
Syntax and Semantics of Cedille

Aaron Stump
Computer Science

The University of Iowa
aaron-stump@uiowa.edu

1 Introduction

The type theory of Cedille is called the Calculus of Dependent Lambda Eliminations (CDLE). This document
presents the version of CDLE as of June 1, 2018. We have made many changes from the first paper on
CDLE [11], mostly in the form of dropping constructs we discovered (to our surprise) could be derived [12].
I have also omitted lifting – a technique for large eliminations with lambda encodings – in this document’s
version of CDLE. Some uses of lifting can be simulated other ways within the system, though the limits of
this are still under investigation. We also include a construct δ, for deriving a contradiction from a proof
that lambda-encoded true equals lambda-encoded false. This also compensates somewhat for the lack of
lifting.

At a high level, CDLE is an extrinsic (i.e., Curry-style) type theory extending the Calculus of Constructions
with three additional constructs, which allow deriving induction principles within the theory, for inductive
datatypes. The goal is to support usual idioms of dependently typed programming and proving as in Agda
or similar tools, but using pure lambda encodings for all data, and requiring a much smaller core theory.

The current Cedille implementation of CDLE extends the system described below with a number of features
intended to make programming in the system more convenient and with less redundancy. These features all
compile away to a slightly simplified version of the theory presented in this document, called Cedille Core,
described here: https://github.com/astump/cedille-core-spec.

2 Classification Rules

The classification rules are given in Figures 1, 2, and 3. For brevity, we take these figures as implicitly
specifying the syntax of kinds κ, types T , and annotated terms t; these may use term variables x and type
variables X, which we assume come from distinct sets. So terms and types are syntactically distinguished.
The typing rules (Figure 3) are bidirectional [10], while the kinding and superkinding rules (Figure 2 and 1)
are only synthesizing. We write ⇔ to range over {⇐,⇒}. We follow the syntax of our implementation
Cedille, which distinguishes application of a term or type e to a type (e · T), from application to a term
(e t), and application to an erased term argument (e -t). The rules are intended, with a few points of
nondeterminism, to be read bottom-up (in a standard way; cf. [9]) as an algorithm for computing a classifier
from a context and an expression (⇒) or checking an expression against a classifier in context (⇐).

The classification rules refer to an erasure function, defined in Figure 4. The type theory is extrinsic (aka,
Curry-style), and hence we only consider erasures |t| of terms when testing for βη-equivalence. This is
done by the conversion relation T ∼= T ′, whose central rules are given in Figure 5. That figure omits the
various congruence rules needed to equate bigger expressions by equating subexpressions. The main ideas of

1

Γ ` ?
Γ ` T ⇒ ? Γ, x : T ` κ

Γ ` Πx :T. κ

Γ ` κ′ Γ, X : κ′ ` κ
Γ ` ΠX :κ′. κ

Figure 1: Rules for checking that a kind is well-formed (Γ ` κ)

(X : κ) ∈ Γ

Γ ` X ⇒ κ

Γ ` κ Γ, X : κ ` T ⇒ ?

Γ ` ∀X :κ. T ⇒ ?

Γ ` T ⇒ ? Γ, x : T ` T ′ ⇒ ?

Γ ` ∀x :T. T ′ ⇒ ?

Γ ` T ⇒ ? Γ, x : T ` T ′ ⇒ ?

Γ ` Πx :T. T ′ ⇒ ?

Γ ` T ⇒ ? Γ, x : T ` T ′ ⇒ κ

Γ ` λx :T. T ′ ⇒ Πx :T. κ

Γ ` κ Γ, X : κ ` T ′ ⇒ κ′

Γ ` λX :κ. T ′ ⇒ ΠX :κ. κ′

Γ ` T ⇒ Πx :T ′. κ Γ ` t⇐ T ′

Γ ` T t⇒ [t/x]κ
Γ ` T ⇒ ΠX :κ′. κ Γ ` T ′ ⇒ κ′ κ ∼= κ′

Γ ` T · T ′ ⇒ [T ′/X]κ

Γ ` T ⇒ ? Γ, x : T ` T ′ ⇒ ?

Γ ` ι x :T. T ′ ⇒ ?

FV(t t′) ⊆ dom(Γ)

Γ ` {t ' t′} : ?

Figure 2: Rules for synthesizing a kind for a type (Γ ` T ⇒ κ)

conversion shown in the figure are to use β-equivalence at the type level, and βη-equivalence of erased terms
at the term level.

2.1 Overview of the constructs

CDLE has as a subsystem the extrinsic Calculus of Constructions (CC). We have dependent types Πx :T. T ′

and kinds Πx :T. κ, as well as term- and type-level quantification over (possibly higher-kinded) types ∀X :κ. T
and ΠX :κ. κ′. We use ∀ when the corresponding argument will be erased, and Π when it will be retained.
Since we do not erase term or type arguments from type-level applications, we thus write ΠX :κ. κ′ instead
of ∀X : κ. κ′. We write λ to correspond to Π and Λ to correspond to ∀. As noted above, application to a
type is denoted with center dot (·).

To Curry-style CC, CDLE adds: implicit products, introduced orginially by Miquel [7]; a primitive equality
type {t ' t′}; and dependent intersection types ι x :T. T ′, introduced by Kopylov [5]. Implicit products are
used for erased arguments to functions, found also in systems like Agda (cf. [8]). Dependent intersections
are a rather exotic construct allowing us to assign type ι x :T ′. T to erased term t when we can assign T ′ to t,
and also assign [t/x]T to t. For an annotated introduction form, we write [t, t′], where t checks against type
T ′, t′ checks against [t/x]T , and t and t′ have identical (i.e., α-equivalent) erasures. Dependent intersections
thus enable a controlled form of self-reference in the type. Previous work showed how to use this to derive
induction for Church-encoded natural numbers [12]. We will see below further uses of this construct.

The typing rules include conversion checks in a few places; e.g., as standardly, when switching from checking
to synthesizing mode. Two rules near the top of Figure 3 state that one may (nondeterministically) β-reduce
the type one is synthesizing or checking, before proceeding. This allows reduction to head-normal form, to
match the form of type required by other rules. Finally, we include the construct χ T - t to change the
synthesized or checked type T ′ to T , if T ∼= T ′. This may be necessary to get the type into a specific form
for purposes of rewriting with the ρ construct.

2

(x : t) ∈ Γ

Γ ` x⇒ T

Γ ` t⇐ T T ′ ∗β T

Γ ` t⇐ T ′

Γ ` t⇒ T T ∗β T
′

Γ ` t⇒ T ′
Γ ` t⇒ T ′ T ′ ∼= T

Γ ` t⇐ T

Γ, x : T ` t⇐ T ′

Γ ` λx. t⇐ Πx :T. T ′
Γ ` t⇒ Πx :T ′. T Γ ` t′ ⇐ T ′

Γ ` t t′ ⇒ [t′/x]T

Γ, X : κ ` t⇐ T

Γ ` ΛX. t⇐ ∀X :κ. T
Γ ` t⇒ ∀X :κ. T Γ ` T ′ ⇐ κ

Γ ` t · T ′ ⇒ [T ′/X]T

Γ, x : T ′ ` t⇐ T x 6∈ FV(|t|)
Γ ` Λx. t⇐ ∀x :T ′. T

Γ ` t⇒ ∀x :T ′. T Γ ` t′ ⇐ T ′

Γ ` t -t′ ⇒ [t′/x]T

Γ ` t⇐ T Γ ` t′ ⇐ [t/x]T ′ |t| =βη |t′|
Γ ` [t, t′]⇐ ι x :T. T ′

Γ ` t⇒ ι x :T. T ′

Γ ` t.1⇒ T

Γ ` t⇒ ι x :T. T ′

Γ ` t.2⇒ [t.1/x]T ′
Γ ` FV(t) ⊆ dom(Γ)

Γ ` β{t′} ⇐ {t ' t}

Γ ` t⇐ {λx. λ y. x ' λx. λ y. y}
Γ ` δ t⇐ T

Γ ` t′ ⇒ t1 ' t2 Γ ` t⇔ [t1/x]T

Γ ` ρ t′ - t⇔ [t2/x]T

Γ ` T ⇐ ? Γ ` t⇐ T T ∼= T ′

Γ ` χ T - t⇐ T ′
Γ ` T ⇐ ? Γ ` t⇒ T ′ T ∼= T ′

Γ ` χ T - t⇒ T

Γ ` t⇒ {t′ ' t′′} Γ ` t′ ⇔ T

Γ ` φ t - t′{t′′} ⇔ T

Figure 3: Rules for checking a term against a well-kinded type (Γ ` t ⇐ T) and synthesizing a type for a
term (Γ ` t⇒ T)

x	= x	λx : t′. t	= λx.	t				
t t′	=	t		t′		t · T	=	t
Λx. t′t	=	t		t -t′	=	t		
[t, t′]	=	t		t.1	=	t		
t.2	=	t		β{t}	=	t		
δ t	=	t		ρ t - t′	=	t′		
φ t - t′ {t′′}	=	t′′		χ T - t′	=	t′		

Figure 4: Erasure for annotated terms

3

T ∗β T1 T ′ ∗β T2 T1 ∼=t T2

T ∼= T ′
T ∼=t T ′

T ∼= T ′

T ∼=t T ′ |t| =βη |t′|
T t ∼=t T t′

|t1| =βη |t′1| |t2| =βη |t′2|
{t1 ' t2} ∼=t {t′1 ' t′2}

Figure 5: Non-congruence rules for conversion

Finally, we have modified the rules for equality types {t ' t′} so that we require nothing of t and t′ except
that the set dom(Γ) of variables declared by Γ includes their free variables FV(t t′). Further modifications
over the version of CDLE in [12] are:

• To prove {t ' t}, one now writes β{t′}, with the critical idea that |β{t}| erases to |t|. We call this the
Kleene trick, because it goes back to Kleene’s numeric realizability, which accepts any number n as
a realizer of a true equation. Here, we accept any closed term t as a realizer of {t ' t}. This means
that in Cedille, any such term – even otherwise untypable terms, non-normalizing terms, etc. – have
type {t ' t} for any term t.

• The ρ construct allows one to rewrite occurrences of t1 to t2 in the synthesized or checked type, where
t1 and t2 are provably equal. In the Cedille implementation, we rewrite all matching occurrences. This
may be compared to rewrite in Agda, except that it may be applied anywhere, not just as part of
pattern matching [6].

• We adopt a strong form of Nuprl’s direct computation rules [1]: If we have a term t′ of type T
and a proof t that {t′ ' t′′}, then we may conclude that t′′ has type T by writing the annotated term
φ t - t′{t′′}, which erases to t′′.

• Where the previous version of CDLE uses β-equivalence for (erased) terms, we here adopt βη-equivalence.
This allows us to observe in many cases that retyping functions are actually βη-equivalent to λx. x.
While βη-equivalence takes more work to incorporate into intrinsic type theory [4], it raises no diffi-
culties for our extrinsic one.

• In this version, we add an explicit axiom δ saying that Church-encoded boolean true is different from
false. In the first version of CDLE, such an axiom was derivable from lifting, a construct allowing simply
typable terms to be lifted to the type level [11]. We omit lifting in this new version of CDLE, because
while sound, lifting as defined in that previous work is complicated and appears to be incomplete.
Developing a new form of lifting remains to future work.

The equality type remains intensional: we equate terms iff they are βη-equal.

2.2 Semantics and metatheory

Figure 6 gives a realizability semantics for types and kinds, following the semantics given in the previous
papers on CDLE [12, 11]. Details of this semantics are presented further in Section 2.3 below. Using the
semantics and the definition in Figure 7 of JΓK, we can prove the following theorem:
Theorem 1 (Soundness). Suppose (σ, ρ) ∈ JΓK. Then we have:

1. If Γ ` κ, then JκKσ,ρ is defined.

2. If Γ ` T ⇒ κ, then JT Kσ,ρ ∈ JκKσ,ρ.

3. If Γ ` t⇒ T then [σ|t|]cβη ∈ JT Kσ,ρ ∈ R.

4. If Γ ` t⇐ T and JT Kσ,ρ ∈ R, then [σ|t|]cβη ∈ JT Kσ,ρ ∈ R.

4

JXKσ,ρ = ρ(X)
JΠx : T1.T2Kσ,ρ = [{λx.t | ∀E ∈ JT1Kσ,ρ.

[[ζ(E)/x]t]cβη ∈ JT2Kσ[x 7→ζ(E)],ρ ∧ t = |t|}]cβη
J∀X : κ.T Kσ,ρ = ∩{JT Kσ,ρ[X 7→S]| S ∈ JκKσ,ρ}
J∀x : T.T ′Kσ,ρ = ∩?{JT ′Kσ[x 7→ζ(E)],ρ | E ∈ JT Kσ,ρ}
Jιx : T.T ′Kσ,ρ = {E ∈ JT Kσ,ρ| E ∈ JT ′Kσ[x 7→ζ(E)],ρ}
JλX : κ.T Kσ,ρ = (S ∈ JκKσ,ρ 7→ JT Kσ,ρ[X 7→S])
Jλx : T.T ′Kσ,ρ = (E ∈ JT Kσ,ρ 7→ JT ′Kσ[x 7→ζ(E)],ρ)
JT T ′Kσ,ρ = JT Kσ,ρ(JT ′Kσ,ρ)
JT tKσ,ρ = JT Kσ,ρ([σ|t|]cβη)
Jt ' t′Kσ,ρ = [{t′′ | σ|t| =βη σ|t′| ∧ t′′ = |t′′|}]cβη

if FV(t t′) ⊆ dom(σ)
J?Kσ,ρ = R
JΠx : T.κKσ,ρ = (E ∈ JT Kσ,ρ → JκKσ[x 7→ζ(E)],ρ),

if JT Kσ,ρ ∈ R
JΠx : κ.κ′Kσ,ρ = (S ∈ JκKσ,ρ → JκKσ,ρ[X 7→S])

∩?X =

{
∩X, if X 6= ∅
[L]cβη, otherwise

Figure 6: Semantics for types and kinds

5. If T ∼= T ′ or T ∼=t T ′ and JT Kσ,ρ and JT ′Kσ,ρ are both defined, then they are equal.

An easy corollary, by the semantics of ∀-types, is then:
Theorem 2 (Logical consistency). There is no term t such that ` t : ∀X :?.X.

It may worry some readers that we have:
Observation 3. There are typable terms t which fail to normalize.

Defining Top to be {λx. x ' λx. x}, we may assign Top to any closed term t, including non-normalizing
ones. In our annotated syntax, we write {t}. Even without this, the presence of δ in combination with φ
allows us to type non-normalizing terms assuming an erased argument x of type {tt ' ff} for Church-encoded
booleans tt and ff. For example, δ x has type { x . x x . x x}, and with φ we can use this to type Ω
by changing the typed term id True id, where True is X : . X X. But failure of normalization does
not impinge on Theorem 2. Extensional Martin-Löf type theory (MLTT) is also non-normalizing, for a very
similar reason, but fact does not contradict its logical soundness [3]. In CDLE, the guarantees one gets about
the behavior of terms are expressed almost entirely in their types. If the types are weak, then not much is
guaranteed; but stronger types can guarantee properties like normalization.

Given the lack of normalization, several checks in the typing rules – for things like t =βη t
′ – are formally

undecidable. In practice, we simply impose a bound on the number of steps of reduction, and thus restore
formal decidability (we are checking “typable within a given budget”). In practice, the same is done for Coq
and Agda, where type checking is decidable but, in general, infeasible (since one may write astronomically
slow terminating functions).

Finally, in line with ideas recently advocated by Dreyer, we do not concern ourselves with syntactic type
preservation [2], noting instead that by construction, semantic types JT Kσ,ρ are preserved by βη-reduction:
Theorem 4 (Semantic type preservation). If t βη t

′ and t ∈ JT Kσ,ρ, then t′ ∈ JT Kσ,ρ.

Confluence of βη-reduction for (erased) terms is nothing other than confluence of untyped lambda calculus.
This is because, as easily verified by inspecting Figure 4, the erasure function maps annotated terms t to
terms |t| of pure untyped lambda calculus.

5

(σ] [x 7→ t], ρ) ∈ JΓ, x : T K ⇔ (σ, ρ) ∈ JΓK ∧ [t]cβη ∈ JT Kσ,ρ ∈ R ∧ t = |t|
(σ, ρ] [X 7→ S]) ∈ JΓ, X : κK ⇔ (σ, ρ) ∈ JΓK ∧ S ∈ JκKσ,ρ
(∅, ∅) ∈ J·K

Figure 7: Semantics of typing contexts Γ

2.3 Some details about the semantics and the proof of Theorem 1

Following the development in [11], we work with set-theoretic partial functions for the semantics of higher-
kinded types. Types are interpreted as βη-closed sets of closed terms. Let L be the set of closed terms of
pure lambda calculus (differently from [11], we include all terms at this point, even non-normalizing ones).
We write =cβη for standard βη-equivalence of pure lambda calculus, restricted to closed terms; and [t]cβη
for {t′ | t =cβη t

′}. This is extended to sets S of terms by writing [S]cβη for {[t]cβη | t ∈ S}. In a few places
we write nf(t) for the (unique) βη-normal form of term t, if it has one. If (in our meta-language) we affirm
a statement involving application of a partial function, then it is to be understood that that application is
defined.
Definition 5 (Reducibility candidates). R := {[S]cβη | S ⊆ L}.

Throughout the development we find it convenient to use a choice function ζ. Given any nonempty set E
of terms, ζ returns some element of E. Note that if a ∈ A ∈ R, then a is a nonempty set of terms of pure
lambda calculus; it can also happen that A ∈ R is empty. The proof of Theorem 1 (see appendix) is then a
straightforward adaptation of [11].

Acknowledgments. This work was partially supported by the US NSF support under award 1524519, and
US DoD support under award FA9550-16-1-0082 (MURI program).

References

[1] Robert L. Constable, Stuart F. Allen, Mark Bromley, Rance Cleaveland, J. F. Cremer, R. W. Harper,
Douglas J. Howe, Todd B. Knoblock, N. P. Mendler, Prakash Panangaden, James T. Sasaki, and Scott F.
Smith. Implementing mathematics with the Nuprl proof development system. Prentice Hall, 1986.

[2] Derek Dreyer. The Type Soundness Theorem That You Really Want to Prove (and Now You Can).
Milner Award Lecture, delivered at Principles of Programming Languages (POPL), 2018.

[3] Peter Dybjer and Erik Palmgren. Intuitionistic Type Theory. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, winter 2016 edition, 2016.

[4] Herman Geuvers. The Church-Rosser Property for beta-eta-reduction in Typed lambda-Calculi. In
Proceedings of the Seventh Annual Symposium on Logic in Computer Science (LICS ’92), Santa Cruz,
California, USA, June 22-25, 1992, pages 453–460. IEEE Computer Society, 1992.

[5] Alexei Kopylov. Dependent intersection: A new way of defining records in type theory. In 18th IEEE
Symposium on Logic in Computer Science (LICS), pages 86–95, 2003.

[6] The Agda development team. Agda, 2018. Version 2.5.4.

[7] Alexandre Miquel. The Implicit Calculus of Constructions Extending Pure Type Systems with an
Intersection Type Binder and Subtyping. In Samson Abramsky, editor, Typed Lambda Calculi and
Applications, volume 2044 of Lecture Notes in Computer Science, pages 344–359. Springer, 2001.

[8] Nathan Mishra-Linger and Tim Sheard. Erasure and Polymorphism in Pure Type Systems. In
Roberto M. Amadio, editor, Foundations of Software Science and Computational Structures, 11th In-

6

ternational Conference, FOSSACS 2008, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29 - April 6, 2008. Proceedings,
volume 4962 of Lecture Notes in Computer Science, pages 350–364. Springer, 2008.

[9] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark Shields. Practical Type Infer-
ence for Arbitrary-rank Types. J. Funct. Program., 17(1):1–82, January 2007.

[10] Benjamin C. Pierce and David N. Turner. Local type inference. ACM Trans. Program. Lang. Syst.,
22(1):1–44, 2000.

[11] Aaron Stump. The Calculus of Dependent Lambda Eliminations. J. Funct. Program., 27:e14, 2017.

[12] Aaron Stump. From Realizability to Induction via Dependent Intersection, 2018. in press.

A Proof of Theorem 1

First a few lemmas (easy proofs omitted):
Lemma 6. JκKσ,ρ is nonempty if defined.
Lemma 7. If E is nonempty, then [ζ(E)]cβη = E
Lemma 8. The set R ordered by subset forms a complete lattice, with greatest element [L]cβη and greatest
lower bound of a nonempty set of elements given by intersection. Also, ∅ is the least element.
Lemma 9 (Term substitution and interpretation). If t′ =cβη σ|t|, then:

• JT Kσ[x 7→t′],ρ = J[t/x]T Kσ,ρ

• JκKσ[x 7→t′],ρ = J[t/x]κKσ,ρ
Lemma 10 (Type substitution and interpretation). • JT Kσ,ρ[X 7→JT ′Kσ,ρ] = J[T ′/X]T Kσ,ρ

• JκKσ,ρ[X 7→JT ′Kσ,ρ] = J[T ′/X]κKσ,ρ
Lemma 11. If T ∗β T

′ and JT Kσ,ρ is defined, then JT ′Kσ,ρ is also defined and equals JT Kσ,ρ.

Proof. This follows by induction on the reduction derivation, making use of the previous substitution lemmas.

Soundness (Theorem 1). The following proof is adapted from [11]. It proceeds by mutual induction on
the assumed typing, kinding, or superkinding derivation, for each part of the lemma. We prove the parts
successively.

A.1 Proof of part (1)

Case:

Γ ` ?

J?Kσ,ρ is just R, which is defined.

Case:
Γ ` T ⇒ ? Γ, x : T ` κ

Γ ` Πx :T. κ

By the IH, JT Kσ,ρ ∈ R, and so JΠx : T. κKσ,ρ is (E ∈ JT Kσ,ρ → JκKσ[x 7→ζ(E)],ρ). The latter quantity is defined
if for all E ∈ JT Kσ,ρ, JκKσ[x 7→ζ(E)],ρ) is, too. Since JT Kσ,ρ ∈ R, every element E of JT Kσ,ρ is nonempty, as noted
above, so ζ(E) is defined. We may apply the IH to the second premise, since (σ[x 7→ ζ(E)], ρ) ∈ JΓ, x : T K,

7

because E ∈ JT Kσ,ρ (by assumption) and [ζ(E)]cβη = E. This gives definedness of the semantics of the
Π-kind.

Case:
Γ ` κ′ Γ, X : κ′ ` κ

Γ ` ΠX :κ′. κ

We must show (S ∈ JκKσ,ρ → JκKσ,ρ[X 7→S]) is defined. This is true if JκKσ,ρ is defined, which is the case by
the IH applied to the first premise; and if for all S ∈ JκKσ,ρ, JκKσ,ρ[X 7→S] is defined. The latter is true by the
IH applied to the second premise.

A.2 Proof of part (2)

Case:
(X : κ) ∈ Γ

Γ ` X ⇒ κ

From the definition of JΓK, we obtain ρ(x) ∈ JκKσ,ρ.

Case:
Γ ` T ⇒ ? Γ, x : T ` T ′ ⇒ ?

Γ ` Πx :T. T ′ ⇒ ?

We must show JΠx : T.T ′Kσ,ρ ∈ R. The semantics defines JΠx : T.T ′Kσ,ρ to be [A]cβη for a certain A, where
if A is defined, then A ⊆ L. So it suffices to shown definedness. By the IH for the first premise, JT Kσ,ρ ∈ R.
This means that if E ∈ JT Kσ,ρ, ζ(E) is defined. We can then apply the IH to the second premise, since
σ[x 7→ ζ(E)] ∈ JΓ, x : T K, to obtain definedness of JT ′Kσ[x 7→ζ(E),ρ.

Case:
Γ ` T ⇒ ? Γ, x : T ` T ′ ⇒ ?

Γ ` ∀x :T. T ′ ⇒ ?

By the IH for the second premise, JT2Kσ[x 7→ζ(E)],ρ ∈ R, for every E ∈ JT1Kσ,ρ where JT1Kσ,ρ ∈ R. By the
IH for the first premise, we indeed have JT1Kσ,ρ ∈ R. So if JT1Kσ,ρ is non-empty, then the intersection of
all the sets JT2Kσ[x 7→ζ(E)],ρ where E ∈ JT1Kσ,ρ is a reducibility candidate, since each of those sets is. By the
semantics of ∀-types quantifying over terms, this is sufficient. If JT1Kσ,ρ is empty, then the interpretation of
the ∀-type is [L]cβη by the definition of ∩?, and this is in R.

Case:
Γ ` κ Γ, X : κ ` T ⇒ ?

Γ ` ∀X :κ. T ⇒ ?

Similarly to the previous case: by the IH for the second premise, JT2Kσ,ρ[X 7→S ∈ R, for every S ∈ JκKσ,ρ.
By the IH part for the first premise, JκKσ,ρ is defined. So the intersection of all the sets JT2Kσ,ρ[X 7→S] where
S ∈ JκKσ,ρ is a reducibility candidate, since each of those sets is. The intersection is nonempty, since JκKσ,ρ
is (as stated in a lemma above). By the semantics of ∀-types quantifying over types, this is sufficient.

Case:
Γ ` T ⇒ ? Γ, x : T ` T ′ ⇒ ?

Γ ` ι x :T. T ′ ⇒ ?

The set Jιx : T.T ′Kσ,ρ is explicitly defined to be a subset of JT Kσ,ρ, which is in R, by the IH applied to the
first premise. Since for any A ⊆ L, [A]cβη is in R, to show that Jιx : T.T ′Kσ,ρ is also in R it suffices to show

8

definedness of JT ′Kσ[x 7→ζ(E)],ρ} (which is used in the predicate picking out the particular subset of JT Kσ,ρ),
for E ∈ JT Kσ,ρ. For such E, ζ(E) is defined (since JT Kσ,ρ ∈ R and hence E ∈ JT Kσ,ρ is nonempty) and in E,
so σ[x 7→ ζ(E)] ∈ JΓ, x : T K. So by the IH for the second premise, JT ′Kσ[x 7→ζ(E),ρ] is defined.

Case:
Γ ` T ⇒ ? Γ, x : T ` T ′ ⇒ κ

Γ ` λx :T. T ′ ⇒ Πx :T. κ

By the semantics, Jλx : T.T ′Kσ,ρ is (E ∈ JT Kσ,ρ 7→ JT ′Kσ[x7→ζ(E)],ρ). We must show that this (meta-level)
function is in JΠx : T.κKσ,ρ. By the semantics of kinds, the latter quantity, if defined, is (E ∈ JT Kσ,ρ →cβη

JκKσ[x 7→ζ(E)],ρ). By the IH for the first premise, JT Kσ,ρ ∈ R. So we must just show that for any E ∈ JT Kσ,ρ,
JT ′Kσ[x 7→ζ(E)],ρ ∈ JκKσ[x7→ζ(E)],ρ. But this follows by the IH for the second premise.

Case:
Γ ` κ Γ, X : κ ` T ′ ⇒ κ′

Γ ` λX :κ. T ′ ⇒ ΠX :κ. κ′

This case is an easier version of the previous one. It suffices to assume an arbitrary S ∈ JκKσ,ρ and show
JT ′Kσ,ρ[X 7→S] ∈ Jκ′Kσ,ρ[X 7→S]. But this follows by the IH applied to the second premise. And we have
definedness of JκKσ,ρ by the IH for the first premise.

Case:
Γ ` T ⇒ Πx :T ′. κ Γ ` t⇐ T ′

Γ ` T t⇒ [t/x]κ

By the IH for the first premise, JT Kσ,ρ ∈ JΠx : T ′.κKσ,ρ. By the semantics of Π-kinds, this means that JT Kσ,ρ
is a function which given any E ∈ JT ′Kσ,ρ, will produce a result in JκKσ[x 7→ζ(E)],ρ. By the semantics of type
applications, JT tKσ,ρ is equal to JT Kσ,ρ([σ|t|]cβη). This is defined, since [σ|t|]cβη ∈ JT ′Kσ,ρ, by the IH for the
second premise; note that JT ′Kσ,ρ is defined since otherwise JΠx : T ′.κKσ,ρ would not be defined. The result
of applying the function is thus indeed in J[t/x]κKσ,ρ, since by Lemma 9, this equals JκKσ[x 7→ζ([σ|t|]cβη)],ρ (the
codomain of the function being applied).

Case:
Γ ` T ⇒ ΠX :κ′. κ Γ ` T ′ ⇒ κ′ κ ∼= κ′

Γ ` T · T ′ ⇒ [T ′/X]κ

By the IH applied to the first premise, JT Kσ,ρ ∈ JΠX : κ′. κKσ,ρ. By the semantics of Π-kinds, this means
that for any S ∈ Jκ′Kσ,ρ, JT Kσ,ρ S is in JκKσ,ρ[X 7→S]. By the IH for the second premise, we have JT ′KJκ′Kσ,ρ,
and by the IH for the third premise, we have JκKσ,ρ = Jκ′Kσ,ρ. So we get JT Kσ,ρ(JT ′Kσ,ρ) ∈ JκKσ,ρ[X 7→JT ′Kσ,ρ],
which suffices by Lemma 10.

Case:
FV(t t′) ⊆ dom(Γ)

Γ ` {t ' t′} : ?

Either σ|t| =cβη σ|t′| or not. Either way, the interpretation is defined and in R, since FV(t t′) ⊆ dom(σ) (as
an easy consequence of (σ, ρ) ∈ JΓK).

A.3 Proof of parts (3) and (4)

Case:
(x : t) ∈ Γ

Γ ` x⇒ T

9

This follows from the definition of JΓK.

Case:
Γ ` t⇐ T T ′ ∗β T

Γ ` t⇐ T ′

We are assuming JT ′Kσ,ρ is defined, since this is a checking judgment. The desired result then follows from
Lemma 11.

Case:
Γ ` t⇒ T T ∗β T

′

Γ ` t⇒ T ′

This also follows from Lemma 11 and the induction hypothesis for the first premise, which implies JT Kσ,ρ ∈ R
(and hence defined).

Case:
Γ ` t⇒ T ′ T ′ ∼= T

Γ ` t⇐ T

By the IH applied to the first premise, we have [σt]cβη ∈ JT ′Kσ,ρ ∈ R. By assumption, JT Kσ,ρ ∈ R, and so
by the IH applied to the second premise, we have [σt]cβη ∈ JT ′Kσ,ρ = JT Kσ,ρ.

Case:
Γ, x : T ` t⇐ T ′

Γ ` λx. t⇐ Πx :T. T ′

To show [σλx.t]cβη ∈ JΠx : T.T ′Kσ,ρ (noting that the latter is defined and in R by assumption), it suffices
to assume an arbitrary E ∈ JT Kσ,ρ, and show [[ζ(E)/x]σt]cβη ∈ JT ′Kσ[x7→ζ(E)],ρ. By the IH, we have [σ[x 7→
ζ(E)]t]cβη ∈ JT ′Kσ[x7→ζ(E)],ρ. But [σ[x 7→ ζ(E)]t]cβη = [[ζ(E)/x]σt]cβη, so this is sufficient.

Case:
Γ ` t⇒ Πx :T ′. T Γ ` t′ ⇐ T ′

Γ ` t t′ ⇒ [t′/x]T

By the IH applied to the first premise, [σt]cβη ∈ JΠx : T ′.T Kσ,ρ ∈ R. This means that there exists a λ-
abstraction λx.t̂ such that λx.t̂ =cβη σt, by the semantics of Π-types. Furthermore, for any E ∈ JT ′Kσ,ρ,
[[ζ(E)/x]t̂]cβη ∈ JT Kσ[x 7→ζ(E)],ρ. By the IH applied to the second premise, [σt′]cβη ∈ JT ′Kσ,ρ, so we can
instantiate the quantifier in the previous formula to obtain

[[ζ([σt′]cβη)/x]t̂]cβη ∈ JT Kσ[x 7→ζ([σt′]cβη)],ρ

By Lemma 9, this is equivalent to

[[ζ([σt′]cβη)/x]t̂]cβη ∈ J[t′/x]T2Kσ,ρ

Since σ(t t′) =cβη (λx.t̂) σt′ =cβη [[ζ([σt′]cβη)/x]t̂, this is sufficient.

Case:
Γ, X : κ ` t⇐ T

Γ ` ΛX. t⇐ ∀X :κ. T

By the IH, [σ|t|]cβη ∈ JT Kσ,ρ[X 7→S], for all S ∈ JκKσ,ρ. This is sufficient to prove [σ|ΛX. t|]cβη ∈ J∀X : κ.T Kσ,ρ,
by the semantics of ∀-types and definition of erasure.

10

Case:
Γ ` t⇒ ∀X :κ. T Γ ` T ′ ⇐ κ

Γ ` t · T ′ ⇒ [T ′/X]T

By the semantics of ∀-types and the IH applied to the first premise, we have [σ|t|]cβη ∈ JT Kσ,ρ[X 7→S], for
all S ∈ JκKσ,ρ. Since JT ′Kσ,ρ ∈ JκKσ,ρ by the IH applied to the second premise, we can derive [σt]cβη ∈
JT Kσ,ρ[X 7→JT ′Kσ,ρ]. By Lemma 10, this is equivalent to the required [σ|t|]cβη ∈ J[T ′/X]T Kσ,ρ, using also the
definition of erasure.

Case:
Γ, x : T ′ ` t⇐ T x 6∈ FV(|t|)

Γ ` Λx. t⇐ ∀x :T ′. T

By the IH applied to the first premise, we have [σ[x 7→ ζ(E)]t]cβη ∈ JT ′Kσ[x 7→ζ(E)],ρ, for any E ∈ JT Kσ,ρ.
This is because JT Kσ,ρ ∈ R, since J∀x :T ′. T Kσ,ρ is in R and hence defined, by assumption. Since x 6∈ FV(t),
we know [[σ[x 7→ ζ(E)]t]cβη = [σt]cβη. By the semantics of ∀-types and definition of erasure, this suffices to
show the desired conclusion.

Case:
Γ ` t⇒ ∀x :T ′. T Γ ` t′ ⇐ T ′

Γ ` t -t′ ⇒ [t′/x]T

The result follows easily by the IH applied to the premises, the semantics of ∀-types, definition of erasure,
and Lemma 9.

Case:
Γ ` t⇐ T Γ ` t′ ⇐ [t/x]T ′ |t| =βη |t′|

Γ ` [t, t′]⇐ ι x :T. T ′

By the IH, we have [σ|t|]cβη ∈ JT Kσ,ρ and [σ|t|]cβη ∈ J[t/x]T ′Kσ,ρ. By Lemma 9, the latter is equivalent to
[σt]cβη ∈ JT ′Kσ[x 7→ζ([σt]cβη),ρ. These two facts about [σt]cβη are sufficient, by the semantics of ι-types, for the
desired conclusion, using also the fact (from the third premise) that σ|t| =cβη σ|t′|.

Case:
Γ ` t⇒ ι x :T. T ′

Γ ` t.1⇒ T

The desired conclusion follows easily from the IH and the semantics of ι-types.

Case:
Γ ` t⇒ ι x :T. T ′

Γ ` t.2⇒ [t.1/x]T ′

Similar to the previous case, using Lemma 9.

Case:
Γ ` FV(t) ⊆ dom(Γ)

Γ ` β{t′} ⇐ {t ' t}

[σ|t′|]cβη ∈ J{t ' t}Kσ,ρ follows directly from the semantics of equality types.

Case:
Γ ` t⇒ {λx. λ y. x ' λx. λ y. y}

Γ ` δ t⇐ T

11

By the semantics of equality types, [σ|t′|]cβη cannot be in the interpretation of the equation in the premise,
since the two terms in question are closed and not βη-equal. By the IH applied to the first premise, however,
[σ|t′|]cβη is in the interpretation of that equation. This is a contradiction.

Case:
Γ ` t′ ⇒ t1 ' t2 Γ ` t⇔ [t1/x]T

Γ ` ρ t′ - t⇔ [t2/x]T

By the IH applied to the first premise, σ|t1| =βη σ|t2|. The result then follows by the IH applied to the
second premise, and Lemma 9.

Case:
Γ ` T ⇐ ? Γ ` t⇐ T T ∼= T ′

Γ ` χ T - t⇐ T ′

Using the IH for the first premise and the assumption that JT ′Kσ,ρ is in R and hence defined, we can apply
the IH to the third premise to get JT Kσ,ρ = JT ′Kσ,ρ. Using this and the IH for second premise, we get the
desired conclusion, using also the definition of erasure.

Case:
Γ ` T ⇐ ? Γ ` t⇒ T ′ T ∼= T ′

Γ ` χ T - t⇒ T

By the IH applied to the second premise, we have [σ|t|]cβη ∈ JT ′Kσ,ρ ∈ R. Using definedness of JT ′Kσ,ρ and
the IH applied to the first premise, we can apply the IH to the third premise to get JT Kσ,ρ = JT ′Kσ,ρ, from
which the desired conclusion follows by definition of erasure.

Case:
Γ ` t⇒ {t′ ' t′′} Γ ` t′ ⇔ T

Γ ` φ t - t′{t′′} ⇔ T

By the IH for the first premise, σ|t′| =cβη σ|t′′|. By the IH for the second premise, [σ|t′|]cβη ∈ JT Kσ,ρ. This
suffices for the desired conclusion, using also the definition of erasure (|φ t - t′{t′′}| = |t′′|).

Proof of part (5)

Case:
T ∗β T1 T ′ ∗β T2 T1 ∼=t T2

T ∼= T ′

By Lemma 11, we have
JT Kσ,ρ = JT1Kσ,ρ
JT ′Kσ,ρ = JT2Kσ,ρ

By the IH for the third premise, we have JT1Kσ,ρ = JT2Kσ,ρ, which suffices.

Case:
T ∼=t T ′

T ∼= T ′

By the IH.

12

Case:
T ∼=t T ′ |t| =βη |t′|

T t ∼=t T ′ t′

By the semantics, JT tKσ,ρ = JT Kσ,ρ([σ|t|]cβη). By the second premise and the IH for the first premise, this
equals JT ′Kσ,ρ([σ|t′|]cβη), as required.

Case:
|t1| =βη |t′1| |t2| =βη |t′2|
{t1 ' t2} ∼=t {t′1 ' t′2}

This follows easily from the premises and the semantics of equality types.

13

