address

Notes: the DMA operation is divided as follows: read the data from memory, and save them in the buffer of DMA controller; the APB sends the request to access the data in DMA buffer, and the register specifies the address of read memory; read the data from APB device, and save them in DMA buffer. When the number of words in DMA buffer exceeds certain amount, the data will be written in memory, and the register has specified the address of write memory

14.2.4 DMA_DADDR

English name: device address register Register bit width: [31:0] Base address: reset if the descriptor address is five bits lower. Offset address: 0x8 Reset value: 0x00000000

Bit field	Bit field name	Bit width	Access	Description
31		1	R/W	AC97 write enables, "1" indicates the write
				operation.
30		1	R/W	0: mono 1: 2 stero
29:28		2	R/W	AC97 write mode, 0: 1byte, 1: 2byte, 2: 4 byte

27:0 dma daddr 32 R/W APB device address in DMA operation	
---	--

Notes: read the data from memory and save them in the buffer of DMA controller; the APB sends the request to access the data in DMA buffer, and the register specifies the address of read memory; read the data from APB device, and save them in DMA buffer. When the number of words in DMA buffer exceeds certain amount, the data will be written in memory, and the register has specified the address of read APB device.

14.2.5 DMA_LENGTH

English name: length register Register bit width: [31:0] Base address: reset if the descriptor address is five bits lower. Offset address: 0xc Reset value: 0x0000000

Bit field	Bit field name	Bit width	Access	Description
31:0	dma_length	32	R/W	Transmission data length register

Notes: it represents the length of one block of transported content, and its unit is byte. After the length word is transported, the next step starts, namely, next cycle. A new cycle starts, and the length word is transported again. When the step becomes 1, the single DMA descriptor operation ends, and it starts to read the next descriptor.

14.2.6DMA_STEP_LENGTH

English name: interval length register Register bit width: [31:0] Base address: reset if the descriptor address is five bits lower. Offset address: 0x10 Reset value: 0x00000000

Bit field	Bit field name	Bit width	Access	Description
31:0	dma_step_length	32	R/W	Data transmission interval length register

Notes: the interval lengths indicates the length between two transported memory data blocks, and the interval between the end address of the previous step and the start address of the next step.

14.2.7DMA_STEP_TIMES

English name: cycle index register Register bit width: [31:0] Base address: reset if the descriptor address is five bits lower. Offset address: 0x14 Reset value: 0x00000000

Bit field	Bit field name	Bit width	Access	Description
31:0	dma_step_times	32	R/W	Data transmission cycle index register

Notes: the cycle time indicates the number of blocks to be transported in one DMA operation. If it intends to transport one continuous data block, the value of cycle time register is assigned 1.

14.2.8 DMA_CMD

English name: control register Register bit width: [31:0] Base address: reset if the descriptor address is five bits lower. Offset address: 0x18 Reset value: 0x00000000

Bit field	Bit field name	Bit width	Access	Description
14:13	Dma_cmd	2	R/W	Generation types of source and destination address
12	dma_r_w	1		DMA operation type, "1" is read memory and write device, "0" is read device and write memory.
11:8	dma_write_state	4	R/W	DMA write data status
7:4	dma read state	4	R/W	DMA read data status
3	dma_trans_over	1	R/W	DMA implements the configured descriptor operations.
2	dma_single_trans_over	1	R/W	Complete the implementation of one DMA descriptor operation
1	dma_int	1	R/W	DMA interrupt signal
0	dma_int_mask	1	R/W	If DMA interrupts are masked out
Bit field	Bit field name	Bit width	Access	Description

Notes: dma_single_trans_over=1 indicates that one DMA operation implementation finishes, and length=0 and step_times=1, and it starts to pick up the descriptor of the next DMA operation. The descriptor address of the next DMA operation is saved in DMA_ORDER_ADDR register, and if in DMA_ORDER_ADDR register dma_order_en=0, dma_trans_over=1 and the entire dma operation finishes without new descriptor to read; if dma_order_en=1, dma_trans_over is set to 0, and it starts to read the next dma descriptor. dma_int is the DMA interrupt, and if without the interrupt mask, the interrupt occurs after one configured DMA operation finishes. After the CPU deals with interrupt, it's set to low directly. Equivalently, the DMA is automatically set low in next transfer. dma_int_mask is the interrupt mask corresponding to dma_int. dma_read_state indicates the current read state of DMA.

DMA write state (WRITE_STATE[3:0]) description, DMA includes the following write states:

Write state	[3:0]	Description
Write_idle	4'h0	Idle writing status
W_ddr_wait	4'h1	Dma judgment needs to perform the operation of read device and write memory, and sends the memory request. But when the memory hasn't prepared the response request, dma has been waiting for the memory response.
Write_ddr	4'h2	The memory has received dma write request, but hasn't performed the write operation.
Write_ddr_end	4'h3	The memory receives dma write request, and finishes the write operation, and then the dma is in the state of finishing the operation of write memory.
Write_dma_wait	4'h4	Dma sends out the request of dma status register writes back to memory, and waits for the memory to receive request.
Write_dma	4'h5	The memory receives the request of write dma status, but the operation hasn't finished.
Write_dma_end	4'h6	Memory completing writing dma status operation
Write_step_end	4'h7	Dma finishes one length operation (namely, one step)

DMA write state (WRITE_STATE[3:0]) description, DMA includes the following read states:

Read_state	[3:0]	Description
Read_idle	4'h0	Idle read status
Read_ready	4'h1	Receive the start signal of starting dma operation, enters into the read state, and starts to read descriptors.
Get_order	4'h2	It sends the request of reading descriptor to the memory, and waits for the response of memory.

Read_order	4'h3	The memory receives the request of reading descriptor, and is					
		performing the read operation.					
Finish_order_end	4'h4	Memory completing reading dma descriptor					
R_ddr_wait	4'h5	Dma sends the request of reading data to the memory, and waits for					
		the response of memory.					
Read_ddr	4'h6	The memory receives the request of dma read data, and is					
		performing the read operation.					
Read_ddr_end	4'h7	The memory finishes the one request of read data of dma					
Read_dev	4'h8	Dma into the reading device status					
Read_dev_end	4'h9	The device returns the read data, and ends the request of reading the					
		device.					
Read_step_end	4'ha	After one step operation is finished, step times decrease 1.					

14.3 Multiple Modules Use DMA Configuration Description

If some module needs to perform DMA operation, it needs to send the request to req signal of DMA. Through the configuration of misc_ctrl register, only after the req signal of this module is connected to req[2:0] signal of DMA, the DMA can be used normally.

Therein, the priority of SDIO is the highest, and can be configured to any way among three channels; when SDIO doesn't use the 0 channel, NAND uses 0 channel; when SDIO doesn't use the 1st channel, I2S and AC97 multiplex the 1st channel; when SDIO doesn't use the 2nd channel, ADC, 2S and AC97 multiplex the 2nd channel. ADC priority is higher than I2S and AC97

DMA multiplexes the configuration corresponding to misc_ctrl[25:22]. Therein, misc_ctrl[22] is adc_dma_en, misc_ctrl[24:23]is sdio_dma_en, misc_ctrl[25]为 ac97_en.

For example, SDIO uses the 1st channel, ADC the 2nd channel, NAND the 0 channel, it should be configured as follows:

sdio_dma_en is 2, adc_dma_en is 1, ac97 and I2S can't use DMA.

For example, SDIO uses the Channel 0, ADC the 2nd channel, I2S the 1st channel, it should be configured as follows:

sdio_dma_en is 1, adc_dma_en is 1, ac97_en is 0.

15 SPI0 Controller

Serial peripheral equipment interface SPI bus technology is a full duplex, synchronous and serial data interface standard between several types of microprocessors, microcontrollers and peripheral equipment launched by Motorola company.

15.1 SPI Controller Architecture

The SPI controller integrated can only act as the host and connect slave. In terms of the software, except several IO registers, SPI controller has one section mapped to the read-only memory space of SPI Flash. If this section of memory space is allocated in 0xbfc00000, after reset it can be accessed directly without software intervention, so as to support processor startup from SPI Flash. The base address of IO register of SPI is 0xbfe8_0000, and the external storage address space is 0xbd00_0000 -0xbd7f_ffff, 8MB in total.

Its architecture is shown in Figure 15-1, and consists of AXI internal bus interface, simple SPI master controller, SPI Flash read engine, and bus selection modules. Based on access address and type, the legal request from internal bus interface is forward to SPI master controller or SPI Flash read engine (the illegal request is abandoned).

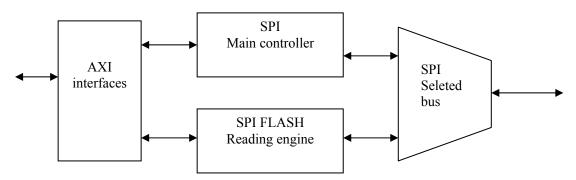


Figure 15-1 SPI controller architecture

15.2 Configuration Register

Offset	Name	Description
0	SPCR	Control register
1	SPSR	Status register
2	TxFIFO/RxFIFO	DR (data register)
3	SPER	Internal register
4	SFC_PARAM	Parameter control register
5	SFC_SOFTCS	Chip selection control register
6	SFC_TIMING	Sequence control register

15.2.1 Control register (SPCR)

Bit field	Name	Access	Initial	Description
			value	
7	spie	R/W	0	Interrupt output enable signal active high
6	spe	R/W	0	System work enable signal active high
5	-	-	0	Reserved
4	mstr	-		Master mode selects the bit, and the bit remains at 1.
3	cpol	R/W	0	Clock polarity bit
2	cpha	R/W		If the clock phase bit is 1, the phase is opposite, and if it is 0, the phase is the same.

1:0	spr	R/W	0	sclk_o frequency division setup needs to be
				used with spre of sper together.

15.2.2 Status register (SPSR)

Bit field	Name	Access	Initial	Description
			value	
7	spif	R/W	0	The interrupt flag bit 1 indicates that there is
				interrupt request, write 1 and reset.
6	wcol	R/W	0	When the write register overflow flag bit is 1,
				it indicates that it has overflowed, write 1 and
				reset.
5:4	-	-	0	Reserved
3	wffull	R	0	Write register full flag 1 indicating full
2	wfempty	R	1	Write register empty flag 1 indicating empty
1	rffull	R	0	Read register full flag 1 indicating full
0	rfempty	R	1	Read register empty flag 1 indicating empty

15.2.3 Data register (TxFIFO/RxFIFO)

Bit field	Name	Access	Initial	Description
			value	
7:0	TxFIFO	W	-	Data transmission port
	RxFIFO	R		Data receiving port

15.2.4 External register (SPER)

Bit field	Name	Access	Initial value	Description
7:6	icnt	R/W	0	Transmit interrupt after several bytes transmission 00: 1 01: 2 10: 3 11: 4
5:3	-	_	-	Reserved
2	mode	R/W	0	spi interface mode control 0: Sample simultaneous with the transmission opportunity 1: Stagger half period of sampling and transmission opportunity
1:0	spre	R/W	0	Set fractional frequency ratio with spr

Table 15-1 SPI frequency division factor

spre spr	00 00	00 01	00 10		00	01 01	01 10	-	00	10 01	10 10	10 11
Frequency coefficient	2	4	16	32	8	64	128	256	512	1024	2048	4096

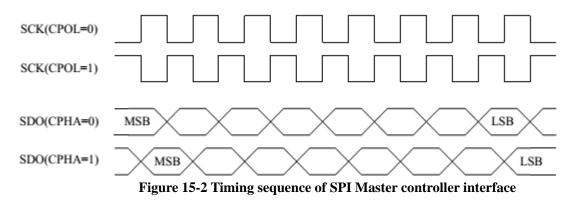
15.2.5 Parameter control register (SFC_PARAM)

Bit field	Name	Access	Initial value	Description
7:4	clk_div	R/W		Clock frequency selection

				Frequency division factor and {spre, spr} combination are the same.
3	dual_io	R/W	0	Dual I/O mode, the priority is higher than quick read.
2	fast_read	R/W	0	Quick reading mode
1	burst_en	R/W	0	SPI flash supports the continuous address read mode
0	memory_en	R/W	1	SPI flash read enables, if invalid, csn[0] can be controlled by software.

Notes: when programmed to SPI flash via EJTAG, it needs to set memory_en to 0.

15.2.6 Chip selection control register (SFC_SOFTCS)


Bit field	Name	Access	Initial	Description
			value	
7:4	csn	R/W	0	csn pin-out output value
3:0	csen	R/W		When the bit is 1, the csn line corresponding to the bit is controlled by 7:4 bit

15.2.7 Timing sequence control register (SFC_TIMING)

Bit field	Name	Access	Initial	Description
			value	
7:3	-	-	-	Reserved
2	tFAST	R/W	0	SPI flash read sampling mode
				0: Along the sampling, interval of half SPI
				period
				1: Along the sampling, interval of one SPI
				period
1:0	tCSH	R/W	3	The shortest invalid time of the chip selection
				signal of SPI Flash is calculated by the clock
				cycle T after frequency division
				00: 1T
				01: 2T
				10: 4T
				11: 8T

15.3 Interface Time Sequence

15.3.1 Timing sequence of SPI Master controller interface

15.3.2 SPI Flash access timing sequence

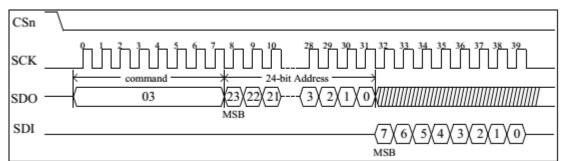


Figure 15-3 SPI Flash standard read timing sequence

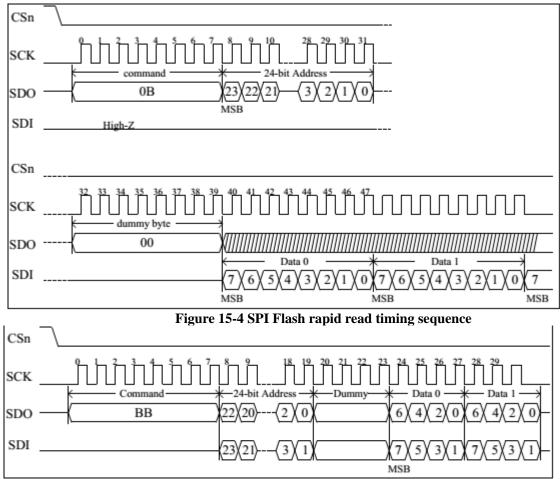


Figure 15-5 SPI Flash directional I/O read timing sequence

15.4 User's Manual

15.4.1 Read and write operations of SPI master controller

- 1. Module initialization
- Stop SPI controller work, write 0 to the spe bit of control register spcr
- Reset state register spsr, write 8'b1100_0000 to register
- Set the external register sper, including the condition for interrupt request sper[7:6] and frequency division factor sper[1:0]. Refer to register introduction.

• The configuration of SPI timing sequence includes the cpol and cpha of spcr, and mode bit of sper. When the mode is 1, it's the standard SPI implementation, and when the mode is 0, it's the compatible mode.

• Configuration interrupt enable, the spie bit of spcr

LOONGSON

• Start SPI controller, and write 1 to spe bit of control register spcr

2. Module transmission / transfer operations

• Write data in the data transmission register

• After the transmission finishes, read the data from the data transfer register. Because the transmission and receipt happen simultaneously, even if SPI hasn't sent effective data from the equipment, the read operation must be performed.

3. Interrupt processing

• Receive the interrupt request

• Read the data of status register spsr, if spsr[2] is 1, it indicates the data transmission has finished, and if spsr[0] is 1, it indicates it has received the data.

•Read or write data transmission register

• Write 1 to spif bit of status register spsr, and clear the interrupt request of the controller

15.4.2 Hardware SPI flash head

1. Initialization

• Write 1 to the memory_en bit of SFC_PARAM. When the SPI is choosen as the starting device, this bit is reset to 1.

• Set read parameters (clock frequency division, continuous address read, quick read, dual I/O, tCSH, etc.) These parameter reset values are the most conservative.

2. Change the parameters

If the used SPI Flash supports higher frequency or provides the enhancement, the access speed of Flash can be quickened greatly by modifying corresponding parameters. The parameter modification doesn't need to close SPI Flash read enable (memory_en)). Specific reference register instructions.

15.4.3 Mixed access to SPI Flash and SPI master controller

•Access SPI Flash except read

After SPI Flash read enable shuts down, the software can directly control csn[0], and access SPI bus via SPI master controller. It means that when performing this operation, instructins can't be fetched from SPI Flash. Except read, SPI Flash has implemented many commands (for example, erasion and write in), please refer to relevant Flash files.

16 SPI1 Controller

Serial peripheral equipment interface SPI bus technology is a full duplex, synchronous and serial data interface standard between several types of microprocessors, microcontrollers and peripheral equipment launched by Motorola company.

16.1 SPI Master Controller Architecture

The implementation of SPI1 and SPI0 is the same, and the system start address won't be mapped to SPI1 controller, so SPI1 doesn't support system start. The base address of IO register of SPI1 is 0xbfec0000, and the external storage address space of SPI1 is 0xbe00,0000 -0xbe3f,ffff, 4MB in total. Please refer to Chapter 15 information for all architectures and configurations

17 AC97 Controller

17.1 Overview (1C2 does not have this module)

One AC97 application system in system is as shown in Figure 19-1. In one system on chip, three parts are connected with AC97 controller: frstly, the peripheral bus to receive the control information and configuration from microprocessor; secondly, AC97 Codec, multimedia digital signal coder decode that modulates PCM signal, outputs the analogue voice received by human ears or convert the real sound to PCM singal; the conversion is implemented via D/A convertor; thirdly, DMA engine, DMA is configured by microprocessor, and transports the data from the memory area set by processor to FIFO or transports the data from FIFO to the set memory area.

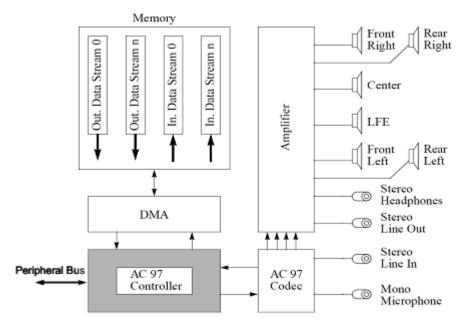


Figure 17-1 AC 97 application system

17.2 AC97 Controller Register

The base address of the physical address of this module register is 0xbfe6_0000.

Register name	Width	Offset	Description
CSR	2	0x00	Configuration status register
OCC0	24	0x04	Output channel configuration register 0
OCC1	24	0x08	Reserved
OCC2	24	0x0C	Reserved
ICC	24	0x10	Input channel configuration register
CODEC_ID	32	0x14	Codec ID register
CRAC	32	0x18	Codec register access command
OC0	20	0x02	Output sound track 0
OC1	20	0x24	Output sound track 1
OC2	20	0x28	Reserved
OC3	20	0x2c	Reserved
OC4	20	0x30	Reserved
OC5	20	0x34	Reserved
OC6	20	0x38	Reserved

OC7	20	0x3c	Reserved
OC8	20	0x40	Reserved
IC0	20	0x44	Reserved
IC1	20	0x48	Reserved
IC2	20	0x4c	Input sound track 2
INTRAW	32	0x54	Interrupt status register
INTM	32	0x58	Interrupt mask
INTS	32	0x5c	Reserved

17.2.1 CSR register

English name: configuration status register Register bit width: [31:0] Offset: 0x00 Reset value: 0x00000000

Bit field	Bit field name	Bit width	Access	Description
31:2	Reserved	30	RO	Reserved
1	RESUME	1		Get suspended, read this bit and returns to the state of the current AC97 subsystem. 1: AC97 suspend subsystem 0: normal working In the suspended state, write 1 to this bit, and start the recovery operation.
0	RST_FORCE	1		AC97 cold start Write 1, and cause the cold start of AC97 Codec

17.2.2 OCC register

English name: output channel configuration register Register bit width: [31:0] Offset: 0x04 Reset value: 0x00004141

Bit field	Bit field name	Bit width	Access	Description
31:24	Reserved	8	R/W	Reserved
23:16	Reserved	8	R/W	Reserved
15:8	OC1_CFG_R	8	R/W	Output channel 1: right sound track configuration
7:0	OC0_CFG_L	8	R/W	Output channel 0: left sound track configuration

17.2.3 ICC register

English name: input channel configuration register Register bit width: [31:0] Offset: 0x10 Reset value: 0x00410000

Bit field	Bit field name	Bit width	Access	Description
31:24	Reserved	8	R/W	Reserved
23:16	IC_CFG_MIC	8	R/W	Input channel 2: MIC channel configuration.
15:8	Reserved	8	R/W	Reserved

-150-

7:0	Reserved	8	R/W	Reserved

The configuration format of sound channels in OCC and ICC registers are the same, namely, OC0_CFG_L and OC0_CFG_R domains in OCC register and IC_CFG_MIC domain of OCC register in 17.2.3, and the format of sound track is shown as follows:

Bit field	Bit field name	Bit width	Access	Description
7	Reserved	1	R/W	Reserved
6	DMA_EN	1	R/W	DMA Enable
				1: DMA Open
				0: DMA Close
5:4	FIFO_THRES	2	R/W	FIFO threshold
				5:4 Output channels input channels
				00: FIFO 1/4 empty FIFO 1/4 full
				01: FIFO 1/2 empty FIFO 1/2 full
				10: FIFO 3/4 empty FIFO 3/4 full
				11: FIFO fully empty FIFO fully full
3:2	SW	2	R/W	Sampling resolution
				00:8 bit
				10:16 Bit
1	VSR	1	R/W	Sampling rate
				1: Variable sampling rate
				0: Fixed sampling rate (48KHz)
0	CH_EN	1	R/W	Channel enable
				1: Channel open
				0: Channel shutdown (or enter a power-saving
				status)

17.2.4 Codec register access command

English name: Codec register access command Register bit width: [31:0] Offset: 0x18 Reset value: 0x00000000

Bit field	Bit field name	Bit width	Access	Description
31	CODEC_WR	1		Read / Write selection 1: read, when reading the data, set CODEC_WR to read, and set the register address to be accessed in CODEC_ADR; after returning to data complete interrupt, reread value from CODEC_DAT register. 0: Write
30:23	Reserved	8	R	Reserved
22:16	CODEC_ADR	7	R/W	Codec register address
15:0	CODEC_DAT	16	R/W	Codec register data

17.2.5 Interrupt status register/interrupt mask register

English name: interrupt status / interrupt mask register Register bit width: [31:0] Offset: 0x54/58 Reset value: 0x00000000

Bit field	Bit field name	Bit width Access	Description

LOONGSON

31	IC_FULL	1	R/W	Input channel 2: FIFO full
30	IC_TH_INT	1	R/W	Input channel 2: FIFO threshold reached
29:8	Reserved	22	R/W	Reserved
7	OC1_FULL	1	R/W	Output channel 1: FIFO full
6	OC1_EMPTY	1	R/W	Output channel 1: FIFO empty
5	OC1_TH_INT	1	R/W	Output channel 1: FIFO threshold reached
4	OC0_FULL	1	R/W	Output channel 0: FIFO full
3	OC0_EMPTY	1	R/W	Output channel 0: FIFO empty
2	OC0_TH_INT	1	R/W	Output channel 0: FIFO threshold reached
1	CW_DONE	1	R/W	Codec register writing is completed
0	CR_DONE	1	R/W	Codec register read is completed

17.2.6 Interrupt status / clear register

English name: interrupt status / clear register Register bit width: [31:0] Offset: 0x 5c Reset value: 0x00000000

]	Bit field	Bit field name	Bit width	Access	Description
	31:0	INT_CLR	32		The masked interrupt status register, the read operation of this register will clear all interrupt states in register 0x54
					states in register 0x54

17.2.7 OC Interrupt clear register

English name: OC interrupt clear Register bit width: [31:0] Offset: 0x60 Reset value: 0x00000000

Bit field	Bit field name	Bit width	Access	Description
31:0	INT_OC_CLR	32	RO	The read operation of this register will clear bit[7:2] corresponding to all output channel interrupt states in register 0x54

17.2.8 IC Interrupt clear register

English name: IC interrupt clear Register bit width: [31:0] Offset: 0x64 Reset value: 0x00000000

Bit field	Bit field name	Bit width	Access	Description
31:0	INT_IC_CLR	32	RO	The read operation of this register will clear bit[31:30] corresponding to all output channel interrupt states in register 0x54

17.2.9 CODEC WRITE interrupt clear register

English name: CODEC WRITE interrupt clear Register bit width: [31:0] Offset: 0x68 Reset value: 0x00000000

Bit field	Bit field name	Bit width A	ccess De	escription

-152-

LOONGSON

31:0	INT_CW_CLR	32	RO	The read operation in this register will clear the
				bit[1] in register 0x54

17.2.10 CODEC READ interrupt clear register

English name: CODEC READ interrupt clear Register bit width: [31:0] Offset: 0x 6c Reset value: 0x00000000

Bit field	Bit field name	Bit width	Access	Description
31:0	INT_CR_CLR	32	RO	The read operation in this register will clear the
				bit[0] in register 0x54

18 I2C Controller

18.1 Overview

This chapter has provided the details, configuration and use of I2C The chip in system integrates I2C interfaces, and is mainly used to implement the data exchange between two devices. I2C bus is the serial bus consistuted by data line SDA and clock SCL, and can send and receive data. The bidirectional transfer is conducted between devices, Loongson 1C has integrated three-way I2C interfaces in total.

18.2 I2C Controller Architecture

Main modules of I2C master controller architecture include Clock Generator, Byte Command Controller, Bit Command controller, and Data Shift Register. The rest are LPB bus interfaces and some registers.

Clock generator module: generate the frequency division clock, sync bit command. Byte command controller module: interpret one command to the timing sequence of operation by bytes, namely, the byte operation is decomposed into bit operation.

Bit command controller module: conduct the transmission of actual data, and the generation of bit command signal.

Data shift register module: serial data shift

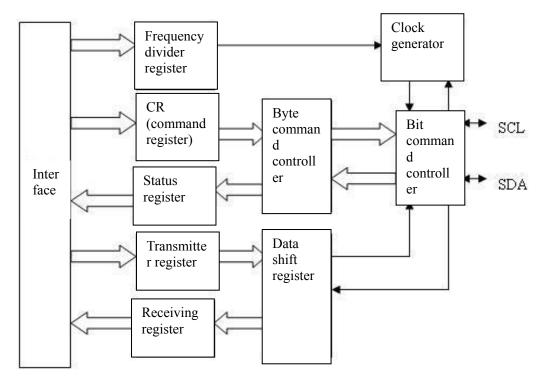


Figure 18-1 I2C Master Controller architecture

18.3 I2C Controller Register Description

The base address of the physical address of I2C-0 module register is 0xbfe5_8000, and the address space is 16KB. The base address of the physical address of I2C-1 module register is 0xbfe6_8000, and the address space is 16KB. The base address of the physical address of I2C-2 module register is 0xbfe7_0000, and the address space is 16KB.

18.3.1 Frequency division latch low-byte register (PRERIo)

English name: frequency division latch low-byte register register bit width: [7:0] Offset: 0x00 Reset value: 0xff

Bit field	Bit field name	Bit width	Access	Description
7:0	PRERlo	8	RW	Fractional frequency latch storage low 8

18.3.2 Frequency division latch high-byte register (PRERhi)

English name: Fractional frequency latch high byte register Register bit width: [7:0] Offset: 0x01 Reset value: 0xff

Bit field	Bit field name	Bit width	Access	Description
7:0	PRERhi	8	RW	Fractional frequency latch storage high 8

The frequency of frequency division clock clock_a in module is half of DDR_clk frequency (see Chapter 29 for DDR_clk configuration); assuming that the value of frequency division latch is prescale, the output frequency of SCL bus is clock_s (the clock is determined based on user's demand and external I2C equipment characteristics), and should meet the following conditions:

Prcescale=clock_a/(5*clock_s)-1 Or Prcescale=DDR_clk/(10*clock_s)-1

18.3.3 Control register (CTR)

English name: control register Register bit width: [7:0] Offset: 0x02 Reset value: 0x00

Bit field	Bit field name	Bit width	Access	Description
7	EN	1	RW	When the module wrok enable bit is 1, it's the normal operating pattern, and when it's 0, the frequency division register can operate.
6	IEN	1	RW	If interrupt enable bit is 1, open the interrupt
5:0	Reserved	6	RW	Reserved

18.3.4 Transmit data register (TXR)

English name: transmit register Register bit width: [7:0] Offset: 0x03 Reset value: 0x00

Bit field	Bit field name	Bit width	Access	Description
7:1	DATA	7	W	Store next byte to be transmitted
0	DRW	1		In data transfer, this bit saves the lowest bit of the data; in address transfer, this bit indicates read and write statuses

18.3.5 Receive data register (RXR)

English name: Receiving register

Register bit width: [7:0] Offset: 0x03 Reset value: 0x00

Bit field	Bit field name	Bit width	Access	Description
7:0	RXR	8	R	Store the last received byte

18.3.6 Command control register (CR)

English name: Command register Register bit width: [7:0] Offset: 0x04 Reset value: 0x00

Bit field	Bit field name	Bit width	Access	Description
7	STA	1	W	Generate START signal
6	STO	1	W	Generate STOP signal
5	RD	1	W	Generate read signal
4	WR	1	W	Generate write signal
3	ACK	1	W	Generate acknowledge signal
2:1	Reserved	2	W	Reserved
0	IACK	1	W	Generate interrupt acknowledge signal

The hardware is automatically cleared after the I2C sends data. In bit read operartions, it's always read back to '0'.

18.3.7 Status register (SR)

English name: Status register Register bit width: [7:0] Offset: 0x04 Reset value: 0x00

Bit field	Bit field name	Bit width	Access	Description
7	RxACK	1	R	Receive acknowledge bit
				1 fail to receive acknowledge bit
				0 receive acknowledge bit
6	Busy	1	R	I 2c Bus busy flag bit
				1 busy bus
				0 idle bus
5	AL	1	R	When I2C core loses I2C bus control right, this
				bit is set to 1.
4:2	Reserved	3	R	Reserved
1	TIP	1	R	Indicate transmission process
				1 indicate data is being transmitted
				0 indicate data transmission is completed
0	IF	1	R	Interrupt flag bit, when one data transfer is
				finished or another device initiates the data
				transfer, this bit is set to 1.

19 UART Controller

19.1 Overview

IC integrates 12 UART controllers, and communicates via APB bus and bus bridge. UART controller provides the function of serial communication with MODEM or other external equipment, for example, communicate with another computer by serial links according to the standard of RS232. The controller design is well compatible with international industrial standard semi-conductor equipment 16550A.

UART controller supports the expansion to USART mode by configuration register. The USART controller complies with two basic protocols: T=0 and T=1 in ISO7816, and provides the support for infrared and smart card interface modes.

19.2 Controller Architecture

The UART controller has Transmitter and Receiver modules, MODEM module, Interrupt Arbitrator module, and Register Access Control module, and their relationship is shown in the figure below. Main module functions and features are described below:

• Transmitter and receiver modules: be responsible for sending and receiving the data frame. The transmitter module converts the parallel data in FIFO transmit queue to serial data frame in the set form, and sends them through send port. The receiver module monitors the signal in receiving end, and in case of significant start bit, it will receive and convert the asyn serial data frame into parallel data, store them in FIFO receive queue, and check that the data frame format is right. The frame structure of UART is set by line control register (LCR), and the status of transmitter and receivers is stored in line control register (LCR).

• MODEM module: MODEM control register (MCR) controls the status of output signals DTR and RTS. MODEM control module monitoring the line status of input signals DCD, CTS, DSR and RI, and record the state of those signals in the bit corresponding to MODEM status register.

• Interrupt Arbitrator module: when any interrupt condition is met, and the corresponding bit of interrupt enable register is set to 1, the interrupt request signal UAT_INT of UART is set to significant condition. In order to reduce the interaction with external software, UART divides the interrupt into four grades, and identifies these interrupts in interrupt identification register (IIR). The interrupt at four levels rank as follow is in the order of priority: receive line status interrupt; receive data ready for interrupt; transfer the empty interrupt with register; MODEM status interrupt.

• Access to register module: when UART module is selected, CPU can access to the register selected by address line by read or write operations.

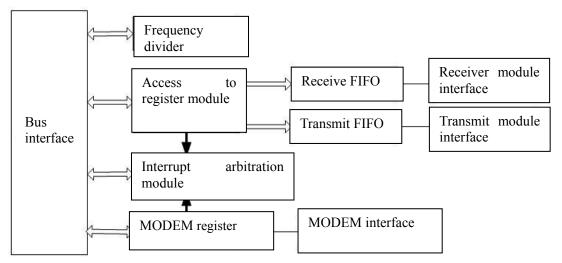


Figure 19-1 UART controller architecture

The expanded part of USART has added relevant register supporting ISO7816 specification, modified the receiver and transmitter modules, and added functions of receiving and transmitting error checking and retransmission control.

19.3 UARTO Split Configuration Introduction

Global fuction interfaces of UART0 in Loongson can be divided into two four-wire serial ports. See section 5.2.4 SHUT_CTRL[31:30] for configuration register.

When UART_split = 0, the pin of UART0 is the global function serial port of UART00.

When UART_split = 1, the UART0 is divided into two controllers: UART00 and UART01. The global functional pin of UART acts as four-wire serial output of two serial ports: UART00 and UART01, and their relationship is shown as follows:

Original UART0 function pin-out	nUart_split= 0	Uart_split= 1
UART0_TXD	UART00_TXD	UART00_TXD
UART0_RTS	UART00_RTS	UART00_RTS
UART0_DTR	UART00_DTR	UART01_TXD
UART0_RI	UART00_RI	UART01_RTS
UART0_RXD	UART00_RXD	UART00_RXD
UART0_CTS	UART00_CTS	UART00_CTS
UART0_DSR	UART00_DSR	UART01_RXD
UART0_DCD	UART00_DCD	UART01_CTS

Table 19-1	Configuration	and function	multiplexing	of UART split
	Comparation	and ranceron	manupioning	or critici spile

The function register of UART0 and UART01 is completely the same with the register described in 19.4, but the access base address is different. Therein, the base address of register physical address of UART00 is 0xbfe4_0000, and that of UART01 is 0xbfe4_1000.

19.4 Register Description

Loongson 1C has 12 UART/USART (marked as URT) interface, and its function is completely the same with functional register, but the access base address is different.

- The base address of register physical address of URT0 is 0xbfe4_0000.
- The base address of register physical address of URT1 is 0xbfe4_4000.
- The base address of register physical address of URT2 is 0xbfe4_8000.
- The base address of register physical address of URT3 is 0xbfe4 c000.
- The base address of register physical address of URT4 is 0xbfe4 c400.
- The base address of register physical address of URT5 is 0xbfe4 c500.
- The base address of register physical address of URT6 is 0xbfe4 c600.
- The base address of register physical address of URT7 is 0xbfe4 c700.
- The base address of register physical address of URT8 is 0xbfe4 c800.
- The base address of register physical address of URT9 is 0xbfe4_c900.
- The base address of register physical address of URT10 is 0xbfe4 ca00.
- The base address of register physical address of URT11 is 0xbfe4 cb00.

19.4.1 Data register (DAT)

English name: Data transmission register

Register bit width: [7:0] Offset: 0x00 Reset value: 0x00

Bit field	Bit field name	Bit width	Access	Description
7:0	Tx FIFO	8	W	Data transmitter register

19.4.2 Interrupt enable register (IER)

English name: Interrupt enable register Register bit width: [7:0] Offset: 0x01 Reset value: 0x00

Bit field	Bit field name	Bit width	Access	Description
7:4	Reserved	4	RW	Reserved
3	IME	1	RW	Modem status interrupt enables '0' – off '1' -on
2	ILE	1	RW	Receiver line status interrupt enable '0' - off '1'
				-on
1	ITxE	1	RW	Transfer and storage register is empty interrupt
				enable '0' – off '1' -on
0	IRxE	1	RW	Receive valid data interrupt enable '0' - off '1'
				-on

19.4.3 Interrupt identification register (IIR)

English name: Interrupt source register Register bit width: [7:0] Offset: 0x02 Reset Value: 0xc1

Bit field	Bit field name	Bit width	Access	Description
7:4	Reserved	4	R	Reserved
3:1	II	3	R	Interrupt source indicating bit, details in the table below
0	INTp	1	R	Interrupt indicating bit

Interrupt control function table:

Bit 3	Bit 2	Bit 1	Priorities	Interrupt type	Interrupt source	Interrupt reset control
0	1	1	1 st	Receive line	Odd-even, overflow or	Reading LSR
				status	framing error, or break	
					interrupt	
0	1	0	2^{nd}	Receive valid	The character number	The character number
				number	of FIFO reaches the	of FIFO is lower than
					trigger level.	trigger value.
1	1	0	2^{nd}	Receive timeout	There is at least one	Reading reception
					character in FIFO, but	FIFO
					there is no any	
					operation within the	
					time of four	
					characters, including	
					read and write	
					operations.	
0	0	1	3 rd	· · ·	Empty transmission	Write data to THR or
				0	save register	multiple IIR
				Empty device		

0	0	0	4^{th}	Modem status	CTS,	DSR,	RI	orRead MSR
					DCD.			

19.4.4 FIFO control register (FCR)

English name: FIFO control register Register bit width: [7:0] Offset: 0x02 Reset value: 0xc0

Bit field	Bit field name	Bit width	Access	Description
7:6	TL	2	W	Receive the trigger value '00' -1 byte '01' -4
				bytes '10' -8 bytes '11' -14 bytes from interrupt request of FIFO
5:3	Reserved	3	W	Reserved
2	Txset	1	W	'1' clears the content sent to FIFO, and reset its logic
1	Rxset	1	W	'1' clears the content received from FIFO, and reset its logic
0	Reserved	1	W	Reserved

19.4.5 Line control register (LCR)

English name: Line control register Register bit width: [7:0] Offset: 0x03 Reset value: 0x03

Bit field	Bit field name	Bit width	Access	Description
7	dlab	1	RW	Fractional frequency latch access bit '1 '- Access operation fractional frequency latch
				'0 '- Access operation normal register
6	bcb	1	RW	Interrupt control bit
				'1' -the serial output is set to 0 (interrupt status)
				'0'—normal operation
5	spb	1	RW	Specified parity check bit
				'0 '- No specified parity check bit
				'1' -if LCR[4] bit is 1, transfer and check the
				parity check bit is 0. If LCR[4] bit is 0, transfer
				and check the parity check bit is 1.
4	eps	1	RW	Parity check bit selection
				'0' -there is an odd number of 1 in each
				character (including data and parity check bit)
				1 '- there are an even number of characters in
				each character
3	pe	1	RW	Parity check bit enable
				'0 '- No parity check bit
				'1' – generate the parity check bits in output,
				and judge the parity check bits in input.
2	sb	1	RW	Digits of defined generation stop bit
				'0 '- 1 stop bit
				'1' -in case of five-bit length, there is 1.5 stop
				bits, and other lengths are 2 stop bits.
1:0	bec	2	RW	Set the digits of each character
				'00' -5 bit '01' -6 bit
				'10' -7 bit '11' -8 bit

19.4.6 MODEM control register (MCR)

English name: Modem control register Register bit width: [7:0] Offset: 0x04 Reset value: 0x00

Bit field	Bit field name	Bit width	Access	Description
7:5	Reserved	3	W	Reserved
4	Loop	1	W	Loopback mode control bit
				'0'—normal operation
				'1'—- loopback mode. In loopback mode, TXD
				output has been 1, and the output shift register
				is directly connected to input shift register.
				Other connections are as follows.
				DTR DSR
				RTS CTS
				Out1 RI
				Out2 DCD
3	OUT2	1	W	Connect to DCD input in the loopback mode
2	OUT1	1	W	Connect to RI input in the loopback mode
1	RTSC	1	W	RTS signal control bit
0	DTRC	1	W	DTR signal control bit

19.4.7 Line status register (LSR)

English name: Line status register Register bit width: [7:0] Offset: 0x05 Reset value: 0x00

Bit field	Bit field name	Bit width	Access	Description
7	ERROR	1	R	Error indicating bit
				'1' – at least one of parity check bit error, frame
				error or interrupt.
				'0 '- No error
6	TE	1	R	Empty transmission indicating bit
				'1' -transfer FIFO and transfer shift register are
				empty. Cleared when writing data to the FIFO
				transmission
-		-	-	'0 '- with data
5	TFE	1	R	Transmit empty FIFO bit indicating bit
				'1' -the current transfer FIFO is empty, reset
				when writing data to transfer FIFO
	DI	4		'0 '- with data
4	BI	1	R	Break interrupt indicating bit
				l' –receive start bit + data + parity bit + stop
				bit are all 0, namely, there is interrupt
2		1	D	0 '- no interrupt
3	FE	1	R	Frame error indicating bit
				'1 '- No stop bit in the received data
2	D.C.	1	D	'0 '- No error
2	PE	1	R	Error bit of parity check bit
				'1 '- parity error in current receiving data
1	0.5	1	D	0 '- No parity error
1	OE:	1	R	Data overflow indicating bit

				'1 '- Data overflow '0 '- No overflow
0	DR	1	R	Indicating bit of valid received data

Bit field	Bit field name	Bit width	Access	Description
				'0 '- No data in the FIFO
				'1 '- with data in the FIFO

During the read operation of the register, LSR[4:1] and LSR[7] are cleared; when writing data to transfer FIFO, LSR[6:5] is cleared, and LSR[0] judges received FIFO.

19.4.8 MODEM status register (MSR)

English name: Modem status register Register bit width: [7:0] Offset: 0x06 Reset value: 0x00

Bit field	Bit field name	Bit width	Access	Description
7	CDCD	1	R	The opposite of DCD input value or connect
				Out2 in loopback mode
6	CRI	1	R	The opposite of RI input value or connect to
				Out1 in loopback mode
5	CDSR	1	R	The opposite of DSR input value or connect to
				DTR in loopback mode
4	CCTS	1	R	The opposite of CTS input value or connect to
				RTS in loopback mode
3	DDCD	1	R	DDCD indicating bit
2	TERI	1	R	RI edge detection. RI status changes from low
				to high
1	DDSR	1	R	DDSR Indication bit
0	DCTS	1	R	DCTS Indication bit

19.4.9 Fractional frequency latch

English name: Fractional frequency latch 1 Register bit width: [7:0] Offset: 0x00 Reset value: 0x00

Bit field	Bit field name	Bit width	Access	Description
7:0	LSB	8	RW	Fractional frequency latch storage low 8
				bit

English name: Fractional frequency latch 2 Register bit width: [7:0] Offset: 0x01 Reset value: 0x00

Bit field	Bit field name	Bit width	Access	Description
7:0	MSB	8	RW	Fractional frequency latch storage high 8
				bit

19.5 USART Register Description

On the basis of UART, USART adds registers CR, MR and FIDIR supporting ISO7816 specification.

19.5.1 Control register (CR)

English name: control register Register bit width: [7:0] Offset: 0x8 Reset value: 0x00

Bit field	Bit field name	Bit width	Access	Description
0	UART_EN	1	RW	Serial port enable
				0: Disable
				1: Enable
1	IRDA_EN	1	RW	Infrared interface enable
				0: Disable
				1: Enable
2	SC_EN	1	RW	Smart card interface enable
				0: Disable
				1: Enable
3-7	-	-	-	Reserved

19.5.2 Mode register (MR)

English name: Mode register Register bit width: [7:0] Offset: 0x9 Reset value: 0x00

Bit field	Bit field name	Bit width	Access	Description
0-3	USART_MODE	4	RW	USART working mode:
				0000: Normal
				0001: Serial
				0010: Hardware handshake
				0011: modem
				0100: ISO7816 T=0
				0110: ISO7816 T=1
				1000: IrDA Others: reserved
4-7	-	-	-	Reserved

19.5.3 FI/DI parameter register (FIDIR)

English name: Mode register Register bit width: [31:0] Offset: 0xA Reset value: 0x00000000

Bit field	Bit field name	Bit width	Access	Description
0-10	FI_DI_RATIO	11	RW	0: ISO7816 mode doesn't generate Baud
				rate signal
				1~2047: ISO7816 produces Baud rate
				signal
11-31	-	-	-	Reserved

20 NAND Controller

20.1 NAND Controller Structural Description

NAND FLASH controller supports four chip selections and four RDY signals at most, and the controller supports the operation of two types of FLASH (SLC and MLC), supports 512Bytes, 2K, 4K, 8K page size FLASH operations, supports single chip of 8GB, 32GB for four chips. NAND FLASH controller supports the system startup, and the startup mode includes ECC mode startup and ordinary mode startup.

The system startup mode selection includes two types, as is shown in following table:

Startup mode	Configuration	Note
ECC mode	NAND_CLE external pull-up	The content of the first page in external NAND FLASH
Start		must be data produced by original data via RS (204,188)
		decoding.
Normal	NAND_CLE external	The first page data of the external NAND FLASH is
startup	pull-down	ordinary original data.

20.2 NAND Control Register Configuration Description

The list of NAND internal registers is as follows:

Address	Register name
0xbfe7_8000	NAND_CMD
0xbfe7_8004	ADDR_C
0xbfe7_8008	ADDR_R
0xbfe7_800C	NAND_TIMING
0xbfe7_8010	ID_L
0xbfe7_8014	STATUS
0xbfe7_8018	NAND_PARAMETER
0xbfe7_801C	NAND_OP_NUM
0xbfe7_8020	CS_RDY_MAP
0xbfe7_8040	DMA

20.2.1 Command register (NAND_CMD)

Bit	Bit field name	RW (read/w rite)	Description
31	DMA_REQ	R/-	In non-ECC mode, NAND sends DMA request.
30	ECC_DMA_REQ	R/-	In ECC mode, NAND sends DMA request.
29:25	STATUS	R/-	Internal status machine (for testing)
24		R/-	Reserved
23: 20	NAND_CE		Selection of external NAND chips and four bits correspond to four chip selections respectively. 0 stands for being chosen.
19: 16	NAND_RDY		In case of RDY of external NAND chip, the corresponding relationship is consistent with NAND_CE, and 1 indicates ready.
15			Reserved
14	Wait_rs_rd_done		1 indicates waiting for ECC read to finish (used in ECC read)
13	INT_EN	R/W	NAND interrupt enable signal, and 1 indicates

			enable interrupt.
12	RS_WR	R/W	1 indicates that ECC function is started in read operation.
11	RS_RD	R/W	1 indicates that ECC function is started in read operation.
10	done	R/W	1 indicates that the operation is finished, and it needs the software to clear.
9	Spare	R/W	1 indicates the operation occurs in SPARE area of NAND.
8	Main	R/W	1 indicates the operation occurs in MAIN area of NAND.
7	Read status	R/W	1 indicates the status operation of read NAND.
6	Reset	R/W	1 indicating Nand reset operation
5	read id	R/W	1 indicating reading ID operations
4	blocks erase	R/W	Erase the flag continuously, and default 0; 1 is valid, and the number of continuous erasing blocks are decided by nand_op_num.
3	erase operation	R/W	1 indicating erasure operation
2	write operation	R/W	1 indicating write operation
1	read operation	R/W	1 indicating read operation
0	command valid	R/W	1 indicates the command is valid, and the hardware is automatically cleared after operation.

20.2.2 Page offset address register (ADDR_C)

Bit	Bit field name	RW (read/write)	Description
31:14		R/-	Reserved
13:0	Nand_Col	R/W	Read, write and erase the initial address of the page address operation (it must be aligned by words, multiples of 4), and its corresponding relation with page size is: 512Bytes: it only needs to fill out [8:0] 2K: it needs to fill out [11:0], and [12] represents spare area, and [11:0] represents page offset address. 4K: it needs to fill out [12:0], and [12] represents spare area, and [11:0] represents page offset address. 8K: it needs to fill out [13:0], and [12] represents spare area, and [11:0] represents page offset address.

20.2.3 Page address register (ADDR_R)

Bit	Bit field name	RW (read/write)	Description
31:25		R/-	Reserved
24:0	Nand_Row		Read, write and erase operations start address, page address, and the address consists of: {Chip selection, pages} The chip selection is fixed to 2 bits, and the page number is determined based on actual capacity of single particle. For example, 1M page is [19:0], and [21:20] is used select which chip among 4 chips.

Bit	Bit field name	RW (read/write)	Description
31:16		R/-	Reserved
15:8	Hold cycle	R/W	The cycle number required by NAND command significant, default 4
7:0	Wait cycle	R/W	Total clock cycle number required by NAND one-time read and write, default 18, and configure to 8'hb in ECC mode

20.2.4 Timing sequence register (NAND_TIMING)

20.2.5 ID register (ID_L)

Bit	Bit field name	RW (read/write)	Description
[31:0]	ID (310)	R/-	ID (310)

20.2.6 ID and status register (STATUS & ID_H)

Bit	Bit field name	Access	
31:24		R/-	Reserved
23:16	STATUS		Current reading and writing completion status of NAND device
15:0	ID (4732)		ID high 16 bits (if the ID has only 5 bytes, ID[47:40] is 0)

20.2.7 Parameter configuration register (NAND_PARAMETER)

Bit	Bit field name	RW	Description
		(read/write)	
31:30		R/-	Reserved
29:16	op_scope	R/W	Each capable operating range, the configuration
			is as follows:
			1. Operate main area, and configure it to the size
			of the main area in a page
			2. Operate spare area, and configure it to the size
			of the spare area in a page
			3. Operate the main and spare areas, and
			configure to the size of the main and spare areas
			in a page
15		R/-	Reserved
14:12	ID_number	R/W	The number of bytes of the ID
11:8	External grain	R/W	0:1 Gb (2K page)
	capacity size		1:2 Gb (2K page)
			2:4 Gb (2K page)
			3:8 Gb (2K page)
			4:16 Gb (4K page)
			5:32 Gb (8K page)
			6:64 Gb (8K page)
			7:128 Gb (8K page)
			9:64 Mb (512B page)
			a: 128Mb (512B page)
			b: 256Mb (512B page)
			c: 512Mb (512B page)

		d: 1Gb (512B page)
7:0	R/-	Reserved

20.2.8 Operating number register (NAND_OP_NUM)

Bit	Bit field name	RW (read/write)	Description					
31:0	NAND_OP_NUM		NAND read and write Byte numbers (must be aligned by words, and multiples of 4); erase block number					

20.2.9 Map register (CS_RDY_MAP)

Four CSs of NAND are automatically generated by the accessed address hardware, and CS0/RDY0 corresponds to the lowest space, CS1/RDY1 to the next lowest space, and so forth. If it's necessary to adjust the relationship between external chip and NAND address, remap cs_rdy 1/2/3 by setting this register.

Bit	Bit field name	RW (read/write)	Description
31:28	rdy3_sel	R/W	rdy3 signal is mapped from chip pin to NAND controller 4'b0001:NAND_RDY[0] 4'b0010:NAND_RDY[1] 4'b0100:NAND_RDY[2]
			4'b1000:NAND_RDY[3]
27:24	cs3_sel	R/W	rdy3 signal is mapped from NAND controller to chip pin 4'b0001:NAND_CS[0] 4'b0010:NAND_CS[1] 4'b0100:NAND_CS[2] 4'b1000:NAND_CS[3]
23:20	rdy2_sel	R/W	rdy2 signal is mapped from chip pin to NAND controller 4'b0001:NAND_RDY[0] 4'b0010:NAND_RDY[1] 4'b0100:NAND_RDY[2] 4'b1000:NAND_RDY[3]
19:16	cs2_sel	R/W	cs2 signal is mapped from NAND controller to chip pin 4'b0001:NAND_CS[0] 4'b0010:NAND_CS[1] 4'b0100:NAND_CS[2] 4'b1000:NAND_CS[3]
15:12	rdy1_sel	R/W	rdy1 signal is mapped from chip pin to NAND controller 4'b0001:NAND_RDY[0] 4'b0010:NAND_RDY[1] 4'b0100:NAND_RDY[2] 4'b1000:NAND_RDY[3]
11:8	cs1_sel	R/W	cs1 signal is mapped from NAND controller to chip pin 4'b0001:NAND_CS[0] 4'b0010:NAND_CS[1] 4'b0100:NAND_CS[2] 4'b1000:NAND_CS[3]
7:0		R/-	Reserved

20.2.10 DMA read and write data register (DMA_ADDRESS)

Bit	Bit field name	RW	Description
		(read/write	

)	
[31£°0]	DMA_ADDRESS	R/W	For the access address where DMA reads and writes NAND flash data (except ID/STATUS), the read/write address is the same and the read/write direction is implemented by DMA configuration.

20.3 NAND ADDR Description

Taking 2K-page NAND flash for example, it's defined as follows: The size of the main area in each page is 2KB, and that of the spare area is 64B

main_op = NAND_CMD[8];

spare_op = NAND_CMD[9];

addr_in_page ={A11, A10.. A2, A1, A0}=ADDR_C page_number ={ ...A30,A29,A28,A27...A13,A12}= ADDR_R

Total capacity of computational formula of main area NAND flash Capacity= $2^{(ADDR_C-1)} * 2^{(ADDR_R)}*8bit = 2K*2^{(ADDR_R)}*8bit$ NAND address space is exampled in the following table:

	Table 20-1 NAND address space diagram										
	I/O	0	1	2	3	4	5	6	7		
Column1	1st Cycle	A0	A1	A2	A3	A4	A5	A6	A7		
Column2	2nd Cycle	A8	A9	A10	A11	L.	L.	L.	L.		
Row1	3rd Cycle	A12	A13	A14	A15	A16	A17	A18	A19		
Row2	4th Cycle	A20	A21	A22	A23	A24	A25	A26	A27		
Row3 (Note)	5th Cycle	A28	A29	A30	A31	A32	A33				

Table 20-1 NAND address space diagram

(Notes: the maximum Row corresponding to 2K-page 1Gb NAND flash is A27, and only Column1~2 and Row1~2 are used instead of Row3 to the address to NAND flash. In the configuration of NAND parameters, attention should be paid to the model configuration, or data won't be read and the controller may die, etc.)

For NAND particles in system board, if only the spare area is operated, A11=1 will be the only sign. Thus, when the software configures the internal register, it's necessary to configure A11 and spare_op to 1 (see Examples5). See Examples2 for wrong examples.

For NAND particles in system panel, if only the spare area is operated, A11=1 is the only sign. Thus, when the software configures the internal register, it's necessary to configure A11 and spare_op to 0 (see Examples1). See Examples4 for wrong examples.

For NAND particles in system panel, if only main+spare areas are operated, A11 may be 0 (see Examples3), and may also be 1 (See Examples6)

Examples1: (In non-ECC mode, One-page data in NAND particles is only located in 0x0-0x83f. The first op indicates the initial read and write data, and the following ops indicate the subsequent read and write data; NO_op indicates the data that can't be read and written by this NAND configuration.

(spare_op = 1'b0 & main_op =1'b0) equal to (spare_op = 1'b0 & main_op=1'b1); ADDR_C =0x30

Data in a page	0	0x30		0x7ff	0x800	0x830	0x83f
Page 0	NO_op	op	op	op	NO_op	NO_op	NO_op
Page 1	ор	op	op	op	NO_op	NO_op	NO_op
Page 2	op	op	op	op	NO_op	NO_op	NO_op

Examples2:

spare_op=1'b1 & main_op=1'b0; ADDR_C = 0x30 (Wrong configuration!! The initial operation isn't performed in spare area, and the figure below shows the possible sequence of wrong access)

-168-

Data in a page	0	0x30	••••	0x7ff	0x800	0x830	0x83f
Page 0	NO_op	op	op	op	Op	op	op
Page 1	NO_op	NO_op	NO_op	NO_op	Ор	op	op
Page 2	NO_op	NO_op	NO_op	NO_op	Op	op	op

Page 3	NO_op	NO_op	NO_op	NO_op	Ор	ор	ор

Examples3:

spare_op = 1'b1 & main_op =1'b1; ADDR_C = 0x30								
Data in a page	0	0x30		0x7ff	0x800	0x830	0x83f	
Page 0	NO_op	op	op	op	ор	op	op	
Page 1	op	op	op	op	op	op	op	
Page 2	op	op	op	op	op	op	op	

Examples4:

(spare_op=1'b0 & main_op=1'b0), (equal to spare_op=1'b0 & main_op=1'b1); ADDR_C=0x830: Wrong configuration!! The initial operation is performed in spare area, and the figure below shows the possible sequence of wrong access)

Data in a page	0	0x30		0x7ff	0x800	0x830	0x83f
Page 0	NO_op	NO_op	NO_op	NO_op	NO_op	NO_op	NO_op
Page 1	NO_op	op	op	op	op	NO_op	NO_op
Page 2	op	op	op	op	op	NO_op	NO_op
Page 3	op	op	op	op	op	NO_op	NO_op
Examples5:						L	1
spare_op = 1'	b1 and n	nain_op	=1'b0; A	DDR_C:	= 0x830		
Data in a page	0	0x30		0x7ff	0x800	0x830	0x83f
Page 0	NO_op	NO_op	NO_op	NO_op	NO_op	op	op
Page 1	NO_op	NO_op	NO_op	NO_op	op	op	op
Page 2	NO_op	NO_op	NO_op	NO_op	op	op	op
Examples6:							
spare op = 1'	b1 & ma	in op =1	'b1: ADD	R C = 0)x830		
Data in a page	0	0x30		0x7ff	0x800	0x830	0x83f
Page 0	NO_op	NO_op	NO_op	NO_op	NO_op	op	op
Page 1	op	op	op	op	op	op	<mark>op</mark>
Page 2	op	op	op	op	op	op	op
Page 3	op	op	op	op	op	op	op

The configuration of 512B-page and 2KB-page NAND flash is similar, but there are some differences that need attention:

The size of the main area in each page is 512B, and that of the spare area is 16B Therein, the main area is divided into two 256B areas, each of which is addressed by A0 \sim A7. In read and write operations, commands 0x00, 0x01 and 0x50 are sent to choose which 256B area or spare area (Don't care about the software; the hardware selects automatically, for example, when the configuration NAND controller writes 0x100, the hardware will automatically send it to high 256B area).

Transmit address command sequence is as follows:

	I/O	0	1	2	3	4	5	6	7
Column1	1st Cycle	A0	A1	A2	A3	A4	A5	A6	A7
Row1	2nd Cycle	A9	A10	A11	A12	A13	A14	A15	A16
Row2	3rd Cycle	A17	A18	A19	A20	A21	A22	A23	A24
Row3(注)	4th Cycle	A25	A26	*L	*L	*L	*L	*L	*L

(Notes: when the capacity of Nand flash is 64Mb, 128Mb and 256Mb, their corresponding largest column addresses of ADDR_R are A22, A23 and A24 respectively. Only address commands of Column1 and Row1~2 are sent three times, and Row3 won't be sent; when the capacity is 512Mb and 1Gb, Row3 needs to be sent.

4K/8K page- and 2K page-configurations are the same. The 4K page configuration has 4KB main area and 128B spare area; the 8K page configuration has 8KB main area and 640B spare area. Need to transmit five address commands.

20.4 Examples of Nand-flash Read and Write Operations

The "command valid" bit of the register can't be set simultaneously with other read and write enable bits. Only after the operation is set, can 'command valid' bit is set.

For example, to read the data of Main area, the operation is divided into two steps:

a. firstly, NAND_CMD = 0x102

b. Then, NAND_CMD = 0x103

20.5 NAND ECC Description

The hardware integrates ECC function, and ECC adopts the RS (204,188) method to encode and decode. But in software configuration, attention should be paid to the following:

1. In reading and writing NAND, 0 is recommended for the internal address (ADDR_C) of Page;

2. In each PAGE, NAND has 2048Bytes. After coding and decoding by RS (204,188), only the first 2040Bytes will be used, and 8 bytes will not; after the adoption of ECC, the NAND utilization rate is 188/204;

3. In operand configuration, in operating one page, the op_num in NAND is configured to multiples of 204 (in the unit of byte); in DMA configuration, the operand is the multiples of 47(188/4) (in the unit of word).

4. ECC operation and OOB operation may be separated. For example, after one page finishes ECC read/write, its OOB can be operated.

After the completion of ECC operation, all contents can be read back by common way, including original data and the data added by ECC check (the configuration operand op_num and DMA are the same). Check ability: 8 bytes may be corrected at most, and 1-8 bits may go wrong among those Bytes.

64bits are wrong in the first line of data, just equal to 8 bytes, which can be corrected; although 9bits are wrong in the last of data, and scatter among 9Bytes, which can't be corrected.

Original data	ff	ff	ff	ff	ff	ff	$\mathbf{f}\mathbf{f}$	$\mathbf{f}\mathbf{f}$	ff	ff	ff	ff	
(204Bytes)													
Data 1	00	00	00	00	00	00	00	00	ff	ff	ff	ff	 Correctable
Data 2	1	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	 Correctable
Data 3	fe	ff	ff	$\mathbf{f}\mathbf{f}$	$\mathbf{f}\mathbf{f}$	ff	ff	ff	ff	ff	ff	ff	 Correctable
Data 4	1	2	3	4	5	6	07	08	ff	ff	ff	ff	 Correctable
Data 5	fe	fe	fe	fe	fe	fe	fe	fe	fe	ff	$\mathbf{f}\mathbf{f}$	ff	 Uncorrectable

20.6 NAND BOOT Description

The NAND BOOT supports the NAND flash boot in 512B, 2K page, 4K page and 8K page. Based on the capacity and pagesize of FLASH, the pull-up and pull-down resistors of NAND_D[7:6] are configured (they must correspond to each other, or it may die, etc.). This is shown in figure below:

-170-

NAND_D [7:6] nand _type	In NAND boot, configure the particle capacity of NAND flash
-------------------------	---

11 indicates the capacity is equal to 2GB (2K
page/4K page/8K page)
10 indicates the capacity is 1GB (2K page)
01 indicates the capacity is 512MB (512 Bytes
page)
00: it indicates the capacity is low and equal to
256MB (512 Bytes page)

In NAND boot, 1K bytes will be fetched from Page 0 for the chip initialization. If it's 512B, two pages will be read; if it's 2K page or larger, 1K bytes will be read. The system initial code needs to start from 0 byte from Page 0.

Through the pulling up and down of NAND_CLE, NAND BOOT may choose ECC boot or non-ECC boot. Their differences are: ECC adopts RS(204,188) code, and in ECC boot 1020 bytes are read, 940 bytes of which are valid data, and the rest coded data. (Notes: in ECC boot, 512B page isn't supported.)

21 RTC

21.1 Overview

Loongson 1C real-time clock unit can be configured after the main board is powered on, and after the main board is powered off, the unit still runs normally relying on the battery in main board. RTC unit only consumes several microwatts during operation.

RTC is driven by the external 32.768KHZ crystal oscillator, and after the frequency division by configurable frequency divider, this clock is used to count, and update hour, minute, second, day, month, and year. At the meantime, the clock is also used to generate various timing and counting interrupts.

RTC unit consists of counter and timer, and its architecture is shown in the figure below:

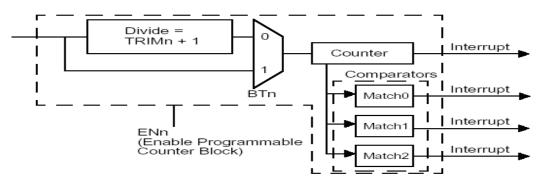


Figure 21-1 RTC block architecture diagram

21.2 Register Description

RTC module register is located in 0xbfe6_4000

In 16KB address space of -0xbfe6_7fff, its base address is 0xbfe6_4000, and the bit width of all registers is 32-bit.

Name	Address	Bit width	RW	Description	Reset value
sys_toytrim	0xbfe6_4020	32	W	For the frequency division factor of 32.768kHz (Counter clock)	
sys_toywrite0	0xbfe6_4024	32	W	TOY low 32-bit value read-in	
sys_toywrite1	0xbfe6_4028	32	W	TOY high 32-bit value read-in	
sys_toyread0	0xbfe6_402C	32	R	TOY low 32-bit value read-out	
sys_toyread1	0xbfe6_4030	32	R	TOY high 32-bit value read-out	
sys_toymatch0	0xbfe6_4034	32	RW	TOY timer interrupt 0	
sys_toymatch1	0xbfe6_4038	32	RW	TOY timer interrupt 1	
sys_toymatch2	0xbfe6_403C	32	RW	TOY timer interrupt 2	
sys_rtcctrl	0xbfe6_4040	32	RW	TOY and RTC control register	
sys_rtctrim	0xbfe6_4060	32	RW	For the frequency division factor of 32.768kHz (Timer clock)	
sys_rtcwrite0	0xbfe6_4064	32	RW	RTC timer count write-in	
sys_rtcread0	0xbfe6_4068	32	RW	RTC timer counter read-out	
sys_rtcmatch0	0xbfe6_406C	32	RW	RTC clock timer interrupt 0	
sys_rtcmatch1	0xbfe6_4070	32	RW	RTC clock timer interrupt 1	

21.2.1 Register address list

LOONGSON

sys_rtcmatch2 0xbfe6_4074 32 RW RTC clock timer interrupt 2

Notes: after the reset of sys_toytrim and sys_rtctrim registers, their values can't be determined. If it's not necessary to divide the frequency of the external crystal oscillator, these two registers need clearing for the normal counting of the RTC module. The part marked in yellow in the above table doesn't exist in 1C2.

21.2.2 SYS_TOYWRITE0

English name: set up TOY counter low 32bits value Register bit width: [31:0] Offset: 0x24 Reset value: 0x00000000

Bit field	Bit field name	Access	Default	Description
31:26	TOY_MONTH	W		Months, ranging from 1 to 12
25:21	TOY_DAY	W		Days, ranging from 1 to 31
20:16	TOY_HOUR	W		Hours, ranging from 0 to 23
15:10	TOY_MIN	W		Minutes, ranging from 0 to 59
9:4	TOY_SEC	W		Seconds, ranging from 0 to 59
3:0	TOY_MILLISEC	W		0.1 seconds, ranging from 0 to 9

21.2.3 SYS_TOYWRITE1

English name: set up TOY counter low 32-bit value Register bit width: [31:0] Offset: 0x28 Reset value: 0x00000000

Bit field	Bit field name	Access	Default	Description
31:0	TOY_YEAR	W		Years, ranging from 0 to 99

21.2.4 SYS_TOYREAD0

English name: set up TOY counter low 32bits value Register bit width: [31:0] Offset: 0x2c Reset value: 0x00000000

Bit field	Bit field name	Access	Default	Description
31:26	TOY_MONTH	R		Months, ranging from 1 to 12
25:21	TOY_DAY	R		Days, ranging from 1 to 31
20:16	TOY_HOUR	R		Hours, ranging from 0 to 23
15:10	TOY_MIN	R		Minutes, ranging from 0 to 59
9:4	TOY_SEC	R		Seconds, ranging from 0 to 59
3:0	TOY_MILLISEC	R		0.1 seconds, ranging from 0 to 9

21.2.5 SYS_TOYREAD1

English name: set up TOY counter low 32-bit value Register bit width: [31:0] Offset: 0x30 Reset value: 0x00000000

Bit field	Bit field name	Access	Default	Description
31:0	TOY_YEAR	R		Years, ranging from 0 to 99

21.2.6 SYS_TOYMATCH0/1/2 (no register in 1C2)

English name: TOY counter interrupt register 0/1/2 Register bit width: [31:0] Offset: 0x34/38/3C Reset value: 0x00000000

Bit field	Bit field name	Access	Default	Description
31:26	YEAR	Rw		Years, ranging from 0 to 16383
25:22	MONTH	Rw		Months, ranging from 1 to 12
21:17	DAY	Rw		Days, ranging from 1 to 31
16:12	HOUR	Rw		Hours, ranging from 0 to 23
11:6	MIN	Rw		Minutes, ranging from 0 to 59
5:0	SEC	Rw		Seconds, ranging from 0 to 59

21.2.7 SYS_RTCCTRL (no register in 1C2)

English name: RTC timer interrupt register 0/1/2 Register bit width: [31:0] Offset: 0x40 Reset value: 0x00000000

Bit field	Bit field name	Access	Default	Description
31:24	Reserved	R	0	Reserved, set to 0
23	ERS	R	0	REN (bit13) write status
22:21	Reserved	R	0	Reserved, set to 0
20	RTS	R	0	Sys_rtctrim write status
19	RM2	R	0	Sys_rtcmatch2 write status
18	RM2	R	0	Sys_rtcmatch2 write status
17	RM0	R	0	Sys_rtcmatch0 write status
16	RS	R	0	Sys_rtcwrite write status
15	Reserved	R	0	Reserved, set to 0
14	BP	R/W	0	Bypass 32.768k oscillator
				0: oscillator selection input;
				1: GPIO8 is used to drive counter, which
				is the test mode. GPIO8 adopts the
				external clock or GPIO8 controller.
13	REN	R/W	0	0: RTC disabled; 1: RTC enabled
12	BRT	R/W	0	Bypass RTC frequency division
				0: Normal operation;
				1:RTC is directly driven by 32.768k
				crystal oscillator
11	TEN	R/W	0	0: TOY disabled; 1: TOY enabled
10	BTT	R/W	0	Bypass TOY frequency division
				0: Normal operation;
				1: TOY is directly driven by 32.768k
				oscillator
9	Reserved	R	0	Reserved, set to 0
8	EO	R/W	0	0: 32.768k oscillator disabled;

-174-

				1: 32.768k oscillator enabled
7	ETS	R	0	TOY enable write status
6	Reserved	R	0	Reserved, set to 0
5	328	R	0	0:32.768k oscillator does not work; 1:32.768k oscillator works properly.
4	TTS	R	0	Sys_toytrim write status
3	TM2	R	0	Sys_toymatch2 write status
2	TM1	R	0	Sys_toymatch1 write status
1	TM0	R	0	Sys_toymatch0 write status
0	TS	R	0	Sys_toywrite write status

21.2.8 SYS_TOYMATCH0/1/2 (no register in 1C2)

English name: RTC timer interrupt register 0/1/2 Register bit width: [31:0] Offset: 0x 6C/70/74 Reset value: 0x0000000 Bit field Bit field name Access Default Description 31:26 YEAR RW Years, ranging from 0 to 16383 25:22 MONTH RW Months, ranging from 1 to 12 21:17 DAY RW Days, ranging from 1 to 31 16:12 HOUR RW Hours, ranging from 0 to 23 11:6 MIN RW Minutes, ranging from 0 to 59 SEC RW 5:0 Seconds, ranging from 0 to 59

22 SDIO Controller

22.1 Function Overview

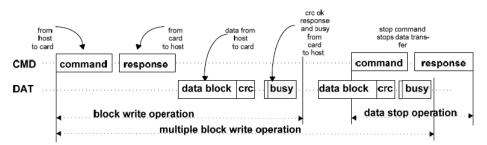
Loongson 1C integrates one SDIO controller that is used for the read and write of SD Memory and SDIO, and supports the boot of Memory card. SDIO controller features are in the following:

- Be compatible with the specification of SD storage card (version 2.0)
- Be compatible with the specification of SDIO card (version 2.0)
- •8 words (32 bytes) data sending/receiving FIFO
- Expanded 256bits SD card status register
- •8 bits prescale logic (frequency=system clock /(p+1))
- DMA data transmission mode
- SD mode of 1-bit/4 bits (wide bus)

22.2 SDIO Protocol Overview

SDIO is a serial communication method, and master and slave devices can implement the transmission of data and status by message delivery. The below is the schematic diagram of writing multi-block data, and its process is as follows:

1. The master device sends the write command message to salve device by order wire.


2. After the slave device receives the message, it sends the acknowledgment message to slave device by order line.

3. After the master device receives the right acknowledge message, a data block (512K Byte or more) are sent to the slave device by data line and to test the busy status of data line.

2. After the slave device receives the right data, it enters into the programming state. Then, the data line is set to busy, and won't respond to the data request of master device.

5. From the master device detection to device programming, the next data block will be sent continuously.

6. After the master device sends the last data block, it sends the stop command to the slave device by command line. After the slave device receives the right response, the multi-block read and write operations are finished.

Figure 22-1 Schematic diagram of SD card multi-block write operation

The multi-block read operation is similar with the multi-block write operation (supplementary instructions).

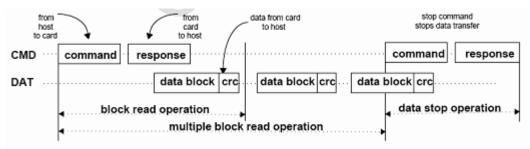


Figure 22-2 Schematic diagram of SD card multi-block read operation

Different commands have a uniform format. The format of general commands is shown in the table below, 1bit start bit, 1bit transmission direction bit, 6bit command sequence number, 32bit command parameter, 7bit CRC check bit and 1bit stop bit.

						· · · · · · · · · · · · · · · · · · ·
Bit position	47	46	[45:40]	[39:8]	[7:1]	0
Width (bits)	1	1	6	32	7	1
Value	ʻ0'	'1'	x	x	х	'1'
Description	start bit	transmission bit	command index	argument	CRC7	end bit

Table 22-1 Command format in SD mode

Therein, the command index corresponds to the command number, for example, cmdindex is 0 for command 0, and cmdindex is 37 for command 55. Parameters of different commands may be different. Please refer to SD protocol specification

22.3 Register Description

The register of SDIO controller is shown as follows:

Register name	Address	Read / Write (R / W)	Function description	Reset value
sdi_con	0xbfe6c000	,	SDIO control register	0x0

sdi_con	Bit	Default values	Description
reserved	31:9	0x0	
soft_rst	8		Software reset, the entire module is reset. Hardware is automatically cleared after reset
reserved	7:0	0x0	
enclk	0	0x0	SD clock output enable

Register name	Address	Read / Write (R / W)	Function description	Reset value
sdi_pre	0xbfe6c004		SDIO prescale register	0x1

sdi_pre	Bit	Default	Description
		values	
reserved	31:8	0x0	
sdi_pre	7:0		SDIO clock prescale value, the output frequency =PCLK/prescale value

Register name	Address	Read / Write	Function	Reset value
		(R / W)	description	
sdi_cmd_arg	0xbfe6c008	r/w	SDIO command	0x0
			parameter	
			register	

sdi_cmd_arg	Bit	Default values	Description
sdi_cmd_arg	31:0	0x0	Command parameter

Register name	Address	Read / Write	Function	Reset value
		(R / W)	description	

sdi_cmd_con	0xbfe6c00c	r/w	SDIO command0x0
			control register

sdi_cmd_con	Bit	Default values	Description
reserved	31:18	0x0	
func_num_abort	17: 15	0x0	When the function number of SDIO card interrupt is used fo multi-block read and write, the hardware will send the stop command automatically. If auto_stop_en is 0, this bit i insignificant.
sdio_en	14	0x0	SDIO enable signal. When used for multi-block read and write, the hardware will send the stop command automatically. If the bit is 1, CMD52 is sent; if the bit is 0, CMD12 is sent. If auto_stop_en is 0, this bit is insignificant.
check on	13	0x0	Check the CRC or not, significant at 1
auto_stop_en	12	0x0	Hardware automatically sends a stop command. In multi-block read and write, does the hardware send the stop command automatically? If the bit is 1, it's significant.
reserved	11	0x0	
long_rsp	10	0x0	Is it the 136-bit long response? If the bit is 1, it's the long message reply.
wait_rsp	9	0x0	It decides whether the host waits for the response. If the bit is 1, it indicates waiting for message reply.
CMST	8	0x0	When the bit is set to 1, the command starts, and the hardware is cleared automatically after the command ends.
cmd_index	7:0	0x0	Command index with initial 2 bits (8bits in total)

Register name	Address	Read / Write (R / W)	Function description	Reset value
sdi_cmd_sta	0xbfe6c010	ro	SDIO command status register	0x0

sdi_cmd_sta	Bit	Default value	Description
reserved	31:13	0x0	
cmd_sent_fin	14	0x0	Flag bit of the command sending (including response) finished. When the bit is 1, it indicates that the command is sent and the response is made.
auto_stop	13	0x0	Flag bit of hardware sending stop command automatically. When the bit is 1, it indicates that the hardware sends stop command automatically, and when it's 0, it indicates the hardware sends does not stop command automatically
rsp_crc_err	12	0x0	Response CRC error. Received response CRC error. When the bit is 1, it indicates responding CRC error, and when it's 0, it indicates no

			CRC error is found.
cmd_end	11	0x0	Command sending finished (indifferent to concern). When the bit is 1, it indicates command sending finished, and when it's 0, it indicates command sending unfinished.
cmd_tout	10	0x0	Command timeout. Command response timeout (64 clock periods) or $R1_b$ command, busy waiting command. When the bit is 1, it indicates response timeout, and when it's 0, it indicates no timeout.
rsp_fin	9	0x0	Response finished, and return message received from equipment. When the bit is 1, it indicates response finished, and when the bit is 0, it indicates response unfinished.
cmd_on	8	0x0	Flag bit of command transmission. When the bit is 1, it indicates transmission under way, and when it's 0, it indicates the transmission is finished.
rsp_index	7:0	0x0	Response index with initial 2 bits returned from equipment (8bits in total)

Register name	Address	Read / Write (R / W)	Function description	Reset value
sdi_rsp0	0xbfe6c014	ro	SDIO command response register 0	0x0

s	sdi_cmd_arg	Bit	Default	Description
			values	
sdi_r	rsp0	31:0		Card status [31:0] (short), card status [127:96] (long) see sdi_cmd_con[10] for the configuration of long response

Register name	Address	Read / Write	Function	Reset value
		(R / W)	description	
sdi_rsp1	0xbfe6c018	ro	SDIO command	0x0
			response	
			register 1	

sdi_cmd_arg	Bit	Default values	Description
sdi_rsp1	31:0		Unused (short), card status [95:64] (long) see sdi_cmd_con[10] for the configuration of long response

Register name	Address	Read / Write (R / W)	Function description	Reset value
sdi_rsp2	0xbfe6c01c	ro	SDIO command	0x0

		0
	response	
	register 2	

sdi_cmd_arg	Bit	Default values	Description
sdi_rsp2	31:0	0x0	Unused (short), card status [63:32] (long) see sdi_cmd_con[10] for the configuration of long response

Register name	Address	Read / Write (R / W)	Function description	Reset value
sdi_rsp3	0xbfe6c020		SDIO command response register 3	0x0

sdi_cmd_arg	Bit	Default values	Description
sdi_rsp3	31:0		Unused (short), card status [31:0] (long) see sdi_cmd_con[10] for the configuration of long response

Register name	Address	Read / Write (R / W)	Function description	Reset value
sdi_dtimer	0xbfe6c024		SDIO command data timeout	
			register	

sdi_dtimer	Bit	Default values	Description
reserved	31:24	0x0	
sdi_dtimer	23:0		Data timeout count value uses the clock count after frequency division

Register name	Address	Read / Write (R / W)	Function description	Reset value
sdi_bsize	0xbfe6c028		SDIO block size register	0x0

sdi_bsize	Bit	Default values	Description
reserved	31:23	0x0	
sdi_bsize	11:0	0x0	Block size value (0 to 4095)

Register name	Address	Read / Write (R / W)	Function description	Reset value
sdi_dat_con	0xbfe6c02c	r/w	SDIO data	0x0
			control register	

sdi_dat_con	Bit	Default values	Description
reserved	31:15	0x0	
resume_rw	20		SDIO suspend and resume reading and writing flag bit. When the bit is 1, the previous write operations are recovered after SDIO suspension; when the bit is 0, previous read operations are recovered.
IO_resume	19	0x0	SDIO recovery request. After the SDIO

IO suspend	18	0x0	device enters into the suspended state, 1 is written to this bit. After 0 is written to IO_suspend, SDIO device recovers previous operations. SDIO suspending request. After 1 is
	10		written to this bit, the controller will send CMD52 command in right time, and notify SDIO device to enter into the suspended state. Write 0 in this bit when resuming operation
RwaitReq	17	0x0	Read pending request After 1 is written to the bit, the controller will pull down DAT2 in right time, and notify SDIO device to enter into the read waiting state. Write 0 to recover the previous read operation.
wide_mode	16	0x0	Bit width select bit. When the bit is 1, it indicates t he four-wire mode; when the bit is 0, it indicates the single-line mode.
DMA_en	15	0x0	DMA enable When the bit is 1, it indicates DMA enable; when the bit is 0, it indicates DMA disable.
DTST	14	0x0	When 1 is written to the bit, the data transfer begins, and the hardware is cleared after the data transfer ends.
reserved	13:12	0x0	
blk_num	11:0	0x0	The number of blocks for reading and writing operations

Register name	Address	Read / Write (R / W)	Function description	Reset value
sdi_dat_cnt	0xbfe6c030	r/w	SDIO data counter	0x0

sdi_dat_cnt	Bit	Default	Description
		values	
reserved	31:24	0x0	
blk_num_cnt	23:12		Current number of bytes of transmission blocks
blk_cnt	11:0	0x0	Current number of transmission blocks

Register name	Address	Read / Write (R / W)	Function description	Reset value
sdi_dat_sta	0xbfe6c034	ro	SDIO data	0x0
			status register	

sdi_dat_sta	Bit	Default values	Description
reserved	31:11	0x0	
suspend_on	16	0x0	When the bit is 1, it indicates in suspended status.
rst_suspend	15		When the bit is 1, it indicates .in suspended reset After the SDIO device is suspended, the controller resets FIFO and DMA requests.
R1b_tout	14	0x0	When the bit is 1, it indicates R1b

			command timeout.
data_start	13	0x0	When the bit is 1, it indicates data transmission starting
R1b_fin	12	0x0	Test the completion of the command with busy state When the command with busy state is sent, the bit is 0; when the busy state ends, the bit becomes 1.
auto_stop	11	0x0	When the bit is 1, it indicates the hardware is sending the stop command automatically.
reserved	10	0x0	
r_wait_req	9	0x0	Reading waiting to happen. Send the read waiting request signal to SDIO card.
SDIO_int	8	0x0	SDIO interrupt flag bit. When the bit is 1, it indicates interrupt detection
crc_sta	7	0x0	After the data transfer, CRC error is returned from the device
dat crc	6	0x0	Data receiving CRC errors
dat_tout	5	0x0	Data transmission timeout. When the bit is 1, it indicates data timeout
dat_fin	4	0x0	Data transmission end flag bit. When the bit is 1, it indicates data transmission end
busy_fin	3	0x0	Busy end flag bit (such as programming). When the bit is 1, it indicates busy end
prog_err	2	0x0	Programming error flag bit. When the bit is 1, it indicates the wrong programming.
tx_dat_on	1	0x0	In Tx data transfer, when the bit is 1, it indicates sending; when the bit is 0, it indicates sending completes.
rx_dat_on	0	0x0	In rX data acceptance, when the bit is 1, it indicates receiving; when the bit is 0, it indicates receiving completes.

Register name	Address	Read / Write (R / W)	Function description	Reset value
sdi_fifo_sta	0xbfe6c038		SDIOFIFO Status register	0x0

sdi_fifo_sta	Bit	Default	Description
		values	
reserved	31:12	0x0	
tx_full	11	0x0	tx fifo full flag bit
tx_empty	10	0x0	tx fifo empty flag bit
reserved	9	0x0	
rx_full	8	0x0	rx fifo full flag bit
rx_empty	7	0x0	rx fifo empty flag bit
reserved	6:0	0x0	

Register name	Address	Read / Write (R / W)	Function description	Reset value
sdi_int_msk	0xbfe6c03c		SDIO interrupt register	0x0

sdi_int_msk	Bit	Default	Description
		values	

-182-

reserved	31:10	0x0		
R1b_fin_int	9	0x0	Detest busy end interrupt, 1 is written to the bit for clearing.	
rsp_crc_int	8	0x0	The command responds to CRC error interrupt, and 1 is written to the bit for clearing.	
cmd_tout_int	7	0x0	Command timeout interrupt, 1 is written to the bit for clearing.	
cmd_fin_int	6	0x0	Number of command transmission completion interrupt, hardware clearing	
SDIO_int	5	0x0	Detest SDIO interrupt, and 1 is written to the bit for clearing.	
prog_err_int	4	0x0		
crc_sta_int	3	0x0	0	
dat_crc_int	2	0x0	The data receives CRC error interrupt, write 1 and clear	
dat_tout_int	1	0x0	Data timeout interrupt, and 1 is written to the bit for clearing	
dat_fin_int	0	0x0	Data interrupt completion, hardware clearing	

Register name	Address	Read / Write (R / W)	Function description	Reset value
sdi_dat	0xbfe6c040		SDIO command data register	0x0

sdi_dat	Bit	Default values	Description
sdi_dat	31:0		SDIO controller sends or receives data (used DMA operation)

Register name	Address	Read / Write (R / W)	Function description	Reset value
sdi_int_en	0xbfe6c064		SDIO interrupt enable register	0x0

sdi_int_en	Bit	Default values	Description
reserved	31:10	0x0	
R1b_fin_int_en	9	0x0	Busy finish interrupt enable. When the bit is 1, it's significant.
			Command response CRC error interrupt
rsp_crc_int_en	8	0x0	enable. When the bit is 1, it's significant.
cmd_tout_int_en	7	0x0	Command timeout interrupt enable, significant at 1
cmd_fin_int_en	6	0x0	Data command send finish interrupt enable. When the bit is 1, it's significant.
SDIO_int_en	5	0x0	SDIO interrupt enable. When the bit is 1, it's significant.
prog_err_int_en	4	0x0	SD card programming error interrupt enable. When the bit is 1, it's significant.
crc_sta_int_en	3	0x0	Return CRC error interrupt enable after the data transfer. When the bit is 1, it's significant.

dat_crc_int_en	2	0x0	Data receive CRC error interrupt enable. When the bit is 1, it's significant.
dat_tout_int_en	1	0x0	Data timeout interrupt enable, significant at 1
dat_fin_int_en	0	0x0	Data completion interrupt enable, significant at 1

22.4 Software Programming Instructions

22.4.1 SD Memory card software programming instructions

If SD Memory card wants to operate normally, it must be initialized first. The initialization process needs to send different command sequences to configure the slave device. Initialization process diagram as follows:

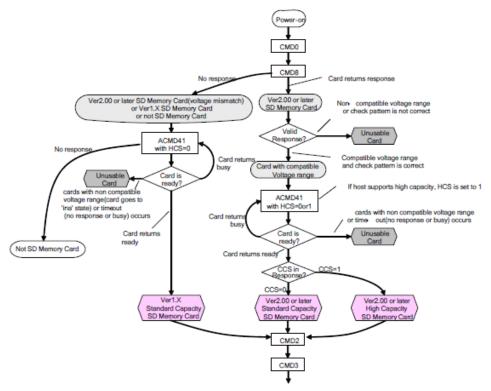


Figure 22-3 Schematic diagram of SD Memory card initialization process

Normal work can be carried out after initialization completion.

Configuration register process is as follows:

1. Configure sdi_con, enable output clock

2. Configure sdi_pre, set a frequency division factor, and if the time sequence isn't satisfied, the output direction clock is set to adjust the time sequence.

3. Configure sdi_int_en, enable command and data completion and other interrupts.

4. According to the above initialization process, the configuration register where initialization controller sends command as follows:

- ▶ Based on the sent command, the cmd_arg register is configured.
- Configure cmd_con register, send command
- Read sdi_int_msk register, and check if the transfer is finished, and if there is an error
- If necessary, read the sdi_rsp register

Initialization process is as follows:

 $CMD0 \rightarrow CMD8 \rightarrow ACMD41 (namely, CMD55 \rightarrow CMD41) \rightarrow CMD2 \rightarrow CMD3 \rightarrow CMD7 \rightarrow ACMD6 (if 4bit data line is used for transfer)$

5. Before the data operation, it's necessary to configure Bsize register and Dtimer register.

- 6. For the data operation, it's necessary to configure DMA, configure dat_con register and DMA (Notes: In read operation, configure DMA first, and in write operation, configure dat_con first)
- 7. Read sdi_int_msk register, and check if the transfer is finished, and if there is an error
- 8. Without error, one data transfer is finished, and it doesn't need the software to send stop command.

22.4.2 SDIO card software programming instructions

The initialization process of SDIO card is different from that of SD memory card, and it's initialized as follows:

- 1. Configure sdi_con, enable output clock
- 2. Configure sdi_pre, set one frequency division factor. If the time sequence isn't satisfied, the output inversion is set.
- 3. Clock to adjust timing sequence.
- 4. Configure sdi_int_en, enable command and data completion and other interrupts.
- 5. Initialization process is as follows: Configuration register process for transmitting command is as follows:
- Based on the sent command, the cmd_arg register is configured.
- Configure cmd_con register, send command
- Read sdi_int_msk register, and check if the transfer is finished, and if there is an error
- If necessary, read the sdi_rsp register

The initialization process is shown as follows (the CCCR operation)

- 6. CMD52 (reset) →CMD5 (after powered on) →CMD3 (obtain RCA) →CMD7 (select the corresponding RCA card) →CMD52 (configure whether to use 4bit data line transmission) →CMD52 (configure the block size of read and write data) →CMD52 (open IO interrupt enable) it's necessary to configure Bsize register and Dtimer register before row data operation.
- 7. For the data operation, it's necessary to configure DMA, configure dat_con register and DMA (Notes: In read operation, configure DMA first, and in write operation, configure dat_con first)
- 8. In sending the command of read and write data, if the hardware is required to send stop command automatically, it's necessary to configure auto_stop and sdio_en. In reading and writing data, it's necessary to read and write Function, configure the corresponding FBR pointer register, and then send multi-block read and write (CMD53) or single-block read and write (CMD52) command to read and write.
- 9. Read sdi_int_msk register, and check if the transfer is finished, and if there is an error
- 10. Without error, one data transfer is finished, and it doesn't need the software to send stop command.
- 11. If the IO interrupt is detected, the controller will enable the interrupt triggering response, but will not stop the current operation.
- 12. For the read waiting, the controller will pull down DAT2 in right time, and notify the SDIO card to stop sending data. Thus, if it's under the process of data transfer, the controller may send the wait signal after the previous data block transfer ends, and it won't receive the next block data.
- 13. 13 For the suspending and resuming operations. Suspend and nest may occur, for example, operation 1 is suspended because operation 2 interrupts, and then operation 2 is suspended because operation 3 interrupts. In suspension, the interrupt field requires the software to save(such as read and write flag bit, number of current transmission block, address and so on), and starts the PUSH operation. In recovery, the software is pulled in corresponding sequence.

23 CAN Controller

23.1 Overview

1C integrates two ways of CAN interface controllers CAN bus is the serial bus made up of transmitter data line TX and receiver data line RX to transmit and receive data. The bidirectional transfer is conducted between devices, and the highest transfer rate is 1Mbps

The interrupt of two CAN bus controllers is connected to the first group of interrupt control registers. Therein, can0 interrupt corresponds to bit6, and can1 interrupt to bit7. Refer to description in Chapter 15.

The register base address of CAN0 bus controller is 16KB at the beginning of 0xbfe5 0000.

The register base address of CAN1 bus controller is 16KB at the beginning of 0xbfe5_4000.

23.2 CAN Controller Architecture

The figure below is the architecture of CAN master controller, and main modules include APB bus interface, bit stream processing unit, bit time sequence logic, error management logic, receiving filtering, and data buffer cache.

- APB bus interface: receive APB bus command and return data.
- Bit stream processing unit: implement the control of data stream between transmitter buffer, receiver FIFO and CAN bus, and performs functions such as error detection, bus arbitration, data filling and error handling.
- Bit time sequence logic: monitor the serial CAN bus and handle the bit time sequence related to the bus. In addition, it provides the programmable time quantum to compensate the propagation delay time, phase switch (for example, due to oscillation drift) and define the sampling point and sampling times within the time of one bit.
- Error management logic: judge the transmitted CRC error and count errors.
- Receiving filtering: compared the received identification codes to decide whether to receive the message or not.
- Data buffer cache: the receiving buffer is the interface between acceptance filter and CPU, and is also used to store messages received from CAN bus. As one window of FIFO (64 bytes long), the receive buffer (13 bytes) may be accessed by CPU.

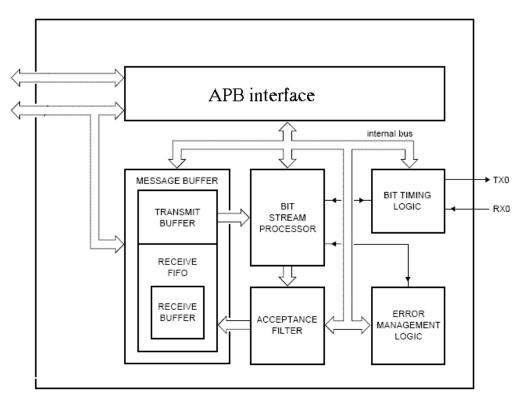


Figure 23-1 CAN master controller architecture

CAN supports two operating modes: standard mode and expansion mode. The operating mode is selected through CAN mode in command register. Reset default is the standard mode.

23.3 Standard Mode

23.3.1 Standard mode address list

The address area includes the control segment and message buffer. In initial loading, the control segment may be programmed to configure communication parameters, and the message to be transmitted will be written in send buffer. After receiving the message, the microcontroller will read the received message from receive buffer, and then release the space for next application.

After the initial loading, the acceptance code and acceptance mask of register, 0 and 1 of bus timing register, and output control can't be changed. Only when the reset bit of control register is set high, can these registers be accessed. In different modes of reset mode and operating mode, the access register is different. After the hardware reset or controller drops, the bus status of status register will enter into the reset mode automatically. The operating mode is activated by the reset request of setting control register.

CAN	field	Operating mod	le	Reset mode	Reset mode	
address		Read	Write	Read	Write	
0		Control	Control	Control	Control	
1		FF	Commands	FF	Commands	
2		Status	—	Status	—	
3	C	FF	—	Interrupt	—	
4	Control	FF	—	Acceptance code	Acceptance code	
5		FF	—	Acceptance mask	Acceptance mask	
6		FF	—	Bus timing 0	Bus timing 0	
7		FF	—	Bus timing 1	Bus timing 1	
8		Reserved	Reserved	Reserved	Reserved	
9		Reserved	Reserved	Reserved	Reserved	
10		ID (10-3)	ID (10-3)	FF	—	
			TR,ID (2-0), RT			
11		DLC	DLC	FF	—	
12		Data byte 1	Data byte 1	FF	—	
13		Data byte 2	Data byte 2	FF	—	
14		Data byte 3	Data byte 3	FF	—	
15		Data byte 4	Data byte 4	FF	—	
16		Data byte 5	Data byte 5	FF	—	
17		Data byte 6	Data byte 6	FF	—	
18		Data byte 7	Data byte 7	FF	—	
19		Data byte 8	Data byte 8	FF	—	
20		ID (10-3)	ID (10-3)	FF	—	
		ID (2-0), RT	R,ID (2-0), RT	TR,		
21		DLC	DLC	FF	—	
22		Data byte 1	Data byte 1	FF	—	
23	7	Data byte 2	Data byte 2	FF	—	
24	7	Data byte 3	Data byte 3	FF		
25	7	Data byte 4	Data byte 4	FF		
26	1	Data byte 5	Data byte 5	FF		
27	7	Data byte 6	Data byte 6	FF		
28	1	Data byte 7	Data byte 7	FF		
29		Data byte 8	Data byte 8	FF		

23.3.2 Control register (CTR)

English name: control register Register bit width: [7:0] Offset: 0x00 Reset value: 0x01

The reading value of this bit is always logic 1. In hard boot or when the bus status bit set to 1 (bus shutdown), the reset request bit is set to 1. If these bits are accessed by software, its value will change and influence the next rising edge of the internal clock. During the external reset, the microprocessor can't set the reset request bit to 0. If the reset request bit is set to 0, the microprocessor must check the bit and guarantee the external reset pin isn't low. The change in reset request bit is synchronous with internal frequency division clock. Read reset request bit, and you can find such synchronous state.

After the reset request bit is set to 0, the controller will wait.

a) One bus idle signal (11 weak bit), if the previous reset request is hardware rest or CPU initial reset.

b) 128 buses are idle, if the previous reset request is caused by initialization bus before CAN controller reenters the bus startup mode.

Bit field	Bit field name	Bit width	Access	Description
7:5	Reserve	3	_	Reserved
4	OIE	1	Rw	Overflow interrupt enable
3	EIE	1	Rw	Error interrupt enable
2	TIE	1	Rw	Transmit interrupt enable
1	RIE	1	Rw	Receive interrupt enable
0	RR	1	Rw	Reset request

23.3.3 Command register (CMR)

English name: Command register Register bit width: [7:0] Offset: 0x01 Reset value: 0x00

For microcontroller, the command register is the write-only memory, and if the address is read, the returned value is 1111 1111.

Bit field	Bit field name	Bit width	Access	Description
7	EFF	1	W	Extension mode
6: 5	Reserve	2	_	Reserved
4	GTS	1	W	sleep
3	CDO	1	W	Clear data overflow
2	RRB	1	W	Release receiving buffer
1	AT	1	W	Stop transmitting
0	TR	1	W	RTS (Request to send)

23.3.4 Status register (SR)

English name: Status register Register bit width: [7:0] Offset: 0x02 Reset value: 0x00

Bit field	Bit field name	Bit width	Access	Description
7	BS	1	R	Bus status

-188-

6	ES	1	R	Faulted state	
5	TS	1	R	Send state	
4	RS	1	R	Receive state	
3	TCS	1	R	Send completed state	
2	TBS	1	R	Transmit buffer state	
1	DOS	1	R	Data overflow state	
0	RBS	1	R	Receive buffer status	

23.3.5 Interrupt register (IR)

English name: Interrupt register Register bit width: [7:0] Offset: 0x03 Reset value: 0x00

Bit field	Bit field name	Bit width	Access	Description
7:5	Reserved	1	R	Reserved
4	WUI	1	R	Wake-up interrupt
3	DOI	1	R	Data overflow interrupt
2	EI	1	R	Error interrupt
1	TI	1	R	Send interrupt
0	RI	1	R	Receive interrupt

23.3.6 Acceptance Code Register (ACR)

English name: Acceptance code register Register bit width: [7:0] Offset: 0x04 Reset value: 0x00 In reset, the register may be read and written.

Bit field	Bit field name	Bit width	Access	Description
7:0	AC	8	RW	ID acceptance code

23.3.7 Acceptance Mask Register (AMR)

English name: Acceptance mask register Register bit width: [7:0] Offset: 0x05 Reset value: 0x00

Acceptance code bit AC is equal to high 8bits ID.10-ID.3 of message identification code, and when it corresponds to the phase of acceptance mask bit or is 1, the data may be accepted. In reset, the register may be read and written.

Bit field	Bit field name	Bit width	Access	Description
7:0	АМ	8	Rw	ID mask bit

23.3.8 Transmit buffer list

The buffer is used to store the message that the microprocessor requires CAN controller to send, and it's divided into descriptor area and data area. The read/write of buffer can only be sent by microcontroller in operating mode, and in reset mode the read value is always FF.

Address	Area	Name	Data bit
10		ID byte 1	ID (10-3)

	ID byt	e 2	ID (2-0), RTR, DLC
11			
12	TX da	ta 1	TX data 1
13	TX da	ta 2	TX data 2
14	TX da	ta 3	TX data 3
15	TX da	ta 4	TX data 4
16	TX da	ta 5	TX data 5
17	TX da	ta 6	TX data 6
18	TX da	ta 7	TX data 7
19	TX da	ta 8	TX data 8

23.3.9 Receive buffer list

The configuration of receive buffer and send buffer is the same, but the address is changed to 20-29.

23.4 Extension Mode

23.4.1 Extension mode address table

	Operating mode		Reset mode		
CAN	Read	Write	Read	Write	
address					
0	Control	Control	Control	Control	
1	0	Commands	0	Commands	
2	Status	—	Status	—	
3	Interrupt	—	Interrupt	—	
4	Interrupt enable	Interrupt enable	Interrupt enable	Interrupt enable	
5	—	—	Acceptance mask	Acceptance mask	
6	Bus timing 0	—	Bus timing 0	Bus timing 0	
7	Bus timing 1	—	Bus timing 1	Bus timing 1	
8	Reserved	Reserved	Reserved	Reserved	
9	Reserved	Reserved	Reserved	Reserved	
10	Reserved	Reserved	Reserved	Reserved	
11	Arbitration lost capture		Arbitration lost	—	
			capture		
12	Error code capture	—	Error code capture	—	
13	Error alarm limit	—	Error alarm limit	—	
14	RX error counter	_	RX error counter	—	
15	TX error counter	—	TX error counter	_	
16	RX frame information		Acceptance Code 0	Acceptance Code 0	
1.7		information			
17	RX ID 1	TX ID 1	Acceptance Code 1	Acceptance Code 1	
18	RX ID 2	TX ID 2	Acceptance Code 2	Acceptance Code 2	
19	RX ID 3	TX ID 3	Acceptance Code 3	Acceptance Code 3	
20	RX ID 4	TX ID 4	Acceptance mask 0	Acceptance mask 0	
21	RX data 1	TX data 1	Acceptance mask 1	Acceptance mask 1	
22	RX data 2	TX data 2	Acceptance mask 2	Acceptance mask 2	
23	RX data 3	TX data 3	Acceptance mask 3	Acceptance mask 3	
24	RX data 4	TX data 4	<u> </u>	—	
25	RX data 5	TX data 5		—	
26	RX data 6	TX data 6	<u> </u>	—	
27	RX data 7	TX data 7	—	—	
28	RX data 8	TX data 8	_	_	

29 RX message counter	—	RX message counter	—
-----------------------	---	--------------------	---

23.4.2 Mode register (MOD)

English name: Mode register Register bit width: [7:0] Offset: 0x00 Reset value: 0x01

The reading value of this bit is always logic 1. In hard boot or when the bus status bit set to 1 (bus shutdown), the reset request bit is set to 1. If these bits are accessed by software, its value will change and influence the next rising edge of the internal clock. During the external reset, the microprocessor can't set the reset request bit to 0. If the reset request bit is set to 0, the microprocessor must check the bit and guarantee the external reset pin isn't low. The change in reset request bit is synchronous with internal frequency division clock. Read reset request bit, and you can find such synchronous state.

After the reset request bit is set to 0, the controller will wait.

a) One bus idle signal (11 weak bit), if the previous reset request is hardware rest or CPU initial reset.

b) 128 buses are idle, if the previous reset request is caused by initialization bus before CAN controller reenters the bus startup mode.

Bit field	Bit field name	Bit width	Access	Description
7:5	Reserve	3	—	Reserved
4	SM	1	Rw	Sleep mode
3	AFM	1	Rw	Single / Dual filter mode
2	STM	1	Rw	Normal operating mode
1	LOM	1	Rw	Listen mode
0	RM	1	Rw	Reset mode

23.4.3 Command register (CMR)

English name: Command register Register bit width: [7:0] Offset: 0x01 Reset value: 0x00

For microcontroller, the command register is the write-only memory, and if the address is read, the returned value is 1111 1111.

Bit field	Bit field name	Bit width	Access	Description
7	EFF	1	W	Extension mode
6: 5	Reserve	2		Reserved
4	SRR	1	W	Self receiving request
3	CDO	1	W	Clear data overflow
2	RRB	1	W	Release receiving buffer
1	AT	1	W	Stop transmitting
0	TR	1	W	RTS (Request to send)

23.4.4 Status register (SR)

English name: Status register Register bit width: [7:0] Offset: 0x02 Reset value: 0x00

Bit field	Bit field name	Bit width	Access	Description
7	BS	1	R	Bus status
6	ES	1	R	Faulted state
5	TS	1	R	Send state
4	RS	1	R	Receive state
3	TCS	1	R	Send completed state
2	TBS	1	R	Transmit buffer state
1	DOS	1	R	Data overflow state
0	RBS	1	R	Receive buffer status

23.4.5 Interrupt register (IR)

English name: Interrupt register Register bit width: [7:0] Offset: 0x03 Reset value: 0x00

Bit field	Bit field name	Bit width	Access	Description
7	BEI	1	R	Bus error interrupt
6	ALI	1	R	Arbitration lost interrupt
5	EPI	1	R	Error passive interrupt
4	WUI	1	R	Wake-up interrupt
3	DOI	1	R	Data overflow interrupt
2	EI	1	R	Error interrupt
1	TI	1	R	Send interrupt
0	RI	1	R	Receive interrupt

23.4.6 Interrupt enable register (IER)

English name: Interrupt enable register Register bit width: [7:0] Offset: 0x04 Reset value: 0x00

Bit field	Bit field name	Bit width	Access	Description
7	BEIE	1	RW	Bus error interrupt enable
6	ALIE	1	RW	Arbitration lost interrupt enable
5	EPIE	1	RW	Error passive interrupt enable
4	WUIE	1	RW	Wake-up interrupt enable
3	DOIE	1	RW	Data overflow interrupt enable
2	EIE	1	RW	Error interrupt enable
1	TIE	1	RW	Transmit interrupt enable
0	RIE	1	RW	Receive interrupt enable

23.4.7 Arbitration Loss Capture Register (IER)

English name: Arbitration lost capture register Register bit width: [7:0] Offset: 0xB Reset value: 0x00

LOONGSON

Bit field	Bit field name	Bit width	Access	Description
7:5	—	3	R	Reserved
4	BITNO4	1	R	Fourth bit
3	BITNO3	1	R	Third bit
2	BITNO2	1	R	Second bit
1	BITNO1	1	R	First bit
0	BITNO0	1	R	Zero bit

		Bit		Decimal value	Function	
0	0	0	0	0	0	Arbitration lost in the ID code bit1
0	0	0	0	1	1	Arbitration lost in the ID code bit 2
0	0	0	1	0	2	Arbitration lost in the ID code bit 2
0	0	01	1	0	3	Arbitration lost in the ID code bits
0	0	1	0	0	4	Arbitration lost in the ID code bit5
0	0	1	0	1	5	Arbitration lost in the ID code bit6
0	0	1	1	0	6	Arbitration lost in the ID code bit7
0	0	1	1	1	7	Arbitration lost in the ID code bit8
0	1	0	0	0	8	Arbitration lost in the ID code bit9
0	1	0	0	1	9	Arbitration lost in the ID code bit10
0	1	0	1	0	10	Arbitration lost in the ID code bit11
0	1	0	1	1	11	Arbitration lost in SRTR bit
0	1	1	0	0	12	Arbitration lost in IDE bit
0	1	1	0	1	13	Arbitration lost in the ID code bit12
0	1	1	1	0	14	Arbitration lost in the ID code bit13
0	1	1	1	1	15	Arbitration lost in the ID code bit14
1	0	0	0	0	16	Arbitration lost in the ID code bit15
1	0	0	0	1	17	Arbitration lost in the ID code bit16
1	0	0	1	0	18	Arbitration lost in the ID code bit17
1	0	0	1	1	19	Arbitration lost in the ID code bit18
1	1	1	0	0	20	Arbitration lost in the ID code bit19
1	1	1	0	1	21	Arbitration lost in the ID code bit 20
1	1	1	1	0	22	Arbitration lost in the ID code bit21
1	1	1	1	1	23	Arbitration lost in the ID code bit22
1	0	0	0	0	24	Arbitration lost in the ID code bit 23
1	0	0	0	1	25	Arbitration lost in the ID code bit 24
1	0	0	1	0	26	Arbitration lost in the ID code bit 25
1	0	0	1	1	27	Arbitration lost in the ID code bit26
1	1	1	0	0	28	Arbitration lost in the ID code bit 27
1	1	1	0	1	29	Arbitration lost in the ID code bit 28
1	1	1	1	0	30	Arbitration lost in the ID code bit 29
1	1	1	1	1	31	Arbitration lost in RTR bit

23.4.8 Error Alarm Limit Register (EMLR)

English name: Error alarm limit register Register bit width: [7:0] Offset: 0xD Reset value: 0x60

Bit field	Bit field name	Bit width	Access	Description
[7:0]	EML	8	Rw	Error alarm threshold

23.4.9 RX Error Count Register (RXERR)

English name: RX error count register Register bit width: [7:0] Offset: 0xE Reset value: 0x60

Bit field	Bit field name	Bit width	Access	Description
[7:0]	RXERR	8	R	Receive error count

23.4.10 TX Error Count Register (TXERR)

English name: TX error count register Register bit width: [7:0] Offset: 0xF Reset value: 0x60

Bit field	Bit field name	Bit width	Access	Description
[7:0]	TXERR	8	R	Transmit error count

23.4.11 Acceptance filter

With the help of acceptance filter, only when the value predefined by identification bit and acceptance filter in received message are equal, can CAN controller be allowed to store the received message into RXFIFO. The acceptance filter is defined by acceptance code register and acceptance mask register. In mode register, the single filter mode or double filter mode is selected. See SJA1000 data manual for the specific configuration.

23.4.12 RX message count register (RMCR)

English name: RX message count register Register bit width: [7:0] Offset: 0x1 D Reset value: 0x00

	Bit field	Bit field name	Bit width	Access	Description
ĺ	[7:0]	RMCR	8	R	The received data frame counter

23.5 Public Register

23.5.1 Bus timing register 0 (BTR0)

English name: Bus timing register Register bit width: [7:0] Offset: 0x06 Reset value: 0x00

Notes: in reset mode, it's read and written; in operating mode, it's read-only.

Bit field	Bit field name	Bit width	Access	Description
7:6	SJW	8	RW	Synchronization skip width
[5£°0]	BRP	8	RW	The Baud rate frequency division factor

23.5.2 Bus timing register 1 (BTR1)

English name: Bus timing register 1 Register bit width: [7:0] Offset: 0x07 Reset value: 0x00

Bit field	Bit field name	Bit width	Access	Description
7	SAM	1	Rw	When the bit is 1, it's sampled three times, or sampled once.
6: 4	TESG2	3	Rw	The count value of time period 2 in a bit
3:0	TSEG1	4	Rw	The count value of time period 2 in a bit

23.5.3 Output Control Register (OCR)

English name: Output control register Register bit width: [7:0] Offset: 0x08 Reset value: 0x00

Bit field	Bit field name	Bit width	Access	Description
[7:0]	OCR	8	Rw	Reserved

24 ADC Controller

24.1 Overview

Loongson 1C integrates the ADC controller that is used to control ADC channel and has implemented some specific applications, such as continuous switch, single switch, touch screen application and analog watchdog.

Main characteristic parameters of ADC controller in Loongson 1C include:

- 4-channel ADC analog input, 10bit output precision
- Measuring voltage scope is 0.01~0.99VREF, and recommend the VREF input of 0.5~0.9VDDA
- The operating frequency of ADC can be configured from 0 to 16M
- The operating mode of ADC has single and continuous switch, and the touch screen application belong to the special continuous switch.
- The continuous conversion of ADC adopts DMA transmission data, but the coordinates of touch screen doesn't adopt DMA.
- The continuous conversion interval of ADC can be configured from 0 to 1M.
- In continuous switch, the unused channels of ADC may conduct the single switch.
- In touch screen application, when the touch screen is pressed, the interrupt is generated; when the touch screen is released, the interrupt is also generated.
- It can support four-wire touch screen and five-wire touch screen. In the connection of four-wire touch screen, two ways of general ADC may be used. In the connection of five-wire touch screen, three ways of general ADC may be used.
- Support multi-channel scanning single conversion
- It supports the function of analog watchdog, and the upper and lower thresholds may be configured. And the interrupt is generated when exceeding the threshold.

24.2 Register Description

Register name	Address	Read / Write	Function	Reset value
		(R / W)	description	
adc_cnt	0xbfe74000		Frequency division and sampling interval register	0x400010

Adc_cnt	Bit	Default values	Description
adc_pre	31:20		The frequency division value of adc conversion clock is from 0 to 16M, and the clock after frequency division is F= sys clk/adc pre
cc_gap	19:0		The interval count of continuous conversion is from 0 to 1M, and the clock count after frequency division is used.

	Register name	Address	Read / Write (R / W)	Function description	Reset value
а	dc_s_ctrl	0xbfe74004		Single sampling	0x0
				control register	

adc_s_ctrl	Bit	Default values	Description
------------	-----	-------------------	-------------

reserved	31:7	0x0	
power_down	6	0x0	Stop ADC conversion, including all AD conversions Active high, turn off the power.
soft_reset	5	0x0	Soft reset; the high level is valid; the hardware is cleared automatically
soc	4	0x0	The conversion starts; the high level is valid; the hardware is cleared automatically
ch_s_sel	3:0	0x0	Single conversion channel selection, four bits correspond to four channels

Register name	Address	Read / Write (R / W)	Function description	Reset value
adc_c_ctrl	0xbfe74008		Continuous sampling control register	0x0

adc_c_ctrl	Bit	Default	Description		
		values			
reserved	31:8	0x0			
cc_en	7	0x0	Continuous switch enable. When the bit is		
			1, it's significant; when the bit is 0, the		
			continuous conversion is disabled.		
touch_pad_sel	6	0x0	Touch screen application enable. The		
			touch screen is used when the bit is 1.		
mode5_or_mode4	5	0x0	Four-wire or five-wire touch screen.		
			Five-wire touch screen at 1;		
			Four-wire touch screen at 0.		
awatchdog_sel	4	0x0	Analog watchdog enable, significant at 1		
ch_s_sel	3:0	0x0	Single conversion channel selection, four		
			bits correspond to four channels		

Register name	Address	Read / Write	Function	Reset value
		$(\mathbf{R} / \mathbf{W})$	description	
x_range	0xbfe74010	r/w	Touch screen X	0x3ff0000
			direction	
			threshold	

x_range	Bit	Default values	Description
reserved	31:26	0x0	
x_range_max	25:16	0x3ff	The maximum threshold is x direction is used to judge whether the touch screen has been pressed.
reserved	15:10	0x0	
x_range_min	9:0	0x0	The minimum threshold of x direction is used to judge whether the touch screen has been pressed.

Register name	Address	Read / Write	Function	Reset value
		(R / W)	description	
y_range	0xbfe74014	r/w	Touch screen X	0x3ff0000
			direction	
			threshold	

y_range	Bit	Default	Description
		values	
reserved	31:26	0x0	
y_range_max	25:16	0x3ff	The maximum threshold of y direction is used to judge whether the touch screen has been pressed.
reserved	15:10	0x0	
y_range_min	9:0	0x0	The minimum threshold of y direction is used to judge whether the touch screen has been pressed.

Register name	Address	Read / Write	Function	Reset value
		(R / W)	description	
awatchdog_range	0xbfe74018	r/w	Analog	0x3f0000f
			watchdog	
			threshold	

awatchdog_range	Bit	Default	Description
		values	
reserved	31:26	0x0	
awcg_range_max	25:16	0x3f0	The maximum threshold of analog watchdog is used to judge whether the interrupt is generated.
reserved	15:10	0x0	
awcg_range_min	9:0	0xf	The minimum threshold of analog watchdog is used to judge whether the interrupt is generated.

Register name	Address	Read / Write (R / W)	Function description	Reset value
axis	0xbfe74020	ro	Touch screen	0x0
			coordinates	

axis	Bit	Default	Description
		values	
reserved	31:26	0x0	
x_axis	25:16	0x0	X coordinate of the touch screen
reserved	15:10	0x0	
y_axis	9:0	0x0	Y coordinates of the touch screen

Register name	Address	Read / Write (R / W)	Function description	Reset value
adc_s_dout0	0xbfe74024		Single conversion result, channel 0 and channel 1	0x0

adc_s_dout0	Bit	Default values	Description
adc_busy	31	0x0	Switch to busy status and set the bit to 1 after writing soc. The hardware is cleared after all single conversions.
reserved	30:26	0x0	
adc_data1	25:16	0x0	Single conversion result of Channel 1
reserved	15:10	0x0	

adc_data0	9:0	0x0	Single conversion result of Channel 0
-----------	-----	-----	---------------------------------------

Register name	Address	Read / Write (R	Function	Reset value
		/ W)	description	
adc_s_dout1	0xbfe74020	ro	Single	0x0
			conversion	
			result, channel	
			0 and channel 1	

adc_s_dout1	Bit	Default values	Description
adc_busy	31	0x0	Switch to busy status and set the bit to 1 after writing soc. The hardware is cleared after all single conversions.
reserved	30:26	0x0	
adc_data3	25:16	0x0	Single conversion result of Channel 3
reserved	15:10	0x0	
adc_data2	9:0	0x0	Single conversion result of Channel 2

Register name	Address	Read / Write (R	Function	Reset value
		/ W)	description	
adc_c_dout	0xbfe74028	ro	Continuous	0x0
			conversion	
			results	

adc_c_dout	Bit	Default values	Description
reserved	31:26	0x0	
adc[i+1]	25:16	0x0	Conversion results of ADC[i+1] in continuous conversion
reserved	15:10	0x0	
adc[i]	9:0	0x0	Conversion results of ADC[i] in continuous conversion

Register name	Address	Read / Write (R	Function	Reset value
		/ W)	description	
adc_debounce_cnt	0xbfe7402c		Touch screen debouncing time	0x640

adc_debounce_cnt	Bit	Default values	Description
reserved	31:20	0x0	
debounce_cnt	19:0	0x640	Debouncing delay time

Register name	Address	Read / Write (R / W)	Function description	Reset value
adc_int	0xbfe74030	-	ADC interrupt flag and control	

adc_int	Bit	Default values	Description
reserved	31:10	0x0	
fifo_empty	9	0x0	fifo empty status in continuous conversion
fifo_full_int_en	8	0x0	In continuous conversion, fifo full interrupt

-199-

			enable. When the bit is 1, the interrupt is
			started; when the bit is 0, the interrupt is
			masked.
awcg_int_en	7	0x0	Analog watchdog interrupt enable. When the
			bit is 1, the interrupt is started; when the bit is
			0, the interrupt is masked.
release_int_en	6	0x0	Touch screen released interrupt enable. When
			the bit is 1, the interrupt is started; when the
			bit is 0, the interrupt is masked.
press_int_en	5	0x0	Touch screen pressed interrupt enable. When
			the bit is 1, the interrupt is started; when the
			bit is 0, the interrupt is masked.
Fifo_full_int	4	0x0	In continuous conversion, fifo full interrupt
			status, the software writes 1 and is cleared
			0
awcg_h_int	3	0x0	The voltage of analog watchdog exceeds the
			maximum threshold interrupt state, the
			software writes 1 and is cleared
awcg_l_int	2	0x0	The voltage of analog watchdog exceeds the
			minimum threshold interrupt state, the
			software writes 1 and is cleared
release_int	1	0x0	Touch screen released interrupt status. The
	1	0/10	software writes 1 and is cleared.
press int	0	0x0	Touch screen pressed interrupt status. The
			software writes 1 and is cleared.

24.3 Configuration Operations

Before the ADC interface works normally, configure all registers need configuring. The configuration procedures of ADC controller are as follows:

1. Configure adc_int register, enable or disable the interrupt of ADC controller.

2. Configure time parameter register adc_cnt, set frequency division factor and interval of continuous conversion.

3. If there is touch screen application, configure adc_debounce_cnt, and set the pressed or released deboucing time; in addition, thresholds in X and Y directions are configured to judge whether the interrupt is generated.

4. If there is analog watchdog application, configure the awatchdog_range register, and the watchdog threshold.

5. Configure adc_c_ctrl register, set the application mode (such as touch screen application and analog watchdo) and continuous conversion channel.

6. Configure adc_s_ctrl register, set the single conversion channel, start and stop conversion.

7. Result-reading register. The single conversion result is stored in adc_s_dout0 and adc_s_dout1; the coordinates of touch screen are stored in axis; the result of continuous conversion read adc_c_dout register via DMA.

Notes: after the continuous conversion starts, the conversion won't stop unless adc_c_ctrl[7] is configured to 0. If it's necessary to change the continuous conversion channel, stop the continuous conversion first, and start the conversion again after the reconfiguration of channels. If it's necessary to insert the single conversion during continuous conversion (the single conversion can't be done in the used continuous conversion channel), and it's not necessary to stop the continuous conversion. The results of each continuous conversion will replace the previous value, so the touch screen coordinates axis and adc_c_dout must be read promptly.

In addition, in general ADC continuous conversion, the corresponding relationship of channel selection and adc_c_dout output is shown in the table below. For example, ch_c_sel[3:0]=b, select ADC0, ADC1 and ADC3 continuous conversion, the ADC0 data are put in adc_c_dout[9:0] of the first word, the ADC1 data put in adc_c_dout[25:16] of the first word, and the ADC3 data put in adc_c_dout[9:0] of the second word.

ch_c_sel[3:0]	ch[0]	ch[1]	ch[2]	ch[3]
1	Dout0[9:0]			
2		Dout0[9:0]		

3	Dout0[9:0]	Dout0[25:16]		
4			Dout0[9:0]	
5	Dout0[9:0]		Dout0[25:16]	
6		Dout0[9:0]	Dout0[25:16]	
7	Dout0[9:0]	Dout0[25:16]	Dout1[9:0]	
8				Dout0[9:0]
9	Dout0[9:0]			Dout0[25:16]
a		Dout0[9:0]		Dout0[25:16]
b	Dout0[9:0]	Dout0[25:16]		Dout1[9:0]
				·
c)			Dout0[9:0]	Dout0[25:16]

C)			Douto[9.0]	Dout0[23.16]
d	Dout0[9:0]		Dout0[25:16]	Dout1[9:0]
e		Dout0[9:0]	Dout0[25:16]	Dout1[9:0]
f	Dout0[9:0]	Dout0[25:16]	Dout1[9:0]	Dout1[25:16]

The sequence diagram of inserting single conversion in continuous conversion is shown as follows:

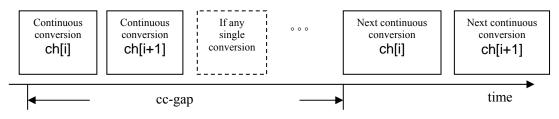


Figure 24-1 Schematic diagram of ADC single conversion/continuous conversion

If the cc_gap interval is not long enough for inserting one single conversion, it will cause the timing of the next continuous conversion move backwards, which should be noted in software configuration of cc_gap.

25 PWM Controller

25.1 Overview

Loongson 1C has implemented the four-way pulse width adjustment/count controller (hereinafter referred to as PWM), and each way of PWM work and control mode are the same. Each PWM has one way pulse width output signal (pwm o)). The system clock is up to 100MHz, and count register and parameter register are all 24bits data width.

Table 25-1 Four-channel controller description

The base address of the four-way PWM controller system is shown as follows:

Name	Base address
PWM0	0xbfe5_c000
PWM1	0xbfe5_c010
PWM2	0xbfe5_c020
PWM3	0xbfe5_c030

Each way of controller has four control registers in total as follows:

Base + 0xC

Name	Address	Width	Access	Note		
CNTR	Base + 0x0	24	R/W	Basic c	ounter	
HRC	Base $+ 0x4$	24		High referen	pulse ce register	timing
LRC	Base + 0x8	24	R/W	Low	pulse	timing

R/W

8

Table 25-2 Control register description

reference register

Control register

timing

25.2 PWM Register Description

CTRL

Implement pulse width function

CNTR register can be written in by system programming to obtain the initial value, and after the system programming and writing, driven by system clock CNTR register will add continuously, and is cleared after reaching the value of LRC register. Then, it will start to add continuously, and the controller produces the continuous pulse width output.

CNTR	Bit field	Access	Reset valu	leNote
Reserved	31:24	R/W	0x0	
CNTR	23:0	R/W	0x0	Basic counter count value. After the counter starts to work (CTRL[0] is 1), after counted to Lvalue, the counter is cleared. If CTRL[4] is 0, the counter starts to count from start; if CTRL[4] is 1, the counter stops.

HRC register is written in by system, and when the value of CNTR register is equal to HRC value, controller generates high level pulse.

Table 25-4	High	pulse count	threshold	settings
-------------------	------	-------------	-----------	----------

Hvalue	Bit field	Access	Reset value	Note			
Reserved							
Hvalue	23:0	R/W	0x0	High	pulse	count	threshold.

When the counter counts to the
threshold, output high level (it's
necessary to configure CTRL[3]
to 0)

LRC register is written in by system, and when the value of CNTR register is equal to LRC value, the controller will generate low pulse level.

			1	
Lvalue	Bit field	Access	Reset value	Note
Reserved				
Lvalue	23:0	R/W		Low pulse count threshold. When the counter counts to the threshold, the low level is output.

Table 25-5 Low pulse count threshold settings

For example, if the width to be generated has been the high pulse width 50 times system clock cycle and low pulse width 90 times system clock cycle. In HRC, the initial value should be configured as (90-1)=89, and in LRC register, the initial value configured as (50+90-1)=139

When working in timer mode, CNTR records the internal system clock, and the initial value of HRC and LRC registers are written in by system programming. When the value of CNTR register is equal to HRC or LRC, the chip will generate an interrupt, and the timer function is implemented thereby.

In three operating modes of CTRL control register, the function of control register remains unchanged, and different configurations are selected based on functional requirement.

CTRL	Bit field	Access	Reset value	Description
INT_LRC_EN	11	R/W	0	Low pulse counter interrupt enable Set 1: when the INTEN is 1, the interrupt is generated after the CNTR counts to LRC. Set to 0: no interrupt is generated
INT_HRC_EN	10	R/W	0	High pulse counter interrupt enable Set 1, when the INTEN is 1, CNTR an interrupt is generated after CNTR counts to HRC, Set to 0: no interrupt is generated
Reserved	9:8	R/W	0	
CNTR_RST	7	R/W	0	Make CNTR counter clear Set to 1: CNTR counter is cleared Set 0: the CNTR counter works normally
INT_SR	6	R/W	0	Interrupt status bit Read operation: 1 represents that the interrupt occurs; 0 represents no interrupt Write in 1: Clear interrupt
INTEN	5	R/W	0	Interrupt enable bit Set 1: interrupt enable. Only when the bit is 1 and meets the interrupt conditions of high pulse or low pulse, the interrupt occurs. Set to 0: no interrupt is generated
SINGLE	4	R/W	0	Single pulse control bit Set to 1: generate pulse only once Set to 0: continue to generate pulse,

Table 25-6 Control register settings

OE	3	R/W	0	pulse output enable control bit, active
				low
				Set to 0: pulse output enable
				Set to 1: pulse output mask
Reserved	2:1	R/W	2'b0	Reserved
CNT_EN		R/W	0	Basic counter enable bit
	0			Set to 1: CNTR to count
				Set to 0: CNTR stops counting

26 Watchdog (WDT)

26.1 Overview

In the system, the WDT (Watchdog Timer) is actually a counter. Generally, a large number is assigned to the Watchdog, and the Watchdog starts to count down after the system runs. If the program works normally, later the CPU should send out command to make the Watchdog reset and restart to count down. If the Watchdog reduces to 0, the program is considered to work abnormally, and the entire system is forced to reset. The figure below is the implementation of Watchdog, and the system configuration of Watchdog. The Watchdog has one counter inside, and the internal comparator compares if the counter value is zero. If it's zero, it will send the soft reset signal to restart the system.

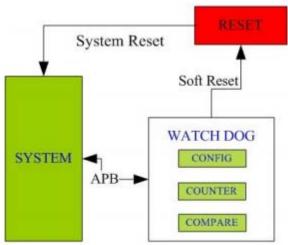


Figure 26-1 Watchdog architecture chart

26.2 Description of WATCHDOG Register

The Watchdog logic mainly has three programmable registers, and the base address is Those formations are described as follows:

26.2.1 Watchdog Enable Register (WDT_EN)

Address: 0xbfe7_c060

Bit		RW (read/write)	Description
31:1		, , , , , , , , , , , , , , , , , , , ,	Reserved
0	WDT_EN	R/W	Watchdog enable

26.2.2 Watchdog Set Register (WDT_SET)

Address: 0xbfe7_c068

Bit	Bit field name	RW	Description
		(read/write)	
31:1			Reserved
0	WDT_SET	R/W	Watchdog counter setting

26.2.3 Watchdog Timer (WDT_timer)

Address: 0xbfe7_c064

Bit	Bit field name	RW	Description
31:0	WDT_timer	R/W	Watchdog counter value

The setup sequence of such three registers in system: the system first configures the Watchdog enable bit WDT_EN; then, it configures the initial value of Watchdog starts timer WDT_TIMER, and the value has been stored in a special register; after the system sets WDT_SET, the counter begins to count.

The Watchdog hasn't implemented the function of low consumption, and its operation has nothing to do with the hardware design. If the Watchdog is required to operate, the software needs to update the counter value timely.

27 High-precision Timer (HCNTR)

27.1 Overview

1C2 chip adds a high-precision timer inside, adopts 1M clock count, and may generate the cyclic interrupt output by 1us at least and 2^{31} us at most based on configuration register. The timer clock is from external oscillator, and isn't affected by the chip operating frequency. When the system implements the dynamic undeclocking, it provides the steady clock.

27.2 Register Description

Register name		Add	ress	I	RW (read/w	vrite)	Function description	Reset value
hcntr_ctrl		0xb	fe74028	r	/w		CNTR control register	0x0
hcntr_ctrl	Bit		Default va	alues	Descrip	otion		
cnt_en	31		0x0		Counter	r enable.	When the bit is 1, the	counter starts to count.
					When t	he bit is 0	, the counter stops countin	g
Reserved	30:5		0x0					
int_prd	4:0		0x0		Timer i	nterrupt p	eriod The interrupt cycle i	s 2 ^{int_prd} us
Register name		Addre	SS	R	W (read/w	vrite)	Function description	Reset value
hentr_entr		0xbfe?	74028	re	0		CNTR counter value	0x0
hcntr_ctrl]	Bit	Defa	ult values	Description	on	
Reserved		ĺ	31:20	0x0				
hcntr_cntr			19:0	0x0		Timer cou	unt value for the current c	ount

The timer can only implement the cycle timing by powers of 2, such as 1, 2, 4, 8 and 16us. For example, if int_prd is configured to 5, the interrupt cycle is $2^5=32$ us.