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Agenda 
Memory Management

Why?
What?
How?



General Memory Problem

nWe have a limited (expensive) physical 
resource: main memory
nWe want to use it as efficiently as 

possible
nWe have an abundant, but slower, 

resource: disk



Lots of Variants
nMany processes, total size less than memory
nTechnically possible to pack them together
nWill programs know about each other’s 

existence?
nOne process, size exceeds memory
nCan you only keep part of the program in 

memory?
n Lots of processes, total size exceeds memory
nWhat programs are in memory, and how to 

decide?



Memory Manager

nIt’s task: Manage memory hierarchy 
nTrack used and free memory
nAllocate memory to processes
nReclaim (De-allocate) memory
nSwapping between main memory and disk
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uProtection

uShare
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A typical memory hierarchy. 
The numbers are very rough approximations.

Memory Hierarchy



Questions when dealing with cache:

• When to put a new item into the cache.
• Which cache line to put the new item in.
• Which item to remove from the cache when a slot 

is needed.
• Where to put a newly evicted item in the larger 

memory.

Memory Cache



Types of Memory

• Primary Memory (a.k.a. RAM)
– Holds data and programs used by a 

process that is executing
– Only type of memory that a CPU deals with 

• Secondary Memory (i.e. hard disk)
– Non-volatile memory used to store data 

when a process is not executing



The Memory Manager (MM)

• Purpose: to manage the use of primary 
and secondary memory.

• Responsible for:
– Allocating primary memory to processes
– Moving processes between primary and 

secondary memory
– Optimizing memory usage



Process Memory

• There are two types of memory that can
• be used within a process:
• Stack: used for local/automatic 

variables and for passing parameters to 
function calls

• Heap: used for dynamic memory 
allocation



Process Memory Layout
• Allocates more 

memory than needed 
at first

• Heap grows towards 
stack for dynamic 
memory allocation

• Stack grows towards 
heap when automatic 
variables are created

Text Segment

Data Segment (global and 
static variables)

Heap Storage

Stack Segment

Environment Variables, etc.



Three simple ways of organizing memory with an operating 
system and one user process. 

Single-Partition Strategies



Fixed-Partition Strategies

• Memory divided into fixed-size regions
• Size of each region usually not equal
• MM will allocate a region to a process that 

best fits it
• Unused memory within an allocated 

partition called internal fragmentation



Fixed-Partition Example

Operating 
System

Partition 5

Partition 4

Partition 3

Partition 2

Partition 1

Process 1

Process 3

Process 2

Operating 
System

Partition 5

Partition 4

Partition 3

Partition 2

Partition 1

Internal 
Fragmentation
Internal 
Fragmentation

Internal 
Fragmentation

Internal 
Fragmentation



Multiprogramming with Fixed Partitions

• Fixed memory partitions
– separate input queues for each partition
– single input queue



Variable-Partition Strategies

• MM allocates regions equal to the memory requirements of 
a process at any given time

• As processes die, holes develop in the memory
• MM inserts new processes into holes



Variable-Partition Example

Operating 
System

Process 3

Process 2

Process 1

Operating 
System

Process 4

Process 3

Process 5

Operating 
System

Process 3

Process 5
Process 4

Initially P2 completes
P4 starts
P1 completes
P5 starts

After compacting



More…

• Results in External Fragmentation
• After a while, only small processes will be able to run due 

to too much external fragmentation
• MM must compact the memory to make more space 

available for larger processes



Illustration of the relocation problem. 
(a) (b) logical address   (c) physical address

Relocation



Base and limit registers can be used to give each process a 
separate address space.

Base and Limit Registers



(a) A part of memory with five processes and three holes. The tick 
marks show the memory allocation units. The shaded regions 
(0 in the bitmap) are free. (b) The corresponding bitmap. (c) 

The same information as a list.

Memory Management with Bitmaps



Four neighbor combinations 
for the terminating process, X.

Memory Management with Linked Lists



Storage Placement Strategies 
• First Fit

• Scan; use the first available hole whose size is sufficient to meet the need. 
• Problem: Creates average size holes; more fragementation closer to scan start. 

• Next Fit 
• Minor variation of first fit: keep track of where last search ended, restart from there.
• Problem: slightly worse performance than first fit. 

• Best Fit
• Use the hole whose size is equal to the need, or if none is equal, the smallest hole that is 

large enough. 
• Problem: Creates small holes that can't be used. 

• Worst Fit 
• Use the largest available hole. 
• Problem: Gets rid of large holes, making it difficult to run large processes. 

• Quick Fit
• maintains separate lists for some of the more common sizes requested. 
• When a request comes for placement, it finds the closest fit. 
• This is a very fast scheme, but a merge is expensive. If merge is not done, memory will 

quickly fragment into a large number of holes. 



Modeling Multiprogramming

CPU utilization as a function of number of processes in 
memory

Degree of multiprogramming
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Virtual Memory



Overlaying

Overlay Area

Main Program

Overlay 1

Overlay 2

Overlay 3

Secondary Storage

Used when process memory requirement exceeds the physical memory space
Split process space into multiple, sequentially runnable parts 
Load one overlay at a time

Physical Memory



Swapping（1）

•Comes from the basis that when a process 
is blocked, it does not need to be in memory
•Thus, it is possible to save a process’ entire 
address space to disk
•Saving to a “swap file” or a “swap partition”



Swapping (2)

n Memory allocation changes as 
¨ processes come into memory
¨ leave memory

n Shaded regions are unused memory



Swapping (3)

n Allocating space for growing data segment
n Allocating space for growing stack & data 

segment



Compaction (Similar to Garbage 
Collection)

n Assumes programs are all relocatable (how supported?)
n Processes must be suspended during compaction 
n Needed only when fragmentation gets very bad

Monitor Job 3 FreeJob 5 Job 6Job 7 Job 85

Monitor Job 3 FreeJob 5 Job 6Job 7 Job 86

Monitor Job 3 FreeJob 5 Job 6Job 7 Job 87

Monitor Job 3 FreeJob 5 Job 6Job 7 Job 88

Monitor Job 3 FreeJob 5 Job 6Job 7 Job 89



Memory Management Problems
n Fixed partitions suffer from internal 

fragmentation
n Variable partitions suffer from external 

fragmentation
n Compaction suffers from overhead
n Overlays are painful to program 

efficiently
n Swapping requires writing to disk 

sectors 



Alternative Approach: 
Virtual Memory

n Provide user with virtual memory that is as big 
as user needs

n Store virtual memory on disk
n Store in real memory those parts of virtual 

memory currently under use
n Load and store cached virtual memory without 

user program intervention (“transparently”)



Virtual Memory

• Comes from the basis that all of a 
process’ address space is not 
needed at once

• Thus, chop up the address space 
into smaller parts and only load the 
parts that are needed

• These parts need not be contiguous 
in memory!



Benefits of Virtual Memory
n Use secondary storage($)

¨ Extend DRAM($$$) with reasonable performance
n Protection

¨ Processes do not step on each other
n Convenience

¨ Flat address space
¨ Processes have the same view of the world
¨ Load and store cached virtual memory without user program 

intervention 
n Reduce fragmentation: 

¨ make cacheable units all the same size (page=allocation unit)
n Remove memory deadlock possibilities:

– permit pre-emption of real memory



Process Memory Layout
• Allocates more 

memory than needed 
at first

• Heap grows towards 
stack for dynamic 
memory allocation

• Stack grows towards 
heap when automatic 
variables are created

Text Segment

Data Segment (global and 
static variables)

Heap Storage

Stack Segment

Environment Variables, etc.



N-1

… …

4
3
2
1
0

Logical 
Memory

… …

10
9
8
7
6
5
4
3
2
1
0

N-1 3

… … … …

4 6
3 10
2 4
1 2
0  7

              Page 
  Page      Frame

Page Table

Physical Memory

Paging



Virtual Memory
Paging 

The position and function of the MMU

Move REG, 1000



The internal operation of the MMU with 16 4-KB 
pages.

Paging (cont)



Relation between virtual addresses and physical 
memory addresses given by page table. 

Paging
Move REG, 0

Move REG, 8192

Move REG, 20500 ？



A typical page table entry.

Structure of Page Table Entry



Paging implementation issues:

• The mapping from virtual address to physical 
address must be fast.

• If the virtual address space is large, the page table 
will be large.

Speeding Up Paging



A TLB to speed up paging.

Translation Lookaside Buffers



Multilevel Page Tables

(a) A 32-bit address with two page table fields. 
(b) Two-level page tables.



Comparison of a traditional page table 
with an inverted page table.

Inverted Page Tables



Virtual Memory Usage

• Virtual memory is used in 
most modern operating 
systems:
– Windows NT/2000/XP uses 

one or more “page files” to 
swap pages

– Linux uses a hard disk 
partition (“swap partition”) to 
swap to



Pros/Cons
• Since only the necessary parts of the 

process are loaded, processes load faster 
and it allows much better memory 
utilization

• Needs lots of extra hardware to 
accomplish the job (efficiently)

• In some cases too much paging (i.e. 
“thrashing”) can occur, which is very slow



• The hardware traps to the kernel, saving the 
program counter on the stack.

• An assembly code routine is started to save the 
general registers and other volatile information.

• The operating system discovers that a page 
fault has occurred, and tries to discover which 
virtual page is needed.

• Once the virtual address that caused the fault is 
known, the system checks to see if this address 
is valid and the protection consistent with the 
access

Page Fault Handling (1)



• If the page frame selected is dirty, the page is 
scheduled for transfer to the disk, and a context 
switch takes place.

• When page frame is clean, operating system 
looks up the disk address where the needed 
page is, schedules a disk operation to bring it in.

• When disk interrupt indicates page has arrived, 
page tables updated to reflect position, frame 
marked as being in normal state.

Page Fault Handling (2)



• Faulting instruction backed up to state it had 
when it began and program counter reset to 
point to that instruction.

• Faulting process scheduled, operating system 
returns to the (assembly language) routine that 
called it.

• This routine reloads registers and other state 
information and returns to user space to 
continue execution, as if no fault had occurred.

Page Fault Handling (3)



作业：
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Page Replacement



Thrashing
• If a process does not have “enough” 

pages, the page-fault rate is very high.  
This leads to:
– low CPU utilization
– OS scheduler thinks that it needs to increase the 

degree of multiprogramming  new processes are 
added  even less pages for each process …

• Thrashing  a process is busy swapping 
pages in and out
–  Spending more time paging than executing.



Demand Paging
• Demand paging: pages are 

only loaded into memory 
when they are demanded 
during execution
– Less I/O needed
– Less memory needed
– Higher degree of 

multiprogramming
– Faster response

• Pager (lazy swapper) never 
swaps a page into memory 
unless that page will be needed.

• An extreme case: Pure 
demand paging starts a 
process with no pages in 
memory …

Transfer of a Paged Memory to Contiguous Disk Space



Page Replacement Algorithms
l Page fault forces choice 
lwhich page must be removed
lmake room for incoming page

lModified page must first be saved
lunmodified just over written

l Better not to choose an often used page
lwill probably need to be brought back in 

soon



• Random page replacement
• Optimal page replacement algorithm
• Not recently used page replacement
• First-In, First-Out page replacement
• Second chance page replacement
• Clock page replacement 
• Least recently used page replacement
• Working set page replacement
• WSClock page replacement

Page Replacement Algorithms



Optimal Page Replacement 
Algorithm

• Replace page needed at the farthest point in 
future
– Optimal but unrealizable

• Estimate by …
– logging page use on previous runs of  process
– although this is impractical



Optimal Example
12 references, 
7 faults



Not Recently Used Page Replacement 
Algorithm（NRU）

• Each page has Reference bit, Modified bit
– bits are set when page is referenced, 

modified
• Pages are classified

0：not referenced, not modified
1：not referenced, modified
2：referenced, not modified
3：referenced, modified

• NRU removes page at random
– from lowest numbered non empty class



FIFO Page Replacement Algorithm

• Maintain a linked list of all pages 
– in order they came into memory

• Page at beginning of list replaced

• Disadvantage
– page in memory the longest may be often used



FIFO

12 references, 
9 faults 



Belady's Anomaly (for FIFO)

Same reference 
string as with 3 
frames (9 page 
faults). 

12 references, 
10 faults 

Belady’s Anomaly for FIFO: (Sometimes) as the number of page frames increase, 
so does the fault rate. 



Operation of second chance. 
(a) Pages sorted in FIFO order. 
(b) Page list if a page fault occurs at time 20 and A has its R 
bit set. The numbers above the pages are their load times.

Second Chance Algorithm



Second Chance Example

12 references, 
9 faults



The clock page replacement algorithm.

The Clock Page Replacement 
Algorithm



Least Recently Used (LRU)
• Assume pages used recently will used again 

soon
– throw out page that has been unused for longest 

time
• Must keep a linked list of pages

– most recently used at front, least at rear
– update this list every memory reference !!

• Alternatively keep counter in each page table 
entry
– choose page with lowest value counter
– periodically zero the counter



LRU using a matrix when pages are referenced in the order 0, 1, 2, 
3, 2, 1, 0, 3, 2, 3.

LRU Page Replacement Algorithm



The aging algorithm simulates LRU in software. Shown are six 
pages for five clock ticks. The five clock ticks are represented 

by (a) to (e).

Simulating LRU in SoftwareNFU

Aging



LRU and Anomalies

Anomalies 
cannot 
occur. 

12 references, 
8 faults 



The working set is the set of pages used by the k most recent 
memory references. The function w(k, t) is the size of the 

working set at time t.

Working Set Page Replacement (1)



The working set algorithm.

Working Set Page Replacement (2)



When the hand comes all the way around to its 
starting point  there are two cases to consider:

• At least one write has been scheduled.
• No writes have been scheduled.

The WSClock Page Replacement Algorithm (1)



Operation of the WSClock algorithm. (a) and (b) give an example 
of what happens when R = 1.

The WSClock Page Replacement Algorithm (2)



Operation of the WSClock algorithm. 
(c) and (d) give an example of R = 0.

The WSClock Page  Replacement Algorithm (3)



Page replacement algorithms discussed in the text.

Summary of Page Replacement Algorithms



Figure 3-23. Local versus global page replacement. 
(a) Original configuration. (b) Local page replacement. 

(c) Global page replacement.

Local versus Global Allocation Policies (1)



Page fault rate as a function 
of the number of page frames assigned.

Local versus Global Allocation Policies (2)



Modeling Page Replacement Algorithms
Belady's Anomaly

FIFO with 3 page frames
FIFO with 4 page frames

P's show which page references show page faults



Stack Algorithms

State of memory array, M, after each item in reference 
string is processed



Load Control
Despite good designs, system may still thrash

When
some processes need more memory 
but no processes need less

Solution :
Reduce number of processes competing for memory
swap one or more to disk, divide up pages they held
reconsider degree of multiprogramming



Page Size (1)

Small page size
Advantages

less internal fragmentation 
 better fit for various data structures, code sections
less unused program in memory

Disadvantages
programs need many pages, larger page tables



Page Size (2)
Overhead due to page table and internal fragmentation

Where
s = average process size in bytes
p = page size in bytes
e = page entry

2
s e poverhead
p


 

page table space

internal 
fragmentation

Optimized when
2p se



Separate Instruction and 
Data Spaces

One address space
Separate I and D spaces



Shared Pages

Two processes sharing same program sharing its page table



Implementation Issues
Operating System Involvement with Paging

Four times when OS involved with paging
Process creation

determine program size
create page table

Process execution
MMU reset for new process
TLB flushed

Page fault time
determine virtual address causing fault
swap target page out, needed page in

Process termination time
release page table, pages



Page Fault Handling (1)

Hardware traps to kernel
General registers saved
OS determines which virtual page needed
OS checks validity of address, seeks page frame
If selected frame is dirty, write it to disk



Page Fault Handling (2)

l OS brings schedules new page in from disk
l Page tables updated
l Faulting instruction backed up to when it 

began 
l Faulting process scheduled
l Registers restored
l Program continues



Instruction Backup

An instruction causing a page fault



Locking Pages in Memory

Virtual memory and I/O occasionally interact
Proc issues call for read from device into buffer

while waiting for  I/O, another processes starts up
has a page fault
buffer for the first proc may be chosen to be paged out

Need to specify some pages locked
exempted from being target pages



Backing Store

(a) Paging to static swap area
(b) Backing up pages dynamically



Separation of Policy and 
Mechanism

Page fault handling with an external pager



作业
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(a) One address space. 
(b) Separate I and D spaces.

Separate Instruction and Data Spaces



Two processes sharing the same program 
sharing its page table.

Shared Pages



A shared library being used by two processes.

Shared Libraries



A compiler has many tables that are built up as 
compilation proceeds, possibly including:

• The source text being saved for the printed listing (on 
batch systems).

• The symbol table – the names and attributes of variables.
• The table containing integer, floating-point constants used.
• The parse tree, the syntactic analysis of the program.
• The stack used for procedure calls within the compiler.

Segmentation (1)



In a one-dimensional address space with growing tables, one 
table may bump into another.

Segmentation (2)



A segmented memory allows each table to grow or shrink 
independently of the other tables.

Segmentation (3)



Comparison of paging and segmentation.

Implementation of Pure Segmentation



Figure 3-34. (a)-(d) Development of checkerboarding. (e) 
Removal of the checkerboarding by compaction.

Segmentation

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Figure 3-35. The MULTICS virtual memory. (a) The 
descriptor segment points to the page tables.

Segmentation with Paging: MULTICS (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Figure 3-35. The MULTICS virtual memory. (b) A segment 
descriptor. The numbers are the field lengths.

Segmentation with Paging: MULTICS (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



When a memory reference occurs, the following 
algorithm is carried out:

• The segment number used to find segment descriptor.
• Check is made to see if the segment’s page table is in 

memory. 
– If not, segment fault occurs. 
– If there is a protection violation, a fault (trap) occurs.

Segmentation with Paging: MULTICS (3)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



• Page table entry for the requested virtual page 
examined.
– If the page itself is not in memory, a page fault is 

triggered.
– If it is in memory, the main memory address of the 

start of the page is extracted from the page table entry
• The offset is added to the page origin to give the 

main memory address where the word is located.
• The read or store finally takes place.

Segmentation with Paging: MULTICS (4)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Figure 3-36. A 34-bit MULTICS virtual address.

Segmentation with Paging: MULTICS (5)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Figure 3-37. Conversion of a two-part MULTICS address into a 
main memory address.

Segmentation with Paging: MULTICS (6)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Figure 3-38. A simplified version of the MULTICS TLB. The 
existence of two page sizes makes the actual TLB more 

complicated.

Segmentation with Paging: MULTICS (7)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Summary

Fixed 
Partition

Variable 
Partition

Paging Segmentation Segmentation 
with Paging

Fragmen-
tation

Internal External Internal External Internal

Continuity Whole 
process

Whole 
process

Page Segment Page

Swapping Whole 
process

Whole 
process

Page Segment Segment

Relocation Base 
register

Base 
register

Page 
table

Segment table Segment table 
with page 

tables



Segmentation with Paging: 
Pentium (1)

A Pentium selector



Segmentation with Paging: 
Pentium (2)

Pentium code segment descriptor
Data segments differ slightly



Segmentation with Paging: 
Pentium (3)

Conversion of a (selector, offset) pair to a linear address



Segmentation with Paging: 
Pentium (4)

Mapping of a linear address onto a physical address



Segmentation with Paging: 
Pentium (5)

Protection on the Pentium

Level



Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Chapter 5 File Management

File Overview



Essential requirements for long-term 
information storage:

• It must be possible to store a very large amount 
of information.

• The information must survive the termination of 
the process using it.

• Multiple processes must be able to access the 
information concurrently.

File Systems (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



File & File Structure 
• File: a named collection of related information 

that is recorded on secondary storage 
– contiguous logical address space
– Types: 

• Data: numeric, character, binary
• Program

• File Structure: depends on its type
– None - sequence of words, bytes
– Complex Structures
– Simple record structure

• Lines 
• Fixed length
• Variable length
• Formatted document
• etc.



Think of a disk as a linear sequence of fixed-size 
blocks and supporting reading and writing of 
blocks.  Questions that quickly arise:

• How do you find information?
• How do you keep one user from reading another’s data?
• How do you know which blocks are free?

File Systems (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Figure 4-2. Three kinds of files. (a) Byte sequence. 
(b) Record sequence. (c) Tree.

File Structure

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Linux Filenames

• Should be descriptive of the content

• Should use only alphanumeric characters:
UPPERCASE, lowercase, number, @, _

• Should not include embedded blanks

• Should not contain shell metacharacters:
*   ?   >   <   /   ;   &   !   |   \   `   '   "   [  ]   (  )   {  }

• Should not begin with + or - sign

• Are case sensitive

• Are hidden if the first character is a  .  (period)

• Can have a maximum of 255 characters



Figure 4-1. Some typical file extensions.

File Naming

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Figure 4-4a. Some possible file attributes.

File Attributes

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Figure 4-3. (a) An executable file. (b) An archive.

File Types

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



The most common system calls relating to files:

File Operations

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

• Append
• Seek
• Get Attributes
• Set Attributes
• Rename

• Create
• Delete
• Open 
• Close
• Read
• Write



Figure 4-5. A simple program to copy a file.

Example Program Using File System Calls (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

. . .



Figure 4-5. A simple program to copy a file.

Example Program Using File System Calls (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Figure 4-6. A single-level directory system containing four files.

Hierarchical Directory Systems (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Figure 4-7. A hierarchical directory system.

Hierarchical Directory Systems (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Figure 4-8. A UNIX directory tree.

Path Names

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



File system containing a shared file.

Shared Files



System calls for managing directories:

Directory Operations

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

• Readdir
• Rename
• Link
• Uplink

• Create
• Delete
• Opendir 
• Closedir



# type mode links user group date size loc

4 dir 755 2 team01 staff July 10 10:15 512

10 file 644 1 team01 staff July 11 11:00 96

name i-node

subdir1 4

myfile 10

Directory i-node Table

Data

Directory Contents



File system containing a shared file.

Shared Files



Figure 4-17. (a) Situation prior to linking. (b) After the link is 
created. (c) After the original owner removes the file.

Shared Files (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



• Allows files to have more than one name in the directory structure
• Both files reference the same i-node
• Cannot be used with directories, cannot span file systems

ln source_file target_file 

Linking Files

$ ls –li
63 -rw-r--r--    1 team01   staff    1910 Nov 21 14:19 man_files

$ ln man_files manuals

$ ls -li
63 -rw-r--r--    2 team01   staff    1910 Nov 21 14:19 man_files
63 -rw-r--r--    2 team01   staff    1910 Nov 21 14:19 manuals

$



• Creates an indirect reference to a file (symbolic link)
• Name references the original file’s name and path
• Can be used with directories and span file systems

ln –s source_file target_file 

Linking Files (cont.)

$ ls –li
63 -rw-r--r--    1 team01   staff    1910 Nov 21 14:19 man_files

$ ln –s man_files manuals

$ ls -li
63 -rw-r--r--    1 team01   staff    1910 Nov 21 14:19 man_files
66 lrwxrwxrwx    1 team01   staff    1910 Nov 21 14:19 manuals -> man_files

$



File permissions are assigned to:

1. The owner of a file
2. The members of the group the file is assigned to
3. All other users

Permissions can only be changed by the owner and 
root!

Permissions



To show the permissions of a file, use the ls command with 
the -l option.

$ ls -l
-rw-r--r--  1 tux1  penguins  101  Jan 1 10:03  file1
-rw-r--r--  1 tux2  penguins  171  Jan 4 10:23  file2
drwxr-xr-x  2 tux1  penguins 1024  Jan 2 11:13  mydir

File type

link counter

name

mtime
(modification time)

size

group

owner

permissions

Viewing Permissions



rwxrwxrwx
owner  group    other

  r read
  w  write
  x execute

Regular files:
r file is readable
w file is writeable
x file is executable ( if in an executable format )

Directories:
r contents of directory can be listed (ls)
w contents can be modified (add/delete files)
x change into directory is possible (cd)

Permissions Notation



Chapter 5 File Management 

File System Implementation



Filesystems supported
• Traditional: ext2
• Second generation: ext3, ReiserFS, IBM JFS, xfs
• FAT-12, FAT-16, FAT-32, VFAT, NTFS (read-only)
• CD-ROM (ISO 9660)
• UMSDOS (UNIX-like FS on MS-DOS)
• NFS (Network File System)
• SMBFS (Windows share), NCPFS (Novell Netware share)
• /proc (for kernel and process information)
• SHMFS (Shared Memory Filesystem)



What is a filesystem?
• Place to store files and refer to them
• Hierarchical structure through use of directories
• A filesystem can be stored on any block device

– Floppy disk
– Hard disk
– Partition
– RAID, LVM volume
– File (for use with a loop device)
– RAM disk



Figure 4-9. A possible file system layout.

Implementation of File System
——File System Layout
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Figure 4-10. (a) Contiguous allocation of disk space for 7 files. 
(b) The state of the disk after files D and F have been removed.

Implementation of File System 
            ——Implementing Files

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Contiguous Allocation



Figure 4-11. Storing a file as a linked list of disk blocks.

Linked List Allocation
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Figure 4-12. Linked list allocation using a file allocation table 
in main memory.

Linked List Allocation Using a Table in Memory
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Figure 4-13. An example i-node.

I-nodes
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A UNIX i-node.

i-node



Figure 4-14. (a) A simple directory containing fixed-size entries 
with the disk addresses and attributes in the directory entry. 
(b) A directory in which each entry just refers to an i-node. 

Implementation of File System——
Implementing Directories (1)
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Figure 4-15. Two ways of handling long file names in a directory. 
(a) In-line. (b) In a heap.

Implementing Directories (2)
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Figure 4-16. File system containing a shared file.

Shared Files (1)
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Figure 4-17. (a) Situation prior to linking. (b) After the link is 
created. (c) After the original owner removes the file.

Shared Files (2)
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The virtual file systems (1)
User Processes

vi, ls, mv, rm, file, strings, cat, touch ...

I/O Request

Hardware

Device Drivers

System Call Interface
open() read() write() close()...

VFS Abstraction Layer

Buffer Cache

ext2 reiserfs minix ext3 . . .



Figure 4-19. A simplified view of the data structures and code 
used by the VFS and concrete file system to do a read.

Virtual File Systems (2)
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Filesystems supported
• Traditional: ext2
• Second generation: ext3, ReiserFS, IBM JFS, xfs
• FAT-12, FAT-16, FAT-32, VFAT, NTFS (read-only)
• CD-ROM (ISO 9660)
• UMSDOS (UNIX-like FS on MS-DOS)
• NFS (Network File System)
• SMBFS (Windows share), NCPFS (Novell Netware share)
• /proc (for kernel and process information)
• SHMFS (Shared Memory Filesystem)



Filesystem example: ext2
• Partition divided into blocks of 1024, 2048 or 
4096 bytes
– Blocksize depends on size of filesystem and expected 

usage
• Blocks can have different usage:

– Superblock
– Index node (inode) block
– Indirect block (double, triple)
– Data block

S I I D D S I I ID D D D



Superblock
•First block of filesystem, several copies 
(at 8193, 16385, ...)

•Contains general info on filesystem
– Last mounted time/place
– Block size
– Pointers to free inodes
– Pointers to free blocks
– Pointer to root of filesystem

S I I D D S I I ID D D D



Inodes
• 128 bytes （8 inodes per 1024 
–Byte block ）

• Contains information about a file: 
owner, group, type, size, 
permissions, ctime, atime, 
mtime, ...

• Contains pointers to data blocks
• Contains pointers to an indirect 
block, a double indirect block, 
and a triple indirect block

S I I D D S I I ID D D D

Owner / Group
File Type
File Size

File Permissions
Time Stamps:

create time
access time

modification time
Link Counter

Additional Flags:
(ACL, EXT2,_FLAGS)

 

Pointers to Block Data



Data blocks
• Contain file data
• File may be a directory, in which case the data is the 
list of file names and inodes in that directory

• Multiple file names may point to the same inode! 
(Or files may have multiple names)

S I I D D S I I ID D D D

Directory Regular File

Type: d
Data: 6417
Size: 1024
User: 0
Group: 0

Type: f
Data: 9041
Size: 21
User: 0
Group: 0
Link: 2

File data
xyz 

Data 9041Inode 8391Data 6417Inode 3694

Name
.
..
xyz
abc

Inode
2317
3694
8391
8391



Ext2fs summary
• The most important components of a 
filesystem are the inodes and the data 
blocks

• The filesystem is full if:
– No more inodes are available
– No more data blocks are available

• So tune your filesystem according to the 
number of bytes per file:
– Blocksize (1024, 2048, or 4096 

possible)
– Bytes-per-inode (4096 default)



Other filesystem features
Filesystems can have other features that can be useful:
• Access Control Lists (ACL)

– Allow more extended permissions, not just rwxrwxrwx
– Not yet supported by VFS abstraction layer

• Journaling
– Keeps a journal of operations that are going to take  

place and operations that were successfully committed
– Should make recovery from a crash faster
– Slight performance decrease

• Extended file attributes
– Examples: immutable, auto compression, undeletable

• Labels
– Allow mounting based on label instead of device name

• Performance optimizations



作业
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Management and Optimization 
of File System



Figure 4-20. Percentage of files smaller than a given size 
(in bytes).

Disk Space Management Block Size (1)
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Figure 4-21. The dashed curve (left-hand scale) gives the data rate of a 
disk. The solid curve (right-hand scale) gives the disk space 

efficiency. All files are 4 KB.

Disk Space Management Block Size (2)
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(a) Storing the free list on a linked list. (b) A bitmap.

Keeping Track of Free Blocks



Creating a filesystem
•  Creating a filesystem is done with an mkfs variant

–  mke2fs, mke2fs -j
–  mkreiserfs
–  mkjfs

•  Typical options:
- b  blocksize sets blocksize
- i  bytes-per-inode sets number of inodes
- c  checks disk for bad blocks

•  Example:

# mke2fs -b 1024 -i 4096 -c /dev/sda6
...
Writing inode tables: done
Writing superblocks and filesystem accounting 
info: done
...



• mount is the glue that logically connects file systems to the 
directory hierarchy

• File systems are associated with devices represented by 
special files in /dev (the logical volume)

• When a file system is mounted, the logical volume and its 
contents are connected to a directory in the hierarchical tree 
structure

           
 # mount  /dev/lv00  /home/patsie

W ha t to  
m oun t

W he re  to  
m ou n t it 

Mount



Comparing filesystems

ext2 ext3 jfs reiser xfs

Journal no
yes

(10 MB 
default)

yes
(auto 

resized)

yes
(32 MB 
default)

yes

resizeable
yes, but 

only when 
unmounted

yes, but only 
when 

unmounted
yes yes yes, but only 

when mounted

maximum 
size

File: 2 TB
FS: 16 TB

File: 2 TB
FS: 16 TB

File: 4 PB
FS: 32 PB

File: 16 TB
FS: 1 EB

File: 2 TB
FS: 8 EB

type

inodes 
(completely 

block 
oriented)

inodes 
(completely 

block 
oriented)

inodes 
(allocated 

in a b-tree)
b-Tree

inodes
(allocated in a 

b-tree)

Journaled Filesystems used by Linux:



SHMFS-specific information

•SHMFS: POSIX compliant Shared Memory 
Filesystem

•Filesystem stored in memory, expands when 
used to required size

•Not persistent across reboot
•Typically mounted on /dev/shm
•Required by certain applications



Quota concepts
• Quotas limit the amount of data a user/group is allowed to 

store
• Defined on a per-filesystem basis
• Based on block and/or inode usage per user or group
• Two limits per quota: Soft and hard

– User exceeds soft limit      warning only
– User exceeds hard limit     error

• Grace period identifies how long the soft limit may be 
exceeded
– After that period, a user gets errors instead of warnings

20
MB

Filesystem: 300 MB5
MB

Each user may consume only 20 MB permanently and 25 MB temporarily



Figure 4-24. Quotas are kept track of on a per-user basis 
in a quota table.

Disk Quotas
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Quota implementation on Linux
• Quota support compiled into the kernel

– No daemon necessary
• Implemented on a per-filesystem basis

– A user can have different quota on different filesystems
– Stored in aquota.user and aquota.groups in the root of the 

filesystem
• Quota checking should be enabled when mounting the filesystem

– Mount options: usrquota, grpquota
– Can be specified in /etc/fstab

• Quota checking should be turned on after mounting with the quotaon 
command
– Automatically executed from bootscript after mount -a



Enabling quota

• Modify /etc/fstab

• Create aquota.user and aquota.group in the filesystem's root 
directory

• Remount the partition
• Calculate current usage and turn on quota checking

# touch /home/aquota.user /home/aquota.group
# mount -o remount /home
# quotacheck /home
# quotaon /home

/dev/sda2 /           ext3    defaults                   1 1
/dev/sda4 /home       ext3    defaults,usrquota,grpquota 1 2
/dev/sdb  /mnt/cdrom  iso9660 noauto,owner,ro            0 0
/dev/sda3 swap        swap    defaults                   0 0
/dev/fd0  /mnt/floppy msdos   noauto,owner               0 0
none      /proc       proc    defaults                   0 0
none      /dev/pts    devpts  gid=5,mode=620             0 0



Configuring quota

• Done with the edquota command
– Starts $EDITOR (default: vi) in a subshell
– Only edit the block/inode soft/hard quota numbers

• User quota: edquota -u username

• Group quota: edquota -g groupname
• Grace period: edquota -t
• Copy quota: edquota -p tux1 -u tux2 tux3 tux4

Disk quotas for user tux1 (uid 501):
Filesystem     blocks    soft    hard     inodes    soft    hard
/dev/sda4       10700   20000   25000        407       0       0
/dev/sda9         320     300     350         23      30      50
~
~
~
"/tmp/Edp.a9fSEQK" 3L, 213C



Quota information
• quota command

– Reports on the quota of one user
– Can be executed by anyone
– A regular user can only view his own quota

• repquota command
– Reports on the quota of all users and groups
– Can only be executed by root

tux1$ quota
Disk quotas for user tux1 (uid 501):
Filesystem  blocks  quota  limit  grace  files   quota   limit   grace
/dev/sda4    10700  20000  25000           407       0       0

root# repquota /dev/hda4
                        Block limits               File limits
User            used    soft    hard  grace    used  soft  hard  grace
root      --  848804       0       0          56892     0     0     
.  
tux1      ++    1500    1000    1500  7days     112   112   115   none
tux2      --     176    1000    1500             44     0     0 



Backups to tape are generally made to handle one of 
two potential problems:

• Recover from disaster.
• Recover from stupidity.

File System Backups (1)
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Physical Backup VS Logical Backup



Backup schemes

• Full backup 
– Preserves the whole system

• System backup 
– Preserves system directories and files
– Must include backup/restore tools
– Usually on bootable media (floppy, optical) 

• Data backup
– Preserves user data

• Incremental or differential backup 
– Only backup files that changed
– Very fast, but takes more time to restore 
– Must be used carefully
– Needs more media 



Figure 4-25. A file system to be dumped. Squares are directories, circles 
are files. Shaded items have been modified since last dump. Each 

directory and file is labeled by its i-node number.

File System Backups (2)
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Figure 4-26. Bitmaps used by the logical dumping algorithm.

File System Backups (3)
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Incremental versus differential backup

Full L 1 L 1 L 1

Differential backup

Full L 1 L 2 L 3

Incremental backup

         Day 1    Day 2     Day 3   Day 4



Sample monthly backup scheme

Su Mo Tue We Thu Fr Sa
1

Level 0

2

3 4

Level 2

5

Level 3

6

Level 4

7

Level 5

8

Level 1

9

10 11

Level 2

12

Level 3

13

Level 4

14

Level 5

15

Level 1

16

17 18

Level 2

19

Level 3

20

Level 4

21

Level 5

22

Level 1

23

24 25 

Level 2

26

Level 3

27

Level 4

28

Level 5

29

Level 0

30

31



Backup devices

• Tape drive
– Large capacity, fast
– Requires new tapes regularly

• CD-R, CD-RW, DVD
– Cheap but relatively slow

• (Removable) Hard disk
– Fast but expensive

• Diskette drive
– Often available but cumbersome for large backups

• Network
– Useful in large installations; usually requires commercial software 

(for instance, Tivoli Storage Manager)



Default backup tools
• tar 

– Backs up individual files
– Widely available 
– Excellent for transferring data between platforms 

• cpio 
– Backs up individual files
– Widely available 
– Difficulties with many symbolic links 

• dump
– Backs up whole filesystems
– Can handle incremental backups (nine levels)

• dd
– Useful for making bit-for-bit dumps of disks and filesystems



Figure 4-27. File system states. (a) Consistent. (b) Missing block. (c) 
Duplicate block in free list. (d) Duplicate data block.

File System Consistency
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Figure 4-28. The buffer cache data structures.

Caching (1)
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• Some blocks, such as i-node blocks, are rarely 
referenced two times within a short interval.

• Consider a modified LRU scheme, taking two factors 
into account:

•Is the block likely to be needed again soon?
•Is the block essential to the consistency of the file system?

Caching (2)
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Figure 4-29. (a) I-nodes placed at the start of the disk. 
(b) Disk divided into cylinder groups, each with its own blocks and 

i-nodes.

Reducing Disk Arm Motion

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Figure 4-30. The ISO 9660 directory entry.

The ISO 9660 File System
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Rock Ridge extension fields:

• PX - POSIX attributes.
• PN - Major and minor device numbers.
• SL - Symbolic link.
• NM - Alternative name.
• CL - Child location.
• PL - Parent location.
• RE - Relocation.
• TF - Time stamps.

Rock Ridge Extensions
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Joliet extension fields:

• Long file names.
• Unicode character set.
• Directory nesting deeper than eight levels.
• Directory names with extensions

Joliet Extensions
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Figure 4-31. The MS-DOS directory entry.

The MS-DOS File System (1)
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Figure 4-32. Maximum partition size for different block sizes. The empty 
boxes represent forbidden combinations.

The MS-DOS File System (2)
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Figure 4-33. A UNIX V7 directory entry.

The UNIX V7 File System (1)
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Figure 4-34. A UNIX i-node.

The UNIX V7 File System (2)
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Figure 4-35. The steps in looking up /usr/ast/mbox.

The UNIX V7 File System (3)
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Chapter 5 File Management

Storage： Hard disks, LVM and RAID



Hard Disks
• IDE (Integrated Drive Electronics)  
• ATA (Advanced Technology Attachment )

– PATA (Parallel ATA or IDE)
– SATA (Serial ATA )



Hard Disks

• SCSI (Small Computer System Interface)
– SAS (Serial Attached SCSI)

• SSD (Solid State Disk)



Hard disk partitions

• IDE and SCSI hard disks can be partitioned
• Maximum of four primary partitions
• One primary partition may be an extended partition
• An extended partition can hold an unlimited amount of 
logical partitions (Linux: max 59 for IDE, 11 for SCSI)

master boot record
partition table

Windows 

Linux /

Linux /home

Linux swap

sda: The first sector of the disk contains the MBR 
and Partition Table
sda1: First primary partition holds a Windows 
filesystem
sda2: Second primary partition is an extended 
partition and holds three logical partitions
sda5: First logical partition holds a Linux 
filesystem that will be mounted as /
sda6: Second logical partition holds a Linux 
filesystem that will be mounted as /home
sda7: Third logical partition holds a Linux swap 
space



Partitioning tools

•   fdisk
– Virtually every PC OS comes with a tool fdisk to create partitions 

for that OS
•  Linux, Windows, and so forth

•  parted
– GPLed Linux program, available at www.gnu.org
– Can create/resize/move/delete partitions

• GParted, QTParted
– GUI utilities that use GNU Parted
– Can create/resize/move/delete partitions 

• Disk Druid and others
– Partitioning program integrated in Linux install program



Components of storage

• Files

• Directories

• File systems

• Logical storage

• Physical storage

• Logical Volume Manager (LVM)



Traditional disk storage

PROBLEMS:
• Fixed partitions
• Expanding size of the partition
• Limitation on size of a file system and a file
• Contiguous data requirement
• Time and effort required in planning ahead

Partition 1

Partition 2

Partition 3

Partition 4

Partition 5



Benefits of the LVM

• Logical volumes solve noncontiguous space problems

• Logical volumes can span disks

• Logical volume sizes can be dynamically increased

• Logical volumes can be mirrored

• Physical volumes are easily added to the system

• Logical volumes can be relocated

• Volume group and logical volume statistics can be collected

          These tasks can be performed dynamically!



Logical volume management

• Logical volume management solves the disadvantages of 
traditional disk storage:
– One or more physical volumes (hard disks, partitions) are assigned to 

a volume group (VG)
– All physical volumes (PV) are split into physical extents (PE) of 

identical size (default 4 MB)
– PEs in a VG can be combined into logical volumes (LV), which can 

be used like any block device
• An LV can span multiple disks
• To increase the size of an LV, add PEs
• To increase the size of a VG, add PVs



Logical volume management on Linux

PE PE PE

PE PE PE

PE PE PE

PE PE PE

PE PE PE

PE PE PE

volume group

physical volume
(hard disk or partition)

physical volume
(hard disk or partition)

logical volume



Physical volumes
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Logical Volume Manager
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Logical storage on AIX

1 2 3   4  1   2   3   4   

Logical 
volume 

Logical 
Partitions

Logical 
volume 



LVM implementation overview
• Add hard disks and/or create partitions (type 0x8e) on existing 

hard disks
• Initialize physical volumes (disks or partitions)

# pvcreate /dev/sda3
# pvcreate /dev/sdb

• Create volume group vg00 with physical volumes

# vgcreate vg00 /dev/sda3 /dev/sdb

• Create logical volume lv00 in volume group

# lvcreate -L 50M -n lv00 vg00

• Can now use /dev/vg00/lv00 as block device



Physical volume commands

•  pvcreate <pv>
– Initializes a physical volume by putting an (empty) volume 

group descriptor area at the start of the PV

•  pvmove [-n <lv>] <source pv> [<destination 
pv>]
– Move PEs from one PV to another PV in the volume group

•  pvdisplay <pv>
– List information about a PV

VGDA ( Volume Group Descriptor Area)



Volume group commands

•  vgcreate [-s <pe size>] <vg name> <pv> 
[<pv>...]
– Create a volume group

•  vgdisplay [<vg>]
– Display information about a volume group

•  vgremove <vg>
– Delete a volume group

Physical
Volume (PV)

Physical
Volume (PV)

Physical
Volume (PV)

Volume Group (VG)



Logical volume commands
•  lvcreate -L <size> [-n <lv name>] <vg> 
[<pv>...]
– Create a logical volume in a volume group

•  lvdisplay <lv> [<lv>...]
– Display information about a logical volume

•  lvremove <lv> [<lv>...]
– Remove a logical volume

Physical
Volume (PV)

Physical
Volume (PV)

Physical
Volume (PV)

Volume Group (VG)

Logical Volume (LV) LV LV LV



Striping logical volumes

• A logical volume may be striped across two or more 
physical volumes during creation

• For large data transfers, this increases performance
# lvcreate -L 300M -i 2 -I 8 -n mystripedlv vg00

PE PE PE

PE PE PE

PE PE PE

PE PE PE

PE PE PE

PE PE PE

volume group

physical volume
(hard disk or partition)

physical volume
(hard disk or partition)

/dev/vg00/mystripedlv



Extending/reducing a volume group

• To add or remove a physical volume to or from a volume group, 
use the vgextend and vgreduce commands

• To move physical extents from one physical volume to another, 
use pvmove

# vgextend vg00 /dev/sdb6
# vgreduce vg00 /dev/sda5
ERROR: can't reduce volume group "vg00" by used 
physical volume "/dev/sda5"
# pvmove /dev/sda5 /dev/sdb6
# vgreduce vg00 /dev/sda5



Extending/reducing a logical volume

• To extend/shrink a logical volume use the 
lvextend/lvreduce commands
Use -L option to specify size in bytes
Use -l option to specify size in PEs

•lvextend/lvreduce do NOT extend/shrink a filesystem in the 
LV automatically!
(Extending/shrinking a filesystem will be covered later)

# lvextend -L +300M /dev/vg00/mylv
lvextend -- rounding relative size up to physical extent boundary
lvextend -- extending logical volume "/dev/vg00/mylv" to 380 MB
lvextend -- doing automatic backup of volume group "system"
lvextend -- logical volume "/dev/vg00/mylv" successfully extended
# lvreduce -l -12 /dev/system/mystripedlv
...



LVM backup and recovery

• It is very important to save the LVM metadata stored in the 
VGDA for recovering reasons.

1. vgcfgbackup
2. vgcfgrestore -n vg_name PV 

VGDA VGDA VGDA

/etc/lvm/backup/vg_name.conf

VGDA VGDA VGDA



Additional LVM considerations

• Linux LVM implementation has "snapshot" capability
– Can be useful for fast backups

• If LVM-based filesystems are listed in /etc/fstab, then LVM 
support needs to be included in the initial root disk (initrd)

• Mirroring is handled outside of the LVM structure
• LVM uses the device mapper kernel device driver
• LVM snapshots are read/write by default



RAID
• Redundant Array of Independent Disks
• Typical PC hard disks, compared to expensive mainframe-

quality hard disks, are:
– Slower
– Less reliable
– Smaller
– But less expensive

• RAID uses multiple hard disks in an array to create a logical 
device that is:
– Faster
– More reliable
– Or larger
– And still relatively inexpensive
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RAID (Redundant Array of Independent Disk)
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Figure 5-20. RAID levels 0 through 5. 
Backup and parity drives are shown shaded.

RAID (2)
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Figure 5-20. RAID levels 0 through 5. 
Backup and parity drives are shown shaded.

RAID (1)



RAID levels

• RAID levels have different characteristics
– RAID-5 is not "better" than RAID-1

• Use RAID level according to needs

(*) Performance compared to a single disk, for data transfers greater than block size

RAID
 level

Min # 
disks

Read 
performance

Write 
performance

Redundancy Data capacity 
with 3x1GB 

disk

Other remarks

Linear 2 Equal Equal No 3 GB Can be used if disks are not 
equal

0 2 Fast Fast No 3 GB

1 2 Fast Somewhat 
slower

Yes 1 GB Can sustain N-1 disk 
crash(s)

4 3 Somewhat 
faster

Slow Yes 2 GB Can sustain one disk crash
Parity disk is bottleneck

5 3 Somewhat 
faster

Somewhat 
faster

Yes 2 GB Can sustain one disk crash
CPU intensive



Linux RAID support

• Software RAID
– Implemented in Linux kernel
– Needs mdadm package
– Uses disk partitions to create RAID devices
– Logical device name: /dev/mdn

• Hardware RAID
– Implemented in special adapter cards
– Adapter needs to be supported by Linux kernel
– Generally specific software needed to configure adapter correctly 

(might not be available under Linux)
– RAID devices show up as regular SCSI disk



Spare disks

• To make RAID1/RAID5 more failsafe in case of a disk 
failure, use spare disks!

• Remove a failed disk with raidhotremove
• Add a new disk to the array with raidhotadd

# cat /etc/raidtab
...
nr-spare-disks 1
device  /dev/sdd1
spare-disk 0
...

spare disk

The spare disk takes over...



Additional RAID considerations

• Put RAID partitions on different disks
• Use different SCSI or IDE controllers if possible for different 

disks that are part of a RAID volume
• Do not use RAID for /boot partition
• If RAID-based filesystems are listed in /etc/fstab, then RAID 

support needs to be included in the initrd
• Software RAID4 and RAID5 needs a lot of CPU time
• Do not use RAID-linear or RAID0 for swap space

– The Linux kernel can stripe across swap spaces more efficiently
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Figure 5-1. Some typical 
device, network, and 
bus data rates.

I/O Devices
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Figure 5-2. (a) Separate I/O and memory space. 
(b) Memory-mapped I/O. (c) Hybrid.

Memory-Mapped I/O (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Figure 5-3. (a) A single-bus architecture. 
(b) A dual-bus memory architecture.

Memory-Mapped I/O (2)
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Figure 5-4. Operation of a DMA transfer.

Direct Memory Access (DMA)
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Figure 5-5. How an interrupt happens. The connections between 
the devices and the interrupt controller actually use interrupt 

lines on the bus rather than dedicated wires.

Interrupts Revisited
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Properties of a precise interrupt

1. PC (Program Counter) is saved in a known 
place.

2. All instructions before the one pointed to by 
the PC have fully executed.

3. No instruction beyond the one pointed to by 
the PC has been executed.

4. Execution state of the instruction pointed to 
by the PC is known.

Precise and Imprecise Interrupts (1)
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Figure 5-6. (a) A precise interrupt. (b) An imprecise interrupt.

Precise and Imprecise Interrupts (2)
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Figure 5-7. Steps in printing a string.

Programmed I/O (1)
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Figure 5-9. Writing a string to the printer using interrupt-driven I/O. 
(a) Code executed at the time the print system call is made. 

(b) Interrupt service procedure for the printer.

Interrupt-Driven I/O
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Figure 5-10. Printing a string using DMA. (a) Code executed when 
the print system call is made. (b) Interrupt service procedure.

I/O Using DMA
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Figure 5-11. Layers of the I/O software system.

I/O Software Layers
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Interrupt Handlers (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

1. Save registers not already been saved by 
interrupt hardware.

2. Set up a context for the interrupt service 
procedure.

3. Set up a stack for the interrupt service 
procedure.

4. Acknowledge the interrupt controller. If there is 
no centralized interrupt controller, reenable 
interrupts.

5. Copy the registers from where they were 
saved to the process table.



Interrupt Handlers (2)
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6. Run the interrupt service procedure.
7. Choose which process to run next.
8. Set up the MMU context for the process to run 

next.
9. Load the new process’ registers, including its 

PSW.
10. Start running the new process.



Figure 5-12. Logical 
positioning of 
device drivers. In 
reality all 
communication 
between drivers and 
device controllers 
goes over the bus.

Device 
Drivers
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Figure 5-13. Functions of the device-independent I/O software.

Device-Independent I/O Software
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Figure 5-14. (a) Without a standard driver interface. 
(b) With a standard driver interface.

Uniform Interfacing for Device Drivers
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Figure 5-15. (a) Unbuffered input. (b) Buffering in user space. 
(c) Buffering in the kernel followed by copying to user space. 

(d) Double buffering in the kernel.

Buffering (1)
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Figure 5-16. Networking may involve many copies of a packet.

Buffering (2)
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Figure 5-17. Layers of the I/O system and the 
main functions of each layer.

User-Space I/O Software



Character devices

•A character device is any device which does 
not allow random access (seeks)

•Examples:
–Console (keyboard, mouse)
–Serial terminals
–Printers
–Sound card
–Random number generator



Block devices

• A block device is any device which allows random 
access ("seeks") and which is divided into "blocks" of 
a given size.

• Typical block devices:
– Hard disks (and partitions)
– Floppy disks
– Virtual block devices (RAID and LVM)

block
                1            2            3           4            5           6            7           8     

         0           512                                                                                  4096     byte



Figure 5-18. Disk parameters for the original IBM PC 360-KB 
floppy disk and a Western Digital WD 18300 hard disk.

Magnetic Disks (1)
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Figure 5-19. (a) Physical geometry of a disk with two zones. 
(b) A possible virtual geometry for this disk.

Magnetic Disks (2)
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Figure 5-21. Recording structure of a compact disc or CD-ROM.

CD-ROMs (1)
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DVD (1)

DVD Improvements on CDs

1. Smaller pits 
(0.4 microns versus 0.8 microns for CDs).

2. A tighter spiral 
(0.74 microns between tracks versus 1.6 
microns for CDs).

3. A red laser 
(at 0.65 microns versus 0.78 microns for CDs).
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DVD (2)

DVD Formats

1. Single-sided, single-layer (4.7 GB).
2. Single-sided, dual-layer (8.5 GB).
3. Double-sided, single-layer (9.4 GB).
4. Double-sided, dual-layer (17 GB).
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Figure 5-25. A disk sector.

Disk Formatting (1)
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Figure 5-26. An 
illustration of 
cylinder skew.

Disk Formatting 
(2)
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Figure 5-27. (a) No interleaving. (b) Single interleaving. 
(c) Double interleaving.

Disk Formatting (3)
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Disk Arm Scheduling Algorithms (1)

Read/write time factors
1. Seek time (the time to move the arm to the 

proper cylinder).
2. Rotational delay (the time for the proper sector 

to rotate under the head).
3. Actual data transfer time.
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Figure 5-28. Shortest Seek First (SSF) disk scheduling algorithm.

Disk Arm Scheduling Algorithms (2)
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Figure 5-29. The elevator algorithm for scheduling disk requests.

Disk Arm Scheduling Algorithms (3)
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Figure 5-30. (a) A disk track with a bad sector. 
(b) Substituting a spare for the bad sector. 

(c) Shifting all the sectors to bypass the bad one.

Error Handling

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Figure 5-32. A programmable clock.

Clock Hardware
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Clock Software (1)
Typical duties of a clock driver
1. Maintaining the time of day.
2. Preventing processes from running longer than 

they are allowed to.
3. Accounting for CPU usage.
4. Handling alarm system call made by user 

processes.
5. Providing watchdog timers for parts of the 

system itself.
6. Doing profiling, monitoring, statistics gathering.
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Figure 5-33. Three ways to maintain the time of day.

Clock Software (2)
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Figure 5-35. Characters that are handled 
specially in canonical mode.

Keyboard Software
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Figure 5-36. The ANSI escape sequences accepted by the 
terminal driver on output. ESC denotes the ASCII escape 

character (0x1B), and n, m, and s are optional
numeric parameters.

The X Window System (1)
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Figure 5-37. Clients and servers in the M.I.T. X Window System.

The X Window System (2)
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The X Window System (3)

Types of messages between client and server:
1. Drawing commands from the program to the 

workstation.
2. Replies by the workstation to program queries.
3. Keyboard, mouse, and other event 

announcements.
4. Error messages.
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Figure 5-38. A skeleton of an X Window application program.

Graphical User Interfaces (1)
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. . .



Figure 5-38. A skeleton of an X Window application program.

Graphical User Interfaces (2)
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Figure 5-39. A sample 
window located at 
(200, 100) on an 
XGA display.

Graphical User Interfaces (3)
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Figure 5-40. A skeleton of a Windows main program.

Graphical User Interfaces (4)
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Figure 5-40. A skeleton of a Windows main program.

Graphical User Interfaces (5)
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Figure 5-45. Power consumption of various parts 
of a notebook computer.

Power Management 
Hardware Issues
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Figure 5-46. The use of zones for backlighting the display. 
(a) When window 2 is selected it is not moved. 

(b) When window 1 is selected, it moves to reduce the 
number of zones illuminated.

Power Management 
The Display
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Figure 5-47. (a) Running at full clock speed. (b) Cutting voltage by 
two cuts clock speed by two and power consumption by four.

Power Management 
The CPU
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