Ruby 2.7.7p221 (2022-11-24 revision 168ec2b1e5ad0e4688e963d9de019557c78feed9)
enum.c
Go to the documentation of this file.
1/**********************************************************************
2
3 enum.c -
4
5 $Author$
6 created at: Fri Oct 1 15:15:19 JST 1993
7
8 Copyright (C) 1993-2007 Yukihiro Matsumoto
9
10**********************************************************************/
11
12#include "ruby/encoding.h"
13#include "internal.h"
14#include "ruby/util.h"
15#include "id.h"
16#include "symbol.h"
17
18#include <assert.h>
19
21
22static ID id_next;
23
24#define id_div idDiv
25#define id_each idEach
26#define id_eqq idEqq
27#define id_cmp idCmp
28#define id_lshift idLTLT
29#define id_call idCall
30#define id_size idSize
31
34{
35 if (argc == 0) return Qnil;
36 if (argc == 1) return argv[0];
37 return rb_ary_new4(argc, argv);
38}
39
40#define ENUM_WANT_SVALUE() do { \
41 i = rb_enum_values_pack(argc, argv); \
42} while (0)
43
44static VALUE
45enum_yield(int argc, VALUE ary)
46{
47 if (argc > 1)
48 return rb_yield_force_blockarg(ary);
49 if (argc == 1)
50 return rb_yield(ary);
51 return rb_yield_values2(0, 0);
52}
53
54static VALUE
55enum_yield_array(VALUE ary)
56{
57 long len = RARRAY_LEN(ary);
58
59 if (len > 1)
60 return rb_yield_force_blockarg(ary);
61 if (len == 1)
62 return rb_yield(RARRAY_AREF(ary, 0));
63 return rb_yield_values2(0, 0);
64}
65
66static VALUE
67grep_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
68{
69 struct MEMO *memo = MEMO_CAST(args);
71
72 if (RTEST(rb_funcallv(memo->v1, id_eqq, 1, &i)) == RTEST(memo->u3.value)) {
73 rb_ary_push(memo->v2, i);
74 }
75 return Qnil;
76}
77
78static VALUE
79grep_iter_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
80{
81 struct MEMO *memo = MEMO_CAST(args);
83
84 if (RTEST(rb_funcallv(memo->v1, id_eqq, 1, &i)) == RTEST(memo->u3.value)) {
85 rb_ary_push(memo->v2, enum_yield(argc, i));
86 }
87 return Qnil;
88}
89
90/*
91 * call-seq:
92 * enum.grep(pattern) -> array
93 * enum.grep(pattern) { |obj| block } -> array
94 *
95 * Returns an array of every element in <i>enum</i> for which
96 * <code>Pattern === element</code>. If the optional <em>block</em> is
97 * supplied, each matching element is passed to it, and the block's
98 * result is stored in the output array.
99 *
100 * (1..100).grep 38..44 #=> [38, 39, 40, 41, 42, 43, 44]
101 * c = IO.constants
102 * c.grep(/SEEK/) #=> [:SEEK_SET, :SEEK_CUR, :SEEK_END]
103 * res = c.grep(/SEEK/) { |v| IO.const_get(v) }
104 * res #=> [0, 1, 2]
105 *
106 */
107
108static VALUE
109enum_grep(VALUE obj, VALUE pat)
110{
111 VALUE ary = rb_ary_new();
112 struct MEMO *memo = MEMO_NEW(pat, ary, Qtrue);
113
114 rb_block_call(obj, id_each, 0, 0, rb_block_given_p() ? grep_iter_i : grep_i, (VALUE)memo);
115
116 return ary;
117}
118
119/*
120 * call-seq:
121 * enum.grep_v(pattern) -> array
122 * enum.grep_v(pattern) { |obj| block } -> array
123 *
124 * Inverted version of Enumerable#grep.
125 * Returns an array of every element in <i>enum</i> for which
126 * not <code>Pattern === element</code>.
127 *
128 * (1..10).grep_v 2..5 #=> [1, 6, 7, 8, 9, 10]
129 * res =(1..10).grep_v(2..5) { |v| v * 2 }
130 * res #=> [2, 12, 14, 16, 18, 20]
131 *
132 */
133
134static VALUE
135enum_grep_v(VALUE obj, VALUE pat)
136{
137 VALUE ary = rb_ary_new();
138 struct MEMO *memo = MEMO_NEW(pat, ary, Qfalse);
139
140 rb_block_call(obj, id_each, 0, 0, rb_block_given_p() ? grep_iter_i : grep_i, (VALUE)memo);
141
142 return ary;
143}
144
145#define COUNT_BIGNUM IMEMO_FL_USER0
146#define MEMO_V3_SET(m, v) RB_OBJ_WRITE((m), &(m)->u3.value, (v))
147
148static void
149imemo_count_up(struct MEMO *memo)
150{
151 if (memo->flags & COUNT_BIGNUM) {
152 MEMO_V3_SET(memo, rb_int_succ(memo->u3.value));
153 }
154 else if (++memo->u3.cnt == 0) {
155 /* overflow */
156 unsigned long buf[2] = {0, 1};
157 MEMO_V3_SET(memo, rb_big_unpack(buf, 2));
158 memo->flags |= COUNT_BIGNUM;
159 }
160}
161
162static VALUE
163imemo_count_value(struct MEMO *memo)
164{
165 if (memo->flags & COUNT_BIGNUM) {
166 return memo->u3.value;
167 }
168 else {
169 return ULONG2NUM(memo->u3.cnt);
170 }
171}
172
173static VALUE
174count_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
175{
176 struct MEMO *memo = MEMO_CAST(memop);
177
179
180 if (rb_equal(i, memo->v1)) {
181 imemo_count_up(memo);
182 }
183 return Qnil;
184}
185
186static VALUE
187count_iter_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
188{
189 struct MEMO *memo = MEMO_CAST(memop);
190
192 imemo_count_up(memo);
193 }
194 return Qnil;
195}
196
197static VALUE
198count_all_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
199{
200 struct MEMO *memo = MEMO_CAST(memop);
201
202 imemo_count_up(memo);
203 return Qnil;
204}
205
206/*
207 * call-seq:
208 * enum.count -> int
209 * enum.count(item) -> int
210 * enum.count { |obj| block } -> int
211 *
212 * Returns the number of items in +enum+ through enumeration.
213 * If an argument is given, the number of items in +enum+ that
214 * are equal to +item+ are counted. If a block is given, it
215 * counts the number of elements yielding a true value.
216 *
217 * ary = [1, 2, 4, 2]
218 * ary.count #=> 4
219 * ary.count(2) #=> 2
220 * ary.count{ |x| x%2==0 } #=> 3
221 *
222 */
223
224static VALUE
225enum_count(int argc, VALUE *argv, VALUE obj)
226{
227 VALUE item = Qnil;
228 struct MEMO *memo;
230
231 if (argc == 0) {
232 if (rb_block_given_p()) {
233 func = count_iter_i;
234 }
235 else {
236 func = count_all_i;
237 }
238 }
239 else {
240 rb_scan_args(argc, argv, "1", &item);
241 if (rb_block_given_p()) {
242 rb_warn("given block not used");
243 }
244 func = count_i;
245 }
246
247 memo = MEMO_NEW(item, 0, 0);
248 rb_block_call(obj, id_each, 0, 0, func, (VALUE)memo);
249 return imemo_count_value(memo);
250}
251
252static VALUE
253find_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
254{
256
257 if (RTEST(enum_yield(argc, i))) {
258 struct MEMO *memo = MEMO_CAST(memop);
259 MEMO_V1_SET(memo, i);
260 memo->u3.cnt = 1;
262 }
263 return Qnil;
264}
265
266/*
267 * call-seq:
268 * enum.detect(ifnone = nil) { |obj| block } -> obj or nil
269 * enum.find(ifnone = nil) { |obj| block } -> obj or nil
270 * enum.detect(ifnone = nil) -> an_enumerator
271 * enum.find(ifnone = nil) -> an_enumerator
272 *
273 * Passes each entry in <i>enum</i> to <em>block</em>. Returns the
274 * first for which <em>block</em> is not false. If no
275 * object matches, calls <i>ifnone</i> and returns its result when it
276 * is specified, or returns <code>nil</code> otherwise.
277 *
278 * If no block is given, an enumerator is returned instead.
279 *
280 * (1..100).detect #=> #<Enumerator: 1..100:detect>
281 * (1..100).find #=> #<Enumerator: 1..100:find>
282 *
283 * (1..10).detect { |i| i % 5 == 0 && i % 7 == 0 } #=> nil
284 * (1..10).find { |i| i % 5 == 0 && i % 7 == 0 } #=> nil
285 * (1..10).detect(-> {0}) { |i| i % 5 == 0 && i % 7 == 0 } #=> 0
286 * (1..10).find(-> {0}) { |i| i % 5 == 0 && i % 7 == 0 } #=> 0
287 * (1..100).detect { |i| i % 5 == 0 && i % 7 == 0 } #=> 35
288 * (1..100).find { |i| i % 5 == 0 && i % 7 == 0 } #=> 35
289 *
290 */
291
292static VALUE
293enum_find(int argc, VALUE *argv, VALUE obj)
294{
295 struct MEMO *memo;
296 VALUE if_none;
297
298 if_none = rb_check_arity(argc, 0, 1) ? argv[0] : Qnil;
300 memo = MEMO_NEW(Qundef, 0, 0);
301 rb_block_call(obj, id_each, 0, 0, find_i, (VALUE)memo);
302 if (memo->u3.cnt) {
303 return memo->v1;
304 }
305 if (!NIL_P(if_none)) {
306 return rb_funcallv(if_none, id_call, 0, 0);
307 }
308 return Qnil;
309}
310
311static VALUE
312find_index_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
313{
314 struct MEMO *memo = MEMO_CAST(memop);
315
317
318 if (rb_equal(i, memo->v2)) {
319 MEMO_V1_SET(memo, imemo_count_value(memo));
321 }
322 imemo_count_up(memo);
323 return Qnil;
324}
325
326static VALUE
327find_index_iter_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
328{
329 struct MEMO *memo = MEMO_CAST(memop);
330
332 MEMO_V1_SET(memo, imemo_count_value(memo));
334 }
335 imemo_count_up(memo);
336 return Qnil;
337}
338
339/*
340 * call-seq:
341 * enum.find_index(value) -> int or nil
342 * enum.find_index { |obj| block } -> int or nil
343 * enum.find_index -> an_enumerator
344 *
345 * Compares each entry in <i>enum</i> with <em>value</em> or passes
346 * to <em>block</em>. Returns the index for the first for which the
347 * evaluated value is non-false. If no object matches, returns
348 * <code>nil</code>
349 *
350 * If neither block nor argument is given, an enumerator is returned instead.
351 *
352 * (1..10).find_index { |i| i % 5 == 0 && i % 7 == 0 } #=> nil
353 * (1..100).find_index { |i| i % 5 == 0 && i % 7 == 0 } #=> 34
354 * (1..100).find_index(50) #=> 49
355 *
356 */
357
358static VALUE
359enum_find_index(int argc, VALUE *argv, VALUE obj)
360{
361 struct MEMO *memo; /* [return value, current index, ] */
362 VALUE condition_value = Qnil;
364
365 if (argc == 0) {
366 RETURN_ENUMERATOR(obj, 0, 0);
367 func = find_index_iter_i;
368 }
369 else {
370 rb_scan_args(argc, argv, "1", &condition_value);
371 if (rb_block_given_p()) {
372 rb_warn("given block not used");
373 }
374 func = find_index_i;
375 }
376
377 memo = MEMO_NEW(Qnil, condition_value, 0);
378 rb_block_call(obj, id_each, 0, 0, func, (VALUE)memo);
379 return memo->v1;
380}
381
382static VALUE
383find_all_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
384{
386
387 if (RTEST(enum_yield(argc, i))) {
388 rb_ary_push(ary, i);
389 }
390 return Qnil;
391}
392
393static VALUE
394enum_size(VALUE self, VALUE args, VALUE eobj)
395{
396 return rb_check_funcall_default(self, id_size, 0, 0, Qnil);
397}
398
399static long
400limit_by_enum_size(VALUE obj, long n)
401{
402 unsigned long limit;
404 if (!FIXNUM_P(size)) return n;
405 limit = FIX2ULONG(size);
406 return ((unsigned long)n > limit) ? (long)limit : n;
407}
408
409static int
410enum_size_over_p(VALUE obj, long n)
411{
413 if (!FIXNUM_P(size)) return 0;
414 return ((unsigned long)n > FIX2ULONG(size));
415}
416
417/*
418 * call-seq:
419 * enum.find_all { |obj| block } -> array
420 * enum.select { |obj| block } -> array
421 * enum.filter { |obj| block } -> array
422 * enum.find_all -> an_enumerator
423 * enum.select -> an_enumerator
424 * enum.filter -> an_enumerator
425 *
426 * Returns an array containing all elements of +enum+
427 * for which the given +block+ returns a true value.
428 *
429 * The <i>find_all</i> and <i>select</i> methods are aliases.
430 * There is no performance benefit to either.
431 *
432 * If no block is given, an Enumerator is returned instead.
433 *
434 *
435 * (1..10).find_all { |i| i % 3 == 0 } #=> [3, 6, 9]
436 *
437 * [1,2,3,4,5].select { |num| num.even? } #=> [2, 4]
438 *
439 * [:foo, :bar].filter { |x| x == :foo } #=> [:foo]
440 *
441 * See also Enumerable#reject, Enumerable#grep.
442 */
443
444static VALUE
445enum_find_all(VALUE obj)
446{
447 VALUE ary;
448
449 RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
450
451 ary = rb_ary_new();
452 rb_block_call(obj, id_each, 0, 0, find_all_i, ary);
453
454 return ary;
455}
456
457static VALUE
458filter_map_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
459{
461
462 if (RTEST(i)) {
463 rb_ary_push(ary, i);
464 }
465
466 return Qnil;
467}
468
469/*
470 * call-seq:
471 * enum.filter_map { |obj| block } -> array
472 * enum.filter_map -> an_enumerator
473 *
474 * Returns a new array containing the truthy results (everything except
475 * +false+ or +nil+) of running the +block+ for every element in +enum+.
476 *
477 * If no block is given, an Enumerator is returned instead.
478 *
479 *
480 * (1..10).filter_map { |i| i * 2 if i.even? } #=> [4, 8, 12, 16, 20]
481 *
482 */
483static VALUE
484enum_filter_map(VALUE obj)
485{
486 VALUE ary;
487
488 RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
489
490 ary = rb_ary_new();
491 rb_block_call(obj, id_each, 0, 0, filter_map_i, ary);
492
493 return ary;
494}
495
496
497static VALUE
498reject_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
499{
501
502 if (!RTEST(enum_yield(argc, i))) {
503 rb_ary_push(ary, i);
504 }
505 return Qnil;
506}
507
508/*
509 * call-seq:
510 * enum.reject { |obj| block } -> array
511 * enum.reject -> an_enumerator
512 *
513 * Returns an array for all elements of +enum+ for which the given
514 * +block+ returns <code>false</code>.
515 *
516 * If no block is given, an Enumerator is returned instead.
517 *
518 * (1..10).reject { |i| i % 3 == 0 } #=> [1, 2, 4, 5, 7, 8, 10]
519 *
520 * [1, 2, 3, 4, 5].reject { |num| num.even? } #=> [1, 3, 5]
521 *
522 * See also Enumerable#find_all.
523 */
524
525static VALUE
526enum_reject(VALUE obj)
527{
528 VALUE ary;
529
530 RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
531
532 ary = rb_ary_new();
533 rb_block_call(obj, id_each, 0, 0, reject_i, ary);
534
535 return ary;
536}
537
538static VALUE
539collect_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
540{
542
543 return Qnil;
544}
545
546static VALUE
547collect_all(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
548{
550
551 return Qnil;
552}
553
554/*
555 * call-seq:
556 * enum.collect { |obj| block } -> array
557 * enum.map { |obj| block } -> array
558 * enum.collect -> an_enumerator
559 * enum.map -> an_enumerator
560 *
561 * Returns a new array with the results of running <em>block</em> once
562 * for every element in <i>enum</i>.
563 *
564 * If no block is given, an enumerator is returned instead.
565 *
566 * (1..4).map { |i| i*i } #=> [1, 4, 9, 16]
567 * (1..4).collect { "cat" } #=> ["cat", "cat", "cat", "cat"]
568 *
569 */
570
571static VALUE
572enum_collect(VALUE obj)
573{
574 VALUE ary;
575 int min_argc, max_argc;
576
577 RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
578
579 ary = rb_ary_new();
581 rb_lambda_call(obj, id_each, 0, 0, collect_i, min_argc, max_argc, ary);
582
583 return ary;
584}
585
586static VALUE
587flat_map_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
588{
589 VALUE tmp;
590
592 tmp = rb_check_array_type(i);
593
594 if (NIL_P(tmp)) {
595 rb_ary_push(ary, i);
596 }
597 else {
598 rb_ary_concat(ary, tmp);
599 }
600 return Qnil;
601}
602
603/*
604 * call-seq:
605 * enum.flat_map { |obj| block } -> array
606 * enum.collect_concat { |obj| block } -> array
607 * enum.flat_map -> an_enumerator
608 * enum.collect_concat -> an_enumerator
609 *
610 * Returns a new array with the concatenated results of running
611 * <em>block</em> once for every element in <i>enum</i>.
612 *
613 * If no block is given, an enumerator is returned instead.
614 *
615 * [1, 2, 3, 4].flat_map { |e| [e, -e] } #=> [1, -1, 2, -2, 3, -3, 4, -4]
616 * [[1, 2], [3, 4]].flat_map { |e| e + [100] } #=> [1, 2, 100, 3, 4, 100]
617 *
618 */
619
620static VALUE
621enum_flat_map(VALUE obj)
622{
623 VALUE ary;
624
625 RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
626
627 ary = rb_ary_new();
628 rb_block_call(obj, id_each, 0, 0, flat_map_i, ary);
629
630 return ary;
631}
632
633/*
634 * call-seq:
635 * enum.to_a(*args) -> array
636 * enum.entries(*args) -> array
637 *
638 * Returns an array containing the items in <i>enum</i>.
639 *
640 * (1..7).to_a #=> [1, 2, 3, 4, 5, 6, 7]
641 * { 'a'=>1, 'b'=>2, 'c'=>3 }.to_a #=> [["a", 1], ["b", 2], ["c", 3]]
642 *
643 * require 'prime'
644 * Prime.entries 10 #=> [2, 3, 5, 7]
645 */
646static VALUE
647enum_to_a(int argc, VALUE *argv, VALUE obj)
648{
649 VALUE ary = rb_ary_new();
650
652
653 return ary;
654}
655
656static VALUE
657enum_hashify(VALUE obj, int argc, const VALUE *argv, rb_block_call_func *iter)
658{
659 VALUE hash = rb_hash_new();
660 rb_block_call(obj, id_each, argc, argv, iter, hash);
661 return hash;
662}
663
664static VALUE
665enum_to_h_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash))
666{
668 return rb_hash_set_pair(hash, i);
669}
670
671static VALUE
672enum_to_h_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash))
673{
675}
676
677/*
678 * call-seq:
679 * enum.to_h(*args) -> hash
680 * enum.to_h(*args) {...} -> hash
681 *
682 * Returns the result of interpreting <i>enum</i> as a list of
683 * <tt>[key, value]</tt> pairs.
684 *
685 * %i[hello world].each_with_index.to_h
686 * # => {:hello => 0, :world => 1}
687 *
688 * If a block is given, the results of the block on each element of
689 * the enum will be used as pairs.
690 *
691 * (1..5).to_h {|x| [x, x ** 2]}
692 * #=> {1=>1, 2=>4, 3=>9, 4=>16, 5=>25}
693 */
694
695static VALUE
696enum_to_h(int argc, VALUE *argv, VALUE obj)
697{
698 rb_block_call_func *iter = rb_block_given_p() ? enum_to_h_ii : enum_to_h_i;
699 return enum_hashify(obj, argc, argv, iter);
700}
701
702static VALUE
703inject_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, p))
704{
705 struct MEMO *memo = MEMO_CAST(p);
706
708
709 if (memo->v1 == Qundef) {
710 MEMO_V1_SET(memo, i);
711 }
712 else {
713 MEMO_V1_SET(memo, rb_yield_values(2, memo->v1, i));
714 }
715 return Qnil;
716}
717
718static VALUE
719inject_op_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, p))
720{
721 struct MEMO *memo = MEMO_CAST(p);
722 VALUE name;
723
725
726 if (memo->v1 == Qundef) {
727 MEMO_V1_SET(memo, i);
728 }
729 else if (SYMBOL_P(name = memo->u3.value)) {
730 const ID mid = SYM2ID(name);
731 MEMO_V1_SET(memo, rb_funcallv(memo->v1, mid, 1, &i));
732 }
733 else {
734 VALUE args[2];
735 args[0] = name;
736 args[1] = i;
737 MEMO_V1_SET(memo, rb_f_send(numberof(args), args, memo->v1));
738 }
739 return Qnil;
740}
741
742static VALUE
743ary_inject_op(VALUE ary, VALUE init, VALUE op)
744{
745 ID id;
746 VALUE v, e;
747 long i, n;
748
749 if (RARRAY_LEN(ary) == 0)
750 return init == Qundef ? Qnil : init;
751
752 if (init == Qundef) {
753 v = RARRAY_AREF(ary, 0);
754 i = 1;
755 if (RARRAY_LEN(ary) == 1)
756 return v;
757 }
758 else {
759 v = init;
760 i = 0;
761 }
762
763 id = SYM2ID(op);
764 if (id == idPLUS) {
765 if (RB_INTEGER_TYPE_P(v) &&
768 n = 0;
769 for (; i < RARRAY_LEN(ary); i++) {
770 e = RARRAY_AREF(ary, i);
771 if (FIXNUM_P(e)) {
772 n += FIX2LONG(e); /* should not overflow long type */
773 if (!FIXABLE(n)) {
774 v = rb_big_plus(LONG2NUM(n), v);
775 n = 0;
776 }
777 }
778 else if (RB_TYPE_P(e, T_BIGNUM))
779 v = rb_big_plus(e, v);
780 else
781 goto not_integer;
782 }
783 if (n != 0)
784 v = rb_fix_plus(LONG2FIX(n), v);
785 return v;
786
787 not_integer:
788 if (n != 0)
789 v = rb_fix_plus(LONG2FIX(n), v);
790 }
791 }
792 for (; i < RARRAY_LEN(ary); i++) {
793 VALUE arg = RARRAY_AREF(ary, i);
794 v = rb_funcallv_public(v, id, 1, &arg);
795 }
796 return v;
797}
798
799/*
800 * call-seq:
801 * enum.inject(initial, sym) -> obj
802 * enum.inject(sym) -> obj
803 * enum.inject(initial) { |memo, obj| block } -> obj
804 * enum.inject { |memo, obj| block } -> obj
805 * enum.reduce(initial, sym) -> obj
806 * enum.reduce(sym) -> obj
807 * enum.reduce(initial) { |memo, obj| block } -> obj
808 * enum.reduce { |memo, obj| block } -> obj
809 *
810 * Combines all elements of <i>enum</i> by applying a binary
811 * operation, specified by a block or a symbol that names a
812 * method or operator.
813 *
814 * The <i>inject</i> and <i>reduce</i> methods are aliases. There
815 * is no performance benefit to either.
816 *
817 * If you specify a block, then for each element in <i>enum</i>
818 * the block is passed an accumulator value (<i>memo</i>) and the element.
819 * If you specify a symbol instead, then each element in the collection
820 * will be passed to the named method of <i>memo</i>.
821 * In either case, the result becomes the new value for <i>memo</i>.
822 * At the end of the iteration, the final value of <i>memo</i> is the
823 * return value for the method.
824 *
825 * If you do not explicitly specify an <i>initial</i> value for <i>memo</i>,
826 * then the first element of collection is used as the initial value
827 * of <i>memo</i>.
828 *
829 *
830 * # Sum some numbers
831 * (5..10).reduce(:+) #=> 45
832 * # Same using a block and inject
833 * (5..10).inject { |sum, n| sum + n } #=> 45
834 * # Multiply some numbers
835 * (5..10).reduce(1, :*) #=> 151200
836 * # Same using a block
837 * (5..10).inject(1) { |product, n| product * n } #=> 151200
838 * # find the longest word
839 * longest = %w{ cat sheep bear }.inject do |memo, word|
840 * memo.length > word.length ? memo : word
841 * end
842 * longest #=> "sheep"
843 *
844 */
845static VALUE
846enum_inject(int argc, VALUE *argv, VALUE obj)
847{
848 struct MEMO *memo;
849 VALUE init, op;
850 rb_block_call_func *iter = inject_i;
851 ID id;
852
853 switch (rb_scan_args(argc, argv, "02", &init, &op)) {
854 case 0:
855 init = Qundef;
856 break;
857 case 1:
858 if (rb_block_given_p()) {
859 break;
860 }
861 id = rb_check_id(&init);
862 op = id ? ID2SYM(id) : init;
863 init = Qundef;
864 iter = inject_op_i;
865 break;
866 case 2:
867 if (rb_block_given_p()) {
868 rb_warning("given block not used");
869 }
870 id = rb_check_id(&op);
871 if (id) op = ID2SYM(id);
872 iter = inject_op_i;
873 break;
874 }
875
876 if (iter == inject_op_i &&
877 SYMBOL_P(op) &&
880 return ary_inject_op(obj, init, op);
881 }
882
883 memo = MEMO_NEW(init, Qnil, op);
884 rb_block_call(obj, id_each, 0, 0, iter, (VALUE)memo);
885 if (memo->v1 == Qundef) return Qnil;
886 return memo->v1;
887}
888
889static VALUE
890partition_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, arys))
891{
892 struct MEMO *memo = MEMO_CAST(arys);
893 VALUE ary;
895
896 if (RTEST(enum_yield(argc, i))) {
897 ary = memo->v1;
898 }
899 else {
900 ary = memo->v2;
901 }
902 rb_ary_push(ary, i);
903 return Qnil;
904}
905
906/*
907 * call-seq:
908 * enum.partition { |obj| block } -> [ true_array, false_array ]
909 * enum.partition -> an_enumerator
910 *
911 * Returns two arrays, the first containing the elements of
912 * <i>enum</i> for which the block evaluates to true, the second
913 * containing the rest.
914 *
915 * If no block is given, an enumerator is returned instead.
916 *
917 * (1..6).partition { |v| v.even? } #=> [[2, 4, 6], [1, 3, 5]]
918 *
919 */
920
921static VALUE
922enum_partition(VALUE obj)
923{
924 struct MEMO *memo;
925
926 RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
927
928 memo = MEMO_NEW(rb_ary_new(), rb_ary_new(), 0);
929 rb_block_call(obj, id_each, 0, 0, partition_i, (VALUE)memo);
930
931 return rb_assoc_new(memo->v1, memo->v2);
932}
933
934static VALUE
935group_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash))
936{
937 VALUE group;
938 VALUE values;
939
941
942 group = enum_yield(argc, i);
943 values = rb_hash_aref(hash, group);
944 if (!RB_TYPE_P(values, T_ARRAY)) {
945 values = rb_ary_new3(1, i);
946 rb_hash_aset(hash, group, values);
947 }
948 else {
949 rb_ary_push(values, i);
950 }
951 return Qnil;
952}
953
954/*
955 * call-seq:
956 * enum.group_by { |obj| block } -> a_hash
957 * enum.group_by -> an_enumerator
958 *
959 * Groups the collection by result of the block. Returns a hash where the
960 * keys are the evaluated result from the block and the values are
961 * arrays of elements in the collection that correspond to the key.
962 *
963 * If no block is given an enumerator is returned.
964 *
965 * (1..6).group_by { |i| i%3 } #=> {0=>[3, 6], 1=>[1, 4], 2=>[2, 5]}
966 *
967 */
968
969static VALUE
970enum_group_by(VALUE obj)
971{
972 RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
973
974 return enum_hashify(obj, 0, 0, group_by_i);
975}
976
977static void
978tally_up(VALUE hash, VALUE group)
979{
980 VALUE tally = rb_hash_aref(hash, group);
981 if (NIL_P(tally)) {
982 tally = INT2FIX(1);
983 }
984 else if (FIXNUM_P(tally) && tally < INT2FIX(FIXNUM_MAX)) {
985 tally += INT2FIX(1) & ~FIXNUM_FLAG;
986 }
987 else {
988 tally = rb_big_plus(tally, INT2FIX(1));
989 }
990 rb_hash_aset(hash, group, tally);
991}
992
993static VALUE
994tally_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash))
995{
997 tally_up(hash, i);
998 return Qnil;
999}
1000
1001/*
1002 * call-seq:
1003 * enum.tally -> a_hash
1004 *
1005 * Tallies the collection, i.e., counts the occurrences of each element.
1006 * Returns a hash with the elements of the collection as keys and the
1007 * corresponding counts as values.
1008 *
1009 * ["a", "b", "c", "b"].tally #=> {"a"=>1, "b"=>2, "c"=>1}
1010 */
1011
1012static VALUE
1013enum_tally(VALUE obj)
1014{
1015 return enum_hashify(obj, 0, 0, tally_i);
1016}
1017
1018static VALUE
1019first_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, params))
1020{
1021 struct MEMO *memo = MEMO_CAST(params);
1023
1024 MEMO_V1_SET(memo, i);
1025 rb_iter_break();
1026
1028}
1029
1030static VALUE enum_take(VALUE obj, VALUE n);
1031
1032/*
1033 * call-seq:
1034 * enum.first -> obj or nil
1035 * enum.first(n) -> an_array
1036 *
1037 * Returns the first element, or the first +n+ elements, of the enumerable.
1038 * If the enumerable is empty, the first form returns <code>nil</code>, and the
1039 * second form returns an empty array.
1040 *
1041 * %w[foo bar baz].first #=> "foo"
1042 * %w[foo bar baz].first(2) #=> ["foo", "bar"]
1043 * %w[foo bar baz].first(10) #=> ["foo", "bar", "baz"]
1044 * [].first #=> nil
1045 * [].first(10) #=> []
1046 *
1047 */
1048
1049static VALUE
1050enum_first(int argc, VALUE *argv, VALUE obj)
1051{
1052 struct MEMO *memo;
1053 rb_check_arity(argc, 0, 1);
1054 if (argc > 0) {
1055 return enum_take(obj, argv[0]);
1056 }
1057 else {
1058 memo = MEMO_NEW(Qnil, 0, 0);
1059 rb_block_call(obj, id_each, 0, 0, first_i, (VALUE)memo);
1060 return memo->v1;
1061 }
1062}
1063
1064
1065/*
1066 * call-seq:
1067 * enum.sort -> array
1068 * enum.sort { |a, b| block } -> array
1069 *
1070 * Returns an array containing the items in <i>enum</i> sorted.
1071 *
1072 * Comparisons for the sort will be done using the items' own
1073 * <code><=></code> operator or using an optional code block.
1074 *
1075 * The block must implement a comparison between +a+ and +b+ and return
1076 * an integer less than 0 when +b+ follows +a+, +0+ when +a+ and +b+
1077 * are equivalent, or an integer greater than 0 when +a+ follows +b+.
1078 *
1079 * The result is not guaranteed to be stable. When the comparison of two
1080 * elements returns +0+, the order of the elements is unpredictable.
1081 *
1082 * %w(rhea kea flea).sort #=> ["flea", "kea", "rhea"]
1083 * (1..10).sort { |a, b| b <=> a } #=> [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
1084 *
1085 * See also Enumerable#sort_by. It implements a Schwartzian transform
1086 * which is useful when key computation or comparison is expensive.
1087 */
1088
1089static VALUE
1090enum_sort(VALUE obj)
1091{
1092 return rb_ary_sort_bang(enum_to_a(0, 0, obj));
1093}
1094
1095#define SORT_BY_BUFSIZE 16
1097 const VALUE ary;
1098 const VALUE buf;
1099 long n;
1100};
1101
1102static VALUE
1103sort_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _data))
1104{
1105 struct sort_by_data *data = (struct sort_by_data *)&MEMO_CAST(_data)->v1;
1106 VALUE ary = data->ary;
1107 VALUE v;
1108
1110
1111 v = enum_yield(argc, i);
1112
1113 if (RBASIC(ary)->klass) {
1114 rb_raise(rb_eRuntimeError, "sort_by reentered");
1115 }
1116 if (RARRAY_LEN(data->buf) != SORT_BY_BUFSIZE*2) {
1117 rb_raise(rb_eRuntimeError, "sort_by reentered");
1118 }
1119
1120 RARRAY_ASET(data->buf, data->n*2, v);
1121 RARRAY_ASET(data->buf, data->n*2+1, i);
1122 data->n++;
1123 if (data->n == SORT_BY_BUFSIZE) {
1124 rb_ary_concat(ary, data->buf);
1125 data->n = 0;
1126 }
1127 return Qnil;
1128}
1129
1130static int
1131sort_by_cmp(const void *ap, const void *bp, void *data)
1132{
1133 struct cmp_opt_data cmp_opt = { 0, 0 };
1134 VALUE a;
1135 VALUE b;
1136 VALUE ary = (VALUE)data;
1137
1138 if (RBASIC(ary)->klass) {
1139 rb_raise(rb_eRuntimeError, "sort_by reentered");
1140 }
1141
1142 a = *(VALUE *)ap;
1143 b = *(VALUE *)bp;
1144
1145 return OPTIMIZED_CMP(a, b, cmp_opt);
1146}
1147
1148/*
1149 * call-seq:
1150 * enum.sort_by { |obj| block } -> array
1151 * enum.sort_by -> an_enumerator
1152 *
1153 * Sorts <i>enum</i> using a set of keys generated by mapping the
1154 * values in <i>enum</i> through the given block.
1155 *
1156 * The result is not guaranteed to be stable. When two keys are equal,
1157 * the order of the corresponding elements is unpredictable.
1158 *
1159 * If no block is given, an enumerator is returned instead.
1160 *
1161 * %w{apple pear fig}.sort_by { |word| word.length }
1162 * #=> ["fig", "pear", "apple"]
1163 *
1164 * The current implementation of #sort_by generates an array of
1165 * tuples containing the original collection element and the mapped
1166 * value. This makes #sort_by fairly expensive when the keysets are
1167 * simple.
1168 *
1169 * require 'benchmark'
1170 *
1171 * a = (1..100000).map { rand(100000) }
1172 *
1173 * Benchmark.bm(10) do |b|
1174 * b.report("Sort") { a.sort }
1175 * b.report("Sort by") { a.sort_by { |a| a } }
1176 * end
1177 *
1178 * <em>produces:</em>
1179 *
1180 * user system total real
1181 * Sort 0.180000 0.000000 0.180000 ( 0.175469)
1182 * Sort by 1.980000 0.040000 2.020000 ( 2.013586)
1183 *
1184 * However, consider the case where comparing the keys is a non-trivial
1185 * operation. The following code sorts some files on modification time
1186 * using the basic #sort method.
1187 *
1188 * files = Dir["*"]
1189 * sorted = files.sort { |a, b| File.new(a).mtime <=> File.new(b).mtime }
1190 * sorted #=> ["mon", "tues", "wed", "thurs"]
1191 *
1192 * This sort is inefficient: it generates two new File
1193 * objects during every comparison. A slightly better technique is to
1194 * use the Kernel#test method to generate the modification
1195 * times directly.
1196 *
1197 * files = Dir["*"]
1198 * sorted = files.sort { |a, b|
1199 * test(?M, a) <=> test(?M, b)
1200 * }
1201 * sorted #=> ["mon", "tues", "wed", "thurs"]
1202 *
1203 * This still generates many unnecessary Time objects. A more
1204 * efficient technique is to cache the sort keys (modification times
1205 * in this case) before the sort. Perl users often call this approach
1206 * a Schwartzian transform, after Randal Schwartz. We construct a
1207 * temporary array, where each element is an array containing our
1208 * sort key along with the filename. We sort this array, and then
1209 * extract the filename from the result.
1210 *
1211 * sorted = Dir["*"].collect { |f|
1212 * [test(?M, f), f]
1213 * }.sort.collect { |f| f[1] }
1214 * sorted #=> ["mon", "tues", "wed", "thurs"]
1215 *
1216 * This is exactly what #sort_by does internally.
1217 *
1218 * sorted = Dir["*"].sort_by { |f| test(?M, f) }
1219 * sorted #=> ["mon", "tues", "wed", "thurs"]
1220 *
1221 * To produce the reverse of a specific order, the following can be used:
1222 *
1223 * ary.sort_by { ... }.reverse!
1224 */
1225
1226static VALUE
1227enum_sort_by(VALUE obj)
1228{
1229 VALUE ary, buf;
1230 struct MEMO *memo;
1231 long i;
1232 struct sort_by_data *data;
1233
1234 RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
1235
1236 if (RB_TYPE_P(obj, T_ARRAY) && RARRAY_LEN(obj) <= LONG_MAX/2) {
1238 }
1239 else {
1240 ary = rb_ary_new();
1241 }
1245 memo = MEMO_NEW(0, 0, 0);
1246 data = (struct sort_by_data *)&memo->v1;
1247 RB_OBJ_WRITE(memo, &data->ary, ary);
1248 RB_OBJ_WRITE(memo, &data->buf, buf);
1249 data->n = 0;
1250 rb_block_call(obj, id_each, 0, 0, sort_by_i, (VALUE)memo);
1251 ary = data->ary;
1252 buf = data->buf;
1253 if (data->n) {
1254 rb_ary_resize(buf, data->n*2);
1256 }
1257 if (RARRAY_LEN(ary) > 2) {
1259 ruby_qsort(ptr, RARRAY_LEN(ary)/2, 2*sizeof(VALUE),
1260 sort_by_cmp, (void *)ary));
1261 }
1262 if (RBASIC(ary)->klass) {
1263 rb_raise(rb_eRuntimeError, "sort_by reentered");
1264 }
1265 for (i=1; i<RARRAY_LEN(ary); i+=2) {
1267 }
1270
1271 return ary;
1272}
1273
1274#define ENUMFUNC(name) argc ? name##_eqq : rb_block_given_p() ? name##_iter_i : name##_i
1275
1276#define MEMO_ENUM_NEW(v1) (rb_check_arity(argc, 0, 1), MEMO_NEW((v1), (argc ? *argv : 0), 0))
1277
1278#define DEFINE_ENUMFUNCS(name) \
1279static VALUE enum_##name##_func(VALUE result, struct MEMO *memo); \
1280\
1281static VALUE \
1282name##_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo)) \
1283{ \
1284 return enum_##name##_func(rb_enum_values_pack(argc, argv), MEMO_CAST(memo)); \
1285} \
1286\
1287static VALUE \
1288name##_iter_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo)) \
1289{ \
1290 return enum_##name##_func(rb_yield_values2(argc, argv), MEMO_CAST(memo)); \
1291} \
1292\
1293static VALUE \
1294name##_eqq(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo)) \
1295{ \
1296 ENUM_WANT_SVALUE(); \
1297 return enum_##name##_func(rb_funcallv(MEMO_CAST(memo)->v2, id_eqq, 1, &i), MEMO_CAST(memo)); \
1298} \
1299\
1300static VALUE \
1301enum_##name##_func(VALUE result, struct MEMO *memo)
1302
1303#define WARN_UNUSED_BLOCK(argc) do { \
1304 if ((argc) > 0 && rb_block_given_p()) { \
1305 rb_warn("given block not used"); \
1306 } \
1307} while (0)
1308
1310{
1311 if (!RTEST(result)) {
1312 MEMO_V1_SET(memo, Qfalse);
1313 rb_iter_break();
1314 }
1315 return Qnil;
1316}
1317
1318/*
1319 * call-seq:
1320 * enum.all? [{ |obj| block } ] -> true or false
1321 * enum.all?(pattern) -> true or false
1322 *
1323 * Passes each element of the collection to the given block. The method
1324 * returns <code>true</code> if the block never returns
1325 * <code>false</code> or <code>nil</code>. If the block is not given,
1326 * Ruby adds an implicit block of <code>{ |obj| obj }</code> which will
1327 * cause #all? to return +true+ when none of the collection members are
1328 * +false+ or +nil+.
1329 *
1330 * If instead a pattern is supplied, the method returns whether
1331 * <code>pattern === element</code> for every collection member.
1332 *
1333 * %w[ant bear cat].all? { |word| word.length >= 3 } #=> true
1334 * %w[ant bear cat].all? { |word| word.length >= 4 } #=> false
1335 * %w[ant bear cat].all?(/t/) #=> false
1336 * [1, 2i, 3.14].all?(Numeric) #=> true
1337 * [nil, true, 99].all? #=> false
1338 * [].all? #=> true
1339 *
1340 */
1341
1342static VALUE
1343enum_all(int argc, VALUE *argv, VALUE obj)
1344{
1345 struct MEMO *memo = MEMO_ENUM_NEW(Qtrue);
1347 rb_block_call(obj, id_each, 0, 0, ENUMFUNC(all), (VALUE)memo);
1348 return memo->v1;
1349}
1350
1352{
1353 if (RTEST(result)) {
1354 MEMO_V1_SET(memo, Qtrue);
1355 rb_iter_break();
1356 }
1357 return Qnil;
1358}
1359
1360/*
1361 * call-seq:
1362 * enum.any? [{ |obj| block }] -> true or false
1363 * enum.any?(pattern) -> true or false
1364 *
1365 * Passes each element of the collection to the given block. The method
1366 * returns <code>true</code> if the block ever returns a value other
1367 * than <code>false</code> or <code>nil</code>. If the block is not
1368 * given, Ruby adds an implicit block of <code>{ |obj| obj }</code> that
1369 * will cause #any? to return +true+ if at least one of the collection
1370 * members is not +false+ or +nil+.
1371 *
1372 * If instead a pattern is supplied, the method returns whether
1373 * <code>pattern === element</code> for any collection member.
1374 *
1375 * %w[ant bear cat].any? { |word| word.length >= 3 } #=> true
1376 * %w[ant bear cat].any? { |word| word.length >= 4 } #=> true
1377 * %w[ant bear cat].any?(/d/) #=> false
1378 * [nil, true, 99].any?(Integer) #=> true
1379 * [nil, true, 99].any? #=> true
1380 * [].any? #=> false
1381 *
1382 */
1383
1384static VALUE
1385enum_any(int argc, VALUE *argv, VALUE obj)
1386{
1387 struct MEMO *memo = MEMO_ENUM_NEW(Qfalse);
1389 rb_block_call(obj, id_each, 0, 0, ENUMFUNC(any), (VALUE)memo);
1390 return memo->v1;
1391}
1392
1394{
1395 if (RTEST(result)) {
1396 if (memo->v1 == Qundef) {
1397 MEMO_V1_SET(memo, Qtrue);
1398 }
1399 else if (memo->v1 == Qtrue) {
1400 MEMO_V1_SET(memo, Qfalse);
1401 rb_iter_break();
1402 }
1403 }
1404 return Qnil;
1405}
1406
1408 long n;
1413 int (*cmpfunc)(const void *, const void *, void *);
1414 int rev: 1; /* max if 1 */
1415 int by: 1; /* min_by if 1 */
1416};
1417
1418static VALUE
1419cmpint_reenter_check(struct nmin_data *data, VALUE val)
1420{
1421 if (RBASIC(data->buf)->klass) {
1422 rb_raise(rb_eRuntimeError, "%s%s reentered",
1423 data->rev ? "max" : "min",
1424 data->by ? "_by" : "");
1425 }
1426 return val;
1427}
1428
1429static int
1430nmin_cmp(const void *ap, const void *bp, void *_data)
1431{
1432 struct cmp_opt_data cmp_opt = { 0, 0 };
1433 struct nmin_data *data = (struct nmin_data *)_data;
1434 VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp;
1435#define rb_cmpint(cmp, a, b) rb_cmpint(cmpint_reenter_check(data, (cmp)), a, b)
1436 return OPTIMIZED_CMP(a, b, cmp_opt);
1437#undef rb_cmpint
1438}
1439
1440static int
1441nmin_block_cmp(const void *ap, const void *bp, void *_data)
1442{
1443 struct nmin_data *data = (struct nmin_data *)_data;
1444 VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp;
1445 VALUE cmp = rb_yield_values(2, a, b);
1446 cmpint_reenter_check(data, cmp);
1447 return rb_cmpint(cmp, a, b);
1448}
1449
1450static void
1451nmin_filter(struct nmin_data *data)
1452{
1453 long n;
1454 VALUE *beg;
1455 int eltsize;
1456 long numelts;
1457
1458 long left, right;
1459 long store_index;
1460
1461 long i, j;
1462
1463 if (data->curlen <= data->n)
1464 return;
1465
1466 n = data->n;
1467 beg = RARRAY_PTR(data->buf);
1468 eltsize = data->by ? 2 : 1;
1469 numelts = data->curlen;
1470
1471 left = 0;
1472 right = numelts-1;
1473
1474#define GETPTR(i) (beg+(i)*eltsize)
1475
1476#define SWAP(i, j) do { \
1477 VALUE tmp[2]; \
1478 memcpy(tmp, GETPTR(i), sizeof(VALUE)*eltsize); \
1479 memcpy(GETPTR(i), GETPTR(j), sizeof(VALUE)*eltsize); \
1480 memcpy(GETPTR(j), tmp, sizeof(VALUE)*eltsize); \
1481} while (0)
1482
1483 while (1) {
1484 long pivot_index = left + (right-left)/2;
1485 long num_pivots = 1;
1486
1487 SWAP(pivot_index, right);
1488 pivot_index = right;
1489
1490 store_index = left;
1491 i = left;
1492 while (i <= right-num_pivots) {
1493 int c = data->cmpfunc(GETPTR(i), GETPTR(pivot_index), data);
1494 if (data->rev)
1495 c = -c;
1496 if (c == 0) {
1497 SWAP(i, right-num_pivots);
1498 num_pivots++;
1499 continue;
1500 }
1501 if (c < 0) {
1502 SWAP(i, store_index);
1503 store_index++;
1504 }
1505 i++;
1506 }
1507 j = store_index;
1508 for (i = right; right-num_pivots < i; i--) {
1509 if (i <= j)
1510 break;
1511 SWAP(j, i);
1512 j++;
1513 }
1514
1515 if (store_index <= n && n <= store_index+num_pivots)
1516 break;
1517
1518 if (n < store_index) {
1519 right = store_index-1;
1520 }
1521 else {
1522 left = store_index+num_pivots;
1523 }
1524 }
1525#undef GETPTR
1526#undef SWAP
1527
1528 data->limit = RARRAY_AREF(data->buf, store_index*eltsize); /* the last pivot */
1529 data->curlen = data->n;
1530 rb_ary_resize(data->buf, data->n * eltsize);
1531}
1532
1533static VALUE
1534nmin_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _data))
1535{
1536 struct nmin_data *data = (struct nmin_data *)_data;
1537 VALUE cmpv;
1538
1540
1541 if (data->by)
1542 cmpv = enum_yield(argc, i);
1543 else
1544 cmpv = i;
1545
1546 if (data->limit != Qundef) {
1547 int c = data->cmpfunc(&cmpv, &data->limit, data);
1548 if (data->rev)
1549 c = -c;
1550 if (c >= 0)
1551 return Qnil;
1552 }
1553
1554 if (data->by)
1555 rb_ary_push(data->buf, cmpv);
1556 rb_ary_push(data->buf, i);
1557
1558 data->curlen++;
1559
1560 if (data->curlen == data->bufmax) {
1561 nmin_filter(data);
1562 }
1563
1564 return Qnil;
1565}
1566
1567VALUE
1568rb_nmin_run(VALUE obj, VALUE num, int by, int rev, int ary)
1569{
1570 VALUE result;
1571 struct nmin_data data;
1572
1573 data.n = NUM2LONG(num);
1574 if (data.n < 0)
1575 rb_raise(rb_eArgError, "negative size (%ld)", data.n);
1576 if (data.n == 0)
1577 return rb_ary_new2(0);
1578 if (LONG_MAX/4/(by ? 2 : 1) < data.n)
1579 rb_raise(rb_eArgError, "too big size");
1580 data.bufmax = data.n * 4;
1581 data.curlen = 0;
1582 data.buf = rb_ary_tmp_new(data.bufmax * (by ? 2 : 1));
1583 data.limit = Qundef;
1584 data.cmpfunc = by ? nmin_cmp :
1585 rb_block_given_p() ? nmin_block_cmp :
1586 nmin_cmp;
1587 data.rev = rev;
1588 data.by = by;
1589 if (ary) {
1590 long i;
1591 for (i = 0; i < RARRAY_LEN(obj); i++) {
1592 VALUE args[1];
1593 args[0] = RARRAY_AREF(obj, i);
1594 nmin_i(obj, (VALUE)&data, 1, args, Qundef);
1595 }
1596 }
1597 else {
1598 rb_block_call(obj, id_each, 0, 0, nmin_i, (VALUE)&data);
1599 }
1600 nmin_filter(&data);
1601 result = data.buf;
1602 if (by) {
1603 long i;
1604 RARRAY_PTR_USE(result, ptr, {
1606 RARRAY_LEN(result)/2,
1607 sizeof(VALUE)*2,
1608 data.cmpfunc, (void *)&data);
1609 for (i=1; i<RARRAY_LEN(result); i+=2) {
1610 ptr[i/2] = ptr[i];
1611 }
1612 });
1613 rb_ary_resize(result, RARRAY_LEN(result)/2);
1614 }
1615 else {
1616 RARRAY_PTR_USE(result, ptr, {
1617 ruby_qsort(ptr, RARRAY_LEN(result), sizeof(VALUE),
1618 data.cmpfunc, (void *)&data);
1619 });
1620 }
1621 if (rev) {
1622 rb_ary_reverse(result);
1623 }
1624 RBASIC_SET_CLASS(result, rb_cArray);
1625 return result;
1626
1627}
1628
1629/*
1630 * call-seq:
1631 * enum.one? [{ |obj| block }] -> true or false
1632 * enum.one?(pattern) -> true or false
1633 *
1634 * Passes each element of the collection to the given block. The method
1635 * returns <code>true</code> if the block returns <code>true</code>
1636 * exactly once. If the block is not given, <code>one?</code> will return
1637 * <code>true</code> only if exactly one of the collection members is
1638 * true.
1639 *
1640 * If instead a pattern is supplied, the method returns whether
1641 * <code>pattern === element</code> for exactly one collection member.
1642 *
1643 * %w{ant bear cat}.one? { |word| word.length == 4 } #=> true
1644 * %w{ant bear cat}.one? { |word| word.length > 4 } #=> false
1645 * %w{ant bear cat}.one? { |word| word.length < 4 } #=> false
1646 * %w{ant bear cat}.one?(/t/) #=> false
1647 * [ nil, true, 99 ].one? #=> false
1648 * [ nil, true, false ].one? #=> true
1649 * [ nil, true, 99 ].one?(Integer) #=> true
1650 * [].one? #=> false
1651 *
1652 */
1653static VALUE
1654enum_one(int argc, VALUE *argv, VALUE obj)
1655{
1656 struct MEMO *memo = MEMO_ENUM_NEW(Qundef);
1657 VALUE result;
1658
1660 rb_block_call(obj, id_each, 0, 0, ENUMFUNC(one), (VALUE)memo);
1661 result = memo->v1;
1662 if (result == Qundef) return Qfalse;
1663 return result;
1664}
1665
1667{
1668 if (RTEST(result)) {
1669 MEMO_V1_SET(memo, Qfalse);
1670 rb_iter_break();
1671 }
1672 return Qnil;
1673}
1674
1675/*
1676 * call-seq:
1677 * enum.none? [{ |obj| block }] -> true or false
1678 * enum.none?(pattern) -> true or false
1679 *
1680 * Passes each element of the collection to the given block. The method
1681 * returns <code>true</code> if the block never returns <code>true</code>
1682 * for all elements. If the block is not given, <code>none?</code> will return
1683 * <code>true</code> only if none of the collection members is true.
1684 *
1685 * If instead a pattern is supplied, the method returns whether
1686 * <code>pattern === element</code> for none of the collection members.
1687 *
1688 * %w{ant bear cat}.none? { |word| word.length == 5 } #=> true
1689 * %w{ant bear cat}.none? { |word| word.length >= 4 } #=> false
1690 * %w{ant bear cat}.none?(/d/) #=> true
1691 * [1, 3.14, 42].none?(Float) #=> false
1692 * [].none? #=> true
1693 * [nil].none? #=> true
1694 * [nil, false].none? #=> true
1695 * [nil, false, true].none? #=> false
1696 */
1697static VALUE
1698enum_none(int argc, VALUE *argv, VALUE obj)
1699{
1700 struct MEMO *memo = MEMO_ENUM_NEW(Qtrue);
1701
1703 rb_block_call(obj, id_each, 0, 0, ENUMFUNC(none), (VALUE)memo);
1704 return memo->v1;
1705}
1706
1707struct min_t {
1710};
1711
1712static VALUE
1713min_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
1714{
1715 struct min_t *memo = MEMO_FOR(struct min_t, args);
1716
1718
1719 if (memo->min == Qundef) {
1720 memo->min = i;
1721 }
1722 else {
1723 if (OPTIMIZED_CMP(i, memo->min, memo->cmp_opt) < 0) {
1724 memo->min = i;
1725 }
1726 }
1727 return Qnil;
1728}
1729
1730static VALUE
1731min_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
1732{
1733 VALUE cmp;
1734 struct min_t *memo = MEMO_FOR(struct min_t, args);
1735
1737
1738 if (memo->min == Qundef) {
1739 memo->min = i;
1740 }
1741 else {
1742 cmp = rb_yield_values(2, i, memo->min);
1743 if (rb_cmpint(cmp, i, memo->min) < 0) {
1744 memo->min = i;
1745 }
1746 }
1747 return Qnil;
1748}
1749
1750
1751/*
1752 * call-seq:
1753 * enum.min -> obj
1754 * enum.min { |a, b| block } -> obj
1755 * enum.min(n) -> array
1756 * enum.min(n) { |a, b| block } -> array
1757 *
1758 * Returns the object in _enum_ with the minimum value. The
1759 * first form assumes all objects implement Comparable;
1760 * the second uses the block to return <em>a <=> b</em>.
1761 *
1762 * a = %w(albatross dog horse)
1763 * a.min #=> "albatross"
1764 * a.min { |a, b| a.length <=> b.length } #=> "dog"
1765 *
1766 * If the +n+ argument is given, minimum +n+ elements are returned
1767 * as a sorted array.
1768 *
1769 * a = %w[albatross dog horse]
1770 * a.min(2) #=> ["albatross", "dog"]
1771 * a.min(2) {|a, b| a.length <=> b.length } #=> ["dog", "horse"]
1772 * [5, 1, 3, 4, 2].min(3) #=> [1, 2, 3]
1773 */
1774
1775static VALUE
1776enum_min(int argc, VALUE *argv, VALUE obj)
1777{
1778 VALUE memo;
1779 struct min_t *m = NEW_CMP_OPT_MEMO(struct min_t, memo);
1780 VALUE result;
1781 VALUE num;
1782
1783 if (rb_check_arity(argc, 0, 1) && !NIL_P(num = argv[0]))
1784 return rb_nmin_run(obj, num, 0, 0, 0);
1785
1786 m->min = Qundef;
1787 m->cmp_opt.opt_methods = 0;
1788 m->cmp_opt.opt_inited = 0;
1789 if (rb_block_given_p()) {
1790 rb_block_call(obj, id_each, 0, 0, min_ii, memo);
1791 }
1792 else {
1793 rb_block_call(obj, id_each, 0, 0, min_i, memo);
1794 }
1795 result = m->min;
1796 if (result == Qundef) return Qnil;
1797 return result;
1798}
1799
1800struct max_t {
1803};
1804
1805static VALUE
1806max_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
1807{
1808 struct max_t *memo = MEMO_FOR(struct max_t, args);
1809
1811
1812 if (memo->max == Qundef) {
1813 memo->max = i;
1814 }
1815 else {
1816 if (OPTIMIZED_CMP(i, memo->max, memo->cmp_opt) > 0) {
1817 memo->max = i;
1818 }
1819 }
1820 return Qnil;
1821}
1822
1823static VALUE
1824max_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
1825{
1826 struct max_t *memo = MEMO_FOR(struct max_t, args);
1827 VALUE cmp;
1828
1830
1831 if (memo->max == Qundef) {
1832 memo->max = i;
1833 }
1834 else {
1835 cmp = rb_yield_values(2, i, memo->max);
1836 if (rb_cmpint(cmp, i, memo->max) > 0) {
1837 memo->max = i;
1838 }
1839 }
1840 return Qnil;
1841}
1842
1843/*
1844 * call-seq:
1845 * enum.max -> obj
1846 * enum.max { |a, b| block } -> obj
1847 * enum.max(n) -> array
1848 * enum.max(n) { |a, b| block } -> array
1849 *
1850 * Returns the object in _enum_ with the maximum value. The
1851 * first form assumes all objects implement Comparable;
1852 * the second uses the block to return <em>a <=> b</em>.
1853 *
1854 * a = %w(albatross dog horse)
1855 * a.max #=> "horse"
1856 * a.max { |a, b| a.length <=> b.length } #=> "albatross"
1857 *
1858 * If the +n+ argument is given, maximum +n+ elements are returned
1859 * as an array, sorted in descending order.
1860 *
1861 * a = %w[albatross dog horse]
1862 * a.max(2) #=> ["horse", "dog"]
1863 * a.max(2) {|a, b| a.length <=> b.length } #=> ["albatross", "horse"]
1864 * [5, 1, 3, 4, 2].max(3) #=> [5, 4, 3]
1865 */
1866
1867static VALUE
1868enum_max(int argc, VALUE *argv, VALUE obj)
1869{
1870 VALUE memo;
1871 struct max_t *m = NEW_CMP_OPT_MEMO(struct max_t, memo);
1872 VALUE result;
1873 VALUE num;
1874
1875 if (rb_check_arity(argc, 0, 1) && !NIL_P(num = argv[0]))
1876 return rb_nmin_run(obj, num, 0, 1, 0);
1877
1878 m->max = Qundef;
1879 m->cmp_opt.opt_methods = 0;
1880 m->cmp_opt.opt_inited = 0;
1881 if (rb_block_given_p()) {
1882 rb_block_call(obj, id_each, 0, 0, max_ii, (VALUE)memo);
1883 }
1884 else {
1885 rb_block_call(obj, id_each, 0, 0, max_i, (VALUE)memo);
1886 }
1887 result = m->max;
1888 if (result == Qundef) return Qnil;
1889 return result;
1890}
1891
1892struct minmax_t {
1897};
1898
1899static void
1900minmax_i_update(VALUE i, VALUE j, struct minmax_t *memo)
1901{
1902 int n;
1903
1904 if (memo->min == Qundef) {
1905 memo->min = i;
1906 memo->max = j;
1907 }
1908 else {
1909 n = OPTIMIZED_CMP(i, memo->min, memo->cmp_opt);
1910 if (n < 0) {
1911 memo->min = i;
1912 }
1913 n = OPTIMIZED_CMP(j, memo->max, memo->cmp_opt);
1914 if (n > 0) {
1915 memo->max = j;
1916 }
1917 }
1918}
1919
1920static VALUE
1921minmax_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo))
1922{
1923 struct minmax_t *memo = MEMO_FOR(struct minmax_t, _memo);
1924 int n;
1925 VALUE j;
1926
1928
1929 if (memo->last == Qundef) {
1930 memo->last = i;
1931 return Qnil;
1932 }
1933 j = memo->last;
1934 memo->last = Qundef;
1935
1936 n = OPTIMIZED_CMP(j, i, memo->cmp_opt);
1937 if (n == 0)
1938 i = j;
1939 else if (n < 0) {
1940 VALUE tmp;
1941 tmp = i;
1942 i = j;
1943 j = tmp;
1944 }
1945
1946 minmax_i_update(i, j, memo);
1947
1948 return Qnil;
1949}
1950
1951static void
1952minmax_ii_update(VALUE i, VALUE j, struct minmax_t *memo)
1953{
1954 int n;
1955
1956 if (memo->min == Qundef) {
1957 memo->min = i;
1958 memo->max = j;
1959 }
1960 else {
1961 n = rb_cmpint(rb_yield_values(2, i, memo->min), i, memo->min);
1962 if (n < 0) {
1963 memo->min = i;
1964 }
1965 n = rb_cmpint(rb_yield_values(2, j, memo->max), j, memo->max);
1966 if (n > 0) {
1967 memo->max = j;
1968 }
1969 }
1970}
1971
1972static VALUE
1973minmax_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo))
1974{
1975 struct minmax_t *memo = MEMO_FOR(struct minmax_t, _memo);
1976 int n;
1977 VALUE j;
1978
1980
1981 if (memo->last == Qundef) {
1982 memo->last = i;
1983 return Qnil;
1984 }
1985 j = memo->last;
1986 memo->last = Qundef;
1987
1988 n = rb_cmpint(rb_yield_values(2, j, i), j, i);
1989 if (n == 0)
1990 i = j;
1991 else if (n < 0) {
1992 VALUE tmp;
1993 tmp = i;
1994 i = j;
1995 j = tmp;
1996 }
1997
1998 minmax_ii_update(i, j, memo);
1999
2000 return Qnil;
2001}
2002
2003/*
2004 * call-seq:
2005 * enum.minmax -> [min, max]
2006 * enum.minmax { |a, b| block } -> [min, max]
2007 *
2008 * Returns a two element array which contains the minimum and the
2009 * maximum value in the enumerable. The first form assumes all
2010 * objects implement Comparable; the second uses the
2011 * block to return <em>a <=> b</em>.
2012 *
2013 * a = %w(albatross dog horse)
2014 * a.minmax #=> ["albatross", "horse"]
2015 * a.minmax { |a, b| a.length <=> b.length } #=> ["dog", "albatross"]
2016 */
2017
2018static VALUE
2019enum_minmax(VALUE obj)
2020{
2021 VALUE memo;
2022 struct minmax_t *m = NEW_CMP_OPT_MEMO(struct minmax_t, memo);
2023
2024 m->min = Qundef;
2025 m->last = Qundef;
2026 m->cmp_opt.opt_methods = 0;
2027 m->cmp_opt.opt_inited = 0;
2028 if (rb_block_given_p()) {
2029 rb_block_call(obj, id_each, 0, 0, minmax_ii, memo);
2030 if (m->last != Qundef)
2031 minmax_ii_update(m->last, m->last, m);
2032 }
2033 else {
2034 rb_block_call(obj, id_each, 0, 0, minmax_i, memo);
2035 if (m->last != Qundef)
2036 minmax_i_update(m->last, m->last, m);
2037 }
2038 if (m->min != Qundef) {
2039 return rb_assoc_new(m->min, m->max);
2040 }
2041 return rb_assoc_new(Qnil, Qnil);
2042}
2043
2044static VALUE
2045min_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
2046{
2047 struct cmp_opt_data cmp_opt = { 0, 0 };
2048 struct MEMO *memo = MEMO_CAST(args);
2049 VALUE v;
2050
2052
2053 v = enum_yield(argc, i);
2054 if (memo->v1 == Qundef) {
2055 MEMO_V1_SET(memo, v);
2056 MEMO_V2_SET(memo, i);
2057 }
2058 else if (OPTIMIZED_CMP(v, memo->v1, cmp_opt) < 0) {
2059 MEMO_V1_SET(memo, v);
2060 MEMO_V2_SET(memo, i);
2061 }
2062 return Qnil;
2063}
2064
2065/*
2066 * call-seq:
2067 * enum.min_by {|obj| block } -> obj
2068 * enum.min_by -> an_enumerator
2069 * enum.min_by(n) {|obj| block } -> array
2070 * enum.min_by(n) -> an_enumerator
2071 *
2072 * Returns the object in <i>enum</i> that gives the minimum
2073 * value from the given block.
2074 *
2075 * If no block is given, an enumerator is returned instead.
2076 *
2077 * a = %w(albatross dog horse)
2078 * a.min_by { |x| x.length } #=> "dog"
2079 *
2080 * If the +n+ argument is given, minimum +n+ elements are returned
2081 * as an array. These +n+ elements are sorted by the value from the
2082 * given block.
2083 *
2084 * a = %w[albatross dog horse]
2085 * p a.min_by(2) {|x| x.length } #=> ["dog", "horse"]
2086 */
2087
2088static VALUE
2089enum_min_by(int argc, VALUE *argv, VALUE obj)
2090{
2091 struct MEMO *memo;
2092 VALUE num;
2093
2094 rb_check_arity(argc, 0, 1);
2095
2096 RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
2097
2098 if (argc && !NIL_P(num = argv[0]))
2099 return rb_nmin_run(obj, num, 1, 0, 0);
2100
2101 memo = MEMO_NEW(Qundef, Qnil, 0);
2102 rb_block_call(obj, id_each, 0, 0, min_by_i, (VALUE)memo);
2103 return memo->v2;
2104}
2105
2106static VALUE
2107max_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
2108{
2109 struct cmp_opt_data cmp_opt = { 0, 0 };
2110 struct MEMO *memo = MEMO_CAST(args);
2111 VALUE v;
2112
2114
2115 v = enum_yield(argc, i);
2116 if (memo->v1 == Qundef) {
2117 MEMO_V1_SET(memo, v);
2118 MEMO_V2_SET(memo, i);
2119 }
2120 else if (OPTIMIZED_CMP(v, memo->v1, cmp_opt) > 0) {
2121 MEMO_V1_SET(memo, v);
2122 MEMO_V2_SET(memo, i);
2123 }
2124 return Qnil;
2125}
2126
2127/*
2128 * call-seq:
2129 * enum.max_by {|obj| block } -> obj
2130 * enum.max_by -> an_enumerator
2131 * enum.max_by(n) {|obj| block } -> obj
2132 * enum.max_by(n) -> an_enumerator
2133 *
2134 * Returns the object in <i>enum</i> that gives the maximum
2135 * value from the given block.
2136 *
2137 * If no block is given, an enumerator is returned instead.
2138 *
2139 * a = %w(albatross dog horse)
2140 * a.max_by { |x| x.length } #=> "albatross"
2141 *
2142 * If the +n+ argument is given, maximum +n+ elements are returned
2143 * as an array. These +n+ elements are sorted by the value from the
2144 * given block, in descending order.
2145 *
2146 * a = %w[albatross dog horse]
2147 * a.max_by(2) {|x| x.length } #=> ["albatross", "horse"]
2148 *
2149 * enum.max_by(n) can be used to implement weighted random sampling.
2150 * Following example implements and use Enumerable#wsample.
2151 *
2152 * module Enumerable
2153 * # weighted random sampling.
2154 * #
2155 * # Pavlos S. Efraimidis, Paul G. Spirakis
2156 * # Weighted random sampling with a reservoir
2157 * # Information Processing Letters
2158 * # Volume 97, Issue 5 (16 March 2006)
2159 * def wsample(n)
2160 * self.max_by(n) {|v| rand ** (1.0/yield(v)) }
2161 * end
2162 * end
2163 * e = (-20..20).to_a*10000
2164 * a = e.wsample(20000) {|x|
2165 * Math.exp(-(x/5.0)**2) # normal distribution
2166 * }
2167 * # a is 20000 samples from e.
2168 * p a.length #=> 20000
2169 * h = a.group_by {|x| x }
2170 * -10.upto(10) {|x| puts "*" * (h[x].length/30.0).to_i if h[x] }
2171 * #=> *
2172 * # ***
2173 * # ******
2174 * # ***********
2175 * # ******************
2176 * # *****************************
2177 * # *****************************************
2178 * # ****************************************************
2179 * # ***************************************************************
2180 * # ********************************************************************
2181 * # ***********************************************************************
2182 * # ***********************************************************************
2183 * # **************************************************************
2184 * # ****************************************************
2185 * # ***************************************
2186 * # ***************************
2187 * # ******************
2188 * # ***********
2189 * # *******
2190 * # ***
2191 * # *
2192 *
2193 */
2194
2195static VALUE
2196enum_max_by(int argc, VALUE *argv, VALUE obj)
2197{
2198 struct MEMO *memo;
2199 VALUE num;
2200
2201 rb_check_arity(argc, 0, 1);
2202
2203 RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
2204
2205 if (argc && !NIL_P(num = argv[0]))
2206 return rb_nmin_run(obj, num, 1, 1, 0);
2207
2208 memo = MEMO_NEW(Qundef, Qnil, 0);
2209 rb_block_call(obj, id_each, 0, 0, max_by_i, (VALUE)memo);
2210 return memo->v2;
2211}
2212
2220};
2221
2222static void
2223minmax_by_i_update(VALUE v1, VALUE v2, VALUE i1, VALUE i2, struct minmax_by_t *memo)
2224{
2225 struct cmp_opt_data cmp_opt = { 0, 0 };
2226
2227 if (memo->min_bv == Qundef) {
2228 memo->min_bv = v1;
2229 memo->max_bv = v2;
2230 memo->min = i1;
2231 memo->max = i2;
2232 }
2233 else {
2234 if (OPTIMIZED_CMP(v1, memo->min_bv, cmp_opt) < 0) {
2235 memo->min_bv = v1;
2236 memo->min = i1;
2237 }
2238 if (OPTIMIZED_CMP(v2, memo->max_bv, cmp_opt) > 0) {
2239 memo->max_bv = v2;
2240 memo->max = i2;
2241 }
2242 }
2243}
2244
2245static VALUE
2246minmax_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo))
2247{
2248 struct cmp_opt_data cmp_opt = { 0, 0 };
2249 struct minmax_by_t *memo = MEMO_FOR(struct minmax_by_t, _memo);
2250 VALUE vi, vj, j;
2251 int n;
2252
2254
2255 vi = enum_yield(argc, i);
2256
2257 if (memo->last_bv == Qundef) {
2258 memo->last_bv = vi;
2259 memo->last = i;
2260 return Qnil;
2261 }
2262 vj = memo->last_bv;
2263 j = memo->last;
2264 memo->last_bv = Qundef;
2265
2266 n = OPTIMIZED_CMP(vj, vi, cmp_opt);
2267 if (n == 0) {
2268 i = j;
2269 vi = vj;
2270 }
2271 else if (n < 0) {
2272 VALUE tmp;
2273 tmp = i;
2274 i = j;
2275 j = tmp;
2276 tmp = vi;
2277 vi = vj;
2278 vj = tmp;
2279 }
2280
2281 minmax_by_i_update(vi, vj, i, j, memo);
2282
2283 return Qnil;
2284}
2285
2286/*
2287 * call-seq:
2288 * enum.minmax_by { |obj| block } -> [min, max]
2289 * enum.minmax_by -> an_enumerator
2290 *
2291 * Returns a two element array containing the objects in
2292 * <i>enum</i> that correspond to the minimum and maximum values respectively
2293 * from the given block.
2294 *
2295 * If no block is given, an enumerator is returned instead.
2296 *
2297 * a = %w(albatross dog horse)
2298 * a.minmax_by { |x| x.length } #=> ["dog", "albatross"]
2299 */
2300
2301static VALUE
2302enum_minmax_by(VALUE obj)
2303{
2304 VALUE memo;
2305 struct minmax_by_t *m = NEW_MEMO_FOR(struct minmax_by_t, memo);
2306
2307 RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
2308
2309 m->min_bv = Qundef;
2310 m->max_bv = Qundef;
2311 m->min = Qnil;
2312 m->max = Qnil;
2313 m->last_bv = Qundef;
2314 m->last = Qundef;
2315 rb_block_call(obj, id_each, 0, 0, minmax_by_i, memo);
2316 if (m->last_bv != Qundef)
2317 minmax_by_i_update(m->last_bv, m->last_bv, m->last, m->last, m);
2318 m = MEMO_FOR(struct minmax_by_t, memo);
2319 return rb_assoc_new(m->min, m->max);
2320}
2321
2322static VALUE
2323member_i(RB_BLOCK_CALL_FUNC_ARGLIST(iter, args))
2324{
2325 struct MEMO *memo = MEMO_CAST(args);
2326
2327 if (rb_equal(rb_enum_values_pack(argc, argv), memo->v1)) {
2328 MEMO_V2_SET(memo, Qtrue);
2329 rb_iter_break();
2330 }
2331 return Qnil;
2332}
2333
2334/*
2335 * call-seq:
2336 * enum.include?(obj) -> true or false
2337 * enum.member?(obj) -> true or false
2338 *
2339 * Returns <code>true</code> if any member of <i>enum</i> equals
2340 * <i>obj</i>. Equality is tested using <code>==</code>.
2341 *
2342 * (1..10).include? 5 #=> true
2343 * (1..10).include? 15 #=> false
2344 * (1..10).member? 5 #=> true
2345 * (1..10).member? 15 #=> false
2346 *
2347 */
2348
2349static VALUE
2350enum_member(VALUE obj, VALUE val)
2351{
2352 struct MEMO *memo = MEMO_NEW(val, Qfalse, 0);
2353
2354 rb_block_call(obj, id_each, 0, 0, member_i, (VALUE)memo);
2355 return memo->v2;
2356}
2357
2358static VALUE
2359each_with_index_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo))
2360{
2361 struct MEMO *m = MEMO_CAST(memo);
2362 VALUE n = imemo_count_value(m);
2363
2364 imemo_count_up(m);
2366}
2367
2368/*
2369 * call-seq:
2370 * enum.each_with_index(*args) { |obj, i| block } -> enum
2371 * enum.each_with_index(*args) -> an_enumerator
2372 *
2373 * Calls <em>block</em> with two arguments, the item and its index,
2374 * for each item in <i>enum</i>. Given arguments are passed through
2375 * to #each().
2376 *
2377 * If no block is given, an enumerator is returned instead.
2378 *
2379 * hash = Hash.new
2380 * %w(cat dog wombat).each_with_index { |item, index|
2381 * hash[item] = index
2382 * }
2383 * hash #=> {"cat"=>0, "dog"=>1, "wombat"=>2}
2384 *
2385 */
2386
2387static VALUE
2388enum_each_with_index(int argc, VALUE *argv, VALUE obj)
2389{
2390 struct MEMO *memo;
2391
2392 RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
2393
2394 memo = MEMO_NEW(0, 0, 0);
2395 rb_block_call(obj, id_each, argc, argv, each_with_index_i, (VALUE)memo);
2396 return obj;
2397}
2398
2399
2400/*
2401 * call-seq:
2402 * enum.reverse_each(*args) { |item| block } -> enum
2403 * enum.reverse_each(*args) -> an_enumerator
2404 *
2405 * Builds a temporary array and traverses that array in reverse order.
2406 *
2407 * If no block is given, an enumerator is returned instead.
2408 *
2409 * (1..3).reverse_each { |v| p v }
2410 *
2411 * produces:
2412 *
2413 * 3
2414 * 2
2415 * 1
2416 */
2417
2418static VALUE
2419enum_reverse_each(int argc, VALUE *argv, VALUE obj)
2420{
2421 VALUE ary;
2422 long len;
2423
2424 RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
2425
2426 ary = enum_to_a(argc, argv, obj);
2427
2428 len = RARRAY_LEN(ary);
2429 while (len--) {
2430 long nlen;
2431 rb_yield(RARRAY_AREF(ary, len));
2432 nlen = RARRAY_LEN(ary);
2433 if (nlen < len) {
2434 len = nlen;
2435 }
2436 }
2437
2438 return obj;
2439}
2440
2441
2442static VALUE
2443each_val_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, p))
2444{
2446 enum_yield(argc, i);
2447 return Qnil;
2448}
2449
2450/*
2451 * call-seq:
2452 * enum.each_entry { |obj| block } -> enum
2453 * enum.each_entry -> an_enumerator
2454 *
2455 * Calls <i>block</i> once for each element in +self+, passing that
2456 * element as a parameter, converting multiple values from yield to an
2457 * array.
2458 *
2459 * If no block is given, an enumerator is returned instead.
2460 *
2461 * class Foo
2462 * include Enumerable
2463 * def each
2464 * yield 1
2465 * yield 1, 2
2466 * yield
2467 * end
2468 * end
2469 * Foo.new.each_entry{ |o| p o }
2470 *
2471 * produces:
2472 *
2473 * 1
2474 * [1, 2]
2475 * nil
2476 *
2477 */
2478
2479static VALUE
2480enum_each_entry(int argc, VALUE *argv, VALUE obj)
2481{
2482 RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
2483 rb_block_call(obj, id_each, argc, argv, each_val_i, 0);
2484 return obj;
2485}
2486
2487static VALUE
2488add_int(VALUE x, long n)
2489{
2490 const VALUE y = LONG2NUM(n);
2491 if (RB_INTEGER_TYPE_P(x)) return rb_int_plus(x, y);
2492 return rb_funcallv(x, '+', 1, &y);
2493}
2494
2495static VALUE
2496div_int(VALUE x, long n)
2497{
2498 const VALUE y = LONG2NUM(n);
2499 if (RB_INTEGER_TYPE_P(x)) return rb_int_idiv(x, y);
2500 return rb_funcallv(x, id_div, 1, &y);
2501}
2502
2503#define dont_recycle_block_arg(arity) ((arity) == 1 || (arity) < 0)
2504
2505static VALUE
2506each_slice_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, m))
2507{
2508 struct MEMO *memo = MEMO_CAST(m);
2509 VALUE ary = memo->v1;
2510 VALUE v = Qnil;
2511 long size = memo->u3.cnt;
2513
2514 rb_ary_push(ary, i);
2515
2516 if (RARRAY_LEN(ary) == size) {
2517 v = rb_yield(ary);
2518
2519 if (memo->v2) {
2521 }
2522 else {
2523 rb_ary_clear(ary);
2524 }
2525 }
2526
2527 return v;
2528}
2529
2530static VALUE
2531enum_each_slice_size(VALUE obj, VALUE args, VALUE eobj)
2532{
2533 VALUE n, size;
2534 long slice_size = NUM2LONG(RARRAY_AREF(args, 0));
2535 ID infinite_p;
2536 CONST_ID(infinite_p, "infinite?");
2537 if (slice_size <= 0) rb_raise(rb_eArgError, "invalid slice size");
2538
2539 size = enum_size(obj, 0, 0);
2540 if (size == Qnil) return Qnil;
2541 if (RB_FLOAT_TYPE_P(size) && RTEST(rb_funcall(size, infinite_p, 0))) {
2542 return size;
2543 }
2544
2545 n = add_int(size, slice_size-1);
2546 return div_int(n, slice_size);
2547}
2548
2549/*
2550 * call-seq:
2551 * enum.each_slice(n) { ... } -> nil
2552 * enum.each_slice(n) -> an_enumerator
2553 *
2554 * Iterates the given block for each slice of <n> elements. If no
2555 * block is given, returns an enumerator.
2556 *
2557 * (1..10).each_slice(3) { |a| p a }
2558 * # outputs below
2559 * [1, 2, 3]
2560 * [4, 5, 6]
2561 * [7, 8, 9]
2562 * [10]
2563 *
2564 */
2565static VALUE
2566enum_each_slice(VALUE obj, VALUE n)
2567{
2568 long size = NUM2LONG(n);
2569 VALUE ary;
2570 struct MEMO *memo;
2571 int arity;
2572
2573 if (size <= 0) rb_raise(rb_eArgError, "invalid slice size");
2574 RETURN_SIZED_ENUMERATOR(obj, 1, &n, enum_each_slice_size);
2575 size = limit_by_enum_size(obj, size);
2576 ary = rb_ary_new2(size);
2577 arity = rb_block_arity();
2578 memo = MEMO_NEW(ary, dont_recycle_block_arg(arity), size);
2579 rb_block_call(obj, id_each, 0, 0, each_slice_i, (VALUE)memo);
2580 ary = memo->v1;
2581 if (RARRAY_LEN(ary) > 0) rb_yield(ary);
2582
2583 return Qnil;
2584}
2585
2586static VALUE
2587each_cons_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
2588{
2589 struct MEMO *memo = MEMO_CAST(args);
2590 VALUE ary = memo->v1;
2591 VALUE v = Qnil;
2592 long size = memo->u3.cnt;
2594
2595 if (RARRAY_LEN(ary) == size) {
2596 rb_ary_shift(ary);
2597 }
2598 rb_ary_push(ary, i);
2599 if (RARRAY_LEN(ary) == size) {
2600 if (memo->v2) {
2601 ary = rb_ary_dup(ary);
2602 }
2603 v = rb_yield(ary);
2604 }
2605 return v;
2606}
2607
2608static VALUE
2609enum_each_cons_size(VALUE obj, VALUE args, VALUE eobj)
2610{
2611 struct cmp_opt_data cmp_opt = { 0, 0 };
2612 const VALUE zero = LONG2FIX(0);
2613 VALUE n, size;
2614 long cons_size = NUM2LONG(RARRAY_AREF(args, 0));
2615 if (cons_size <= 0) rb_raise(rb_eArgError, "invalid size");
2616
2617 size = enum_size(obj, 0, 0);
2618 if (size == Qnil) return Qnil;
2619
2620 n = add_int(size, 1 - cons_size);
2621 return (OPTIMIZED_CMP(n, zero, cmp_opt) == -1) ? zero : n;
2622}
2623
2624/*
2625 * call-seq:
2626 * enum.each_cons(n) { ... } -> nil
2627 * enum.each_cons(n) -> an_enumerator
2628 *
2629 * Iterates the given block for each array of consecutive <n>
2630 * elements. If no block is given, returns an enumerator.
2631 *
2632 * e.g.:
2633 * (1..10).each_cons(3) { |a| p a }
2634 * # outputs below
2635 * [1, 2, 3]
2636 * [2, 3, 4]
2637 * [3, 4, 5]
2638 * [4, 5, 6]
2639 * [5, 6, 7]
2640 * [6, 7, 8]
2641 * [7, 8, 9]
2642 * [8, 9, 10]
2643 *
2644 */
2645static VALUE
2646enum_each_cons(VALUE obj, VALUE n)
2647{
2648 long size = NUM2LONG(n);
2649 struct MEMO *memo;
2650 int arity;
2651
2652 if (size <= 0) rb_raise(rb_eArgError, "invalid size");
2653 RETURN_SIZED_ENUMERATOR(obj, 1, &n, enum_each_cons_size);
2654 arity = rb_block_arity();
2655 if (enum_size_over_p(obj, size)) return Qnil;
2657 rb_block_call(obj, id_each, 0, 0, each_cons_i, (VALUE)memo);
2658
2659 return Qnil;
2660}
2661
2662static VALUE
2663each_with_object_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo))
2664{
2666 return rb_yield_values(2, i, memo);
2667}
2668
2669/*
2670 * call-seq:
2671 * enum.each_with_object(obj) { |(*args), memo_obj| ... } -> obj
2672 * enum.each_with_object(obj) -> an_enumerator
2673 *
2674 * Iterates the given block for each element with an arbitrary
2675 * object given, and returns the initially given object.
2676 *
2677 * If no block is given, returns an enumerator.
2678 *
2679 * evens = (1..10).each_with_object([]) { |i, a| a << i*2 }
2680 * #=> [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
2681 *
2682 */
2683static VALUE
2684enum_each_with_object(VALUE obj, VALUE memo)
2685{
2686 RETURN_SIZED_ENUMERATOR(obj, 1, &memo, enum_size);
2687
2688 rb_block_call(obj, id_each, 0, 0, each_with_object_i, memo);
2689
2690 return memo;
2691}
2692
2693static VALUE
2694zip_ary(RB_BLOCK_CALL_FUNC_ARGLIST(val, memoval))
2695{
2696 struct MEMO *memo = (struct MEMO *)memoval;
2697 VALUE result = memo->v1;
2698 VALUE args = memo->v2;
2699 long n = memo->u3.cnt++;
2700 VALUE tmp;
2701 int i;
2702
2703 tmp = rb_ary_new2(RARRAY_LEN(args) + 1);
2705 for (i=0; i<RARRAY_LEN(args); i++) {
2706 VALUE e = RARRAY_AREF(args, i);
2707
2708 if (RARRAY_LEN(e) <= n) {
2709 rb_ary_push(tmp, Qnil);
2710 }
2711 else {
2712 rb_ary_push(tmp, RARRAY_AREF(e, n));
2713 }
2714 }
2715 if (NIL_P(result)) {
2716 enum_yield_array(tmp);
2717 }
2718 else {
2719 rb_ary_push(result, tmp);
2720 }
2721
2722 RB_GC_GUARD(args);
2723
2724 return Qnil;
2725}
2726
2727static VALUE
2728call_next(VALUE w)
2729{
2730 VALUE *v = (VALUE *)w;
2731 return v[0] = rb_funcallv(v[1], id_next, 0, 0);
2732}
2733
2734static VALUE
2735call_stop(VALUE w, VALUE _)
2736{
2737 VALUE *v = (VALUE *)w;
2738 return v[0] = Qundef;
2739}
2740
2741static VALUE
2742zip_i(RB_BLOCK_CALL_FUNC_ARGLIST(val, memoval))
2743{
2744 struct MEMO *memo = (struct MEMO *)memoval;
2745 VALUE result = memo->v1;
2746 VALUE args = memo->v2;
2747 VALUE tmp;
2748 int i;
2749
2750 tmp = rb_ary_new2(RARRAY_LEN(args) + 1);
2752 for (i=0; i<RARRAY_LEN(args); i++) {
2753 if (NIL_P(RARRAY_AREF(args, i))) {
2754 rb_ary_push(tmp, Qnil);
2755 }
2756 else {
2757 VALUE v[2];
2758
2759 v[1] = RARRAY_AREF(args, i);
2760 rb_rescue2(call_next, (VALUE)v, call_stop, (VALUE)v, rb_eStopIteration, (VALUE)0);
2761 if (v[0] == Qundef) {
2762 RARRAY_ASET(args, i, Qnil);
2763 v[0] = Qnil;
2764 }
2765 rb_ary_push(tmp, v[0]);
2766 }
2767 }
2768 if (NIL_P(result)) {
2769 enum_yield_array(tmp);
2770 }
2771 else {
2772 rb_ary_push(result, tmp);
2773 }
2774
2775 RB_GC_GUARD(args);
2776
2777 return Qnil;
2778}
2779
2780/*
2781 * call-seq:
2782 * enum.zip(arg, ...) -> an_array_of_array
2783 * enum.zip(arg, ...) { |arr| block } -> nil
2784 *
2785 * Takes one element from <i>enum</i> and merges corresponding
2786 * elements from each <i>args</i>. This generates a sequence of
2787 * <em>n</em>-element arrays, where <em>n</em> is one more than the
2788 * count of arguments. The length of the resulting sequence will be
2789 * <code>enum#size</code>. If the size of any argument is less than
2790 * <code>enum#size</code>, <code>nil</code> values are supplied. If
2791 * a block is given, it is invoked for each output array, otherwise
2792 * an array of arrays is returned.
2793 *
2794 * a = [ 4, 5, 6 ]
2795 * b = [ 7, 8, 9 ]
2796 *
2797 * a.zip(b) #=> [[4, 7], [5, 8], [6, 9]]
2798 * [1, 2, 3].zip(a, b) #=> [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
2799 * [1, 2].zip(a, b) #=> [[1, 4, 7], [2, 5, 8]]
2800 * a.zip([1, 2], [8]) #=> [[4, 1, 8], [5, 2, nil], [6, nil, nil]]
2801 *
2802 * c = []
2803 * a.zip(b) { |x, y| c << x + y } #=> nil
2804 * c #=> [11, 13, 15]
2805 *
2806 */
2807
2808static VALUE
2809enum_zip(int argc, VALUE *argv, VALUE obj)
2810{
2811 int i;
2812 ID conv;
2813 struct MEMO *memo;
2814 VALUE result = Qnil;
2815 VALUE args = rb_ary_new4(argc, argv);
2816 int allary = TRUE;
2817
2818 argv = RARRAY_PTR(args);
2819 for (i=0; i<argc; i++) {
2821 if (NIL_P(ary)) {
2822 allary = FALSE;
2823 break;
2824 }
2825 argv[i] = ary;
2826 }
2827 if (!allary) {
2828 static const VALUE sym_each = STATIC_ID2SYM(id_each);
2829 CONST_ID(conv, "to_enum");
2830 for (i=0; i<argc; i++) {
2831 if (!rb_respond_to(argv[i], id_each)) {
2832 rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE" (must respond to :each)",
2833 rb_obj_class(argv[i]));
2834 }
2835 argv[i] = rb_funcallv(argv[i], conv, 1, &sym_each);
2836 }
2837 }
2838 if (!rb_block_given_p()) {
2839 result = rb_ary_new();
2840 }
2841
2842 /* TODO: use NODE_DOT2 as memo(v, v, -) */
2843 memo = MEMO_NEW(result, args, 0);
2844 rb_block_call(obj, id_each, 0, 0, allary ? zip_ary : zip_i, (VALUE)memo);
2845
2846 return result;
2847}
2848
2849static VALUE
2850take_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
2851{
2852 struct MEMO *memo = MEMO_CAST(args);
2854 if (--memo->u3.cnt == 0) rb_iter_break();
2855 return Qnil;
2856}
2857
2858/*
2859 * call-seq:
2860 * enum.take(n) -> array
2861 *
2862 * Returns first n elements from <i>enum</i>.
2863 *
2864 * a = [1, 2, 3, 4, 5, 0]
2865 * a.take(3) #=> [1, 2, 3]
2866 * a.take(30) #=> [1, 2, 3, 4, 5, 0]
2867 *
2868 */
2869
2870static VALUE
2871enum_take(VALUE obj, VALUE n)
2872{
2873 struct MEMO *memo;
2874 VALUE result;
2875 long len = NUM2LONG(n);
2876
2877 if (len < 0) {
2878 rb_raise(rb_eArgError, "attempt to take negative size");
2879 }
2880
2881 if (len == 0) return rb_ary_new2(0);
2882 result = rb_ary_new2(len);
2883 memo = MEMO_NEW(result, 0, len);
2884 rb_block_call(obj, id_each, 0, 0, take_i, (VALUE)memo);
2885 return result;
2886}
2887
2888
2889static VALUE
2890take_while_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
2891{
2894 return Qnil;
2895}
2896
2897/*
2898 * call-seq:
2899 * enum.take_while { |obj| block } -> array
2900 * enum.take_while -> an_enumerator
2901 *
2902 * Passes elements to the block until the block returns +nil+ or +false+,
2903 * then stops iterating and returns an array of all prior elements.
2904 *
2905 * If no block is given, an enumerator is returned instead.
2906 *
2907 * a = [1, 2, 3, 4, 5, 0]
2908 * a.take_while { |i| i < 3 } #=> [1, 2]
2909 *
2910 */
2911
2912static VALUE
2913enum_take_while(VALUE obj)
2914{
2915 VALUE ary;
2916
2917 RETURN_ENUMERATOR(obj, 0, 0);
2918 ary = rb_ary_new();
2919 rb_block_call(obj, id_each, 0, 0, take_while_i, ary);
2920 return ary;
2921}
2922
2923static VALUE
2924drop_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
2925{
2926 struct MEMO *memo = MEMO_CAST(args);
2927 if (memo->u3.cnt == 0) {
2929 }
2930 else {
2931 memo->u3.cnt--;
2932 }
2933 return Qnil;
2934}
2935
2936/*
2937 * call-seq:
2938 * enum.drop(n) -> array
2939 *
2940 * Drops first n elements from <i>enum</i>, and returns rest elements
2941 * in an array.
2942 *
2943 * a = [1, 2, 3, 4, 5, 0]
2944 * a.drop(3) #=> [4, 5, 0]
2945 *
2946 */
2947
2948static VALUE
2949enum_drop(VALUE obj, VALUE n)
2950{
2951 VALUE result;
2952 struct MEMO *memo;
2953 long len = NUM2LONG(n);
2954
2955 if (len < 0) {
2956 rb_raise(rb_eArgError, "attempt to drop negative size");
2957 }
2958
2959 result = rb_ary_new();
2960 memo = MEMO_NEW(result, 0, len);
2961 rb_block_call(obj, id_each, 0, 0, drop_i, (VALUE)memo);
2962 return result;
2963}
2964
2965
2966static VALUE
2967drop_while_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
2968{
2969 struct MEMO *memo = MEMO_CAST(args);
2971
2972 if (!memo->u3.state && !RTEST(enum_yield(argc, i))) {
2973 memo->u3.state = TRUE;
2974 }
2975 if (memo->u3.state) {
2976 rb_ary_push(memo->v1, i);
2977 }
2978 return Qnil;
2979}
2980
2981/*
2982 * call-seq:
2983 * enum.drop_while { |obj| block } -> array
2984 * enum.drop_while -> an_enumerator
2985 *
2986 * Drops elements up to, but not including, the first element for
2987 * which the block returns +nil+ or +false+ and returns an array
2988 * containing the remaining elements.
2989 *
2990 * If no block is given, an enumerator is returned instead.
2991 *
2992 * a = [1, 2, 3, 4, 5, 0]
2993 * a.drop_while { |i| i < 3 } #=> [3, 4, 5, 0]
2994 *
2995 */
2996
2997static VALUE
2998enum_drop_while(VALUE obj)
2999{
3000 VALUE result;
3001 struct MEMO *memo;
3002
3003 RETURN_ENUMERATOR(obj, 0, 0);
3004 result = rb_ary_new();
3005 memo = MEMO_NEW(result, 0, FALSE);
3006 rb_block_call(obj, id_each, 0, 0, drop_while_i, (VALUE)memo);
3007 return result;
3008}
3009
3010static VALUE
3011cycle_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
3012{
3014
3016 enum_yield(argc, i);
3017 return Qnil;
3018}
3019
3020static VALUE
3021enum_cycle_size(VALUE self, VALUE args, VALUE eobj)
3022{
3023 long mul = 0;
3024 VALUE n = Qnil;
3025 VALUE size;
3026
3027 if (args && (RARRAY_LEN(args) > 0)) {
3028 n = RARRAY_AREF(args, 0);
3029 if (!NIL_P(n)) mul = NUM2LONG(n);
3030 }
3031
3032 size = enum_size(self, args, 0);
3033 if (NIL_P(size) || FIXNUM_ZERO_P(size)) return size;
3034
3035 if (NIL_P(n)) return DBL2NUM(HUGE_VAL);
3036 if (mul <= 0) return INT2FIX(0);
3037 n = LONG2FIX(mul);
3038 return rb_funcallv(size, '*', 1, &n);
3039}
3040
3041/*
3042 * call-seq:
3043 * enum.cycle(n=nil) { |obj| block } -> nil
3044 * enum.cycle(n=nil) -> an_enumerator
3045 *
3046 * Calls <i>block</i> for each element of <i>enum</i> repeatedly _n_
3047 * times or forever if none or +nil+ is given. If a non-positive
3048 * number is given or the collection is empty, does nothing. Returns
3049 * +nil+ if the loop has finished without getting interrupted.
3050 *
3051 * Enumerable#cycle saves elements in an internal array so changes
3052 * to <i>enum</i> after the first pass have no effect.
3053 *
3054 * If no block is given, an enumerator is returned instead.
3055 *
3056 * a = ["a", "b", "c"]
3057 * a.cycle { |x| puts x } # print, a, b, c, a, b, c,.. forever.
3058 * a.cycle(2) { |x| puts x } # print, a, b, c, a, b, c.
3059 *
3060 */
3061
3062static VALUE
3063enum_cycle(int argc, VALUE *argv, VALUE obj)
3064{
3065 VALUE ary;
3066 VALUE nv = Qnil;
3067 long n, i, len;
3068
3069 rb_check_arity(argc, 0, 1);
3070
3071 RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_cycle_size);
3072 if (!argc || NIL_P(nv = argv[0])) {
3073 n = -1;
3074 }
3075 else {
3076 n = NUM2LONG(nv);
3077 if (n <= 0) return Qnil;
3078 }
3079 ary = rb_ary_new();
3080 RBASIC_CLEAR_CLASS(ary);
3081 rb_block_call(obj, id_each, 0, 0, cycle_i, ary);
3082 len = RARRAY_LEN(ary);
3083 if (len == 0) return Qnil;
3084 while (n < 0 || 0 < --n) {
3085 for (i=0; i<len; i++) {
3086 enum_yield_array(RARRAY_AREF(ary, i));
3087 }
3088 }
3089 return Qnil;
3090}
3091
3097};
3098
3099static VALUE
3100chunk_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _argp))
3101{
3102 struct chunk_arg *argp = MEMO_FOR(struct chunk_arg, _argp);
3103 VALUE v, s;
3104 VALUE alone = ID2SYM(rb_intern("_alone"));
3105 VALUE separator = ID2SYM(rb_intern("_separator"));
3106
3108
3109 v = rb_funcallv(argp->categorize, id_call, 1, &i);
3110
3111 if (v == alone) {
3112 if (!NIL_P(argp->prev_value)) {
3113 s = rb_assoc_new(argp->prev_value, argp->prev_elts);
3114 rb_funcallv(argp->yielder, id_lshift, 1, &s);
3115 argp->prev_value = argp->prev_elts = Qnil;
3116 }
3117 v = rb_assoc_new(v, rb_ary_new3(1, i));
3118 rb_funcallv(argp->yielder, id_lshift, 1, &v);
3119 }
3120 else if (NIL_P(v) || v == separator) {
3121 if (!NIL_P(argp->prev_value)) {
3122 v = rb_assoc_new(argp->prev_value, argp->prev_elts);
3123 rb_funcallv(argp->yielder, id_lshift, 1, &v);
3124 argp->prev_value = argp->prev_elts = Qnil;
3125 }
3126 }
3127 else if (SYMBOL_P(v) && (s = rb_sym2str(v), RSTRING_PTR(s)[0] == '_')) {
3128 rb_raise(rb_eRuntimeError, "symbols beginning with an underscore are reserved");
3129 }
3130 else {
3131 if (NIL_P(argp->prev_value)) {
3132 argp->prev_value = v;
3133 argp->prev_elts = rb_ary_new3(1, i);
3134 }
3135 else {
3136 if (rb_equal(argp->prev_value, v)) {
3137 rb_ary_push(argp->prev_elts, i);
3138 }
3139 else {
3140 s = rb_assoc_new(argp->prev_value, argp->prev_elts);
3141 rb_funcallv(argp->yielder, id_lshift, 1, &s);
3142 argp->prev_value = v;
3143 argp->prev_elts = rb_ary_new3(1, i);
3144 }
3145 }
3146 }
3147 return Qnil;
3148}
3149
3150static VALUE
3152{
3153 VALUE enumerable;
3154 VALUE arg;
3155 struct chunk_arg *memo = NEW_MEMO_FOR(struct chunk_arg, arg);
3156
3157 enumerable = rb_ivar_get(enumerator, rb_intern("chunk_enumerable"));
3158 memo->categorize = rb_ivar_get(enumerator, rb_intern("chunk_categorize"));
3159 memo->prev_value = Qnil;
3160 memo->prev_elts = Qnil;
3161 memo->yielder = yielder;
3162
3163 rb_block_call(enumerable, id_each, 0, 0, chunk_ii, arg);
3164 memo = MEMO_FOR(struct chunk_arg, arg);
3165 if (!NIL_P(memo->prev_elts)) {
3166 arg = rb_assoc_new(memo->prev_value, memo->prev_elts);
3167 rb_funcallv(memo->yielder, id_lshift, 1, &arg);
3168 }
3169 return Qnil;
3170}
3171
3172/*
3173 * call-seq:
3174 * enum.chunk { |elt| ... } -> an_enumerator
3175 *
3176 * Enumerates over the items, chunking them together based on the return
3177 * value of the block.
3178 *
3179 * Consecutive elements which return the same block value are chunked together.
3180 *
3181 * For example, consecutive even numbers and odd numbers can be
3182 * chunked as follows.
3183 *
3184 * [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5].chunk { |n|
3185 * n.even?
3186 * }.each { |even, ary|
3187 * p [even, ary]
3188 * }
3189 * #=> [false, [3, 1]]
3190 * # [true, [4]]
3191 * # [false, [1, 5, 9]]
3192 * # [true, [2, 6]]
3193 * # [false, [5, 3, 5]]
3194 *
3195 * This method is especially useful for sorted series of elements.
3196 * The following example counts words for each initial letter.
3197 *
3198 * open("/usr/share/dict/words", "r:iso-8859-1") { |f|
3199 * f.chunk { |line| line.ord }.each { |ch, lines| p [ch.chr, lines.length] }
3200 * }
3201 * #=> ["\n", 1]
3202 * # ["A", 1327]
3203 * # ["B", 1372]
3204 * # ["C", 1507]
3205 * # ["D", 791]
3206 * # ...
3207 *
3208 * The following key values have special meaning:
3209 * - +nil+ and +:_separator+ specifies that the elements should be dropped.
3210 * - +:_alone+ specifies that the element should be chunked by itself.
3211 *
3212 * Any other symbols that begin with an underscore will raise an error:
3213 *
3214 * items.chunk { |item| :_underscore }
3215 * #=> RuntimeError: symbols beginning with an underscore are reserved
3216 *
3217 * +nil+ and +:_separator+ can be used to ignore some elements.
3218 *
3219 * For example, the sequence of hyphens in svn log can be eliminated as follows:
3220 *
3221 * sep = "-"*72 + "\n"
3222 * IO.popen("svn log README") { |f|
3223 * f.chunk { |line|
3224 * line != sep || nil
3225 * }.each { |_, lines|
3226 * pp lines
3227 * }
3228 * }
3229 * #=> ["r20018 | knu | 2008-10-29 13:20:42 +0900 (Wed, 29 Oct 2008) | 2 lines\n",
3230 * # "\n",
3231 * # "* README, README.ja: Update the portability section.\n",
3232 * # "\n"]
3233 * # ["r16725 | knu | 2008-05-31 23:34:23 +0900 (Sat, 31 May 2008) | 2 lines\n",
3234 * # "\n",
3235 * # "* README, README.ja: Add a note about default C flags.\n",
3236 * # "\n"]
3237 * # ...
3238 *
3239 * Paragraphs separated by empty lines can be parsed as follows:
3240 *
3241 * File.foreach("README").chunk { |line|
3242 * /\A\s*\z/ !~ line || nil
3243 * }.each { |_, lines|
3244 * pp lines
3245 * }
3246 *
3247 * +:_alone+ can be used to force items into their own chunk.
3248 * For example, you can put lines that contain a URL by themselves,
3249 * and chunk the rest of the lines together, like this:
3250 *
3251 * pattern = /http/
3252 * open(filename) { |f|
3253 * f.chunk { |line| line =~ pattern ? :_alone : true }.each { |key, lines|
3254 * pp lines
3255 * }
3256 * }
3257 *
3258 * If no block is given, an enumerator to `chunk` is returned instead.
3259 */
3260static VALUE
3261enum_chunk(VALUE enumerable)
3262{
3264
3265 RETURN_SIZED_ENUMERATOR(enumerable, 0, 0, enum_size);
3266
3268 rb_ivar_set(enumerator, rb_intern("chunk_enumerable"), enumerable);
3269 rb_ivar_set(enumerator, rb_intern("chunk_categorize"), rb_block_proc());
3271 return enumerator;
3272}
3273
3274
3280};
3281
3282static VALUE
3283slicebefore_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _argp))
3284{
3285 struct slicebefore_arg *argp = MEMO_FOR(struct slicebefore_arg, _argp);
3286 VALUE header_p;
3287
3289
3290 if (!NIL_P(argp->sep_pat))
3291 header_p = rb_funcallv(argp->sep_pat, id_eqq, 1, &i);
3292 else
3293 header_p = rb_funcallv(argp->sep_pred, id_call, 1, &i);
3294 if (RTEST(header_p)) {
3295 if (!NIL_P(argp->prev_elts))
3296 rb_funcallv(argp->yielder, id_lshift, 1, &argp->prev_elts);
3297 argp->prev_elts = rb_ary_new3(1, i);
3298 }
3299 else {
3300 if (NIL_P(argp->prev_elts))
3301 argp->prev_elts = rb_ary_new3(1, i);
3302 else
3303 rb_ary_push(argp->prev_elts, i);
3304 }
3305
3306 return Qnil;
3307}
3308
3309static VALUE
3311{
3312 VALUE enumerable;
3313 VALUE arg;
3314 struct slicebefore_arg *memo = NEW_MEMO_FOR(struct slicebefore_arg, arg);
3315
3316 enumerable = rb_ivar_get(enumerator, rb_intern("slicebefore_enumerable"));
3317 memo->sep_pred = rb_attr_get(enumerator, rb_intern("slicebefore_sep_pred"));
3318 memo->sep_pat = NIL_P(memo->sep_pred) ? rb_ivar_get(enumerator, rb_intern("slicebefore_sep_pat")) : Qnil;
3319 memo->prev_elts = Qnil;
3320 memo->yielder = yielder;
3321
3322 rb_block_call(enumerable, id_each, 0, 0, slicebefore_ii, arg);
3323 memo = MEMO_FOR(struct slicebefore_arg, arg);
3324 if (!NIL_P(memo->prev_elts))
3325 rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts);
3326 return Qnil;
3327}
3328
3329/*
3330 * call-seq:
3331 * enum.slice_before(pattern) -> an_enumerator
3332 * enum.slice_before { |elt| bool } -> an_enumerator
3333 *
3334 * Creates an enumerator for each chunked elements.
3335 * The beginnings of chunks are defined by _pattern_ and the block.
3336
3337 * If <code>_pattern_ === _elt_</code> returns <code>true</code> or the block
3338 * returns <code>true</code> for the element, the element is beginning of a
3339 * chunk.
3340
3341 * The <code>===</code> and _block_ is called from the first element to the last
3342 * element of _enum_. The result for the first element is ignored.
3343
3344 * The result enumerator yields the chunked elements as an array.
3345 * So +each+ method can be called as follows:
3346 *
3347 * enum.slice_before(pattern).each { |ary| ... }
3348 * enum.slice_before { |elt| bool }.each { |ary| ... }
3349 *
3350 * Other methods of the Enumerator class and Enumerable module,
3351 * such as +to_a+, +map+, etc., are also usable.
3352 *
3353 * For example, iteration over ChangeLog entries can be implemented as
3354 * follows:
3355 *
3356 * # iterate over ChangeLog entries.
3357 * open("ChangeLog") { |f|
3358 * f.slice_before(/\A\S/).each { |e| pp e }
3359 * }
3360 *
3361 * # same as above. block is used instead of pattern argument.
3362 * open("ChangeLog") { |f|
3363 * f.slice_before { |line| /\A\S/ === line }.each { |e| pp e }
3364 * }
3365 *
3366 *
3367 * "svn proplist -R" produces multiline output for each file.
3368 * They can be chunked as follows:
3369 *
3370 * IO.popen([{"LC_ALL"=>"C"}, "svn", "proplist", "-R"]) { |f|
3371 * f.lines.slice_before(/\AProp/).each { |lines| p lines }
3372 * }
3373 * #=> ["Properties on '.':\n", " svn:ignore\n", " svk:merge\n"]
3374 * # ["Properties on 'goruby.c':\n", " svn:eol-style\n"]
3375 * # ["Properties on 'complex.c':\n", " svn:mime-type\n", " svn:eol-style\n"]
3376 * # ["Properties on 'regparse.c':\n", " svn:eol-style\n"]
3377 * # ...
3378 *
3379 * If the block needs to maintain state over multiple elements,
3380 * local variables can be used.
3381 * For example, three or more consecutive increasing numbers can be squashed
3382 * as follows (see +chunk_while+ for a better way):
3383 *
3384 * a = [0, 2, 3, 4, 6, 7, 9]
3385 * prev = a[0]
3386 * p a.slice_before { |e|
3387 * prev, prev2 = e, prev
3388 * prev2 + 1 != e
3389 * }.map { |es|
3390 * es.length <= 2 ? es.join(",") : "#{es.first}-#{es.last}"
3391 * }.join(",")
3392 * #=> "0,2-4,6,7,9"
3393 *
3394 * However local variables should be used carefully
3395 * if the result enumerator is enumerated twice or more.
3396 * The local variables should be initialized for each enumeration.
3397 * Enumerator.new can be used to do it.
3398 *
3399 * # Word wrapping. This assumes all characters have same width.
3400 * def wordwrap(words, maxwidth)
3401 * Enumerator.new {|y|
3402 * # cols is initialized in Enumerator.new.
3403 * cols = 0
3404 * words.slice_before { |w|
3405 * cols += 1 if cols != 0
3406 * cols += w.length
3407 * if maxwidth < cols
3408 * cols = w.length
3409 * true
3410 * else
3411 * false
3412 * end
3413 * }.each {|ws| y.yield ws }
3414 * }
3415 * end
3416 * text = (1..20).to_a.join(" ")
3417 * enum = wordwrap(text.split(/\s+/), 10)
3418 * puts "-"*10
3419 * enum.each { |ws| puts ws.join(" ") } # first enumeration.
3420 * puts "-"*10
3421 * enum.each { |ws| puts ws.join(" ") } # second enumeration generates same result as the first.
3422 * puts "-"*10
3423 * #=> ----------
3424 * # 1 2 3 4 5
3425 * # 6 7 8 9 10
3426 * # 11 12 13
3427 * # 14 15 16
3428 * # 17 18 19
3429 * # 20
3430 * # ----------
3431 * # 1 2 3 4 5
3432 * # 6 7 8 9 10
3433 * # 11 12 13
3434 * # 14 15 16
3435 * # 17 18 19
3436 * # 20
3437 * # ----------
3438 *
3439 * mbox contains series of mails which start with Unix From line.
3440 * So each mail can be extracted by slice before Unix From line.
3441 *
3442 * # parse mbox
3443 * open("mbox") { |f|
3444 * f.slice_before { |line|
3445 * line.start_with? "From "
3446 * }.each { |mail|
3447 * unix_from = mail.shift
3448 * i = mail.index("\n")
3449 * header = mail[0...i]
3450 * body = mail[(i+1)..-1]
3451 * body.pop if body.last == "\n"
3452 * fields = header.slice_before { |line| !" \t".include?(line[0]) }.to_a
3453 * p unix_from
3454 * pp fields
3455 * pp body
3456 * }
3457 * }
3458 *
3459 * # split mails in mbox (slice before Unix From line after an empty line)
3460 * open("mbox") { |f|
3461 * emp = true
3462 * f.slice_before { |line|
3463 * prevemp = emp
3464 * emp = line == "\n"
3465 * prevemp && line.start_with?("From ")
3466 * }.each { |mail|
3467 * mail.pop if mail.last == "\n"
3468 * pp mail
3469 * }
3470 * }
3471 *
3472 */
3473static VALUE
3474enum_slice_before(int argc, VALUE *argv, VALUE enumerable)
3475{
3477
3478 if (rb_block_given_p()) {
3479 if (argc != 0)
3480 rb_error_arity(argc, 0, 0);
3482 rb_ivar_set(enumerator, rb_intern("slicebefore_sep_pred"), rb_block_proc());
3483 }
3484 else {
3485 VALUE sep_pat;
3486 rb_scan_args(argc, argv, "1", &sep_pat);
3488 rb_ivar_set(enumerator, rb_intern("slicebefore_sep_pat"), sep_pat);
3489 }
3490 rb_ivar_set(enumerator, rb_intern("slicebefore_enumerable"), enumerable);
3491 rb_block_call(enumerator, idInitialize, 0, 0, slicebefore_i, enumerator);
3492 return enumerator;
3493}
3494
3495
3501};
3502
3503static VALUE
3504sliceafter_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo))
3505{
3506#define UPDATE_MEMO ((void)(memo = MEMO_FOR(struct sliceafter_arg, _memo)))
3507 struct sliceafter_arg *memo;
3508 int split_p;
3510
3512
3513 if (NIL_P(memo->prev_elts)) {
3514 memo->prev_elts = rb_ary_new3(1, i);
3515 }
3516 else {
3517 rb_ary_push(memo->prev_elts, i);
3518 }
3519
3520 if (NIL_P(memo->pred)) {
3521 split_p = RTEST(rb_funcallv(memo->pat, id_eqq, 1, &i));
3523 }
3524 else {
3525 split_p = RTEST(rb_funcallv(memo->pred, id_call, 1, &i));
3527 }
3528
3529 if (split_p) {
3530 rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts);
3532 memo->prev_elts = Qnil;
3533 }
3534
3535 return Qnil;
3536#undef UPDATE_MEMO
3537}
3538
3539static VALUE
3541{
3542 VALUE enumerable;
3543 VALUE arg;
3544 struct sliceafter_arg *memo = NEW_MEMO_FOR(struct sliceafter_arg, arg);
3545
3546 enumerable = rb_ivar_get(enumerator, rb_intern("sliceafter_enum"));
3547 memo->pat = rb_ivar_get(enumerator, rb_intern("sliceafter_pat"));
3548 memo->pred = rb_attr_get(enumerator, rb_intern("sliceafter_pred"));
3549 memo->prev_elts = Qnil;
3550 memo->yielder = yielder;
3551
3552 rb_block_call(enumerable, id_each, 0, 0, sliceafter_ii, arg);
3553 memo = MEMO_FOR(struct sliceafter_arg, arg);
3554 if (!NIL_P(memo->prev_elts))
3555 rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts);
3556 return Qnil;
3557}
3558
3559/*
3560 * call-seq:
3561 * enum.slice_after(pattern) -> an_enumerator
3562 * enum.slice_after { |elt| bool } -> an_enumerator
3563 *
3564 * Creates an enumerator for each chunked elements.
3565 * The ends of chunks are defined by _pattern_ and the block.
3566 *
3567 * If <code>_pattern_ === _elt_</code> returns <code>true</code> or the block
3568 * returns <code>true</code> for the element, the element is end of a
3569 * chunk.
3570 *
3571 * The <code>===</code> and _block_ is called from the first element to the last
3572 * element of _enum_.
3573 *
3574 * The result enumerator yields the chunked elements as an array.
3575 * So +each+ method can be called as follows:
3576 *
3577 * enum.slice_after(pattern).each { |ary| ... }
3578 * enum.slice_after { |elt| bool }.each { |ary| ... }
3579 *
3580 * Other methods of the Enumerator class and Enumerable module,
3581 * such as +map+, etc., are also usable.
3582 *
3583 * For example, continuation lines (lines end with backslash) can be
3584 * concatenated as follows:
3585 *
3586 * lines = ["foo\n", "bar\\\n", "baz\n", "\n", "qux\n"]
3587 * e = lines.slice_after(/(?<!\\‍)\n\z/)
3588 * p e.to_a
3589 * #=> [["foo\n"], ["bar\\\n", "baz\n"], ["\n"], ["qux\n"]]
3590 * p e.map {|ll| ll[0...-1].map {|l| l.sub(/\\\n\z/, "") }.join + ll.last }
3591 * #=>["foo\n", "barbaz\n", "\n", "qux\n"]
3592 *
3593 */
3594
3595static VALUE
3596enum_slice_after(int argc, VALUE *argv, VALUE enumerable)
3597{
3599 VALUE pat = Qnil, pred = Qnil;
3600
3601 if (rb_block_given_p()) {
3602 if (0 < argc)
3603 rb_raise(rb_eArgError, "both pattern and block are given");
3604 pred = rb_block_proc();
3605 }
3606 else {
3607 rb_scan_args(argc, argv, "1", &pat);
3608 }
3609
3611 rb_ivar_set(enumerator, rb_intern("sliceafter_enum"), enumerable);
3612 rb_ivar_set(enumerator, rb_intern("sliceafter_pat"), pat);
3613 rb_ivar_set(enumerator, rb_intern("sliceafter_pred"), pred);
3614
3615 rb_block_call(enumerator, idInitialize, 0, 0, sliceafter_i, enumerator);
3616 return enumerator;
3617}
3618
3624 int inverted; /* 0 for slice_when and 1 for chunk_while. */
3625};
3626
3627static VALUE
3628slicewhen_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo))
3629{
3630#define UPDATE_MEMO ((void)(memo = MEMO_FOR(struct slicewhen_arg, _memo)))
3631 struct slicewhen_arg *memo;
3632 int split_p;
3634
3636
3637 if (memo->prev_elt == Qundef) {
3638 /* The first element */
3639 memo->prev_elt = i;
3640 memo->prev_elts = rb_ary_new3(1, i);
3641 }
3642 else {
3643 VALUE args[2];
3644 args[0] = memo->prev_elt;
3645 args[1] = i;
3646 split_p = RTEST(rb_funcallv(memo->pred, id_call, 2, args));
3648
3649 if (memo->inverted)
3650 split_p = !split_p;
3651
3652 if (split_p) {
3653 rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts);
3655 memo->prev_elts = rb_ary_new3(1, i);
3656 }
3657 else {
3658 rb_ary_push(memo->prev_elts, i);
3659 }
3660
3661 memo->prev_elt = i;
3662 }
3663
3664 return Qnil;
3665#undef UPDATE_MEMO
3666}
3667
3668static VALUE
3670{
3671 VALUE enumerable;
3672 VALUE arg;
3673 struct slicewhen_arg *memo =
3675
3676 enumerable = rb_ivar_get(enumerator, rb_intern("slicewhen_enum"));
3677 memo->pred = rb_attr_get(enumerator, rb_intern("slicewhen_pred"));
3678 memo->prev_elt = Qundef;
3679 memo->prev_elts = Qnil;
3680 memo->yielder = yielder;
3681 memo->inverted = RTEST(rb_attr_get(enumerator, rb_intern("slicewhen_inverted")));
3682
3683 rb_block_call(enumerable, id_each, 0, 0, slicewhen_ii, arg);
3684 memo = MEMO_FOR(struct slicewhen_arg, arg);
3685 if (!NIL_P(memo->prev_elts))
3686 rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts);
3687 return Qnil;
3688}
3689
3690/*
3691 * call-seq:
3692 * enum.slice_when {|elt_before, elt_after| bool } -> an_enumerator
3693 *
3694 * Creates an enumerator for each chunked elements.
3695 * The beginnings of chunks are defined by the block.
3696 *
3697 * This method split each chunk using adjacent elements,
3698 * _elt_before_ and _elt_after_,
3699 * in the receiver enumerator.
3700 * This method split chunks between _elt_before_ and _elt_after_ where
3701 * the block returns <code>true</code>.
3702 *
3703 * The block is called the length of the receiver enumerator minus one.
3704 *
3705 * The result enumerator yields the chunked elements as an array.
3706 * So +each+ method can be called as follows:
3707 *
3708 * enum.slice_when { |elt_before, elt_after| bool }.each { |ary| ... }
3709 *
3710 * Other methods of the Enumerator class and Enumerable module,
3711 * such as +to_a+, +map+, etc., are also usable.
3712 *
3713 * For example, one-by-one increasing subsequence can be chunked as follows:
3714 *
3715 * a = [1,2,4,9,10,11,12,15,16,19,20,21]
3716 * b = a.slice_when {|i, j| i+1 != j }
3717 * p b.to_a #=> [[1, 2], [4], [9, 10, 11, 12], [15, 16], [19, 20, 21]]
3718 * c = b.map {|a| a.length < 3 ? a : "#{a.first}-#{a.last}" }
3719 * p c #=> [[1, 2], [4], "9-12", [15, 16], "19-21"]
3720 * d = c.join(",")
3721 * p d #=> "1,2,4,9-12,15,16,19-21"
3722 *
3723 * Near elements (threshold: 6) in sorted array can be chunked as follows:
3724 *
3725 * a = [3, 11, 14, 25, 28, 29, 29, 41, 55, 57]
3726 * p a.slice_when {|i, j| 6 < j - i }.to_a
3727 * #=> [[3], [11, 14], [25, 28, 29, 29], [41], [55, 57]]
3728 *
3729 * Increasing (non-decreasing) subsequence can be chunked as follows:
3730 *
3731 * a = [0, 9, 2, 2, 3, 2, 7, 5, 9, 5]
3732 * p a.slice_when {|i, j| i > j }.to_a
3733 * #=> [[0, 9], [2, 2, 3], [2, 7], [5, 9], [5]]
3734 *
3735 * Adjacent evens and odds can be chunked as follows:
3736 * (Enumerable#chunk is another way to do it.)
3737 *
3738 * a = [7, 5, 9, 2, 0, 7, 9, 4, 2, 0]
3739 * p a.slice_when {|i, j| i.even? != j.even? }.to_a
3740 * #=> [[7, 5, 9], [2, 0], [7, 9], [4, 2, 0]]
3741 *
3742 * Paragraphs (non-empty lines with trailing empty lines) can be chunked as follows:
3743 * (See Enumerable#chunk to ignore empty lines.)
3744 *
3745 * lines = ["foo\n", "bar\n", "\n", "baz\n", "qux\n"]
3746 * p lines.slice_when {|l1, l2| /\A\s*\z/ =~ l1 && /\S/ =~ l2 }.to_a
3747 * #=> [["foo\n", "bar\n", "\n"], ["baz\n", "qux\n"]]
3748 *
3749 * Enumerable#chunk_while does the same, except splitting when the block
3750 * returns <code>false</code> instead of <code>true</code>.
3751 */
3752static VALUE
3753enum_slice_when(VALUE enumerable)
3754{
3756 VALUE pred;
3757
3758 pred = rb_block_proc();
3759
3761 rb_ivar_set(enumerator, rb_intern("slicewhen_enum"), enumerable);
3762 rb_ivar_set(enumerator, rb_intern("slicewhen_pred"), pred);
3763 rb_ivar_set(enumerator, rb_intern("slicewhen_inverted"), Qfalse);
3764
3765 rb_block_call(enumerator, idInitialize, 0, 0, slicewhen_i, enumerator);
3766 return enumerator;
3767}
3768
3769/*
3770 * call-seq:
3771 * enum.chunk_while {|elt_before, elt_after| bool } -> an_enumerator
3772 *
3773 * Creates an enumerator for each chunked elements.
3774 * The beginnings of chunks are defined by the block.
3775 *
3776 * This method split each chunk using adjacent elements,
3777 * _elt_before_ and _elt_after_,
3778 * in the receiver enumerator.
3779 * This method split chunks between _elt_before_ and _elt_after_ where
3780 * the block returns <code>false</code>.
3781 *
3782 * The block is called the length of the receiver enumerator minus one.
3783 *
3784 * The result enumerator yields the chunked elements as an array.
3785 * So +each+ method can be called as follows:
3786 *
3787 * enum.chunk_while { |elt_before, elt_after| bool }.each { |ary| ... }
3788 *
3789 * Other methods of the Enumerator class and Enumerable module,
3790 * such as +to_a+, +map+, etc., are also usable.
3791 *
3792 * For example, one-by-one increasing subsequence can be chunked as follows:
3793 *
3794 * a = [1,2,4,9,10,11,12,15,16,19,20,21]
3795 * b = a.chunk_while {|i, j| i+1 == j }
3796 * p b.to_a #=> [[1, 2], [4], [9, 10, 11, 12], [15, 16], [19, 20, 21]]
3797 * c = b.map {|a| a.length < 3 ? a : "#{a.first}-#{a.last}" }
3798 * p c #=> [[1, 2], [4], "9-12", [15, 16], "19-21"]
3799 * d = c.join(",")
3800 * p d #=> "1,2,4,9-12,15,16,19-21"
3801 *
3802 * Increasing (non-decreasing) subsequence can be chunked as follows:
3803 *
3804 * a = [0, 9, 2, 2, 3, 2, 7, 5, 9, 5]
3805 * p a.chunk_while {|i, j| i <= j }.to_a
3806 * #=> [[0, 9], [2, 2, 3], [2, 7], [5, 9], [5]]
3807 *
3808 * Adjacent evens and odds can be chunked as follows:
3809 * (Enumerable#chunk is another way to do it.)
3810 *
3811 * a = [7, 5, 9, 2, 0, 7, 9, 4, 2, 0]
3812 * p a.chunk_while {|i, j| i.even? == j.even? }.to_a
3813 * #=> [[7, 5, 9], [2, 0], [7, 9], [4, 2, 0]]
3814 *
3815 * Enumerable#slice_when does the same, except splitting when the block
3816 * returns <code>true</code> instead of <code>false</code>.
3817 */
3818static VALUE
3819enum_chunk_while(VALUE enumerable)
3820{
3822 VALUE pred;
3823
3824 pred = rb_block_proc();
3825
3827 rb_ivar_set(enumerator, rb_intern("slicewhen_enum"), enumerable);
3828 rb_ivar_set(enumerator, rb_intern("slicewhen_pred"), pred);
3829 rb_ivar_set(enumerator, rb_intern("slicewhen_inverted"), Qtrue);
3830
3831 rb_block_call(enumerator, idInitialize, 0, 0, slicewhen_i, enumerator);
3832 return enumerator;
3833}
3834
3837 long n;
3838 double f, c;
3841};
3842
3843static void
3844sum_iter(VALUE i, struct enum_sum_memo *memo)
3845{
3846 const int unused = (assert(memo != NULL), 0);
3847
3848 long n = memo->n;
3849 VALUE v = memo->v;
3850 VALUE r = memo->r;
3851 double f = memo->f;
3852 double c = memo->c;
3853
3854 if (memo->block_given)
3855 i = rb_yield(i);
3856
3857 if (memo->float_value)
3858 goto float_value;
3859
3861 if (FIXNUM_P(i)) {
3862 n += FIX2LONG(i); /* should not overflow long type */
3863 if (!FIXABLE(n)) {
3864 v = rb_big_plus(LONG2NUM(n), v);
3865 n = 0;
3866 }
3867 }
3868 else if (RB_TYPE_P(i, T_BIGNUM))
3869 v = rb_big_plus(i, v);
3870 else if (RB_TYPE_P(i, T_RATIONAL)) {
3871 if (r == Qundef)
3872 r = i;
3873 else
3874 r = rb_rational_plus(r, i);
3875 }
3876 else {
3877 if (n != 0) {
3878 v = rb_fix_plus(LONG2FIX(n), v);
3879 n = 0;
3880 }
3881 if (r != Qundef) {
3882 /* r can be an Integer when mathn is loaded */
3883 if (FIXNUM_P(r))
3884 v = rb_fix_plus(r, v);
3885 else if (RB_TYPE_P(r, T_BIGNUM))
3886 v = rb_big_plus(r, v);
3887 else
3888 v = rb_rational_plus(r, v);
3889 r = Qundef;
3890 }
3891 if (RB_FLOAT_TYPE_P(i)) {
3892 f = NUM2DBL(v);
3893 c = 0.0;
3894 memo->float_value = 1;
3895 goto float_value;
3896 }
3897 else
3898 goto some_value;
3899 }
3900 }
3901 else if (RB_FLOAT_TYPE_P(v)) {
3902 /*
3903 * Kahan-Babuska balancing compensated summation algorithm
3904 * See http://link.springer.com/article/10.1007/s00607-005-0139-x
3905 */
3906 double x, t;
3907
3908 float_value:
3909 if (RB_FLOAT_TYPE_P(i))
3910 x = RFLOAT_VALUE(i);
3911 else if (FIXNUM_P(i))
3912 x = FIX2LONG(i);
3913 else if (RB_TYPE_P(i, T_BIGNUM))
3914 x = rb_big2dbl(i);
3915 else if (RB_TYPE_P(i, T_RATIONAL))
3916 x = rb_num2dbl(i);
3917 else {
3918 v = DBL2NUM(f);
3919 memo->float_value = 0;
3920 goto some_value;
3921 }
3922
3923 if (isnan(f)) return;
3924 if (isnan(x)) {
3925 memo->v = i;
3926 memo->f = x;
3927 return;
3928 }
3929 if (isinf(x)) {
3930 if (isinf(f) && signbit(x) != signbit(f)) {
3931 memo->f = NAN;
3932 memo->v = DBL2NUM(f);
3933 }
3934 else {
3935 memo->f = x;
3936 memo->v = i;
3937 }
3938 return;
3939 }
3940 if (isinf(f)) return;
3941
3942 t = f + x;
3943 if (fabs(f) >= fabs(x))
3944 c += ((f - t) + x);
3945 else
3946 c += ((x - t) + f);
3947 f = t;
3948 }
3949 else {
3950 some_value:
3951 v = rb_funcallv(v, idPLUS, 1, &i);
3952 }
3953
3954 memo->v = v;
3955 memo->n = n;
3956 memo->r = r;
3957 memo->f = f;
3958 memo->c = c;
3959 (void)unused;
3960}
3961
3962static VALUE
3963enum_sum_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
3964{
3966 sum_iter(i, (struct enum_sum_memo *) args);
3967 return Qnil;
3968}
3969
3970static int
3971hash_sum_i(VALUE key, VALUE value, VALUE arg)
3972{
3973 sum_iter(rb_assoc_new(key, value), (struct enum_sum_memo *) arg);
3974 return ST_CONTINUE;
3975}
3976
3977static void
3978hash_sum(VALUE hash, struct enum_sum_memo *memo)
3979{
3980 assert(RB_TYPE_P(hash, T_HASH));
3981 assert(memo != NULL);
3982
3983 rb_hash_foreach(hash, hash_sum_i, (VALUE)memo);
3984}
3985
3986static VALUE
3987int_range_sum(VALUE beg, VALUE end, int excl, VALUE init)
3988{
3989 if (excl) {
3990 if (FIXNUM_P(end))
3991 end = LONG2FIX(FIX2LONG(end) - 1);
3992 else
3993 end = rb_big_minus(end, LONG2FIX(1));
3994 }
3995
3996 if (rb_int_ge(end, beg)) {
3997 VALUE a;
3998 a = rb_int_plus(rb_int_minus(end, beg), LONG2FIX(1));
3999 a = rb_int_mul(a, rb_int_plus(end, beg));
4000 a = rb_int_idiv(a, LONG2FIX(2));
4001 return rb_int_plus(init, a);
4002 }
4003
4004 return init;
4005}
4006
4007/*
4008 * call-seq:
4009 * enum.sum(init=0) -> number
4010 * enum.sum(init=0) {|e| expr } -> number
4011 *
4012 * Returns the sum of elements in an Enumerable.
4013 *
4014 * If a block is given, the block is applied to each element
4015 * before addition.
4016 *
4017 * If <i>enum</i> is empty, it returns <i>init</i>.
4018 *
4019 * For example:
4020 *
4021 * { 1 => 10, 2 => 20 }.sum {|k, v| k * v } #=> 50
4022 * (1..10).sum #=> 55
4023 * (1..10).sum {|v| v * 2 } #=> 110
4024 * ('a'..'z').sum #=> TypeError
4025 *
4026 * This method can be used for non-numeric objects by
4027 * explicit <i>init</i> argument.
4028 *
4029 * { 1 => 10, 2 => 20 }.sum([]) #=> [1, 10, 2, 20]
4030 * "a\nb\nc".each_line.lazy.map(&:chomp).sum("") #=> "abc"
4031 *
4032 * If the method is applied to an Integer range without a block,
4033 * the sum is not done by iteration, but instead using Gauss's summation
4034 * formula.
4035 *
4036 * Enumerable#sum method may not respect method redefinition of "+"
4037 * methods such as Integer#+, or "each" methods such as Range#each.
4038 */
4039static VALUE
4040enum_sum(int argc, VALUE* argv, VALUE obj)
4041{
4042 struct enum_sum_memo memo;
4043 VALUE beg, end;
4044 int excl;
4045
4046 memo.v = (rb_check_arity(argc, 0, 1) == 0) ? LONG2FIX(0) : argv[0];
4048 memo.n = 0;
4049 memo.r = Qundef;
4050
4051 if ((memo.float_value = RB_FLOAT_TYPE_P(memo.v))) {
4052 memo.f = RFLOAT_VALUE(memo.v);
4053 memo.c = 0.0;
4054 }
4055 else {
4056 memo.f = 0.0;
4057 memo.c = 0.0;
4058 }
4059
4060 if (RTEST(rb_range_values(obj, &beg, &end, &excl))) {
4061 if (!memo.block_given && !memo.float_value &&
4062 (FIXNUM_P(beg) || RB_TYPE_P(beg, T_BIGNUM)) &&
4063 (FIXNUM_P(end) || RB_TYPE_P(end, T_BIGNUM))) {
4064 return int_range_sum(beg, end, excl, memo.v);
4065 }
4066 }
4067
4068 if (RB_TYPE_P(obj, T_HASH) &&
4070 hash_sum(obj, &memo);
4071 else
4072 rb_block_call(obj, id_each, 0, 0, enum_sum_i, (VALUE)&memo);
4073
4074 if (memo.float_value) {
4075 return DBL2NUM(memo.f + memo.c);
4076 }
4077 else {
4078 if (memo.n != 0)
4079 memo.v = rb_fix_plus(LONG2FIX(memo.n), memo.v);
4080 if (memo.r != Qundef) {
4081 /* r can be an Integer when mathn is loaded */
4082 if (FIXNUM_P(memo.r))
4083 memo.v = rb_fix_plus(memo.r, memo.v);
4084 else if (RB_TYPE_P(memo.r, T_BIGNUM))
4085 memo.v = rb_big_plus(memo.r, memo.v);
4086 else
4087 memo.v = rb_rational_plus(memo.r, memo.v);
4088 }
4089 return memo.v;
4090 }
4091}
4092
4093static VALUE
4094uniq_func(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash))
4095{
4097 rb_hash_add_new_element(hash, i, i);
4098 return Qnil;
4099}
4100
4101static VALUE
4102uniq_iter(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash))
4103{
4106 return Qnil;
4107}
4108
4109/*
4110 * call-seq:
4111 * enum.uniq -> new_ary
4112 * enum.uniq { |item| ... } -> new_ary
4113 *
4114 * Returns a new array by removing duplicate values in +self+.
4115 *
4116 * See also Array#uniq.
4117 */
4118
4119static VALUE
4120enum_uniq(VALUE obj)
4121{
4122 VALUE hash, ret;
4123 rb_block_call_func *const func =
4124 rb_block_given_p() ? uniq_iter : uniq_func;
4125
4126 hash = rb_obj_hide(rb_hash_new());
4127 rb_block_call(obj, id_each, 0, 0, func, hash);
4128 ret = rb_hash_values(hash);
4129 rb_hash_clear(hash);
4130 return ret;
4131}
4132
4133/*
4134 * The Enumerable mixin provides collection classes with several
4135 * traversal and searching methods, and with the ability to sort. The
4136 * class must provide a method #each, which yields
4137 * successive members of the collection. If Enumerable#max, #min, or
4138 * #sort is used, the objects in the collection must also implement a
4139 * meaningful <code><=></code> operator, as these methods rely on an
4140 * ordering between members of the collection.
4141 */
4142
4143void
4145{
4146#undef rb_intern
4147#define rb_intern(str) rb_intern_const(str)
4148
4149 rb_mEnumerable = rb_define_module("Enumerable");
4150
4151 rb_define_method(rb_mEnumerable, "to_a", enum_to_a, -1);
4152 rb_define_method(rb_mEnumerable, "entries", enum_to_a, -1);
4153 rb_define_method(rb_mEnumerable, "to_h", enum_to_h, -1);
4154
4155 rb_define_method(rb_mEnumerable, "sort", enum_sort, 0);
4156 rb_define_method(rb_mEnumerable, "sort_by", enum_sort_by, 0);
4157 rb_define_method(rb_mEnumerable, "grep", enum_grep, 1);
4158 rb_define_method(rb_mEnumerable, "grep_v", enum_grep_v, 1);
4159 rb_define_method(rb_mEnumerable, "count", enum_count, -1);
4160 rb_define_method(rb_mEnumerable, "find", enum_find, -1);
4161 rb_define_method(rb_mEnumerable, "detect", enum_find, -1);
4162 rb_define_method(rb_mEnumerable, "find_index", enum_find_index, -1);
4163 rb_define_method(rb_mEnumerable, "find_all", enum_find_all, 0);
4164 rb_define_method(rb_mEnumerable, "select", enum_find_all, 0);
4165 rb_define_method(rb_mEnumerable, "filter", enum_find_all, 0);
4166 rb_define_method(rb_mEnumerable, "filter_map", enum_filter_map, 0);
4167 rb_define_method(rb_mEnumerable, "reject", enum_reject, 0);
4168 rb_define_method(rb_mEnumerable, "collect", enum_collect, 0);
4169 rb_define_method(rb_mEnumerable, "map", enum_collect, 0);
4170 rb_define_method(rb_mEnumerable, "flat_map", enum_flat_map, 0);
4171 rb_define_method(rb_mEnumerable, "collect_concat", enum_flat_map, 0);
4172 rb_define_method(rb_mEnumerable, "inject", enum_inject, -1);
4173 rb_define_method(rb_mEnumerable, "reduce", enum_inject, -1);
4174 rb_define_method(rb_mEnumerable, "partition", enum_partition, 0);
4175 rb_define_method(rb_mEnumerable, "group_by", enum_group_by, 0);
4176 rb_define_method(rb_mEnumerable, "tally", enum_tally, 0);
4177 rb_define_method(rb_mEnumerable, "first", enum_first, -1);
4178 rb_define_method(rb_mEnumerable, "all?", enum_all, -1);
4179 rb_define_method(rb_mEnumerable, "any?", enum_any, -1);
4180 rb_define_method(rb_mEnumerable, "one?", enum_one, -1);
4181 rb_define_method(rb_mEnumerable, "none?", enum_none, -1);
4182 rb_define_method(rb_mEnumerable, "min", enum_min, -1);
4183 rb_define_method(rb_mEnumerable, "max", enum_max, -1);
4184 rb_define_method(rb_mEnumerable, "minmax", enum_minmax, 0);
4185 rb_define_method(rb_mEnumerable, "min_by", enum_min_by, -1);
4186 rb_define_method(rb_mEnumerable, "max_by", enum_max_by, -1);
4187 rb_define_method(rb_mEnumerable, "minmax_by", enum_minmax_by, 0);
4188 rb_define_method(rb_mEnumerable, "member?", enum_member, 1);
4189 rb_define_method(rb_mEnumerable, "include?", enum_member, 1);
4190 rb_define_method(rb_mEnumerable, "each_with_index", enum_each_with_index, -1);
4191 rb_define_method(rb_mEnumerable, "reverse_each", enum_reverse_each, -1);
4192 rb_define_method(rb_mEnumerable, "each_entry", enum_each_entry, -1);
4193 rb_define_method(rb_mEnumerable, "each_slice", enum_each_slice, 1);
4194 rb_define_method(rb_mEnumerable, "each_cons", enum_each_cons, 1);
4195 rb_define_method(rb_mEnumerable, "each_with_object", enum_each_with_object, 1);
4196 rb_define_method(rb_mEnumerable, "zip", enum_zip, -1);
4197 rb_define_method(rb_mEnumerable, "take", enum_take, 1);
4198 rb_define_method(rb_mEnumerable, "take_while", enum_take_while, 0);
4199 rb_define_method(rb_mEnumerable, "drop", enum_drop, 1);
4200 rb_define_method(rb_mEnumerable, "drop_while", enum_drop_while, 0);
4201 rb_define_method(rb_mEnumerable, "cycle", enum_cycle, -1);
4202 rb_define_method(rb_mEnumerable, "chunk", enum_chunk, 0);
4203 rb_define_method(rb_mEnumerable, "slice_before", enum_slice_before, -1);
4204 rb_define_method(rb_mEnumerable, "slice_after", enum_slice_after, -1);
4205 rb_define_method(rb_mEnumerable, "slice_when", enum_slice_when, 0);
4206 rb_define_method(rb_mEnumerable, "chunk_while", enum_chunk_while, 0);
4207 rb_define_method(rb_mEnumerable, "sum", enum_sum, -1);
4208 rb_define_method(rb_mEnumerable, "uniq", enum_uniq, 0);
4209
4210 id_next = rb_intern("next");
4211}
#define mul(x, y)
Definition: date_strftime.c:25
struct RIMemo * ptr
Definition: debug.c:65
#define id_size
Definition: enum.c:30
#define UPDATE_MEMO
#define COUNT_BIGNUM
Definition: enum.c:145
#define MEMO_V3_SET(m, v)
Definition: enum.c:146
VALUE rb_mEnumerable
Definition: enum.c:20
#define ENUMFUNC(name)
Definition: enum.c:1274
#define rb_cmpint(cmp, a, b)
#define SWAP(i, j)
#define MEMO_ENUM_NEW(v1)
Definition: enum.c:1276
#define id_eqq
Definition: enum.c:26
VALUE rb_nmin_run(VALUE obj, VALUE num, int by, int rev, int ary)
Definition: enum.c:1568
#define WARN_UNUSED_BLOCK(argc)
Definition: enum.c:1303
#define DEFINE_ENUMFUNCS(name)
Definition: enum.c:1278
#define SORT_BY_BUFSIZE
Definition: enum.c:1095
#define rb_intern(str)
#define id_div
Definition: enum.c:24
#define id_lshift
Definition: enum.c:28
#define ENUM_WANT_SVALUE()
Definition: enum.c:40
#define GETPTR(i)
VALUE rb_enum_values_pack(int argc, const VALUE *argv)
Definition: enum.c:33
void Init_Enumerable(void)
Definition: enum.c:4144
#define dont_recycle_block_arg(arity)
Definition: enum.c:2503
#define id_call
Definition: enum.c:29
#define id_each
Definition: enum.c:25
ID id_next
Definition: eventids1.c:76
VALUE rb_define_module(const char *)
Definition: class.c:785
int rb_block_given_p(void)
Determines if the current method is given a block.
Definition: eval.c:898
VALUE rb_cArray
Definition: array.c:27
VALUE rb_cEnumerator
Definition: enumerator.c:109
VALUE rb_eStopIteration
Definition: enumerator.c:124
VALUE rb_cInteger
Definition: ruby.h:2033
VALUE rb_block_call_func(RB_BLOCK_CALL_FUNC_ARGLIST(yielded_arg, callback_arg))
Definition: ruby.h:1968
void rb_raise(VALUE exc, const char *fmt,...)
Definition: error.c:2671
VALUE rb_rescue2(VALUE(*)(VALUE), VALUE, VALUE(*)(VALUE, VALUE), VALUE,...)
An equivalent of rescue clause.
Definition: eval.c:962
VALUE rb_eTypeError
Definition: error.c:924
VALUE rb_eRuntimeError
Definition: error.c:922
void rb_warn(const char *fmt,...)
Definition: error.c:315
VALUE rb_eArgError
Definition: error.c:925
VALUE rb_obj_alloc(VALUE)
Allocates an instance of klass.
Definition: object.c:1895
VALUE rb_obj_hide(VALUE obj)
Make the object invisible from Ruby code.
Definition: object.c:78
VALUE rb_obj_class(VALUE)
Equivalent to Object#class in Ruby.
Definition: object.c:217
double rb_num2dbl(VALUE)
Converts a Numeric object to double.
Definition: object.c:3616
VALUE rb_equal(VALUE, VALUE)
Same as Object#===, case equality.
Definition: object.c:124
const char * name
Definition: nkf.c:208
unsigned char buf[MIME_BUF_SIZE]
Definition: nkf.c:4322
#define RB_BLOCK_CALL_FUNC_ARGLIST(yielded_arg, callback_arg)
#define RARRAY_LEN(a)
VALUE rb_ary_new_from_values(long n, const VALUE *elts)
Definition: array.c:762
void rb_hash_foreach(VALUE, int(*)(VALUE, VALUE, VALUE), VALUE)
#define NULL
#define rb_funcallv(recv, mid, argc, argv)
#define NUM2DBL(x)
#define RBASIC_CLEAR_CLASS(obj)
VALUE rb_f_send(int argc, VALUE *argv, VALUE recv)
Definition: vm_eval.c:1188
VALUE rb_hash_values(VALUE hash)
Definition: hash.c:3456
#define _(args)
#define RTEST(v)
double fabs(double)
#define bp()
#define RBASIC(obj)
VALUE rb_big_minus(VALUE, VALUE)
Definition: bignum.c:5853
VALUE rb_assoc_new(VALUE, VALUE)
Definition: array.c:896
const rb_iseq_t const int const int min_argc
int rb_range_values(VALUE range, VALUE *begp, VALUE *endp, int *exclp)
Definition: range.c:1248
VALUE rb_hash_aref(VALUE, VALUE)
Definition: hash.c:2037
#define rb_yield_values(argc,...)
int rb_hash_add_new_element(VALUE hash, VALUE key, VALUE val)
Definition: hash.c:4547
#define LONG2FIX(i)
#define Qundef
double rb_big2dbl(VALUE)
Definition: bignum.c:5310
int rb_obj_respond_to(VALUE, ID, int)
Definition: vm_method.c:2197
VALUE rb_ivar_get(VALUE, ID)
Definition: variable.c:1070
const VALUE VALUE obj
VALUE rb_rational_plus(VALUE self, VALUE other)
Definition: rational.c:737
#define RSTRING_PTR(str)
#define T_BIGNUM
int rb_block_arity(void)
Definition: proc.c:1144
VALUE rb_hash_set_pair(VALUE hash, VALUE pair)
Definition: hash.c:3332
VALUE rb_block_call_kw(VALUE, ID, int, const VALUE *, rb_block_call_func_t, VALUE, int)
Definition: vm_eval.c:1484
#define NIL_P(v)
VALUE rb_check_funcall(VALUE, ID, int, const VALUE *)
Definition: vm_eval.c:505
#define numberof(array)
#define DBL2NUM(dbl)
#define signbit(__x)
#define RARRAY_PTR(a)
#define ID2SYM(x)
#define LONG_MAX
const char size_t n
#define MEMO_NEW(a, b, c)
#define SYM2ID(x)
int rb_respond_to(VALUE, ID)
Definition: vm_method.c:2207
const char const char *typedef unsigned long VALUE
VALUE rb_ary_push(VALUE, VALUE)
Definition: array.c:1195
#define rb_ary_new4
VALUE rb_sym2str(VALUE)
Definition: symbol.c:784
VALUE rb_ary_concat(VALUE, VALUE)
Definition: array.c:4069
#define RARRAY_ASET(a, i, v)
() void(cc->call !=vm_call_general)
#define isinf(__x)
uint32_t i
#define RB_FLOAT_TYPE_P(obj)
#define isnan(__x)
__inline__ const void *__restrict__ size_t len
VALUE rb_block_proc(void)
Definition: proc.c:837
VALUE rb_ary_sort_bang(VALUE)
Definition: array.c:2777
#define T_RATIONAL
#define RB_OBJ_WRITE(a, slot, b)
#define T_HASH
#define LONG2NUM(x)
#define MEMO_FOR(type, value)
#define long
#define RB_GC_GUARD(v)
#define FIX2ULONG(x)
#define PRIsVALUE
#define rb_ary_new3
#define RETURN_SIZED_ENUMERATOR(obj, argc, argv, size_fn)
VALUE rb_ary_clear(VALUE)
Definition: array.c:3862
VALUE rb_ary_tmp_new(long)
Definition: array.c:768
#define rb_funcall(recv, mid, argc,...)
VALUE rb_yield_force_blockarg(VALUE values)
Definition: vm_eval.c:1309
int VALUE v
#define rb_method_basic_definition_p(klass, mid)
VALUE rb_check_funcall_default(VALUE, ID, int, const VALUE *, VALUE)
Definition: vm_eval.c:533
VALUE rb_ary_new(void)
Definition: array.c:723
#define rb_scan_args(argc, argvp, fmt,...)
#define RB_PASS_CALLED_KEYWORDS
VALUE rb_lambda_call(VALUE obj, ID mid, int argc, const VALUE *argv, rb_block_call_func_t bl_proc, int min_argc, int max_argc, VALUE data2)
Definition: vm_eval.c:1501
VALUE rb_ary_reverse(VALUE)
Definition: array.c:2544
VALUE rb_yield_values2(int n, const VALUE *argv)
Definition: vm_eval.c:1271
#define NEW_MEMO_FOR(type, value)
#define UNREACHABLE_RETURN(val)
#define CONST_ID(var, str)
VALUE rb_big_unpack(unsigned long *buf, long num_longs)
Definition: bignum.c:3223
#define RARRAY_PTR_USE(ary, ptr_name, expr)
#define RBASIC_SET_CLASS_RAW(obj, cls)
#define RFLOAT_VALUE(v)
#define TRUE
#define FALSE
VALUE rb_ary_resize(VALUE ary, long len)
expands or shrinks ary to len elements.
Definition: array.c:1955
#define MEMO_CAST(m)
unsigned int size
#define Qtrue
const rb_iseq_t const int const int const int max_argc
#define FIXNUM_MAX
VALUE rb_int_ge(VALUE x, VALUE y)
Definition: numeric.c:4297
#define NEW_CMP_OPT_MEMO(type, value)
#define MEMO_V1_SET(m, v)
VALUE rb_ary_dup(VALUE)
Definition: array.c:2238
VALUE rb_attr_get(VALUE, ID)
Definition: variable.c:1084
#define Qnil
#define Qfalse
#define T_ARRAY
#define NEW_PARTIAL_MEMO_FOR(type, value, member)
VALUE rb_int_minus(VALUE x, VALUE y)
Definition: numeric.c:3654
ID rb_check_id(volatile VALUE *)
Returns ID for the given name if it is interned already, or 0.
Definition: symbol.c:919
#define ULONG2NUM(x)
#define FIXNUM_ZERO_P(num)
#define FIXABLE(f)
#define RB_TYPE_P(obj, type)
#define INT2FIX(i)
VALUE rb_check_array_type(VALUE)
Definition: array.c:909
const VALUE * argv
VALUE rb_fix_plus(VALUE x, VALUE y)
Definition: numeric.c:3609
#define SYMBOL_P(x)
#define MEMO_V2_SET(m, v)
__inline__ int
VALUE rb_ary_shift(VALUE)
Definition: array.c:1294
VALUE rb_ivar_set(VALUE, ID, VALUE)
Definition: variable.c:1300
#define FIXNUM_P(f)
#define CLASS_OF(v)
#define RETURN_ENUMERATOR(obj, argc, argv)
#define RB_INTEGER_TYPE_P(obj)
VALUE rb_hash_aset(VALUE, VALUE, VALUE)
Definition: hash.c:2852
VALUE rb_block_call(VALUE, ID, int, const VALUE *, rb_block_call_func_t, VALUE)
Definition: vm_eval.c:1470
#define assert
#define rb_check_arity
VALUE rb_int_idiv(VALUE x, VALUE y)
Definition: numeric.c:3848
unsigned long ID
VALUE rb_yield(VALUE)
Definition: vm_eval.c:1237
const char *void rb_warning(const char *,...) __attribute__((format(printf
VALUE ID id
#define FIX2LONG(x)
VALUE rb_hash_clear(VALUE)
Definition: hash.c:2769
#define RBASIC_SET_CLASS(obj, cls)
VALUE rb_big_plus(VALUE, VALUE)
Definition: bignum.c:5824
#define NUM2LONG(x)
void rb_define_method(VALUE, const char *, VALUE(*)(), int)
#define rb_ary_new2
#define RARRAY_AREF(a, i)
VALUE rb_hash_new(void)
Definition: hash.c:1523
#define HUGE_VAL
int rb_block_min_max_arity(int *max)
Definition: proc.c:1178
void rb_ary_store(VALUE, long, VALUE)
Definition: array.c:1079
VALUE rb_funcallv_public(VALUE, ID, int, const VALUE *)
Calls a method.
Definition: vm_eval.c:980
VALUE rb_int_plus(VALUE x, VALUE y)
Definition: numeric.c:3615
#define OPTIMIZED_CMP(a, b, data)
VALUE rb_int_succ(VALUE num)
Definition: numeric.c:3326
VALUE rb_int_mul(VALUE x, VALUE y)
Definition: numeric.c:3704
unsigned long VALUE
Definition: ruby.h:102
#define f
const VALUE v2
void(* func)(void)
const VALUE v1
const VALUE value
union MEMO::@33 u3
VALUE categorize
Definition: enum.c:3093
VALUE yielder
Definition: enum.c:3096
VALUE prev_value
Definition: enum.c:3094
VALUE prev_elts
Definition: enum.c:3095
VALUE v
Definition: enum.c:3836
double f
Definition: enum.c:3838
VALUE r
Definition: enum.c:3836
long n
Definition: enum.c:3837
int block_given
Definition: enum.c:3839
int float_value
Definition: enum.c:3840
double c
Definition: enum.c:3838
Definition: enum.c:1800
VALUE max
Definition: enum.c:1801
struct cmp_opt_data cmp_opt
Definition: enum.c:1802
Definition: enum.c:1707
struct cmp_opt_data cmp_opt
Definition: enum.c:1709
VALUE min
Definition: enum.c:1708
VALUE max
Definition: enum.c:2217
VALUE max_bv
Definition: enum.c:2215
VALUE min
Definition: enum.c:2216
VALUE min_bv
Definition: enum.c:2214
VALUE last_bv
Definition: enum.c:2218
VALUE last
Definition: enum.c:2219
VALUE last
Definition: enum.c:1895
VALUE min
Definition: enum.c:1893
VALUE max
Definition: enum.c:1894
struct cmp_opt_data cmp_opt
Definition: enum.c:1896
long bufmax
Definition: enum.c:1409
long n
Definition: enum.c:1408
int(* cmpfunc)(const void *, const void *, void *)
Definition: enum.c:1413
VALUE buf
Definition: enum.c:1411
int rev
Definition: enum.c:1414
VALUE limit
Definition: enum.c:1412
int by
Definition: enum.c:1415
long curlen
Definition: enum.c:1410
VALUE prev_elts
Definition: enum.c:3499
VALUE pat
Definition: enum.c:3497
VALUE yielder
Definition: enum.c:3500
VALUE pred
Definition: enum.c:3498
VALUE yielder
Definition: enum.c:3279
VALUE prev_elts
Definition: enum.c:3278
VALUE sep_pat
Definition: enum.c:3277
VALUE sep_pred
Definition: enum.c:3276
int inverted
Definition: enum.c:3624
VALUE prev_elt
Definition: enum.c:3621
VALUE prev_elts
Definition: enum.c:3622
VALUE pred
Definition: enum.c:3620
VALUE yielder
Definition: enum.c:3623
const VALUE ary
Definition: enum.c:1097
const VALUE buf
Definition: enum.c:1098
long n
Definition: enum.c:1099
#define STATIC_ID2SYM(id)
Definition: symbol.h:18
void ruby_qsort(void *, const size_t, const size_t, int(*)(const void *, const void *, void *), void *)
void rb_iter_break(void)
Definition: vm.c:1546
MJIT_STATIC void rb_error_arity(int argc, int min, int max)