Chapter 3

Memory Management

Agenda
Memory Management

Why?
What?
How?

General Memory Problem

M \Ve have a limited (expensive) physical
resource: main memory

B \Ve want to use it as efficiently as
possible

B \Ve have an abundant, but slower,
resource: disk

Lots of Variants

B Many processes, total size less than memory
B Technically possible to pack them together

m\Will programs know about each other’s
existence?

B One process, size exceeds memory

M Can you only keep part of the program in
memory?

M | ots of processes, total size exceeds memory

®\WVhat programs are in memory, and how to
decide?

Memory Manager

M]t's task: Manage memory hierarchy
B Track used and free memory
B Allocate memory to processes
BReclaim (De-allocate) memory

BSwapping between main memory and disk

& Abstraction

pl p2 @ Protection
€ Share

Logic Address
MMU

Physical Address

Typical access time

Memory Hierarchy

Typical capacity

1 nsec Registers <1 KB

2 nsec Cache 4 MB
10 nsec Main memory 512-2048 MB
10 msec Magnetic disk 200-1000 GB
100 sec Magnetic tape 400-800 GB

A typical memory hierarchy.

The numbers are very rough approximations.

Memory Cache

Questions when dealing with cache:

 When to put a new item into the cache.
* Which cache line to put the new item in.

« Which item to remove from the cache when a slot
IS heeded.

 Where to put a newly evicted item in the larger
memory.

Types of Memory

* Primary Memory (a.k.a. RAM)

— Holds data and programs used by a
process that is executing

— Only type of memory that a CPU deals with
« Secondary Memory (i.e. hard disk)

— Non-volatile memory used to store data
when a process is not executing

The Memory Manager (MM)

* Purpose: to manage the use of primary
and secondary memory.

 Responsible for:
— Allocating primary memory to processes

— Moving processes between primary and
secondary memory

— Optimizing memory usage

Process Memory

* There are two types of memory that can
* be used within a process:

» Stack: used for local/automatic
variables and for passing parameters to
function calls

* Heap: used for dynamic memory
allocation

Process Memory Layout

e Allocates more

Environment Variables, etc.
Stack Segment memory than needed
1 1 1 at first

T T T * Heap grows towards
Heap Storage stack for dynamic
Data Segment (global and .
static variables) memory allocation
Text Segment

» Stack grows towards
heap when automatic
variables are created

Single-Partition Strategies

User
program

Operating
system in
RAM

(@)

OxFFF ...

Operating
system in
ROM

Device

drivers in ROM

User
program

User
program

(b)

Operating
system in
RAM

(c)

Three simple ways of organizing memory with an operating

system and one user process.

Fixed-Partition Strategies

Memory divided into fixed-size regions
S1ze of each region usually not equal

MM will allocate a region to a process that
best fits 1t

Unused memory within an allocated
partition called internal fragmentation

Fixed-Partition Example

.

Partition 57

Partition 4+

Partition 3-

Partition 2-<

Partition 1{

p

Partition 5

Partition 4

Operating
System

— |

Partition 33

Partition &

Partition 1{

Process 1

|}

Process 3

Process 2

Operating
System

Internal
Fragmentation

Internal
Fragmentation

Internal
Fragmentation

Multiprogramming with Fixed Partitions

Multiple
Input queues 800K
|:H:|— Partition 4 Partition 4
700K
Partition 3 ~ Single Partition 3
input queue
400K
[Partition 2 Partition 2
200K
[H H - Partition 1 Partition 1
- 100K -
Operating Operating
system 0 system

(a) (b)

* Fixed memory partitions
— separate input queues for each partition
— single input queue

Variable-Partition Strategies

MM allocates regions equal to the memory requirements of
a process at any given time

* As processes die, holes develop in the memory

* MM i1nserts new processes into holes

Variable-Partition Example

Process 3 Process 3
Process 2 Process 3
> Process 4 >

Process 4
Process 1 Process 5 Process 5
Operating Operating Operating
System System System

Initially P2 completes After compacting
P4 starts

P1 completes
P5 starts

More. ..

* Results in External Fragmentation

* After a while, only small processes will be able to run due
to too much external fragmentation

* MM must compact the memory to make more space
available for larger processes

Relocation

[o J[seres

CMP 16412
16408
16404
16400
16396
16392
16388
JMP 28 16384

[0 Jtesso [o Jte3so 0 16380

ADD 28 CMP 28 ADD 28

MOV |24 24 MOV |24
20 20 20
16 16 16
12 12 12
8 8 8
4 4 4
JMP 24 | © JMP28 | 0 JMP 24 | ©
@) (b) (c)

lllustration of the relocation problem.
(a) (b) logical address (c) physical address

Base and Limit Registers
| 16384 [—

| 0 | 32764

Limit register

CMP 16412
16408
16404
16400
16396
16392
16388
| 16384 —>| JMP28 |16384

/ 0 16380

Base register

ADD 28
MOV 24
20
16
12

JMP 24 | ©
(c)

Base and limit registers can be used to give each process a
separate address space.

Memory Management with Bitmaps

|A||7/// B b 1/ P E

11111000 PIO|5| +—|H|5|3| —+—>|P|8|6]| ——|P|14]| 4| —

11111111)
11001111 C
P

H[18| 2 | — 201 6 | — Pl26]| 3 | — H|[29| 3 | X
11111000 7 1‘8 x Nl il T]
T iy Hole Starts Length Process
at 18 2

(b) (©)
(a) A part of memory with five processes and three holes. The tick
marks show the memory allocation units. The shaded regions
(0 in the bitmap) are free. (b) The corresponding bitmap. (c)
The same information as a list.

Memory Management with Linked Lists

(a)

(b)

Before X terminates

A x%
©) x | B
0 x 77

(9)

becomes

becomes

becomes

becomes

After X terminates

A

7 B

A

7

I

A

Four neighbor combinations

for the terminating process, X.

Storage Placement Strategies

First Fit

« Scan; use the first available hole whose size 1s sufficient to meet the need.
* Problem: Creates average size holes; more fragementation closer to scan start.

Next Fit

* Minor variation of first fit: keep track of where last search ended, restart from there.
* Problem: slightly worse performance than first fit.

Best Fit

» Use the hole whose size is equal to the need, or if none is equal, the smallest hole that is
large enough.

* Problem: Creates small holes that can't be used.

Worst Fit

* Use the largest available hole.
* Problem: Gets rid of large holes, making it difficult to run large processes.

Qu1ck Fit

maintains separate lists for some of the more common sizes requested.
* When a request comes for placement, it finds the closest fit.

» This is a very fast scheme, but a merge is expensive. If merge is not done, memory will
quickly fragment into a large number of holes.

Modeling Multiprogramming

20% 1/0O wait
£ 100 |- =
o
it) i
2 g0 |- 50% /0O wait
£
c 60 80% /O wait
IS
= 40
5
z 20
O

I | | | I | I |
0 1 2 3 4 5 6 7 8 9 10

Degree of multiprogramming

CPU utilization as a function of number of processes in
memory

" S
Chapter 3

Memory Management

Virtual Memory

" S
Overlaying

Used when process memory requirement exceeds the physical memory space
Split process space into multiple, sequentially runnable parts

Load one overlay at a time
Overlay 1
Overlay Area <\>
Overlay 2
Main Program
Overlay 3

Physical Memory Secondary Storage

Swapping (1)

-Comes from the basis that when a process
IS blocked, it does not need to be in memory

-Thus, it is possible to save a process’ entire
address space to disk

-Saving to a “swap file” or a “swap partition”

. gwapplng 22)

Time —

% 7 VA A P R A R

/ / c c c c 5

%
% B B B B 7/

f 7 7 A

4 D D D
Operating Operating Operating Operating Operating Operating Operating
system system system system system system system

(@) (b) (c) (d) (e) (f) (9)

m Memory allocation changes as

processes come into memory
leave memory

m Shaded regions are unused memory

“2BWapping (3)

B-Stack
» Room for growth ~ f-————- R
‘t A } Room for growth
B-Data
B > Actually in use
B-Program
/ | D%
A-Stack
> Room for growth ~ f-——--- L
t | } Room for growth
A-Data
A > Actually in use
A-Program
Operating Operating
system system

(a) (b)

m Allocating space for growing data segment

m Allocating space for growing stack & data
segment

Compaction (Similar to Garbage
Collection)

m Assumes programs are all relocatable (how supported?)
m Processes must be suspended during compaction
m Needed only when fragmentation gets very bad

5 Job &
6 Job &

Job 8
] Job &

0 Job 8

~

"
Memory Management Problems

m Fixed partitions suffer from internal
fragmentation

m Variable partitions suffer from external
fragmentation

m Compaction suffers from overhead

m Overlays are painful to program
efficiently

m Swapping requires writing to disk
sectors

. ﬂ!erna!lve Approach:

Virtual Memory

m Provide user with virtual memory that is as big
as user needs

m Store virtual memory on disk

m Store in real memory those parts of virtual
memory currently under use

m Load and store cached virtual memory without
user program intervention (“transparently”)

Virtual Memory

. Comes from the basis that all of a
process’ address space is not
needed at once

- Thus, chop up the address space
into smaller parts and only load the
parts that are needed

- These parts need not be contiguous
iIn memory!

Benefits of Virtual Memory

m Use secondary storage($)
Extend DRAM($$$) with reasonable performance

m Protection

Processes do not step on each other
m Convenience

Flat address space

Processes have the same view of the world

Load and store cached virtual memory without user program
intervention

m Reduce fragmentation:
make cacheable units all the same size (page=allocation unit)

m Remove memory deadlock possibilities:
permit pre-emption of real memory

" A
Process Memory Layout

- Allocates more

Environment Variables, etc.
Stack Segment memory than needed
I 1 at first

T T T - Heap grows towards
Heap Storage stack for dynamic
Data Segment (global and .
static variables) mem()ry all()C‘C'[t]()n
Text Segment

. Stack grows towards
heap when automatic
variables are created

Paging Page

Page Frame 10

N-1 [TN-1 3 9
8

.................. 7
4 | 14 6 6

3 [T 13 10 5

2 | 12 4 1. 4
(O 11 2 ﬁ 3

0o [To 7 b 2
Logical Page Table 1
Memory 0

Physical Memory

" A
Virtual Memory Move REG, 1000
Paging

The CPU sends virtual

CPU addresses to the MMU
package /
CPU
—| Memory \ Disk
ot management emory controller
unit
"\ l l Bus

g

The MMU sends physical
addresses to the memory

The position and function of the MMU

" EEEEEEESBaging (cont)

A

[T To[o[oTe[o[o[o ol o[[o]o]
[a ,

Y A

151 000 0

14| 000 0

13| 000 0

12| 000 0

11 111 1

10| 000 0

g -1 : 12-bit offset

-bit offse
':aa'g: o M g copied directly

71 000 0 from input

6] 000 o0 to output

5| 011 1

4| 100 1

3| 000 1

2| 110 |1 | 110 |

1 001 1 . i

resen

0[010 1 fabsem bit

Virtual page = 2 is used

as an index into the

page fable

[oJof1]ofo]oJofo]ofofofofo]1fofo]
A

Outgoing
physical
address
(24580)

Incoming
virtual
address
(8196)

The internal operation of the MMU with 16 4-KB

pages.

. l—"aging

Virtual
address
space

BOK—64K
56K—-60K
52K-56K
48K-52K
44K-48K
40K—44K
36K—40K
32K-36K
28K-32K
24K—28K
20K—24K
16K—20K
12K—16K
8K—12K
4K-8K
OK—4K

Move REG, 0

} Virtual page

Move REG, 8192

Physical Move REG, 20500 ?

memory
address

28K-32K
24K-28K
20K-24K

N2 |o|o|s]w] XXX x| X]x]x]|X

\‘1 16K-20K
12K-16K
8K-12K

4K-8K
0K—4K

Page frame

Relation between virtual addresses and physical
memory addresses given by page table.

gtructure of Page Table Entry

Caching
disabled Modified Present/absent

T —

R

Referenced Protection

A typical page table entry.

gpeeding Up Paging

Paging implementation issues:

* The mapping from virtual address to physical
address must be fast.

- If the virtual address space is large, the page table
will be large.

‘rans‘atlon Lookaside Buffers

Valid | Virtual page | Modified | Protection | Page frame
1 140 1 RW 31
1 20 0 R X 38
1 130 1 RW 29
1 129 1 RW 62
1 19 0 R X 50
1 21 0 R X 45
1 860 1 RW 14
1 861 1 RW 5

A TLB to speed up paging.

Ve Page Tables

SHLUNu-iEvel
page tables

IEEERLNN

Top-level
page table

1023 ! |
& : =+ =

Bits 10 10 12

PT1 I PT2 | Offset |

(@)

EEERRRN

1023

B &

EEERREN

(a) A 32-bit address with two page table fields.
(b) Two-level page tables.

‘nverted Page Tables

Traditional page
table with an entry
for each of the 252

pages
529 |]
252 -1 i =1,
1-GB physical
memory has 218
4-KB page frames Hash table
218 1 |] 218 .9 | —] T 1
A= A A A
— |]
0 T 0 0 T — I |
Indexed Indexed / \
by virtual by hash on Virtual Page
page virtual page page frame

Comparison of a traditional page table
with an inverted page table.

"
Virtual Memory Usage

- Virtual memory is used in
most modern operating
systems:

Windows NT/2000/XP uses
one or more “page files” to
swap pages

Linux uses a hard disk
partition (“swap partition™) to
swap to

Pros/Cons

- Since only the necessary parts of the
process are loaded, processes load faster
and it allows much better memory
utilization

- Needs lots of extra hardware to
accomplish the job (efficiently)

- In some cases too much paging (i.e.
“thrashing”) can occur, which is very slow

: Eage Fault Handling (1)

* The hardware traps to the kernel, saving the
program counter on the stack.

* An assembly code routine is started to save the
general registers and other volatile information.

 The operating system discovers that a page
fault has occurred, and tries to discover which
virtual page is needed.

* Once the virtual address that caused the fault is
known, the system checks to see if this address
Is valid and the protection consistent with the
access

Eage Fault Handling (2)

« If the page frame selected is dirty, the page is
scheduled for transfer to the disk, and a context
switch takes place.

When page frame is clean, operating system
looks up the disk address where the needed
page is, schedules a disk operation to bring it in.

* When disk interrupt indicates page has arrived,
page tables updated to reflect position, frame
marked as being in normal state.

Eage Fault Handling (3)

* Faulting instruction backed up to state it had
when it began and program counter reset to
point to that instruction.

« Faulting process scheduled, operating system
returns to the (assembly language) routine that
called it.

* This routine reloads registers and other state
information and returns to user space to
continue execution, as if no fault had occurred.

" N
R

mP139 2,3,4,5

Chapter 3
Memory Management

Page Replacement

Thrashing

* If a process does not have “"enough”
pages, the page-fault rate is very high.
This leads to:

— low CPU utilization

— OS scheduler thinks that it needs to increase the
degree of multiprogramming - new processes are

added - even less pages for each process ...

 Thrashing = a process is busy swapping
pages in and out
— = Spending more time paqging than executing.

Demand Paging

 Demand paging: pages are
only loaded into memory
when they are demanded
during execution

— Less I/0O needed
— Less memory needed

— Higher degree of
multiprogramming

— Faster response

« Pager (lazy swapper) never
swaps a page into memory
unless that page will be needed.

 An extreme case: Pure
demand paging starts a
process with no pages in

memory ...

program
A

program
B

swap out

.
N

o] 10 21 3

Y e

(™ swapin

o1 51 611 701

g[] o[J1o[11[]
12131450

16|:|17|¥18|_T_|19|_T_|

main
memory

20[J21 []22[1e3[]

-

Transfer of a Paged Memory to Contiguous Disk Space

Page Replacement Algorithms

® Page fault forces choice
® which page must be removed
® make room for incoming page

® Modified page must first be saved
® unmodified just over written

® Better not to choose an often used page

® will probably need to be brought back in
soon

Page Replacement Algorithms

Random page replacement

Optimal page replacement algorithm
Not recently used page replacement
First-In, First-Out page replacement
Second chance page replacement
Clock page replacement

Least recently used page replacement
Working set page replacement
WSClock page replacement

Optimal Page Replacement
Algorithm

* Replace page needed at the farthest point in
future

— Optimal but unrealizable

« Estimate by ...

— logging page use on previous runs of process
— although this is impractical

Optimal Example

12 references,
7 faults

Page J Page Frames

Refs | Fault? | Page Contents
A yes A
B yes B | A
C yes C)B A
D yves | D |B A
A no D | B A
B no D)|)B| A
E yes B A
A no E| B| A
B no E|B|(A)
C yes C|E|(B)
D yes D |C E
E no D |C E

Not Recently Used Page Replacement
Algorithm (NRU)

« Each page has Reference bit, Modified bit

— bits are set when page is referenced,
modified

« Pages are classified
0: not referenced, not modified
1: not referenced, modified
2: referenced, not modified
3: referenced, modified
 NRU removes page at random
— from lowest numbered non empty class

FIFO Page Replacement Algorithm

* Maintain a linked list of all pages
— In order they came into memory

* Page at beginning of list replaced

* Disadvantage
— page in memory the longest may be often used

12 references,
9 faults

FIFO

Page J Page Frames

Refs | Fault? || Page Contents
A yes A
B yes B | A
C yes CIB|(A)
D yes D|C <>E>
A yes A D @)
B yes B| A (D>
E Ves E B| A
A no E| B A
B no ([E|B|(A)
C yes ClE|(B)
D yes D|C E
E no (|D|C E

Belady's Anomaly (for FIFO)

Same reference
string as with 3
frames (9 page
faults).

12 references,
10 faults

Belady’s Anomaly for FIFO: (Sometimes) as the number o

so does the fault rate.

Page #ﬂﬁﬂ Frames
Refs | Fault? | Page Contents
A yes A
B yes B|A
C ves C | B|A
D yes D|IC|B| A
A no D C| B|A
B no (D|C|B/[A]
E ves E|D|C %
A yes A|E|D|C)
B yes B|A|E @/
C ves C|B|A|[E
D ves D| C|B O&M
E yes E|D|(C|B

©

age frames Increase,

Second Chance Algorithm

Page loaded first

\o 3 7 8 12 14 15 18
A

Most recently
P loaded page

A is treated like a
P newly loaded page

Operation of second chance.

(a) Pages sorted in FIFO order.

(b) Page list if a page fault occurs at time 20 and A has its R
bit set. The numbers above the pages are their load times.

Second Chance Example

Page J Page Frames

Refs | Fault? | Page Contents
A yEs A*

12 references, g yes g' At -
FEH] B-]

A yes A* | D* Cg)
B yes B* | A* (D")
E yes E* B | A
A no E*| B | A*
B no | E*|B*| A"
C yes C*| E Q\E)
D yes D* | C*| E
E no D* | C*| E*

The Clock Page Replacement
Algorithm

L B

/

G

When a page fault occurs,
the page the hand is
pointing to is inspected.
The action taken depends
on the R bit:
R = 0: Evict the page
R = 1: Clear R and advance hand

The clock page replacement algorithm.

Least Recently Used (LRU)

* Assume pages used recently will used again
soon

— throw out page that has been unused for longest
time

* Must keep a linked list of pages

— most recently used at front, least at rear

— update this list every memory reference !!
 Alternatively keep counter in each page table

entry

— choose page with lowest value counter

— periodically zero the counter

LRU Page Replacement Algorithm

Page

|

0|j]0]0|O

Page

1

0|j]0|0O]|O

Page

1

Page

1

Page

1

2 3 0 2 3 0 2 3 0 2 3 0 2 3
0

0

1

1

1

010j0]O

1

0jof0]0

0)j]0f[0]0O0

0]010]0

1

2/010|0]O0

3]0J0|0]|O

(e)

(d)

(©

(@)

1

010j0]|O0

1

1

0

0)j]0f[0]0O0

0

0

0]0|[0]O0

(i)

LRU using a matrix when pages are referenced in the order 0, 1, 2,

3,2,1,0,3, 2, 3.

Simulating LRU in Software

| 1 1 |
R bits for : R bits for 1 R bits for : R bits for : R bits for
A . pages 0-5, l pages 0-5, | pages 0-5, i pages 0-5, | pages 0-5,
ging clocktick0 | clockticki | clocktick2 | clocktick3 | clock tick 4
| 1] I
o|t|o|t|1] i |1|1|oJo|t]|o| i [1|1|oft1|o]1]| i |1|ofofof1|of: |o|t]|1]o]o0
| : :]
|]] I
Page I : E |
10000000 | i | 11000000 | i [11100000 | i | 11110000 [i | 01111000
| I 1 I
|]] I
00000000 i 10000000 E 11000000 i 01100000 i 10110000
|] 1 [}
|]] I
10000000 i 01000000 i 00100000 i 00100000 i 10010000
|] 1 I
| 1] |
00000000 i 00000000 i 10000000 i 01000000 i 00100000
| 1] I
| 1 1 |
10000000 : 11000000 | 01100000 : 10110000 : 01011000
| 1] |
|]] I
|]] I
10000000 | 01000000 | 10100000 : 01010000 ! 00101000
|] 1 |

(a)

(b)

()

(d)

(e)

The aging algorithm simulates LRU in software. Shown are six
pages for five clock ticks. The five clock ticks are represented

by (a) to (e).

LRU and Anomalies

. Page 4 Page Frames
Anomalies Refs | Fault? | Page Contents
cannot A | yes || A

B yes B | A
OCCULT. O ves CIBlA
D yes DI C| B|A
A no A/D|C|B
B no |B|A|D|C
12 references, | E | yes |[E|[B|A[D
A no AlE|B|D
8 faults A TE D
C yes C|B|A|E
D yes DIC|B|A
E yes E|D|C|B

Working Set Page Replacement (1)

w(k,t)

The working set is the set of pages used by the k most recent
memory references. The function w(k, t) is the size of the
working set at time t.

Working Set Page Replacement (2)

2204 | Current virtual time

|nformation about {
one page

Time of last use —

Page referenced

during this tick

Page not referenced

during this tick

2084
2003 1
—>» 1980 | 1
1213 [0
=
2014 T 1
2020 |1
2032 |1
—
1620 [0

Page table

R (Referenced) bit
[=

Scan all pages examining R bit:
if(R==1)
set time of last use to current virtual time

if (R == 0 and age > 1)
remove this page

it (R ==0 and age < 1)
remember the smallest time

The working set algorithm.

The WSClock Page Replacement Algorithm (1)

When the hand comes all the way around to its
starting point there are two cases to consider:

At least one write has been scheduled.
No writes have been scheduled.

The WSClock Page Replacement Algorithm (2)

[££Us | urrent virm m

1820i0| |1520i0|

aalT] 3052T1] ETER

:zeoaiz \ 2020[1 2003[1 l 20201

1980 [1 2014[1 1980 [1 2014]0
1213]0] ‘t \ , '1213|j|
; R kit
Time of
last use
(a) (b)
16200 16200
[2084]1] 20321 2084[1 2032[1

=
20031 [2020]1] 2003]1 / [2020]1]
1980 [1 |2m4éo| 1930i1 2014%0'

[1213]0] [2204 i . |
=1

Operation of the WSClock algorithm. (a) and (b) give an example
of what happens when R = 1.

The WSClock Page Replacement Algorithm (3)

L=us |

1520i0| |1520i0|

2084][1] 2032[1] 120841 2032]1]
[] []
[2003]1] \ 2020[1 l 2020]1
1980 1 20141 1980 1 20140
1213]0] ‘t \ , 1213]0]
: R bit
Time of
last use
(a) (b)
1620]0 1620]0
[2084]1] 20321 20841 2032[1

==
2003]1 [2020][1] 2003]1 /
1980 1| |2014E0|]1930i1 2014ta|

lEzoare]]

Operation of the WSClock algorithm.
(c) and (d) give an example of R = 0.

Summary of Page Replacement Algorithms

Algorithm Comment
Optimal Not implementable, but useful as a benchmark
NRU (Not Recently Used) Very crude approximation of LRU
FIFO (First-In, First-Out) Might throw out important pages
Second chance Big improvement over FIFO
Clock Realistic

LRU (Least Recently Used) | Excellent, but difficult to implement exactly
NFU (Not Frequently Used) | Fairly crude approximation to LRU

Aging Efficient algorithm that approximates LRU well
Working set Somewhat expensive to implement
WSClock Good efficient algorithm

Page replacement algorithms discussed in the text.

Local versus Global Allocation Policies (1)

Age
A0 10 AO A0
A1 7 A1 A1
A2 5 A2 A2
A3 4 A3 A3
A4 6 A4 A4
A5 3 A A5
BO 9 BO BO
B1 4 B1 B1
B2 6 B2 B2
B3 2 B3 A
B4 5 B4 B4
B5 6 B5 B5
B6 12 B6 B6
Ci 3 Ci Ci
C2 5 C2 C2
C3 6 C3 C3

(@) (b) ()

(é) Original configuration.—(b) Local—page replacement.
(c) Global page replacement.

Local versus Global Allocation Policies (2)

Page faults/sec

Number of page frames assigned

Page fault rate as a function
of the number of page frames assigned.

Modeling Page Replacement Algorithms
Belady's Anomaly

All pages frames initially empty

o1 2 3 01 4 01 2 3 4
Youngest page o[1]|2|3|0|1|4]|4|4]2]|3]|3
oj1|12(3|0(1|1|1[4]2]|2
Oldest page o|l1|2]|3|o|lo|of1]4]4
PP P EPPRF P P 9 Page faults
(@)
o1 2 3 01 4 01 2 3 4
Youngest page 011]2|3|3|3[4|]0]1|2]|3]4
oj1]12|2]|2|3|4|0[1]2]3
Oldest page o|111]11]12]|13|4]|]0]1]2
ojo|jo|1]2|13[4]|0]|1
P P P P P P P P P P 10Page faults

(b)
FIFO with 3 page frames

FIFO with 4 page frames
P's show which page references show page faults

Stack Algorithms

Referencestring 0 2 1 3 5 4 6 3 7 4 7 3 3 55 311171341
0|12[1]|3[5]4|6]|3|7[4]|7[3]|3[5|5|3|1]|1[1]7[1]3]4]1
Of2[1[3[5[4[6]3][7]4]|7]7[|3[3[5]3[3]|3]1]7]1]3]4
0]12[1]|3[5]4|6]3|3]|4]|4[7]|7[7]5|5]5]|3[3]7[1]3
0|2[|1]|3|5]|4|6|6(6|6|4[|4]|4[7|7|7]|5|5]|5]|7]7
012|1[1]|5]|5]|5[5|5|6|6|6[4]4]|4|4[4]4]5]5
oj2(2|1|1|1]1[{1]1[1]1]6|6]|6[6]|6[6]|6]|6
o|of2]12|2]|2|2|2]|2|2]|2|2]|2|2]|2]|2|2]2
ofojofojofO]jO|O|jO|JOfO]JO[O]O]|O]O

Page faults PPPPPPP P P P P
Distance string ® ®© o ®© o o © 4 o 4 2 3 1 5 1 2 6 1 1 4 2 3 5 3

State of memory array, M, after each item in reference
string is processed

Load Control

Despite good designs, system may still thrash

When
some processes need more memory

but no processes need less

Solution :
Reduce number of processes competing for memory

swap one or more to disk, divide up pages they held
reconsider degree of multiprogramming

Page Size (1)

Small page size
Advantages
less internal fragmentation
better fit for various data structures, code sections
less unused program in memory
Disadvantages
programs need many pages, larger page tables

Page Size (2)

Overhead due to page table and internal fragmentation

Where

page table space

s = average process size in bytes

p = page size in bytes

¢ = page entry Ove]/‘h ead internal
| fragmentation

Optimized when

p =+2se

Data <«

Program <

932

Separate Instruction and

Single address

space

VOGP0
02000 %% % % %%

Data Spaces

032

Program {
0

One address space
Separate | and D spaces

| space

D space

} Unused page

> Data

Shared Pages

[111

\
Process
table
Program Data 1 Data 2
ke P
'
Page tables

Two processes sharing same program sharing its page table

Implementation Issues

Operating System Involvement with Paging

Four times when OS involved with paging
Process creation
determine program size
create page table
Process execution
MMU reset for new process
TLB flushed
Page fault time
determine virtual address causing fault
swap target page out, needed page 1n
Process termination time
release page table, pages

Page Fault Handling (1)

Hardware traps to kernel

General registers saved

OS determines which virtual page needed

OS checks validity of address, seeks page frame
If selected frame is dirty, write it to disk

Page Fault Handling (2)

OS brings schedules new page in from disk
Page tables updated

Faulting instruction backed up to when it
began

Faulting process scheduled
Registers restored
Program continues

Instruction Backup

MOVE.L #6(A1), 2(A0)

€ 16 Bits —
1000 MOVE | Opcode
1002 6 } First operand
1004 2 } Second operand

An instruction causing a page fault

Locking Pages in Memory

Virtual memory and I/O occasionally interact
Proc issues call for read from device into buffer
while waiting for I/O, another processes starts up
has a page fault
buffer for the first proc may be chosen to be paged out
Need to specify some pages locked
exempted from being target pages

Backing Store

Main memory Disk Main memory Disk

O

Pages Pages

Swap area 0 3 Swap area

7

5

2
1 Page

bl [AY] (2]]

<
T}\\

(a) Paging to static swap area
(b) Backing up pages dynamically

Separation of Policy and
Mechanism

. 3. Request page
Main memory

_ Disk
N
v
User User
<
space process 4. Page
2. Needed arrives N
page v
(| 1. Page I /5. Here
fault Y is page
Kernel hFag:t r
Space andie 6. Map
page in

Page fault handling with an external pager

(2]

P 139 11
12, 22, 24, 26, 27, 28

Chapter 3
Memory Management

Segmentation

Separate Instruction and Data Spaces

Single address

space | space D space
/o83 232
} Unused page
Data <
> Data
R EAX XK RS
Program -< Program
(7 LXRXHRXAXHXX 0 LXXRXXAAXK

(a) One address space.
(b) Separate | and D spaces.

Shared Pages

S ———

[111}

Process
table

ettt

Program Data 1 Data 2

& .
'

Page tables

Two processes sharing the same program
sharing its page table.

Shared Libraries

36K

12K

Process 1 RAM Process 2

A shared library being used by two processes.

Segmentation (1)

A compiler has many tables that are built up as
compilation proceeds, possibly including:

The source text being saved for the printed listing (on
batch systems).

The symbol table — the names and attributes of variables.
« The table containing integer, floating-point constants used.
The parse tree, the syntactic analysis of the program.

The stack used for procedure calls within the compiler.

Segmentation (2)

Virtual address space

Call stack *
} Free
Qﬁfngesdst%i%z Space currently being
parse tree Parse tree used by the parse tree

Constant table 1~

Source text f

bumped into the
source text table

Symbol table has
Symbol table

In a one-dimensional address space with growing tables, one
table may bump into another.

Segmentation (3)

20K
16K |- 16K
12K |- 12K 12K - 12K
Symbol
table
8K |- 8K - 8K - Parse 8K |~
tree
Source Call
text stack
4K |- 4K 4K - 4K
Constants
0K oK OK 0K 0K
Segment Segment Segment Segment Segment
0 1 2 3 4

A segmented memory allows each table to grow or shrink
independently of the other tables.

Implementation of Pure Segmentation

Consideration Paging Segmentation

Need the programmer be aware No Yes
that this technique is being used?

How many linear address 1 Many
spaces are there?

Can the total address space Yes Yes
exceed the size of physical
memory?

Can procedures and data be No Yes
distinguished and separately
protected?

Can tables whose size fluctuates No Yes
be accommodated easily?

Is sharing of procedures No Yes
between users facilitated?

Why was this technique To get a large To allow programs
invented? linear address and data to be broken
space without up into logically
having to buy independent address
more physical spaces and to aid
memory sharing and
protection

Comparison of paging and segmentation.

Segment 4
(7K)

Segmentation

Segment 3
(8K)

Segment 4
(7K)

Segment 2
(5K)

Segment 3
(8K)

Segment 5
(4K)

7

Segment 1
(8K)

Segment 2

5K)

Segment 3
(8K)

Segment 5

7477

.

//K%

Segment 2
SK)

Segment 6
(4K)

Segment 5
(4K)

Segment 0
(4K)

Segment 7
(5K)

Segment 2
(5K)

Segment 6
(4K)

Segment 0

(a)

Segment 7
(5K)

7387,

(4K)

Segment 0

(b)

Segment 7
(5K)

Segment 2
(SK)

(4K)

Segment 0

(c)

Segment 7
(5K)

(4K)

Segment 0

(d)

(4K)

(e)

Figure 3-34. (a)-(d) Development of checkerboarding. (e)
Removal of the checkerboarding by compaction.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Segmentation with Paging: MULTICS (1)

71
[

72
[

~———36 bits ———

1 1 Page 2 entry

T T Page 1 entry
Segment 6 descriptor Page 0 entry
Segment 5 descriptor Page table for segment 3

Segment 4 descriptor

Segment 3 descriptor

Ry
L84

33
(44

Segment 2 descriptor

Segment 1 descriptor Page 2 entry
Segment 0 descriptor Page 1 entry
Descriptor segment Page 0 entry

Page table for segment 1

(a)
Figure 3-35. The MULTICS virtual memory. (a) The
descriptor segment points to the page tables.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Segmentation with Paging: MULTICS (2)

I I}

36 bits

i ‘L Page 2 entry

Page 1 entry

Segment 6 descriptor Page 0 entry

Segment 5 descriptor Page table for segment 3

Segment 4 descriptor
Segment 3 descriptor J. l

Segment 2 descriptor T

Segment 1 descriptor Page 2 entry

Segment 0 descriptor Page 1 entry
Descriptor segment Page 0 entry

Page table for segment 1

(@)
18 9 111 3 3
Main memory address Segment length
of the page table (in pages) 7

[
Page size:
0 = 1024 words
1 = 64 words
0 = segment is paged

1 = segment is not paged

Miscellaneous bits

Protection bits

(b)

Figure 3-35. The MULTICS virtual memory. (b) A segment
descriptor. The numbers are the field lengths.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Segmentation with Paging: MULTICS (3)

When a memory reference occurs, the following
algorithm is carried out:

« The segment number used to find segment descriptor.

« Check is made to see if the segment’s page table is in
memory.

— If not, segment fault occurs.
— If there is a protection violation, a fault (trap) occurs.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Segmentation with Paging: MULTICS (4)

« Page table entry for the requested virtual page
examined.

— If the page itself is not in memory, a page fault is
triggered.

— If it is in memory, the main memory address of the
start of the page is extracted from the page table entry

 The offset is added to the page origin to give the
main memory address where the word is located.

* The read or store finally takes place.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Segmentation with Paging: MULTICS (5)

Address within
the segment

A

Segment number

18

Page Offset within
number the page
6 10

Figure 3-36. A 34-bit MULTICS virtual address.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Segmentation with Paging: MULTICS (6)

MULTICS virtual address

Segment number Page Offset
number
Word
Descriptor Page frame \ ‘
Segment W Page ClJﬁset
number Descriptor number Page Page
segment table

Figure 3-37. Conversion of a two-part MULTICS address into a
main memory address.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Segmentation with Paging

- MULTICS (7)

Comparison Is this
field anity
- A \ used?
Segment Virtual Page
number page frame Protection Age l
4 1 7 Read/write 13 | 1
6 0 2 Read only 10 | 1
12 a 1 Read/write 2 1
0
2 1 0 Execute only 7 1
2 2 12 Execute only 9 1
N e T

Figure 3-38. A simplified version of the MULTICS TLB. The
existence of two page sizes makes the actual TLB more

complicated.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Summary

Fixed | Variable | Paging | Segmentation | Segmentation
Partition | Partition with Paging

Fragmen- | Internal | External | Internal External Internal

tation

Continuity | Whole Whole Page Segment Page
process | process

Swapping | Whole Whole Page Segment Segment
process | process

Relocation | Base Base Page | Segmenttable | Segment table
register | register table with page

tables

Segmentation with Paging:
Pentium (1)

Bits 13 1 2

/X

0=GDT/1 =LDT Privilege level (0-3)

Index

A Pentium selector

Segmentation with Paging:
Pentium (2)

0: 16-Bit segment | | 0: Segment is absent from memory
1: 32-Bit Segmen-tj L 1 SEngHt Is pr&SEﬂ’E in memory

Privilege level (0-3)

0: Liis in bytes " 0: System
1: Liis in pages | | 1: Application
1

+7 Segment type and protection

L, o
Limit
Base 24-31 G|D|0 / PIDPL|S| Type Base 16-23 4
//j 16-19
Base 0-15 Limit 0-15 0
: . Relafive
32 Bits " address

Pentium code segment descriptor
Data segments differ slightly

Segmentation with Paging:
Pentium (3)

Selector Offset
Descriptor
Base address +
Other fields
Y

32-Bit linear address

Conversion of a (selector, offset) pair to a linear address

Segmentation with Paging:
Pentium (4)

Linear address

Bits 10 10 12
Dir Page Offset
(a)
Page directory Page table Page frame
A
$ LJT\ J-l \.‘J: Word £ oA
selected
1024 T
Entries T
Dir f Offset
Page
b A
Directory entry Page table
points to entry points
page table to word

(b)

Mapping of a linear address onto a physical address

Segmentation with Paging:
Pentium (5)

Jser programs

_ Typical uses of
NS
X the levels

Level

Protection on the Pentium

Chapter 5 File Management

File Overview

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

File Systems (1)

Essential requirements for long-term
information storage:

* It must be possible to store a very large amount
of information.

. The information must survive the termination of
the process using it.

Multiple processes must be able to access the
information concurrently.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

File & File Structure

* File: a named collection of related information

that is recorded on secondary storage

— contiguous logical address space
— Types:
« Data: numeric, character, binary
* Program
» File Structure: depends on its type
— None - sequence of words, bytes
— Complex Structures
— Simple record structure
* Lines
Fixed length
Variable length
Formatted document
etc.

File Systems (2)

Think of a disk as a linear sequence of fixed-size
blocks and supporting reading and writing of
blocks. Questions that quickly arise:

How do you find information?
« How do you keep one user from reading another’s data”
How do you know which blocks are free?

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

File Structure

1 Byte 1 Record
re Ve

Ant

Fox

Pig

e

Cat

Cow

Dog

Goat

Lion

Owl

Pony

Rat

Worm

(b)

Hen

Ibis

Lamb

(©)

Figure 4-2. Three kinds of files. (a) Byte sequence.

(b) Record sequence. (c) Tree.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Linux Filenames

Should be descriptive of the content

Should use only alphanumeric characters:
UPPERCASE, lowercase, number, @

Should not include embedded blanks

Should not contain shell metacharacters:
*2>< /&Y "0 () {}

Should not begin with + or - sign
Are case sensitive
Are hidden if the first characteris a . (period)

Can have a maximum of 255 characters

File Naming

Extension Meaning

file.bak Backup file

file.c C source program

file.gif Compuserve Graphical Interchange Format image
file.hlp Help file

file.html World Wide Web HyperText Markup Language document
file.jpg Still picture encoded with the JPEG standard
file.mp3 Music encoded in MPEG layer 3 audio format
file.mpg Movie encoded with the MPEG standard

file.o Object file (compiler output, not yet linked)

file.pdf Portable Document Format file

file.ps PostScript file

file.tex Input for the TEX formatting program

file.txt General text file

file.zip Compressed archive

Figure 4-1. Some typical file extensions.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

File Attributes

Attribute Meaning
Protection Who can access the file and in what way
Password Password needed to access the file
Creator ID of the person who created the file
Owner Current owner

Read-only flag

0 for read/write; 1 for read only

Hidden flag 0 for normal; 1 for do not display in listings
System flag 0 for normal files; 1 for system file
Archive flag 0 for has been backed up; 1 for needs to be backed up

ASCll/binary flag

0 for ASCII file; 1 for binary file

Random access flag

0 for sequential access only; 1 for random access

Temporary flag

0 for normal; 1 for delete file on process exit

Lock flags

0 for unlocked; nonzero for locked

Record length

Number of bytes in a record

Key position

Offset of the key within each record

Key length

Number of bytes in the key field

Creation time

Date and time the file was created

Time of last access

Date and time the file was last accessed

Time of last change

Date and time the file was last changed

Current size

Number of bytes in the file

Maximum size

Number of bytes the file may grow to

Figure 4-4a. Some possible file attributes.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

File Types

/ Module
Magic number o name
eader
Text size
Data size
Date
@ BSS size
-§ i Object o
£ Symbaol table size ot wnerr
Entry point Protection
7
/////// ///// é Size
Fl
-in Header
= Text a2
Object
module
T Bam T Header
L Relocation A
T bits T
Object
module
L Symbol A
T table T

(a (b)

Figure 4-3. (a) An executable file. (b) An archive.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

File Operations

The most common system calls relating to files:

« Create Append
 Delete « Seek

Open et Attributes
 Close « Set Attributes
« Read - Rename
Write

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Example Program Using File System Calls (1)

/* File copy program. Error checking and reporting is minimal. */

#include <sys/types.h> /* include necessary header files */
#include <fcnil.h>

#include <stdlib.h>

#include <unistd.h>

int main(int argec, char *argv(]); /* ANSI prototype */
#define BUF_SIZE 4096 /* use a buffer size of 4096 bytes */
#define OUTPUT _MODE 0700 /* protection bits for output file */

int main(int arge, char *argv(])
{

intin_fd, out_fd, rd count, wt_ count;
char buffer[BUF _SIZE];

if {argc != 3) exit(1); /* syntax error if argc is not 3 */

/* Open the input file and create the output file */

in_fd = open(argv[1], ©O_RDONLY); /* open the source file */

if {in_fd < 0) exit(2); /* if it cannot be opened, exit */
out_fd = creat(argv[2], OUTPUT _MODE); /* create the destination file */
if (out_fd < 0) exit(3); /* if it cannot be created, exit */

Figure 4-5. A simple program to copy a file.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Example Program Using File System Calls (2)

/* Copy loop */
while (TRUE) {
rd_count = read(in_fd, buffer, BUF _SIZE); /* read a block of data */

if (rd_count <= 0) break; /* if end of file or error, exit loop */
wt_count = write(out_fd, buffer, rd_count); /* write data */
if (wt_count <= 0) exit(4); /* wt_count <= 0 is an error */

}

/* Close the files */

close(in_fd);

close(out_fd);

if (rd _count == 0) /* no error on last read */
exit(0);

else
exit(5); /* error on last read */

Figure 4-5. A simple program to copy a file.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Hierarchical Directory Systems (1)

. Root directory

Figure 4-6. A single-level directory system containing four files.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Hierarchical Directory Systems (2)

—~—Root directory

User
directory_ |

Figure 4-7. A hierarchical directory system.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Path Names

/

bin [<=— Root directory

efc

lib

usr

tmp

bin etc lib usr tmp

ast
jim
lib

ast lib jim

= ——— Just/jim
dict.

Figure 4-8. A UNIX directory tree.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Shared Files

Shared file

File system containing a shared file.

Directory Operations

System calls for managing directories:

« Create Readdir
« Delete - Rename
Opendir Link

« Closedir « Uplink

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Directory Contents

Directory I-node Table

name | i-node # | type| mode| links| user | group date size| loc

subdir1 4 | 4| dir| 755 2 | team01| staff |July 10 10:19 512

myfile 10 P 10] file| 644 | 1 | team01]| staff |[July 11 11:00] 96

Shared Files

Shared file

File system containing a shared file.

Shared Files (2)

C's directory B's directory C's directory B's directory
\ A
/ \ / \
Owner =C Owner = Owner =C
Count = 1 Count = 2 Count = 1

: : l
O O O

(a) (b) (c)

Figure 4-17. (a) Situation prior to linking. (b) After the link is
created. (c) After the original owner removes the file.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Linking Files

Iln source file target file

* Allows files to have more than one name in the directory structure
» Both files reference the same i-node
« Cannot be used with directories, cannot span file systems

S 1s -1i
63 -rw-r—--r—-- 1 teamO1 staff 1910 Nov 21 14:19 man files

S 1n man_ files manuals

S 1s -1i
63 -rw-r—--r—-- 2 teamO1l1 staff 1910 Nov 21 14:19 man files
63 -rw-r—--r—-- 2 teamO1l1 staff 1910 Nov 21 14:19 manuals

S

Linking Files (cont.)

Iln -s source file target file

* Creates an indirect reference to a file (symbolic link)
* Name references the original file’'s name and path
« Can be used with directories and span file systems

S 1s -1i
63 —-rw-r——-r-—- 1 teamO1l staff 1910 Nov 21 14:19 man files

S 1ln -s man_files manuals

S 1s -1i
63 —-rw-r——-r-—- 1 teamO1l staff 1910 Nov 21 14:19 man files
66 lrwXrwxrwx 1 teamO1l staff 1910 Nov 21 14:19 manuals -> man files

S

Permissions

File permissions are assigned to:

1. The owner of a file

2. The members of the group the file is assigned to
3. All other users

Permissions can only be changed by the owner and
root!

Viewing Permissions

To show the permissions of a file, use the Is command with

the -l option.
S 1s -1
-rw-r--r-- 1 tuxl penguins 101 Jan 1 10:03 filel
-rw-r--r-- 1 tux2 penguins 171 Jan 4 10:23 file2
grwxr—xr—x % tuxl penqguins 1024 Jan 2 11:13 mydir
File type owner size name
permissions group mtime
(modification time)

link counter

Permissions Notation

rWXIWXIWX read

write

execute

owner group other

Regular files:

r file is readable

w file is writeable

x file is executable (if in an executable format)

Directories:

r contents of directory can be listed (Is)

w contents can be modified (add/delete files)
X change into directory is possible (cd)

Chapter 5 File Management

File System Implementation

Filesystems supported

* Traditional: ext2

« Second generation: ext3, ReiserFS, IBM JFS, xfs
 FAT-12, FAT-16, FAT-32, VFAT, NTFS (read-only)

« CD-ROM (1SO 9660)

« UMSDOS (UNIX-like FS on MS-DOS)

 NFS (Network File System)

« SMBFS (Windows share), NCPFS (Novell Netware share)
« /proc (for kernel and process information)

« SHMFS (Shared Memory Filesystem)

What is a filesystem?

* Place to store files and refer to them
* Hierarchical structure through use of directories
* A filesystem can be stored on any block device
— Floppy disk
—Hard disk
— Partition
—RAID, LVM volume
— File (for use with a loop device)
— RAM disk

Implementation of File System

Partition table

\

Entire disk

——File System Layout

/ Disk plartili?n\\

MBR

Boot block

Superblock

Free space mgmit

l-nodes

Root dir

Files and directories

Figure 4-9. A possible file system layout.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Implementation of File System
Implementing Files

Contiguous Allocation

File A File C File E File G
(4 blocks) (6 blocks) (12 blocks) (3 blocks)
—s 5 r 1 i \ —=—

;\f—) %‘\/—J L J
File B File D File F
(3 blocks) (5 blocks) (6 blocks)
(a)
(File A) (File C) (File E) (File G)
—— = —
;‘\”_) L—V—J L -
File B 5 Free blocks 6 Free blocks

(b)

Figure 4-10. (a) Contiguous allocation of disk space for 7 files.
(b) The state of the disk after files D and F have been removed.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Linked List Allocation

File A
——— — ——— — 0
File File File File File
block block block block block
0 1 2 3 4
Physical 4 f 2 10 12
block
File B
—— —— —+—| O
File File File File
block block block block
0 1 2 3
Physical 6 3 11 14
block

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 4-11. Storing a file as a linked list of disk blocks.

Linked List Allocation Using a Table in Memory

Physical

block

0
1
2 10
3 11
4 7 -«— File A starts here
5
6 -— File B starts here
7
8
9

10 12

11 14

12 1

13

14 1

15 ~— Unused block

Figure 4-12. Linked list allocation using a file allocation table
IN main memory.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

l-nodes

File Attributes

Address of disk block 0 —

Address of disk block 1 e

Address of disk block 2 <

Address of disk block 3 —
Address of disk block 4 ——&
Address of disk block 5 —
Address of disk block 6 —
Address of disk block 7 e

Address of block of pointers

Y

Disk block

containing

additional
disk addresses

Figure 4-13. An example i-node.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Disk addresses

I-node

Triple

indirect

block

7

[-node
Attributes ,
| Single
1 , indirect
o P block
‘; Double
indirect 3+
block /
: T
\ /

A UNIX i-node.

\

Addresses of
data blocks

-~

L

f

\

f

\

Implementation of File System
Implementing Directories (1)

| | /
games | attributes games | o
mail | attributes mail l |
I . |
news i attributes news i +—
work | attributes work : \\
(a) (b) Data structure
containing the
attributes

Figure 4-14. (a) A simple directory containing fixed-size entries
with the disk addresses and attributes in the directory entry.
(b) A directory in which each entry just refers to an i-node.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Implementing Directories (2)

i File 1 entry length - Pointer to file 1's name Entry
for one
File 1 attributes File 1 attributes file
Entry - - —
for 6ho. 2 P r o J Pointer to file 2's name
file e c t - , ,
b 5 g 9 File 2 attributes
LL_® t X | Pointer to file 3's name
File 2 entry length
File 3 attributes
File 2 attributes
p e r
o n n e o
I X r 0 J
File 3 entry length 5 1 '
u d g
File 3 attributes t X p ”
eap
f | o l o | X r s o]
n e I
f o o
X J
(a) (b)

Figure 4-15. Two ways of handling long file names in a directory.
(a) In-line. (b) In a heap.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Shared Files (1)

. Root directory

Shared file

Figure 4-16. File system containing a shared file.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Shared Files (2)

C's directory B's directory C's directory B's directory
\ A
/ \ / \
Owner =C Owner = Owner =C
Count = 1 Count = 2 Count = 1

: : l
O O O

(a) (b) ()

Figure 4-17. (a) Situation prior to linking. (b) After the link is
created. (c) After the original owner removes the file.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The virtual file systems (1)

User Processes

vi, 1ls, mv, rm, file, strings, cat, touch ...

System Cérll Interface
open() read() write() close()...

\

VFS Abstraction Layer

N

ext2 reiserfs minix ext3 .
—
\//
Buffer‘Cache

Device Drivers

/O Request

Hardware

Virtual File Systems (2)

VFS

File

Process descriptors

V-nodes

—

Function
pointers

Call from
<« VFSinto
FSA1

Y
Read FS1
function

Figure 4-19. A simplified view of the data structures and code
used by the VFS and concrete file system to do a read.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Filesystems supported

* Traditional: ext2

« Second generation: ext3, ReiserFS, IBM JFS, xfs
 FAT-12, FAT-16, FAT-32, VFAT, NTFS (read-only)

« CD-ROM (1SO 9660)

« UMSDOS (UNIX-like FS on MS-DOS)

 NFS (Network File System)

« SMBFS (Windows share), NCPFS (Novell Netware share)
« /proc (for kernel and process information)

« SHMFS (Shared Memory Filesystem)

Filesystem example: ext2

 Partition divided into blocks of 1024, 2048 or
4096 bytes

— Blocksize depends on size of filesystem and expected
usage
 Blocks can have different usage:
— Superblock
— Index node (inode) block
— Indirect block (double, triple)
— Data block

Superblock

*First block of filesystem, several copies
(at 8193, 16385, ...)

* Contains general info on filesystem
—Last mounted time/place
—Block size
— Pointers to free inodes
— Pointers to free blocks
— Pointer to root of filesystem

I‘I‘D‘D\S‘I‘I‘ID‘D‘D‘D

Inodes

« 128 bytes (8 inodes per 1024 R ——
—Byte block) File Type
. . . i File Size
» Contains information about a file: File Permissions
owner, group, type, size, Time Stamps:
permissions, ctime, atime, access time
. modification time
mtime, ... Link Counter
: : Additional Flags:
« Contains pointers to data blocks (ACL, EXT2,_FLAGS)
» Contains pointers to an indirect Pointers to Block Data

block, a double indirect block,
and a triple indirect block

Data blocks
e Contain file data

* File may be a directory, in which case the data is the
list of file names and inodes in that directory

* Multiple file names may point to the same inode!
(Or files may have multiple names)

4|—> Inode 3694 <J —» Data 6417 — Inode 8391 — Data 9041

Type: f File data
Data: 9041 T— Xyz
Size: 21

User: 0

Group: 0

Link: 2

Ext2fs summary

* The most important components of a
filesystem are the inodes and the data
blocks

* The filesystem is full if:
—No more inodes are available
—No more data blocks are available

* S0 tune your filesystem according to the
number of bytes per file:

—Blocksize (1024, 2048, or 4096
possible)

— Bytes-per-inode (4096 default)

Other filesystem features

Filesystems can have other features that can be useful:
» Access Control Lists (ACL)
— Allow more extended permissions, not just rwxrwxrwx
— Not yet supported by VFS abstraction layer
 Journaling

— Keeps a journal of operations that are going to take
place and operations that were successfully committed

— Should make recovery from a crash faster

— Slight performance decrease
« Extended file attributes

— Examples: immutable, auto compression, undeletable
 Labels

— Allow mounting based on label instead of device name
* Performance optimizations

e

P182 9, 11, 19, 20

Management and Optimization
of File System

Disk Space Management Block Size (1)

Length | VU 1984 | VU 2005 Web Length | VU 1984 | VU 2005 Web
1 1.79 1.38 6.67 16 KB 92.53 78.92 86.79

2 1.88 1.53 T.B8T 32 KB 97.21 85.87 91.65

4 2.01 1.65 8.33 64 KB 89.18 90.84 94.80

8 2.31 1.80 | 11.30 128 KB 99.84 93.73 96.93

16 3.32 2.15 | 11.46 256 KB 99.96 96.12 98.48
32 5.13 3.15 | 1233 512 KB 100.00 97.73 98.99
64 8.71 4.98 | 26.10 1 MB 100.00 98.87 99.62
128 14.73 8.03 | 28.49 2 MB 100.00 99.44 99.80
256 23.09 13.29 | 32.10 4 MB 100.00 99.71 99.87
512 34.44 20.62 | 39.94 8 MB 100.00 99.86 99.94
1 KB 48.05 30.91 | 47.82 16 MB 100.00 99.94 99.97
2 KB 60.87 46.09 | 59.44 32 MB 100.00 99.97 99.99
4 KB 75.31 59.13 | 70.64 64 MB 100.00 99.99 99.99
8 KB 84.97 6996 | 79.69 128 MB 100.00 99.99 | 100.00

Figure 4-20. Percentage of files smaller than a given size

(in bytes).

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Disk Space Management Block Size (2)

60 — s] 100%
/
50 {— 4 c
? ll = 80%; 9
; j 5
& 40 / =
% / —60% 5
hadE f
= / —H40% 2
©) w
o 20 — /7 & o
7 72
Qo P . =
v
0 _l-.—.-x—.—.-i-;"- -¢~ r 0%

1 KB 4KB 16KB ©64KB 256 KB 1MB

Figure 4-21. The dashed curve (left-hand scale) gives the data rate of a
disk. The solid curve (right-hand scale) gives the disk space
efficiency. All files are 4 KB.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Keeping Track of Free Blocks

Free disk blocks: 16, 17, 18

42

136

210

97

41

63

21

48

262

310

/-P—

230

162

612

342

214

160

664

216

320

516

4

A 1-KB disk block can hold 256

180

KP—

86

1001101101101100

234

0110110111110111

897

1010110110110110

422

0110110110111011

140

223

1110111011101111

1101101010001111

223

0000111011010111

160

126

1011101101101111

1100100011101111

482

32-bit disk block numbers

(a)

142

0111011101110111

141

1101111101110111

A bitmap

(b)

(a) Storing the free list on a linked list. (b) A bitmap.

Creating a filesystem

* Creating a filesystem is done with an mkfs variant
— mke2fs, mke2fs -j
— mkreiserfs
— mkjfs
* Typical options:
- b blocksize sets blocksize
- i bytes-per-inode sets number of inodes
- ¢ checks disk for bad blocks

* Example:

mke2fs -b 1024 -i 4096 -c /dev/sdaé6

Writing 1node tables: done
Writing superblocks and filesystem accounting

info: done

Mount

* mount is the glue that logically connects file systems to the
directory hierarchy

* File systems are associated with devices represented by
special files in /dev (the logical volume)

* When a file system is mounted, the logical volume and its

contents are connected to a directory in the hierarchical tree
structure

mount /dev/1lv00 /home/patsie

W hat to Where to
mount mount it

Comparing filesystems

Journaled Filesystems used by Linux:

ext2 ext3 jfs reiser xfs

Journal
resizeable yes, but only
when mounted
maximum
size
inodes inodes inod inod
(completely | (completely INOCES inodes
type (allocated b-Tree (allocated in a
block block .
in a b-tree) b-tree)

oriented) oriented)

SHMFES-specific information

* SHMES: POSIX compliant Shared Memory

Filesystem

* Filesystem stored in memory, expands when

used to required size
* Not persistent across re
* Typically mounted on /c

oot
ev/shm

* Required by certain app

ications

Quota concepts

e Quotas limit the amount of data a user/group is allowed to
store

* Defined on a per-filesystem basis
* Based on block and/or inode usage per user or group
* Two limits per quota: Soft and hard

— User exceeds soft limit ~ warning only

— User exceeds hard limsit error

* Grace period identifies how long the soft limit may be
exceeded

— After that period, a user gets errors instead of warnings

20 Filesystem: 300 MB
MB

Each user may consume only 20 MB permanently and 25 MB temporarily

Disk Quotas

Open file table Quota table

Attributes Soft block limit

disk addresses Hard block limit

U =8

Sl Current # of blocks
Quota pointer — # Block warnings left Clsts
> record

Soft file limit for user 8
Hard file limit

Current # of files

)2
|89
)}
L

File warnings left

)}
\{
)2
L

Figure 4-24. Quotas are kept track of on a per-user basis
in a quota table.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Quota implementation on Linux

* Quota support compiled into the kernel
— No daemon necessary
* Implemented on a per-filesystem basis
— A user can have different quota on different filesystems

— Stored 1n aquota.user and aquota.groups in the root of the
filesystem

* Quota checking should be enabled when mounting the filesystem
— Mount options: usrquota, grpquota
— Can be specified in /etc/fstab

* Quota checking should be turned on after mounting with the quotaon
command

— Automatically executed from bootscript after mount -a

Enabling quota

N\

+ Modify /etc/fstab /)
/'/dev/sdaZ / ext3 defaults M,Jg 11
/dev/sdad4 /home ext3 defaults,usrquota,grpquota 1 2
/dev/sdb /mnt/cdrom 1s09660 noauto,owner, ro 00
/dev/sda3 swap swap defaults 00
/dev/£fd0 /mnt/floppy msdos noauto, owner 0 0
none /proc proc defaults 00
none /dev/pts devpts gid=5,mode=620 00

* Create aquota.user and aquota.group 1n the filesystem's root
directory

* Remount the partition

* Calculate current usage and turn on quota checking

touch /home/aquota.user /home/aquota.group
mount -o remount /home

quotacheck /home

quotaon /home

Configuring quota

* Done with the edquota command
— Starts SEDITOR (default: vi) in a subshell
— Only edit the block/inode soft/hard quota numbers

SSL YRl 8AqUtA, U HEPTAATEs 1)

Filesystem blocks soft hard inodes soft hard

/dev/sda4 10700 20000 25000 407 0 0

/dev/sda9 320 300 350 23 30 50
/ " tmp/Edp. ad9fSEQRY 3L, 213C

* Group quota: edquota -g groupname
* Grace period: edquota -t
* Copy quota: edquota -p tuxl -u tux2 tux3 tux4

Quota information

* quota command
— Reports on the quota of one user
— Can be executed by anyone
— A regular user can only view his own quota

tuxl$ quota
Disk quotas for user tuxl (uid 501):

Filesystem Dblocks quota 1limit grace files quota limit grace
/dev/sda4 10700 20000 25000 4077 0 0
* repquota command
— Reports on the quota of all users and groups

) — Can only be executed by root

root# repquota /dev/hda4

Block limits File limits

User used soft hard grace used soft hard grace

root -— 848804 0 0 56892 0 0

tuxl ++ 1500 1000 1500 “7days 112 112 115 none

tux?2 -— 176 1000 1500 44

0

0

File System Backups (1)

Backups to tape are generally made to handle one of
two potential problems:

o Recover from disaster.
e Recover from stupidity.

Physical Backup VS Logical Backup

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Backup schemes

* Full backup
— Preserves the whole system
* System backup
— Preserves system directories and files
— Must include backup/restore tools
— Usually on bootable media (floppy, optical)
 Data backup
— Preserves user data
* Incremental or differential backup
— Only backup files that changed
— Very fast, but takes more time to restore
— Must be used carefully
— Needs more media

File System Backups (2)

1 |<— Root directory

2 5 16 18 27
3) (¢ 6 ®) 19 28) [0
Directory /\ /\
that has not —{ 7 10 20 22 30
changed /\
(8) (9) [14 23 B) (32
(L File that File that has
12) (3) (15 has changed 24 (‘25 BE) nat Ahonnod

Figure 4-25. A file system to be dumped. Squares are directories, circles
are files. Shaded items have been modified since last dump. Each
directory and file is labeled by its i-node number.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

File System Backups (3)

12

13

14

16

¥

18

20

21

22

23

24

25

26

27

28

29

30

31

32

12

13

14

16

17

18

20

21

22

23

24

b

26

27

28

29

30

31

32

12

13

14

16

17

18

20

21

22

23

24

25

26

27

28

29

30

31

32

12

13

14

16

17

18

20

21

22

23

24

25

26

27

28

29

30

31

32

Figure 4-26. Bitmaps used by the logical dumping algorithm.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Incremental versus differential backup

Day 1

Full

NS

Incremental backup

Full

[——

) ——

Day 2

L1

NS

L1

O —

Day 3

L2

NS

L1

e —

Day 4

L3

NS

L1

ww_/w

Differential backup

Sample monthly backup scheme

Su Mo Tue We Thu Fr Sa

1 2
Level 0

3 4 5 6 7 8 9
Level 2 Level 3 Level 4 Level 5 Level 1

10 11 12 13 14 15 16
Level 2 Level 3 Level 4 Level 5 Level 1

17 18 19 20 21 22 23
Level 2 Level 3 Level 4 Level 5 Level 1

24 25 26 27 28 29 30
Level 2 Level 3 Level 4 Level 5 Level 0

31

Backup devices

e Tape drive
— Large capacity, fast
— Requires new tapes regularly
e CD-R, CD-RW, DVD
— Cheap but relatively slow
* (Removable) Hard disk
— Fast but expensive
* Diskette drive
— Often available but cumbersome for large backups
* Network

— Useful in large installations; usually requires commercial software
(for instance, Tivoli Storage Manager)

Default backup tools

* tar

— Backs up individual files

— Widely available

— Excellent for transferring data between platforms
* cpio

— Backs up individual files

— Widely available

— Difficulties with many symbolic links
* dump

— Backs up whole filesystems

— Can handle incremental backups (nine levels)
 dd

— Useful for making bit-for-bit dumps of disks and filesystems

012345678 9101112131415

File System Consistency

DIOCK Nulroei

1

1

0

1

0f1

1

1

1

0

1

|

0

0

012345678 9101112131415

1

1

0

1

0f1

1

1

1

0

0

1

1

1

0

0

Blocks in use

Free blocks

Blocks in use

Free blocks

012345678 9101112131415

DIOCK ruinopei

]

1

0

]

0

1

|

1

1

0

)

1

0

0

012345678 9101112131415

]

1

0

1

0

2

1

1

1

0

0

1

1

1

0

0

Blocks in use

Free blocks

Blocks in use

Free blocks

Figure 4-27. File system states. (a) Consistent. (b) Missing block. (c)
Duplicate block in free list. (d) Duplicate data block.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Caching (1)

Hash table Front (LRU)

R
)/

Figure 4-28. The buffer cache data structures.

Rear (M RU)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Caching (2)

Some blocks, such as i-node blocks, are rarely
referenced two times within a short interval.

Consider a modified LRU scheme, taking two factors
Into account:

*|s the block likely to be needed again soon?
*|s the block essential to the consistency of the file system?

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Reducing Disk Arm Motion

I-nodes are Disk is divided into
located near cylinder groups, each
the start with its own i-nodes

of the disk

Cylinder group

(a) (b)
Figure 4-29. (a) I-nodes placed at the start of the disk.
(b) Disk divided into cylinder groups, each with its own blocks and

i-nodes.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The ISO 9660 File System

Padding
Bytes 1 1 8 8 7 1 2 4 1 4-15 l’
Location of file File size Date and time CD# |L| File name Sys
t . Flags*"f f
Extended attribute record length
Base name
]—Direcmry entry length Interleave o B2 | Ve

Figure 4-30. The ISO 9660 directory entry.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Rock Ridge Extensions

Rock Ridge extension fields:

e PX-POSIX attributes.

e PN - Major and minor device numbers.
e SL-Symbolic link.

e NM - Alternative name.

e CL- Child location.

e PL-Parent location.

e RE - Relocation.

e TF-Time stamps.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Joliet Extensions

Joliet extension fields:

e Long file names.

e Unicode character set.

e Directory nesting deeper than eight levels.
e Directory names with extensions

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The MS-DOS File System (1)

Bytes 8 3 1 10 2 2 2 4

=l \////////////T E

Extension Attributes Reserved Time Date First
block

number

Figure 4-31. The MS-DOS directory entry.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The MS-DOS File System (2)

Block size | FAT-12 | FAT-16 | FAT-32
0.5 KB 2 MB
1 KB 4 MB
2 KB 8 MB 128 MB
4 KB 16 MB 256 VB 1TB
8 KB 512 MB 21B
16 KB 1024 MB 2 1B
32 KB 2048 MB 2 1B

Figure 4-32. Maximum partition size for different block sizes. The empty
boxes represent forbidden combinations.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The UNIX V7 File System (1)

Bytes 2 14
File name
|-node
number

Figure 4-33. A UNIX V7 directory entry.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Disk addresses

The UNIX V7 File System (2)

I-node
Attributes ,
. | Single
4 » indirect
- block
’; Double
J indirect -l
block

.
TNy

\/

Addresses of
data blocks

-

e

Triple

indirect

¥

block

Figure 4-34. A UNIX i-node.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The UNIX V7 File System (3)

Block 132 |-node 26 Block 406
I-node 6 is /usr is for is /usr/ast
Root directory is for /usr directory /usr/ast directory
1. 6| 26 | o
Mode Mode
1] .. size 1 | oo size B | o
: times , times
4 | bin 19 | dick 64 | grants
7 | dev 132 30 | erik 406 92 | books
14 | lib 51 | jim 60 | mbox
9 | etc 26 | ast 81 | minix
6 | usr 45 | bal 17 | src
8 | tmp
|-node 6 |-node 26
Looking up says that /usr/ast says that /usr/ast/mbox
usr yields /usris in is i-node /usr/astis in is i-node
i-node 6 block 132 26 block 406 60

Figure 4-35. The steps in looking up /usr/ast/mbox.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

e

- P183 27, 28, 29, 32

Chapter 5 File Management

Storage: Hard disks, LVM and RAID

Hard Disks

 IDE (Integrated Drive Electronics)

« ATA (Advanced Technology Attachment)
— PATA (Parallel ATA or IDE)

— SATA (Serial ATA)

Hard Disks

« SCSI (Small Computer System Interface)
— SAS (Serial Attached SCSI)

« SSD (Solid State Disk)

Hard disk partitions

* IDE and SCSI hard disks can be partitioned

* Maximum of four primary partitions

* One primary partition may be an extended patrtition

* An extended partition can hold an unlimited amount of

gcal partitions (Linux: max 59 for IDE, 11 for SCSI)

master boot record
partition table -~

\/

sda: The first sector of the disk contains the MBR
and Partition Table
» Sdal: First primary partition holds a Windows

-

: filesystem
Wind
~—_ NEOWS] » Sda2: Second primary partition is an extended
~ I partition and holds three logical partitions
Li = sdad: First logical partition holds a Linux
inux / :)
L A filesystem that will be mounted as /
_ » Sdab6: Second logical partition holds a Linux
Linux /home filesystem that will be mounted as /home
[T — » sda7: Third logical partition holds a Linux swap
Linux swa Space

Partitioning tools

* fdisk
— Virtually every PC OS comes with a tool £disk to create partitions
for that OS
- Linux, Windows, and so forth
* parted
— GPLed Linux program, available at www.gnu.org
— Can create/resize/move/delete partitions

» GParted, QTParted
— GUI utilities that use GNU Parted
— Can create/resize/move/delete partitions

e Disk Druid and others
— Partitioning program integrated in Linux install program

Components of storage

* Files

* Directories

* File systems

* Logical storage
* Physical storage

 Logical Volume Manager (LVM)

Traditional disk storage

e — — —
Partition 1 Partition 4
\ / [— L —)
Partition 2
\ /
Partition 5
Partition 3

_/ _/
PROBLEMS:

* Fixed partitions

« Expanding size of the partition

 Limitation on size of a file system and a file
« Contiguous data requirement

* Time and effort required in planning ahead

Benefits of the LVM

 Logical volumes solve noncontiguous space problems
» Logical volumes can span disks

 Logical volume sizes can be dynamically increased
 Logical volumes can be mirrored

* Physical volumes are easily added to the system

* Logical volumes can be relocated

* Volume group and logical volume statistics can be collected

These tasks can be performed dynamically!

Logical volume management

* Logical volume management solves the disadvantages of

traditional disk storage:
— One or more physical volumes (hard disks, partitions) are assigned to
a volume group (VG)
— All physical volumes (PV) are split into physical extents (PE) of
identical size (default 4 MB)
— PEs in a VG can be combined into logical volumes (LV), which can
be used like any block device
* An LV can span multiple disks
* To increase the size of an LV, add PEs

* To increase the size of a VG, add PVs

Logical volume management on Linux

|

! m&cal voluh @s_ical vquD
: wdlsk or paW (hard disk or partition)

T O St R R S
| PE| |PE| |PE PE| |PE| |PE
I

R e e e
1

. PE| |PE|::|PE PE| |PE|: |PE
Lo i e
e
1

1

1

|

I

volume group

Logical storage on AIX

Physical volumes

Logical
Partitions

-
-

...............................
.

i

1| 2{3|4|1(2 |3 4 T~

Logical
volume

Logical
volume

LVM implementation overview

* Add hard disks and/or create partitions (type 0x8e) on existing

hard disks
* |nitialize physical volumes (disks or partitions)

pvcreate /dev/sda3
pvcreate /dev/sdb

 Create volume group vg00 with physical volumes

‘ # vgcreate vg00 /dev/sda3 /dev/sdb

 Create logical volume Iv00 in volume group

‘ # lvcreate -L 50M -n Iv00 vg00

« Can now use /dev/vg00/Iv00 as block device

Physical volume commands

° pvcreate <pv>
— Initializes a physical volume by putting an (empty) volume
group descriptor area at the start of the PV

VGDA (Volume Group Descriptor Area)

s pvmove [-n <1v>] <source pv> [<destination
pv>]
— Move PEs from one PV to another PV in the volume group
* pvdisplay <pv>
— List information about a PV

Volume group commands

* vgcreate [-s <pe size>] <vg name> <pv>
[<pv>...]
— Create a volume group

Volume Group (VG)
< A \

<
Physical / Physical | Physical
Volume (PV) Volume (PV) Volume (PV)

* vgdisplay [<vg>]

— Display information about a volume group
* vgremove <vg>

— Delete a volume group

Logical volume commands

* lvcreate -L <size> [-n <lv name>] <vg>
[<pv>...]

— Create a logical volume in a volume group

Logical Volume (LV) V V LV
o & |
< 7
Volume Group (VG)
A A >
I Physical / I Physical | I) Physical
\olume (PV) Volume (PV) Volume (PV)

* lvdisplay <1v> [<1v>...]

— Display information about a logical volume
e lvremove <1v> [<1v>...]

— Remove a logical volume

Striping logical volumes

* A logical volume may be striped across two or more
physical volumes during creation
* For large data transfers, this increases performance

lvcreate -L 300M -i 2 -I 8 -n mystripedlv wvg0O0

O S S ——
: PE PE PE PE PE PE |
1 |
: PE PE PE PE PE PE |
1 TN W S ————————— — ——— — ————— — — — -y |
v |V PE PE PE PE PE PE | 1|
ey g =

volume group

/dev/ivg00/mystripedlv

Extending/reducing a volume group

« To add or remove a physical volume to or from a volume group,
use the vgextend and vgreduce commands

* To move physical extents from one physical volume to another,
use pvmove

p
vgextend vg00 /dev/sdbé6

vgreduce vg00 /dev/sdab

ERROR: can't reduce volume group "vgO00" by used

physical volume "/dev/sdab"

pvmove /dev/sda5 /dev/sdbé6

vgreduce vg00 /dev/sdab

-

Extending/reducing a logical volume

* To extend/shrink a logical volume use the
lvextend/lvreduce commands
Use -L option to specify size in bytes
Use -l option to specify size in PEs
« lvextend/lvreduce do NOT extend/shrink a filesystem in the
LV automatically!

(Extending/shrinking a filesystem will be covered later)

-

lvextend -L +300M /dev/vg00/mylv

lvextend -- rounding relative size up to physical extent boundary
lvextend -- extending logical volume "/dev/vg00/mylv" to 380 MB
lvextend -- doing automatic backup of volume group "system"
lvextend -- logical volume "/dev/vg00/mylv" successfully extended

lvreduce -1 -12 /dev/system/mystripedlv

-

LVM backup and recovery

* [t is very important to save the LVM metadata stored in the
VGDA for recovering reasons.

1. vgecfgbackup

2. vgcfgrestore -n vg name PV

VGDA VGDA VGDA

_ _ _
\\\\\\\\\\‘ill////////

letc/lvm/backup/vg_name.conf

T

VGDA VGDA VGDA

Additional LVM considerations

 Linux LVM implementation has "snapshot" capability
— Can be useful for fast backups

* If LVM-based filesystems are listed in /etc/fstab, then LVM
support needs to be included in the initial root disk (initrd)

 Mirroring is handled outside of the LVM structure

* LVM uses the device mapper kernel device driver

* LVM snapshots are read/write by default

RAID

« Redundant Array of Independent Disks
 Typical PC hard disks, compared to expensive mainframe-

quality hard disks, are:
— Slower

— Less reliable

— Smaller

— But less expensive

* RAID uses multiple hard disks in an array to create a logical

device that is:

— Faster

— More reliable

— Or larger

— And still relatively inexpensive

RAID (Redundant Array of Independent Disk)

Ty @ T
AL g N00E) L AT2
LoRE Ll CARa ARE
L A3 4 A AB0 4 R ASd
e R AT
ey

N~

SR
Disk 0 Disk 1 Disk 2

RAID O
AT T
f 9 A
o R
B e
R R
S S
@ W

Disk O Disk 1

22

RAID 1
N
e Moans
el R A
ad g ad
A0 R A
A B S
A =g

Disk O

Disk 1

RAID 1+0
RAID 0
RAID 1 RAID 1
e e [~
AL KA 4 A2 4 A2
A3 4 NAS ST AL
AS 4 A A0 4 N A6
A7 AT A8 | N_A8
Disk O Disk 1 Disk 2 Disk 3

RAID 0+1

RAID 1
RAID O RAID O
Al N AZ AL A2
A3 g NAd B
SR B NAD o A6
A7 (A | | AT | [AB_
~ ~ ~ S ~
Disk O Disk 1 Disk 2 Disk 3

e
Disk O

N
Disk 1

N
Disk 2

N
Disk 3

RAID (2)

Figure 5-20. RAID levels 0 through 5.
Backup and parity drives are shown shaded.

(d)

(f)

— et

Strip 1
e]
Strip &

Strip 9
R

3
Strip 1
R
Strip &
e
Strip 9

e R

Pi2-15
1

Strip 2
P]

Strip 6
e
PE-11
e
Strip 13
e A

Strip 16
T

25

B
Parity

SR
Strip 3
b
P4-7

Strip 10
T
Strip 14
SRS

Strip 17
—

PO-3
P4-7

PE-11

PO-3
Strip 7
Strip 11
R
Strip 15

Strip 18
s

Strip 19

BAID lavel 3

BAID lavel 4

BAID lavel &

(a)

(c)

Strip O
Strip 4
R

|

Strip 8
o S

|

rm—

Strip 0
e R
Strip 4

|

Strip 1
P]
Strip &
AR

Strip 8
Mg

Strip 9
o S

Figure 5-20

Strip 2
Strip 6
e

Strip 10
o S

T
e ey

Strip 2
i T

Strip &
b

C_

Strip 3
i
Strip 7
P]

Strip 10
g S

Strip 11
SR

Ty
SRR
Strip 3
b
Strip 7
o]

Strip 11
e e

P
Bit 4

BAID level O

Strip 0
Strip 4

Strip 8

i T, LY

Strip 1
Strip 5

RAID (1)

R
P
Strip 2
1
Strip &
e R

Strip 9

i
Bit &

Strip 10
Nl

. RAID levels 0 through 5.
Backup and parity drives are shown shaded.

26

Strip 3
o P
Strip 7

Strip 11
e

RAID
level 1

RAID level 2

RAID levels

 RAID levels have different characteristics
— RAID-5 is not "better" than RAID-1

 Use RAID leve

according to needs

RAID Min # Read Write Redundancy | Data capacity Other remarks
level disks | performance | performance with 3x1GB
disk
Linear 2 Equal Equal No 3 GB Can be used if disks are not
equal
0 2 Fast Fast No 3 GB
1 2 Fast Somewhat Yes 1GB Can sustain N-1 disk
slower crash(s)
4 3 Somewhat Slow Yes 2 GB Can sustain one disk crash
faster Parity disk is bottleneck
5 3 Somewhat | Somewhat Yes 2 GB Can sustain one disk crash
faster faster CPU intensive

(*) Performance compared to a single disk, for data transfers greater than block size

Linux RAID support

» Software RAID

— Implemented in Linux kernel

— Needs mdadm package

— Uses disk partitions to create RAID devices
— Logical device name: /dev/imdn

« Hardware RAID

— Implemented in special adapter cards

— Adapter needs to be supported by Linux kernel

— Generally specific software needed to configure adapter correctly
(might not be available under Linux)

— RAID devices show up as regular SCSI disk

Spare disks

* To make RAID1/RAIDS more failsafe in case of a disk
failure, use spare disks!

cat /etc/raidtab

nr-spare-disks 1
device /dev/sddl
spare-disk 0

@@

The spare disk takes ove‘r...\/

« Remove a failed disk with raidhotremove
* Add a new disk to the array with raidhotadd

Additional RAID considerations

* Put RAID partitions on different disks

» Use different SCSI or IDE controllers if possible for different
disks that are part of a RAID volume

* Do not use RAID for /boot partition

* If RAID-based filesystems are listed in /etc/fstab, then RAID
support needs to be included in the initrd

« Software RAID4 and RAIDS5 needs a lot of CPU time

* Do not use RAID-linear or RAIDO for swap space
— The Linux kernel can stripe across swap spaces more efficiently

References

» Chapter 5: Input/Output, Modern Operating Systems .3 ed,
Andrew S. Tanenbaum

 Unit 8: Block devices, RAID, and LVM, Linux System
Administration I: Implementation , ERC 6.0, IBM

Input/Output
Devices

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

I/O DeV|CeS Device Data rate

- Keyboard - 10 bytes/sec
._Mouse | 100 bytes/sec
56K modem . 7KBlsec
._.Scanner 400 KB/sec
i_DigitaI camcorder ‘ 3.5 MB/sec
802.11g Wireless . 6.75MB/sec
52x CD-ROM | 7.8MBlsec
Fast Ethernet - 12.5 MB/sec
j:Compac:t flash card 40 MB/sec
. . FireWire (IEEE 1394) 50 MB/sec
Figure 5_-1 . Some typical USB 20 1 50 MB/acs
device, network, and ' SONET OC-12 network | 78 MB/sec
bus data rates. SCS Ultra 2 disk | 80 MB/sec
' Gigabit Ethemet 125 MB/sec
| SATA disk drive | 300 MB/sec
_Ultrium tape 320 MB/sec
| PCl bus | 528 MB/sec

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Memory-Mapped 1/O (1)

Two address One address space Two address spaces

OxFFFF... Memory

I/O ports

/

Figure 5-2. (a) Separate I/O and memory space.
(b) Memory-mapped I/0O. (c) Hybrid.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Memory-Mapped I/O (2)

CPU

Memory I/O

CPU

CPU reads and writes of memory

go over this high-bandwidth bus

Memory

| bx

/O

\

All addresses (memory
and l/O) go here

(@)

Y

%

(b)

This memory port is
to allow I/O devices
access to memory

Figure 5-3. (a) A single-bus architecture.
(b) A dual-bus memory architecture.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Direct Memory Access (DMA)

@ _«— Drive

1.CPU

programs DMA Disk Main
CPU the DMA controller controller memory
controller _— Buffer
.-"".-—-_---""'
| Iy
4. Ack A
fﬂ""-"—.—-—-—-‘-"‘"‘;
4 I | 4
Interrupt when 2. DMA requests
transfer to memory | 3. Data transferred)

done

--—Bus

Figure 5-4. Operation of a DMA transfer.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Interrupts Revisited

Interrupt 1. Device is finished
CPU 3. CPU acks controller /
interrupt *—@
,./——‘\n —
— | L
2. Controller — i
N it , - Printer

Bus

Figure 5-5. How an interrupt happens. The connections between
the devices and the interrupt controller actually use interrupt
lines on the bus rather than dedicated wires.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Precise and Imprecise Interrupts (1)

Properties of a precise interrupt

1.

Tane

PC (Program Counter) is saved in a known
place.

All instructions before the one pointed to by
the PC have fully executed.

No instruction beyond the one pointed to by
the PC has been executed.

Execution state of the instruction pointed to
by the PC is known.

nbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Precise and Imprecise Interrupts (2)

332

Mot executed 032 Mot executed 308
Mot executed 328 10% executed

Not executed 190 40% executed | .,

Not executed 316 PC— | 35% executed 316

312 20% executed 3192

308

304
300

(a)

Figure 5-6. (a) A precise interrupt. (b) An imprecise interrupt.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

User
space

KErneI<
space

Programmed 1/O (1)

String to
be printed
l Printed
page
ABCD l
EFGH
(a)

Printed
page
Next -1 A
Y
ABCD
EFGH
(b)

Next -

ABCD
EFGH

AB

Figure 5-7. Steps in printing a string.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Interrupt-Driven 1/O

copy_from user(buffer, p, count); if (count == 0) {
enable _interrupts(); unblock user();
while (*printer status reg = READY) ; } else {
*printer _data_register = p[0]; *printer_data_register = p[i];
scheduler(); count = count — 1;
i=i+1;
}

acknowledge _interrupt();
return_from _interrupt();

(a) (b)

Figure 5-9. Writing a string to the printer using interrupt-driven 1/O.
(a) Code executed at the time the print system call is made.
(b) Interrupt service procedure for the printer.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

/0O Using DMA

copy_from _user(buffer, p, count);
set up DMA controller();

scheduler();

(a) acknowledge interrupt();
unblock user();

return _from _interrupt();
(b)

Figure 5-10. Printing a string using DMA.. (a) Code executed when
the print system call is made. (b) Interrupt service procedure.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

/O Software Layers

User-level /O software

Device-independent operating system software

Device drivers

Interrupt handlers

Hardware

Figure 5-11. Layers of the /O software system.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Interrupt Handlers (1)

Save registers not already been saved by
interrupt hardware.

Set up a context for the interrupt service
procedure.

Set up a stack for the interrupt service
procedure.

Acknowledge the interrupt controller. If there is
no centralized interrupt controller, reenable
interrupts.

Copy the registers from where they were
saved to the process table.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

~

10.

Interrupt Handlers (2)

Run the interrupt service procedure.
Choose which process to run next.

Set up the MMU context for the process to run
next.

Load the new process’ registers, including its
PSW.

Start running the new process.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Device
Drivers

space

Figure 5-12. Logical —

positioning of i
device drivers. In

reality all

communication Hardware
between drivers and
device controllers -

goes over the bus.

¥F

User process

V.

User

program

Rest of the operating system

Printer
driver

Camcorder
driver

CD-ROM
driver

w

w

Y

Printer controller

Camcorder controller

CD-ROM controller

VL

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Device-Independent I/O Software

| Uniform interfacing for device drivers

| Bufferlng
| Error repcrrtmg

| Allocatlng and releasmg dedicated devlces
~ Providing a device-independent block size |

Figure 5-13. Functions of the device-independent I/O software.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Uniform Interfacing for Device Drivers

o

Operating system

Operating system

iy

s

SATA disk driver IDE disk driver SCSI disk driver

Figure 5-14. (a) Without a standard driver interface.

Lipsiss]iy
Wm Nﬂj

]

(a)

(b)

(b) With a standard driver interface.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

SATA disk driver |IDE disk driver SCSI disk driver

Buffering (1)

User process

_ L
User 4
space { A I?I I?I
Kernel 2
space |:E|
’

Modem Modem Modem

() (b) ()

Figure 5-15. (a) Unbuffered input. (b) Buffering in user space.
(c) Buffering in the kernel followed by copying to user space.
(d) Double buffering in the kernel.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Buffering (2)

ster process

User
space
Kernel
space

o Network
controller

1)
@

- J

Network ”

Figure 5-16. Networking may involve many copies of a packet.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

User-Space |/O Software

Layer

/O

-
I

User processes

request |

' Device-independent

software

Device drivers

¥
}
I
A
I

Interrupt handlers

—+

+
I

Hardware

/ reply

I/O
I/O functions

Make I/O call; format I/O; spooling

Naming, protection, blocking, buffering, allocation
Set up device registers; check status

Wake up driver when I/O completed

Perform /O operation

Figure 5-17. Layers of the I/O system and the

main functions of each layer.

Character devices

* A character device is any device which does
not allow random access (seeks)
* Examples:
—Console (keyboard, mouse)
—Serial terminals
—Printers
—Sound card
—Random number generator

Block devices

* A block device is any device which allows random
access ("seeks") and which is divided into "blocks" of
a given size.

block
1 2 3 4 5 6 7 8

0 512 4096

byte

* Typical block devices:
— Hard disks (and partitions)
— Floppy disks
— Virtual block devices (RAID and LVM)

Magnetic Disks (1)

Parameter 'IBM 360-KB floppy disk WD 18300 hard disk

Number of cylinders 40 10601 |
-_Tra-::ks per cylinder | | 2 | - 12

Sectors per track 9 | 281 (avg)
' Sectors per disk 720 | 35742000

Bytes per sector 512 ble
' Disk capacity | 360 KB | 18.3 GB
- Seek time (adjacent cylinders) | 6 msec | 0.8 msec
:Seek time (average case) 77 msec | 6.9 msec
' Rotation time | 200 msec | 8.33 msec |
:Motor stop/start time 250 msec | 20 sec |
'_Time to transfer 1 sector ' 22 msec | 1?_;159-:

Figure 5-18. Disk parameters for the original IBM PC 360-KB
floppy disk and a Western Digital WD 18300 hard disk.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Magnetic Disks (2)

Figure 5-19. (a) Physical geometry of a disk with two zones.
(b) A possible virtual geometry for this disk.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

CD-ROMs (1)

Spiral groove

\

. 2K block of
user data

Figure 5-21. Recording structure of a compact disc or CD-ROM.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

DVD (1)

DVD Improvements on CDs

1. Smaller pits
(0.4 microns versus 0.8 microns for CDs).

2. Atighter spiral
(0.74 microns between tracks versus 1.6

microns for CDs).

3. Ared laser
(at 0.65 microns versus 0.78 microns for CDs).

DVD (2)

DVD Formats

s wh =

Tane

Single-sided, single-layer (4.7 GB).
Single-sided, dual-layer (8.5 GB).
Double-sided, single-layer (9.4 GB).
Double-sided, dual-layer (17 GB).

nbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Disk Formatting (1)

Preamble

Data

ECC

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 5-25. A disk sector.

Disk Formatting
(2)

Figure 5-26. An
illustration of
cylinder skew.

Disk Formatting (3)

Figure 5-27. (a) No interleaving. (b) Single interleaving.
(c) Double interleaving.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Disk Arm Scheduling Algorithms (1)

Read/write time factors

1. Seek time (the time to move the arm to the
proper cylinder).

2. Rotational delay (the time for the proper sector
to rotate under the head).

3. Actual data transfer time.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Disk Arm Scheduling Algorithms (2)

Initial Pending
position requests
Y ’/’\x
L I A
X X[[X|X X X
0 = 10 15 20 25 30 35 Cylinder
@
E <
~ Sequence of seeks
l [
_N

Figure 5-28. Shortest Seek First (SSF) disk scheduling algorithm.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Disk Arm Scheduling Algorithms (3)

Initial
position

\

X X| [X]X X X[X
0 5 10 15 20 25 30 35 Cylinder

Rsiquence of seeks

= Time

—3

/

Figure 5-29. The elevator algorithm for scheduling disk requests.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Error Handling

Figure 5-30. (a) A disk track with a bad sector.
(b) Substituting a spare for the bad sector.
(c) Shifting all the sectors to bypass the bad one.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Clock Hardware

Crystal oscillator

—0l

Counter is decremented at each pulse

Holding register is used to load the counter

Figure 5-32. A programmable clock.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Clock Software (1)

Typical duties of a clock driver

1.
2.

Maintaining the time of day.

Preventing processes from running longer than
they are allowed to.

Accounting for CPU usage.

Handling alarm system call made by user
processes.

Providing watchdog timers for parts of the
system itself.

Doing profiling, monitoring, statistics gathering.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Clock Software (2)

- 64 bits - —— 32 hits — —=— 32 bits —
Time of day in ticks A P Counter in ticks
e A
Time of day Number of ticks
in seconds in current second o
System boot time
in seconds
(a) (b) ()

Figure 5-33. Three ways to maintain the time of day.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Keyboard Software

'_Character POSIX name Comment

'CTRL-H | ERASE ~ Backspace one character
CTRL-U | KILL Erase entire line being typed
_GTHL-V LNEXT | Interpret next charactér literally |
CTRL-S | STOP | Stop output B
CTRL-Q | START Start output

DEL INTR ' Interrupt process (SIGINT)
CTRL\ | QUIT Force core dump (SIGQUIT)
'CTRL-D | EOF " End of file

-_CTF{L-M | CR | Carriage return (unchangeable) |
[CTF%L-J | NL | Linefeed (unchangeable)

Figure 5-35. Characters that are handled
specially in canonical mode.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The X Window System (1)

-_Escape sequence | Meaning
:ESC [nA Move up n lines
| ESC [nB Move down n lines
: ESC [nC ' Move right n spaces
ESC [nD | Move left n spéces
: ESC[m;nH | Move cursor to (m,n)
i ESC [sJ | Clear screen from cursor (0 to end, 1 1from start, 2 all)
. ESC [sK | Clear line from cur.sor (0 tb end, 1 from start, 2 al.l}
: ESC [nL Insert n lines at cursor
- ESC [nM . Delete nlines at cursor
: ESC [nP Delete n chars at cursor
ESC [n@ Insert n chars at cursor
:ESC [Am Enable rendition n (O=normal, 4=bold, 5=blinking, 7=reverse) |
| ESCM | Scroll the screen backward if the cursor is on the top line |

Figure 5-36. The ANSI escape sequences accepted by the
terminal driver on output. ESC denotes the ASCII escape
character (Ox1B), and n, m, and s are optional

numeric parameters.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The X Window System (2)

Remote host

= Window Application
manager program
Motif
Gk < Intrinsics
space
Xlib
X client X server
i UNIX UNIX
space 4
Hardware Hardware
L X protocol J

Network

Figure 5-37. Clients and servers in the M.I.T. X Window System.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The X Window System (3)

Types of messages between client and server:

1.

Drawing commands from the program to the
workstation.

Replies by the workstation to program queries.

Keyboard, mouse, and other event
announcements.

Error messages.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Graphical User Interfaces (1)

#include <X11/Xlib.h>
#include <X11/Xutil.h>

main(int argc, char *argv(])

{

Display disp; /* server identifier */

Window win; /* window identifier */

GC gc; /* graphic context identifier */
XEvent event; /* storage for one event */

int running = 1;

disp = XOpenDisplay("display _name"); /* connect to the X server */

win = XCreateSimpleWindow(disp, ...); /* allocate memory for new window */
XSetStandardProperties(disp, ...); /* announces window to window mgr */

gc = XCreateGC(disp, win, 0, 0); /* create graphic context */

XSelectInput(disp, win, ButtonPressMask | KeyPressMask | ExposureMask);
XMapRaised(disp, win); /* display window; send Expose event */

Figure 5-38. A skeleton of an X Window application program.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Graphical User Interfaces (2)

while (running) {

XNextEvent(disp, &event); /* get next event */
switch (event.type) {
case Expose: ... break; /* repaint window */
case ButtonPress: ...; break; /* process mouse click */
case Keypress: break; /* process keyboard input */
}
}
XFreeGC(disp, gc); /* release graphic context */
XDestroyWindow(disp, win); /* deallocate window’s memory space */
XCloseDisplay(disp); /* tear down network connection */

Figure 5-38. A skeleton of an X Window application program.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Graphical User Interfaces (3)

(0, 0) (1023, 0)
\ 4

(200, 100) m—e

J Title bar

Menu bar mes— Fle 7] Edit 7! View”) Tools™! Options”™! Help =)

Tool bar === % m @% @}3 @ E ' '
[TaT T#]

1

_<— Thumb

Figure 5-39. A sample
window |ocated at
(200, 100) on an L Scroll bar
XGA display. R

Client area

| - - B
/A X

(0, 767) (1023, 767)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Graphical User Interfaces (4)

#include <windows.h>

int WINAPI WinMain(HINSTANCE h, HINSTANCE, hprev, char *szCmd, int iCmdShow)

{

WNDCLASS wndclass; /* class object for this window */
MSG msg; /* incoming messages are stored here */
HWND hwnd; /* handle (pointer) to the window object */

/* Initialize wndclass */

wndclass.lpfnWndProc = WndProc; /* tells which procedure to call */
whndclass.lpszClassName = "Program name"; /* Text for title bar */
whndclass.hlcon = Loadlcon(NULL, IDI _APPLICATION); /* load program icon */
whndclass.hCursor = LoadCursor(NULL, IDC_ARROW); /* load mouse cursor */

RegisterClass(&wndclass); /* tell Windows about wndclass */
hwnd = CreateWindow (...) /* allocate storage for the window */
ShowWindow(hwnd, iCmdShow); /* display the window on the screen */
UpdateWindow(hwnd); /* tell the window to paint itself */

Figure 5-40. A skeleton of a Windows main program.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Graphical User Interfaces (5)

while (GetMessage(&msg, NULL, 0, 0)) { /* get message from queue */
TranslateMessage(&msg); /* translate the message */
DispatchMessage(&msg); /* send msg to the appropriate procedure */
}

return(msg.wParam);

}

long CALLBACK WndProc(HWND hwnd, UINT message, UINT wParam, long IParam)
{

/* Declarations go here. */

switch (message) {

case WM_CREATE: ... return...; /* create window */
case WM _PAINT: ..., return ...; /* repaint contents of window #*/
case WM_DESTROY: ..; return...; /* destroy window */

}

return(DefWindowProc(hwnd, message, wParam, I[Param)); /* default */

Figure 5-40. A skeleton of a Windows main program.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Power Management
Hardware Issues

Device Lietal. (1994) Lorch and Smith (1998)

'Display | 68% 39%
CPU | 12% 18%
Hard disk =~ 20% 129%
Modem | 6%
_Sc:-und | | 2%
:_M emory 0.5% 1%
 Other | 22% |

Figure 5-45. Power consumption of various parts
of a notebook computer.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Power Management
The Display

| | | [|
I I I I I
I : I I
e ——————] Window 1 A= ———————
Window 1 : : :
S A —_———t ——— — - ____.I______|_____|. _____
. I I
____J______:___ Window 2 ____J______:___ Window 2
I I I I
I I T I I T
kﬁ‘,—,l

Figure 5-46. The use of zones for backlighting the display.
(a) When window 2 is selected it is not moved.
(b) When window 1 is selected, it moves to reduce the
number of zones illuminated.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Power Management
The CPU

1.00 1.00 |

0.75 B A
) @
% 0.50 % 0.50
(@]
o o

0.25 0.25

0 0 |
0 T/2 T 0 T/2 T
TIME —— TIME s—

(a) (b)

Figure 5-47. (a) Running at full clock speed. (b) Cutting voltage by
two cuts clock speed by two and power consumption by four.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

e

P241 11, 24

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

	Chap3_1.MemoryOverview
	chap3_2.VirtualMemory
	Chap3_3.PageReplace
	Chap3_4.Segmentation
	chap4_1.FileOverview
	chap4_2.FileSystem
	chap4_3.Management and Optimization of FS_1
	chap4_4.Storage
	Chap5_1.InputOutput

