
Automatic Dependency Removal

A Graph Theory Project

by Đoàn Bá Cường, Phí Đỗ Hải Long, Nguyễn Gia Phong,

Nguyễn Hồng Quang and Trần Minh Vương

January 15, 2021



1 Introduction

1.1 Brief Description
Since the dawn Python packaging ecosystem, proper package management
has been missing, partly due to the lack of package dependency resolution
tools that are widely compatible. Instead, it is often seen that developers
preferring the use of dedicated virtual environments specific for each and
every task. In production, such boilerplate introduces additional complexity
as well as latency, which negatively affect productivity.

As a proper dependency resolver is now baked into pip (since release
20.3), the package installer for Python, it is no longer non-trivial to sup-
port common package management use cases such as autoremoval of orphan
dependencies. This project aimed to provide a proof of concept for future
carry-out of such feature.

1.2 Authors and Credits
The work has been undertaken by group number 4 in the course of Graph
Theory at the University of Science and Technology of Hà Nội, whose mem-
bers are listed in the following table.

Full name Student ID

Đoàn Bá Cường BI9-062
Phí Đỗ Hải Long BI9-149
Nguyễn Gia Phong BI9-184
Nguyễn Hồng Quang BI9-194
Trần Minh Vương BI9-239

We would like to express our special thanks to Dr. Sebastian Basterrech,
whose lectures brought us interests and inspirations in graph theory to work
on this project in particular.

This paper is licensed under a Creative Commons Attribution-ShareAlike
4.0 International License.

1

https://github.com/pypa/pip/issues/5823
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/


2 Objective
In this project, we wanted to develop as package pinning and automatic de-
pendency removal for Python packaging, which is commonly found in package
managers for Unix-like operating systems. The resulting software would be
able to perform the following tasks:

1. Mark manually installed packages

2. When a package is to be removed, automatically look for its dependen-
cies to uninstall at the same time, except for those manually installed
or installed as a dependency of other manually installed packages that
are not specified for removal

3 Theoretical Background

3.1 Problem Definition
3.1.1 States and Constraints

The states include a dependency graph G and a set M of manually installed
distribution packages∗.

Let G = (V, E) where ∀v ∈ V , v is a distribution package, M ⊂ V and
∀(u, v) ∈ E, u depends on v. For G to be a valid digraph,

∀u ∈ V, ∀v /∈ V, (u, v) /∈ E (1)

Define direct dependencies of a package as

d(v) = {u ∈ V | (v, u) ∈ E}

implicit dependencies of a package as

i(v) = {v} ∪
⋃

u∈d(v)
i(u)

∗As defined in the Glossary for Python packaging, a distribution package is
A versioned archive file that contains Python packages, modules, and other
resource files that are used to distribute a release. The archive file is what
an end-user will download from the Internet and install.
A distribution package is more commonly referred to with the single words
“package” or “distribution”, but [it might be confused] with an import pack-
age (which is also commonly called a “package”) or another kind of distribu-
tion (e.g. a Linux distribution or the Python language distribution), which
are often referred to with the single term “distribution”.

2

https://packaging.python.org/glossary


and implicit dependencies of a set of packages as

I(S) =
⋃

v∈S

i(v)

G and M is said to form a valid state when G is valid and all installed
distribution packages are implicit dependencies of the manually installed
ones:

I(M) = V (2)

3.1.2 Input

The input is a set R of distribution packages to be removed, where R ⊂ V .

3.1.3 Output

The output is a set K of distribution packages to be kept† after uninstallation,
where K ⊂ V , K ∩ R = ∅ and that M ′ = M ∩ K, G′ = (K, E ′) is a new
valid state, where E ′ = {(u, v) ∈ E | u ∈ K}.

3.2 Algorithm
Define direct dependents of a package as

b(v) = {u ∈ V | (u, v) ∈ E}

implicit dependents of a package as

j(v) = {v} ∪
⋃

u∈b(v)
j(u)

and implicit dependents of a set of packages as

J(S) =
⋃

v∈S

j(v)

Let K = I(M \ J(R)), K is expected to meet the problem’s output
requirements.

†In practice it is often more useful to get V \K, but it is easier to formulate reasonings
with K.

3



3.3 Proof of Correctness
The algorithm is correct if and only if the new state of G′ and M ′ satisfies
(1) and (2):

∀u ∈ K, ∀v /∈ K, (u, v) /∈ E ′ (3)

I(M ′) = K (4)

as well as all specified distribution packages are removed:

K ∩R = ∅ (5)

Proof. It is trivial that S ⊂ X =⇒ I(S) ⊂ I(X)
I(S) = X =⇒ X = I(X)

and therefore

K = I(M \ J(R)) =⇒ K = I(K) ⊃ I(M ∩K) = I(M ′) (6)

In addition, it is easy to see that

M \ J(R) ⊂ I(M \ J(R)) ∧M \ J(R) ⊂M

=⇒M \ J(R) ⊂M ∩ I(M \ J(R)) ⇐⇒ M \ J(R) ⊂M ∩K

=⇒ I(M \ J(R)) ⊂ I(M ∩K) ⇐⇒ K ⊂ I(M ′) (7)

From (6) and (7) we have (4) proved.
From K = I(K) in (6), we also have (3) proved as follows:

∀v ∈ I(K), v ∈ K =⇒ ∀u ∈ K, ∀v /∈ K, (u, v) /∈ E

⇐⇒ ∀u ∈ K, ∀v /∈ K, (u, v) /∈ E ∨ u /∈ K

⇐⇒ ∀u ∈ K, ∀v /∈ K, (u, v) /∈ {(u, v) ∈ E | u ∈ K}
⇐⇒ ∀u ∈ K, ∀v /∈ K, (u, v) /∈ E ′

Assume that R ∩K 6= ∅, we get

∃v ∈ R, v ∈ K ⇐⇒ ∃v ∈ R, v ∈ I(M \ J(R))
=⇒ ∃v ∈ R, ∃u ∈ j(v), u ∈M \ J(R) =⇒ ∃u ∈ J(R), u ∈M \ J(R) (8)

As (8) is false, the reverse which is (5) is true.

4



4 Implementation

4.1 Obtaining Dependency Graph
Through the standard library importlib.metadata, local dependency infor-
mation can be obtained trivially as follows:

from collections import defaultdict
from importlib.metadata import distributions

from packaging.requirements import Requirement

def dependency_graph():
vertices, edges = set(), defaultdict(set)
for distribution in distributions():

d = distribution.metadata[’Name’]
vertices.add(d)
for r in distribution.requires or []:

requirement = Requirement(r)
marker = requirement.marker
if marker is None or marker.evaluate({’extra’: ’’}):

edges[d].add(requirement.name)
return vertices, edges

We then define the functions I and J above as dependencies and dependents
respectively:

from collections import deque

def dependencies(edges, packages):
result, queue = set(), deque(packages)
while queue:

v = queue.popleft()
if v in result: continue
result.add(v)
queue.extend(edges[v])

return result

def dependents(edges, packages):
egdes = defaultdict(set)
for k, v in edges.items():

for i in v: egdes[i].add(k)
return dependencies(egdes, packages)

5



Manually installed packages M are stored in a text file specific to the
environment. The packages to be removed V \ K = V \ I(M \ J(R)) are
computed as follows:

manual = set(file.read_text().strip().split()) # M
must_remove = dependents(edges, distributions) # J(R)
must_keep = manual.difference(must_remove) # M \ J(R)
should_keep = dependencies(edges, must_keep) # K = I(M \ J(R))
should_remove = vertices.difference(should_keep) # V \ K

Operations with side-effects are outsourced to pip. The reference im-
plementation can be found on the Python Package Index under the name
anage.

5 Conclusion
Through the abstraction given by graph theory, we was able to deduced
a rather unexpectedly simple method of managing automatically installed
distribution packages that is mathematically proven. Although the proof-
of-concept was not production-ready (as in, it did not fully comply with all
packaging specification such as extras and was lacking certain package man-
agements features), we are confident about the tool will eventually become
helpful with future development.

6

https://pypi.org/project/anage
https://www.python.org/dev/peps/pep-0508/#extras

	Introduction
	Brief Description
	Authors and Credits

	Objective
	Theoretical Background
	Problem Definition
	States and Constraints
	Input
	Output

	Algorithm
	Proof of Correctness

	Implementation
	Obtaining Dependency Graph

	Conclusion

