{ "type": "module", "source": "doc/api/crypto.md", "modules": [ { "textRaw": "Crypto", "name": "crypto", "introduced_in": "v0.3.6", "stability": 2, "stabilityText": "Stable", "desc": "

The crypto module provides cryptographic functionality that includes a set of\nwrappers for OpenSSL's hash, HMAC, cipher, decipher, sign, and verify functions.

\n

Use require('crypto') to access this module.

\n
const crypto = require('crypto');\n\nconst secret = 'abcdefg';\nconst hash = crypto.createHmac('sha256', secret)\n                   .update('I love cupcakes')\n                   .digest('hex');\nconsole.log(hash);\n// Prints:\n//   c0fa1bc00531bd78ef38c628449c5102aeabd49b5dc3a2a516ea6ea959d6658e\n
", "modules": [ { "textRaw": "Determining if crypto support is unavailable", "name": "determining_if_crypto_support_is_unavailable", "desc": "

It is possible for Node.js to be built without including support for the\ncrypto module. In such cases, calling require('crypto') will result in an\nerror being thrown.

\n
let crypto;\ntry {\n  crypto = require('crypto');\n} catch (err) {\n  console.log('crypto support is disabled!');\n}\n
", "type": "module", "displayName": "Determining if crypto support is unavailable" }, { "textRaw": "`crypto` module methods and properties", "name": "`crypto`_module_methods_and_properties", "properties": [ { "textRaw": "`constants` Returns: {Object} An object containing commonly used constants for crypto and security related operations. The specific constants currently defined are described in [Crypto Constants][].", "type": "Object", "name": "return", "meta": { "added": [ "v6.3.0" ], "changes": [] }, "desc": "An object containing commonly used constants for crypto and security related operations. The specific constants currently defined are described in [Crypto Constants][]." }, { "textRaw": "crypto.DEFAULT_ENCODING", "name": "DEFAULT_ENCODING", "meta": { "added": [ "v0.9.3" ], "deprecated": [ "v10.0.0" ], "changes": [] }, "stability": 0, "stabilityText": "Deprecated", "desc": "

The default encoding to use for functions that can take either strings\nor buffers. The default value is 'buffer', which makes methods\ndefault to Buffer objects.

\n

The crypto.DEFAULT_ENCODING mechanism is provided for backwards compatibility\nwith legacy programs that expect 'latin1' to be the default encoding.

\n

New applications should expect the default to be 'buffer'.

\n

This property is deprecated.

" }, { "textRaw": "crypto.fips", "name": "fips", "meta": { "added": [ "v6.0.0" ], "deprecated": [ "v10.0.0" ], "changes": [] }, "stability": 0, "stabilityText": "Deprecated", "desc": "

Property for checking and controlling whether a FIPS compliant crypto provider\nis currently in use. Setting to true requires a FIPS build of Node.js.

\n

This property is deprecated. Please use crypto.setFips() and\ncrypto.getFips() instead.

" } ], "methods": [ { "textRaw": "crypto.createCipher(algorithm, password[, options])", "type": "method", "name": "createCipher", "meta": { "added": [ "v0.1.94" ], "deprecated": [ "v10.0.0" ], "changes": [ { "version": "v10.10.0", "pr-url": "https://github.com/nodejs/node/pull/21447", "description": "Ciphers in OCB mode are now supported." }, { "version": "v10.2.0", "pr-url": "https://github.com/nodejs/node/pull/20235", "description": "The `authTagLength` option can now be used to produce shorter authentication tags in GCM mode and defaults to 16 bytes." } ] }, "stability": 0, "stabilityText": "Deprecated: Use [`crypto.createCipheriv()`][] instead.", "signatures": [ { "return": { "textRaw": "Returns: {Cipher}", "name": "return", "type": "Cipher" }, "params": [ { "textRaw": "`algorithm` {string}", "name": "algorithm", "type": "string" }, { "textRaw": "`password` {string | Buffer | TypedArray | DataView}", "name": "password", "type": "string | Buffer | TypedArray | DataView" }, { "textRaw": "`options` {Object} [`stream.transform` options][]", "name": "options", "type": "Object", "desc": "[`stream.transform` options][]", "optional": true } ] } ], "desc": "

Creates and returns a Cipher object that uses the given algorithm and\npassword.

\n

The options argument controls stream behavior and is optional except when a\ncipher in CCM or OCB mode is used (e.g. 'aes-128-ccm'). In that case, the\nauthTagLength option is required and specifies the length of the\nauthentication tag in bytes, see CCM mode. In GCM mode, the authTagLength\noption is not required but can be used to set the length of the authentication\ntag that will be returned by getAuthTag() and defaults to 16 bytes.

\n

The algorithm is dependent on OpenSSL, examples are 'aes192', etc. On\nrecent OpenSSL releases, openssl list -cipher-algorithms\n(openssl list-cipher-algorithms for older versions of OpenSSL) will\ndisplay the available cipher algorithms.

\n

The password is used to derive the cipher key and initialization vector (IV).\nThe value must be either a 'latin1' encoded string, a Buffer, a\nTypedArray, or a DataView.

\n

The implementation of crypto.createCipher() derives keys using the OpenSSL\nfunction EVP_BytesToKey with the digest algorithm set to MD5, one\niteration, and no salt. The lack of salt allows dictionary attacks as the same\npassword always creates the same key. The low iteration count and\nnon-cryptographically secure hash algorithm allow passwords to be tested very\nrapidly.

\n

In line with OpenSSL's recommendation to use a more modern algorithm instead of\nEVP_BytesToKey it is recommended that developers derive a key and IV on\ntheir own using crypto.scrypt() and to use crypto.createCipheriv()\nto create the Cipher object. Users should not use ciphers with counter mode\n(e.g. CTR, GCM, or CCM) in crypto.createCipher(). A warning is emitted when\nthey are used in order to avoid the risk of IV reuse that causes\nvulnerabilities. For the case when IV is reused in GCM, see Nonce-Disrespecting\nAdversaries for details.

" }, { "textRaw": "crypto.createCipheriv(algorithm, key, iv[, options])", "type": "method", "name": "createCipheriv", "meta": { "added": [ "v0.1.94" ], "changes": [ { "version": "v10.17.0", "pr-url": "https://github.com/nodejs/node/pull/24081", "description": "The cipher `chacha20-poly1305` is now supported." }, { "version": "v10.10.0", "pr-url": "https://github.com/nodejs/node/pull/21447", "description": "Ciphers in OCB mode are now supported." }, { "version": "v10.2.0", "pr-url": "https://github.com/nodejs/node/pull/20235", "description": "The `authTagLength` option can now be used to produce shorter authentication tags in GCM mode and defaults to 16 bytes." }, { "version": "v9.9.0", "pr-url": "https://github.com/nodejs/node/pull/18644", "description": "The `iv` parameter may now be `null` for ciphers which do not need an initialization vector." } ] }, "signatures": [ { "return": { "textRaw": "Returns: {Cipher}", "name": "return", "type": "Cipher" }, "params": [ { "textRaw": "`algorithm` {string}", "name": "algorithm", "type": "string" }, { "textRaw": "`key` {string | Buffer | TypedArray | DataView}", "name": "key", "type": "string | Buffer | TypedArray | DataView" }, { "textRaw": "`iv` {string | Buffer | TypedArray | DataView}", "name": "iv", "type": "string | Buffer | TypedArray | DataView" }, { "textRaw": "`options` {Object} [`stream.transform` options][]", "name": "options", "type": "Object", "desc": "[`stream.transform` options][]", "optional": true } ] } ], "desc": "

Creates and returns a Cipher object, with the given algorithm, key and\ninitialization vector (iv).

\n

The options argument controls stream behavior and is optional except when a\ncipher in CCM or OCB mode is used (e.g. 'aes-128-ccm'). In that case, the\nauthTagLength option is required and specifies the length of the\nauthentication tag in bytes, see CCM mode. In GCM mode, the authTagLength\noption is not required but can be used to set the length of the authentication\ntag that will be returned by getAuthTag() and defaults to 16 bytes.

\n

The algorithm is dependent on OpenSSL, examples are 'aes192', etc. On\nrecent OpenSSL releases, openssl list -cipher-algorithms\n(openssl list-cipher-algorithms for older versions of OpenSSL) will\ndisplay the available cipher algorithms.

\n

The key is the raw key used by the algorithm and iv is an\ninitialization vector. Both arguments must be 'utf8' encoded strings,\nBuffers, TypedArray, or DataViews. If the cipher does not need\nan initialization vector, iv may be null.

\n

Initialization vectors should be unpredictable and unique; ideally, they will be\ncryptographically random. They do not have to be secret: IVs are typically just\nadded to ciphertext messages unencrypted. It may sound contradictory that\nsomething has to be unpredictable and unique, but does not have to be secret;\nit is important to remember that an attacker must not be able to predict ahead\nof time what a given IV will be.

" }, { "textRaw": "crypto.createCredentials(details)", "type": "method", "name": "createCredentials", "meta": { "added": [ "v0.1.92" ], "deprecated": [ "v0.11.13" ], "changes": [] }, "stability": 0, "stabilityText": "Deprecated: Use [`tls.createSecureContext()`][] instead.", "signatures": [ { "return": { "textRaw": "Returns: {tls.SecureContext}", "name": "return", "type": "tls.SecureContext" }, "params": [ { "textRaw": "`details` {Object} Identical to [`tls.createSecureContext()`][].", "name": "details", "type": "Object", "desc": "Identical to [`tls.createSecureContext()`][]." } ] } ], "desc": "

The crypto.createCredentials() method is a deprecated function for creating\nand returning a tls.SecureContext. It should not be used. Replace it with\ntls.createSecureContext() which has the exact same arguments and return\nvalue.

\n

Returns a tls.SecureContext, as-if tls.createSecureContext() had been\ncalled.

" }, { "textRaw": "crypto.createDecipher(algorithm, password[, options])", "type": "method", "name": "createDecipher", "meta": { "added": [ "v0.1.94" ], "deprecated": [ "v10.0.0" ], "changes": [ { "version": "v10.10.0", "pr-url": "https://github.com/nodejs/node/pull/21447", "description": "Ciphers in OCB mode are now supported." } ] }, "stability": 0, "stabilityText": "Deprecated: Use [`crypto.createDecipheriv()`][] instead.", "signatures": [ { "return": { "textRaw": "Returns: {Decipher}", "name": "return", "type": "Decipher" }, "params": [ { "textRaw": "`algorithm` {string}", "name": "algorithm", "type": "string" }, { "textRaw": "`password` {string | Buffer | TypedArray | DataView}", "name": "password", "type": "string | Buffer | TypedArray | DataView" }, { "textRaw": "`options` {Object} [`stream.transform` options][]", "name": "options", "type": "Object", "desc": "[`stream.transform` options][]", "optional": true } ] } ], "desc": "

Creates and returns a Decipher object that uses the given algorithm and\npassword (key).

\n

The options argument controls stream behavior and is optional except when a\ncipher in CCM or OCB mode is used (e.g. 'aes-128-ccm'). In that case, the\nauthTagLength option is required and specifies the length of the\nauthentication tag in bytes, see CCM mode.

\n

The implementation of crypto.createDecipher() derives keys using the OpenSSL\nfunction EVP_BytesToKey with the digest algorithm set to MD5, one\niteration, and no salt. The lack of salt allows dictionary attacks as the same\npassword always creates the same key. The low iteration count and\nnon-cryptographically secure hash algorithm allow passwords to be tested very\nrapidly.

\n

In line with OpenSSL's recommendation to use a more modern algorithm instead of\nEVP_BytesToKey it is recommended that developers derive a key and IV on\ntheir own using crypto.scrypt() and to use crypto.createDecipheriv()\nto create the Decipher object.

" }, { "textRaw": "crypto.createDecipheriv(algorithm, key, iv[, options])", "type": "method", "name": "createDecipheriv", "meta": { "added": [ "v0.1.94" ], "changes": [ { "version": "v10.17.0", "pr-url": "https://github.com/nodejs/node/pull/24081", "description": "The cipher `chacha20-poly1305` is now supported." }, { "version": "v10.10.0", "pr-url": "https://github.com/nodejs/node/pull/21447", "description": "Ciphers in OCB mode are now supported." }, { "version": "v10.2.0", "pr-url": "https://github.com/nodejs/node/pull/20039", "description": "The `authTagLength` option can now be used to restrict accepted GCM authentication tag lengths." }, { "version": "v9.9.0", "pr-url": "https://github.com/nodejs/node/pull/18644", "description": "The `iv` parameter may now be `null` for ciphers which do not need an initialization vector." } ] }, "signatures": [ { "return": { "textRaw": "Returns: {Decipher}", "name": "return", "type": "Decipher" }, "params": [ { "textRaw": "`algorithm` {string}", "name": "algorithm", "type": "string" }, { "textRaw": "`key` {string | Buffer | TypedArray | DataView}", "name": "key", "type": "string | Buffer | TypedArray | DataView" }, { "textRaw": "`iv` {string | Buffer | TypedArray | DataView}", "name": "iv", "type": "string | Buffer | TypedArray | DataView" }, { "textRaw": "`options` {Object} [`stream.transform` options][]", "name": "options", "type": "Object", "desc": "[`stream.transform` options][]", "optional": true } ] } ], "desc": "

Creates and returns a Decipher object that uses the given algorithm, key\nand initialization vector (iv).

\n

The options argument controls stream behavior and is optional except when a\ncipher in CCM or OCB mode is used (e.g. 'aes-128-ccm'). In that case, the\nauthTagLength option is required and specifies the length of the\nauthentication tag in bytes, see CCM mode. In GCM mode, the authTagLength\noption is not required but can be used to restrict accepted authentication tags\nto those with the specified length.

\n

The algorithm is dependent on OpenSSL, examples are 'aes192', etc. On\nrecent OpenSSL releases, openssl list -cipher-algorithms\n(openssl list-cipher-algorithms for older versions of OpenSSL) will\ndisplay the available cipher algorithms.

\n

The key is the raw key used by the algorithm and iv is an\ninitialization vector. Both arguments must be 'utf8' encoded strings,\nBuffers, TypedArray, or DataViews. If the cipher does not need\nan initialization vector, iv may be null.

\n

Initialization vectors should be unpredictable and unique; ideally, they will be\ncryptographically random. They do not have to be secret: IVs are typically just\nadded to ciphertext messages unencrypted. It may sound contradictory that\nsomething has to be unpredictable and unique, but does not have to be secret;\nit is important to remember that an attacker must not be able to predict ahead\nof time what a given IV will be.

" }, { "textRaw": "crypto.createDiffieHellman(prime[, primeEncoding][, generator][, generatorEncoding])", "type": "method", "name": "createDiffieHellman", "meta": { "added": [ "v0.11.12" ], "changes": [ { "version": "v8.0.0", "pr-url": "https://github.com/nodejs/node/pull/12223", "description": "The `prime` argument can be any `TypedArray` or `DataView` now." }, { "version": "v8.0.0", "pr-url": "https://github.com/nodejs/node/pull/11983", "description": "The `prime` argument can be a `Uint8Array` now." }, { "version": "v6.0.0", "pr-url": "https://github.com/nodejs/node/pull/5522", "description": "The default for the encoding parameters changed from `binary` to `utf8`." } ] }, "signatures": [ { "return": { "textRaw": "Returns: {DiffieHellman}", "name": "return", "type": "DiffieHellman" }, "params": [ { "textRaw": "`prime` {string | Buffer | TypedArray | DataView}", "name": "prime", "type": "string | Buffer | TypedArray | DataView" }, { "textRaw": "`primeEncoding` {string} The [encoding][] of the `prime` string.", "name": "primeEncoding", "type": "string", "desc": "The [encoding][] of the `prime` string.", "optional": true }, { "textRaw": "`generator` {number | string | Buffer | TypedArray | DataView} **Default:** `2`", "name": "generator", "type": "number | string | Buffer | TypedArray | DataView", "default": "`2`", "optional": true }, { "textRaw": "`generatorEncoding` {string} The [encoding][] of the `generator` string.", "name": "generatorEncoding", "type": "string", "desc": "The [encoding][] of the `generator` string.", "optional": true } ] } ], "desc": "

Creates a DiffieHellman key exchange object using the supplied prime and an\noptional specific generator.

\n

The generator argument can be a number, string, or Buffer. If\ngenerator is not specified, the value 2 is used.

\n

If primeEncoding is specified, prime is expected to be a string; otherwise\na Buffer, TypedArray, or DataView is expected.

\n

If generatorEncoding is specified, generator is expected to be a string;\notherwise a number, Buffer, TypedArray, or DataView is expected.

" }, { "textRaw": "crypto.createDiffieHellman(primeLength[, generator])", "type": "method", "name": "createDiffieHellman", "meta": { "added": [ "v0.5.0" ], "changes": [] }, "signatures": [ { "return": { "textRaw": "Returns: {DiffieHellman}", "name": "return", "type": "DiffieHellman" }, "params": [ { "textRaw": "`primeLength` {number}", "name": "primeLength", "type": "number" }, { "textRaw": "`generator` {number | string | Buffer | TypedArray | DataView} **Default:** `2`", "name": "generator", "type": "number | string | Buffer | TypedArray | DataView", "default": "`2`", "optional": true } ] } ], "desc": "

Creates a DiffieHellman key exchange object and generates a prime of\nprimeLength bits using an optional specific numeric generator.\nIf generator is not specified, the value 2 is used.

" }, { "textRaw": "crypto.createECDH(curveName)", "type": "method", "name": "createECDH", "meta": { "added": [ "v0.11.14" ], "changes": [] }, "signatures": [ { "return": { "textRaw": "Returns: {ECDH}", "name": "return", "type": "ECDH" }, "params": [ { "textRaw": "`curveName` {string}", "name": "curveName", "type": "string" } ] } ], "desc": "

Creates an Elliptic Curve Diffie-Hellman (ECDH) key exchange object using a\npredefined curve specified by the curveName string. Use\ncrypto.getCurves() to obtain a list of available curve names. On recent\nOpenSSL releases, openssl ecparam -list_curves will also display the name\nand description of each available elliptic curve.

" }, { "textRaw": "crypto.createHash(algorithm[, options])", "type": "method", "name": "createHash", "meta": { "added": [ "v0.1.92" ], "changes": [] }, "signatures": [ { "return": { "textRaw": "Returns: {Hash}", "name": "return", "type": "Hash" }, "params": [ { "textRaw": "`algorithm` {string}", "name": "algorithm", "type": "string" }, { "textRaw": "`options` {Object} [`stream.transform` options][]", "name": "options", "type": "Object", "desc": "[`stream.transform` options][]", "optional": true } ] } ], "desc": "

Creates and returns a Hash object that can be used to generate hash digests\nusing the given algorithm. Optional options argument controls stream\nbehavior.

\n

The algorithm is dependent on the available algorithms supported by the\nversion of OpenSSL on the platform. Examples are 'sha256', 'sha512', etc.\nOn recent releases of OpenSSL, openssl list -digest-algorithms\n(openssl list-message-digest-algorithms for older versions of OpenSSL) will\ndisplay the available digest algorithms.

\n

Example: generating the sha256 sum of a file

\n
const filename = process.argv[2];\nconst crypto = require('crypto');\nconst fs = require('fs');\n\nconst hash = crypto.createHash('sha256');\n\nconst input = fs.createReadStream(filename);\ninput.on('readable', () => {\n  // Only one element is going to be produced by the\n  // hash stream.\n  const data = input.read();\n  if (data)\n    hash.update(data);\n  else {\n    console.log(`${hash.digest('hex')} ${filename}`);\n  }\n});\n
" }, { "textRaw": "crypto.createHmac(algorithm, key[, options])", "type": "method", "name": "createHmac", "meta": { "added": [ "v0.1.94" ], "changes": [] }, "signatures": [ { "return": { "textRaw": "Returns: {Hmac}", "name": "return", "type": "Hmac" }, "params": [ { "textRaw": "`algorithm` {string}", "name": "algorithm", "type": "string" }, { "textRaw": "`key` {string | Buffer | TypedArray | DataView}", "name": "key", "type": "string | Buffer | TypedArray | DataView" }, { "textRaw": "`options` {Object} [`stream.transform` options][]", "name": "options", "type": "Object", "desc": "[`stream.transform` options][]", "optional": true } ] } ], "desc": "

Creates and returns an Hmac object that uses the given algorithm and key.\nOptional options argument controls stream behavior.

\n

The algorithm is dependent on the available algorithms supported by the\nversion of OpenSSL on the platform. Examples are 'sha256', 'sha512', etc.\nOn recent releases of OpenSSL, openssl list -digest-algorithms\n(openssl list-message-digest-algorithms for older versions of OpenSSL) will\ndisplay the available digest algorithms.

\n

The key is the HMAC key used to generate the cryptographic HMAC hash.

\n

Example: generating the sha256 HMAC of a file

\n
const filename = process.argv[2];\nconst crypto = require('crypto');\nconst fs = require('fs');\n\nconst hmac = crypto.createHmac('sha256', 'a secret');\n\nconst input = fs.createReadStream(filename);\ninput.on('readable', () => {\n  // Only one element is going to be produced by the\n  // hash stream.\n  const data = input.read();\n  if (data)\n    hmac.update(data);\n  else {\n    console.log(`${hmac.digest('hex')} ${filename}`);\n  }\n});\n
" }, { "textRaw": "crypto.createSign(algorithm[, options])", "type": "method", "name": "createSign", "meta": { "added": [ "v0.1.92" ], "changes": [] }, "signatures": [ { "return": { "textRaw": "Returns: {Sign}", "name": "return", "type": "Sign" }, "params": [ { "textRaw": "`algorithm` {string}", "name": "algorithm", "type": "string" }, { "textRaw": "`options` {Object} [`stream.Writable` options][]", "name": "options", "type": "Object", "desc": "[`stream.Writable` options][]", "optional": true } ] } ], "desc": "

Creates and returns a Sign object that uses the given algorithm.\nUse crypto.getHashes() to obtain an array of names of the available\nsigning algorithms. Optional options argument controls the\nstream.Writable behavior.

" }, { "textRaw": "crypto.createVerify(algorithm[, options])", "type": "method", "name": "createVerify", "meta": { "added": [ "v0.1.92" ], "changes": [] }, "signatures": [ { "return": { "textRaw": "Returns: {Verify}", "name": "return", "type": "Verify" }, "params": [ { "textRaw": "`algorithm` {string}", "name": "algorithm", "type": "string" }, { "textRaw": "`options` {Object} [`stream.Writable` options][]", "name": "options", "type": "Object", "desc": "[`stream.Writable` options][]", "optional": true } ] } ], "desc": "

Creates and returns a Verify object that uses the given algorithm.\nUse crypto.getHashes() to obtain an array of names of the available\nsigning algorithms. Optional options argument controls the\nstream.Writable behavior.

" }, { "textRaw": "crypto.generateKeyPair(type, options, callback)", "type": "method", "name": "generateKeyPair", "meta": { "added": [ "v10.12.0" ], "changes": [] }, "signatures": [ { "params": [ { "textRaw": "`type`: {string} Must be `'rsa'`, `'dsa'` or `'ec'`.", "name": "type", "type": "string", "desc": "Must be `'rsa'`, `'dsa'` or `'ec'`." }, { "textRaw": "`options`: {Object}", "name": "options", "type": "Object", "options": [ { "textRaw": "`modulusLength`: {number} Key size in bits (RSA, DSA).", "name": "modulusLength", "type": "number", "desc": "Key size in bits (RSA, DSA)." }, { "textRaw": "`publicExponent`: {number} Public exponent (RSA). **Default:** `0x10001`.", "name": "publicExponent", "type": "number", "default": "`0x10001`", "desc": "Public exponent (RSA)." }, { "textRaw": "`divisorLength`: {number} Size of `q` in bits (DSA).", "name": "divisorLength", "type": "number", "desc": "Size of `q` in bits (DSA)." }, { "textRaw": "`namedCurve`: {string} Name of the curve to use (EC).", "name": "namedCurve", "type": "string", "desc": "Name of the curve to use (EC)." }, { "textRaw": "`publicKeyEncoding`: {Object}", "name": "publicKeyEncoding", "type": "Object", "options": [ { "textRaw": "`type`: {string} Must be one of `'pkcs1'` (RSA only) or `'spki'`.", "name": "type", "type": "string", "desc": "Must be one of `'pkcs1'` (RSA only) or `'spki'`." }, { "textRaw": "`format`: {string} Must be `'pem'` or `'der'`.", "name": "format", "type": "string", "desc": "Must be `'pem'` or `'der'`." } ] }, { "textRaw": "`privateKeyEncoding`: {Object}", "name": "privateKeyEncoding", "type": "Object", "options": [ { "textRaw": "`type`: {string} Must be one of `'pkcs1'` (RSA only), `'pkcs8'` or `'sec1'` (EC only).", "name": "type", "type": "string", "desc": "Must be one of `'pkcs1'` (RSA only), `'pkcs8'` or `'sec1'` (EC only)." }, { "textRaw": "`format`: {string} Must be `'pem'` or `'der'`.", "name": "format", "type": "string", "desc": "Must be `'pem'` or `'der'`." }, { "textRaw": "`cipher`: {string} If specified, the private key will be encrypted with the given `cipher` and `passphrase` using PKCS#5 v2.0 password based encryption.", "name": "cipher", "type": "string", "desc": "If specified, the private key will be encrypted with the given `cipher` and `passphrase` using PKCS#5 v2.0 password based encryption." }, { "textRaw": "`passphrase`: {string} The passphrase to use for encryption, see `cipher`.", "name": "passphrase", "type": "string", "desc": "The passphrase to use for encryption, see `cipher`." } ] } ] }, { "textRaw": "`callback`: {Function}", "name": "callback", "type": "Function", "options": [ { "textRaw": "`err`: {Error}", "name": "err", "type": "Error" }, { "textRaw": "`publicKey`: {string|Buffer}", "name": "publicKey", "type": "string|Buffer" }, { "textRaw": "`privateKey`: {string|Buffer}", "name": "privateKey", "type": "string|Buffer" } ] } ] } ], "desc": "

Generates a new asymmetric key pair of the given type. Only RSA, DSA and EC\nare currently supported.

\n

It is recommended to encode public keys as 'spki' and private keys as\n'pkcs8' with encryption:

\n
const { generateKeyPair } = require('crypto');\ngenerateKeyPair('rsa', {\n  modulusLength: 4096,\n  publicKeyEncoding: {\n    type: 'spki',\n    format: 'pem'\n  },\n  privateKeyEncoding: {\n    type: 'pkcs8',\n    format: 'pem',\n    cipher: 'aes-256-cbc',\n    passphrase: 'top secret'\n  }\n}, (err, publicKey, privateKey) => {\n  // Handle errors and use the generated key pair.\n});\n
\n

On completion, callback will be called with err set to undefined and\npublicKey / privateKey representing the generated key pair. When PEM\nencoding was selected, the result will be a string, otherwise it will be a\nbuffer containing the data encoded as DER. Note that Node.js itself does not\naccept DER, it is supported for interoperability with other libraries such as\nWebCrypto only.

\n

If this method is invoked as its util.promisify()ed version, it returns\na Promise for an Object with publicKey and privateKey properties.

" }, { "textRaw": "crypto.generateKeyPairSync(type, options)", "type": "method", "name": "generateKeyPairSync", "meta": { "added": [ "v10.12.0" ], "changes": [] }, "signatures": [ { "return": { "textRaw": "Returns: {Object}", "name": "return", "type": "Object", "options": [ { "textRaw": "`publicKey`: {string|Buffer}", "name": "publicKey", "type": "string|Buffer" }, { "textRaw": "`privateKey`: {string|Buffer}", "name": "privateKey", "type": "string|Buffer" } ] }, "params": [ { "textRaw": "`type`: {string} Must be `'rsa'`, `'dsa'` or `'ec'`.", "name": "type", "type": "string", "desc": "Must be `'rsa'`, `'dsa'` or `'ec'`." }, { "textRaw": "`options`: {Object}", "name": "options", "type": "Object", "options": [ { "textRaw": "`modulusLength`: {number} Key size in bits (RSA, DSA).", "name": "modulusLength", "type": "number", "desc": "Key size in bits (RSA, DSA)." }, { "textRaw": "`publicExponent`: {number} Public exponent (RSA). **Default:** `0x10001`.", "name": "publicExponent", "type": "number", "default": "`0x10001`", "desc": "Public exponent (RSA)." }, { "textRaw": "`divisorLength`: {number} Size of `q` in bits (DSA).", "name": "divisorLength", "type": "number", "desc": "Size of `q` in bits (DSA)." }, { "textRaw": "`namedCurve`: {string} Name of the curve to use (EC).", "name": "namedCurve", "type": "string", "desc": "Name of the curve to use (EC)." }, { "textRaw": "`publicKeyEncoding`: {Object}", "name": "publicKeyEncoding", "type": "Object", "options": [ { "textRaw": "`type`: {string} Must be one of `'pkcs1'` (RSA only) or `'spki'`.", "name": "type", "type": "string", "desc": "Must be one of `'pkcs1'` (RSA only) or `'spki'`." }, { "textRaw": "`format`: {string} Must be `'pem'` or `'der'`.", "name": "format", "type": "string", "desc": "Must be `'pem'` or `'der'`." } ] }, { "textRaw": "`privateKeyEncoding`: {Object}", "name": "privateKeyEncoding", "type": "Object", "options": [ { "textRaw": "`type`: {string} Must be one of `'pkcs1'` (RSA only), `'pkcs8'` or `'sec1'` (EC only).", "name": "type", "type": "string", "desc": "Must be one of `'pkcs1'` (RSA only), `'pkcs8'` or `'sec1'` (EC only)." }, { "textRaw": "`format`: {string} Must be `'pem'` or `'der'`.", "name": "format", "type": "string", "desc": "Must be `'pem'` or `'der'`." }, { "textRaw": "`cipher`: {string} If specified, the private key will be encrypted with the given `cipher` and `passphrase` using PKCS#5 v2.0 password based encryption.", "name": "cipher", "type": "string", "desc": "If specified, the private key will be encrypted with the given `cipher` and `passphrase` using PKCS#5 v2.0 password based encryption." }, { "textRaw": "`passphrase`: {string} The passphrase to use for encryption, see `cipher`.", "name": "passphrase", "type": "string", "desc": "The passphrase to use for encryption, see `cipher`." } ] } ] } ] } ], "desc": "

Generates a new asymmetric key pair of the given type. Only RSA, DSA and EC\nare currently supported.

\n

It is recommended to encode public keys as 'spki' and private keys as\n'pkcs8' with encryption:

\n
const { generateKeyPairSync } = require('crypto');\nconst { publicKey, privateKey } = generateKeyPairSync('rsa', {\n  modulusLength: 4096,\n  publicKeyEncoding: {\n    type: 'spki',\n    format: 'pem'\n  },\n  privateKeyEncoding: {\n    type: 'pkcs8',\n    format: 'pem',\n    cipher: 'aes-256-cbc',\n    passphrase: 'top secret'\n  }\n});\n
\n

The return value { publicKey, privateKey } represents the generated key pair.\nWhen PEM encoding was selected, the respective key will be a string, otherwise\nit will be a buffer containing the data encoded as DER.

" }, { "textRaw": "crypto.getCiphers()", "type": "method", "name": "getCiphers", "meta": { "added": [ "v0.9.3" ], "changes": [] }, "signatures": [ { "return": { "textRaw": "Returns: {string[]} An array with the names of the supported cipher algorithms.", "name": "return", "type": "string[]", "desc": "An array with the names of the supported cipher algorithms." }, "params": [] } ], "desc": "
const ciphers = crypto.getCiphers();\nconsole.log(ciphers); // ['aes-128-cbc', 'aes-128-ccm', ...]\n
" }, { "textRaw": "crypto.getCurves()", "type": "method", "name": "getCurves", "meta": { "added": [ "v2.3.0" ], "changes": [] }, "signatures": [ { "return": { "textRaw": "Returns: {string[]} An array with the names of the supported elliptic curves.", "name": "return", "type": "string[]", "desc": "An array with the names of the supported elliptic curves." }, "params": [] } ], "desc": "
const curves = crypto.getCurves();\nconsole.log(curves); // ['Oakley-EC2N-3', 'Oakley-EC2N-4', ...]\n
" }, { "textRaw": "crypto.getDiffieHellman(groupName)", "type": "method", "name": "getDiffieHellman", "meta": { "added": [ "v0.7.5" ], "changes": [] }, "signatures": [ { "return": { "textRaw": "Returns: {DiffieHellman}", "name": "return", "type": "DiffieHellman" }, "params": [ { "textRaw": "`groupName` {string}", "name": "groupName", "type": "string" } ] } ], "desc": "

Creates a predefined DiffieHellman key exchange object. The\nsupported groups are: 'modp1', 'modp2', 'modp5' (defined in\nRFC 2412, but see Caveats) and 'modp14', 'modp15',\n'modp16', 'modp17', 'modp18' (defined in RFC 3526). The\nreturned object mimics the interface of objects created by\ncrypto.createDiffieHellman(), but will not allow changing\nthe keys (with diffieHellman.setPublicKey(), for example). The\nadvantage of using this method is that the parties do not have to\ngenerate nor exchange a group modulus beforehand, saving both processor\nand communication time.

\n

Example (obtaining a shared secret):

\n
const crypto = require('crypto');\nconst alice = crypto.getDiffieHellman('modp14');\nconst bob = crypto.getDiffieHellman('modp14');\n\nalice.generateKeys();\nbob.generateKeys();\n\nconst aliceSecret = alice.computeSecret(bob.getPublicKey(), null, 'hex');\nconst bobSecret = bob.computeSecret(alice.getPublicKey(), null, 'hex');\n\n/* aliceSecret and bobSecret should be the same */\nconsole.log(aliceSecret === bobSecret);\n
" }, { "textRaw": "crypto.getFips()", "type": "method", "name": "getFips", "meta": { "added": [ "v10.0.0" ], "changes": [] }, "signatures": [ { "return": { "textRaw": "Returns: {boolean} `true` if and only if a FIPS compliant crypto provider is currently in use.", "name": "return", "type": "boolean", "desc": "`true` if and only if a FIPS compliant crypto provider is currently in use." }, "params": [] } ] }, { "textRaw": "crypto.getHashes()", "type": "method", "name": "getHashes", "meta": { "added": [ "v0.9.3" ], "changes": [] }, "signatures": [ { "return": { "textRaw": "Returns: {string[]} An array of the names of the supported hash algorithms, such as `'RSA-SHA256'`.", "name": "return", "type": "string[]", "desc": "An array of the names of the supported hash algorithms, such as `'RSA-SHA256'`." }, "params": [] } ], "desc": "
const hashes = crypto.getHashes();\nconsole.log(hashes); // ['DSA', 'DSA-SHA', 'DSA-SHA1', ...]\n
" }, { "textRaw": "crypto.pbkdf2(password, salt, iterations, keylen, digest, callback)", "type": "method", "name": "pbkdf2", "meta": { "added": [ "v0.5.5" ], "changes": [ { "version": "v8.0.0", "pr-url": "https://github.com/nodejs/node/pull/11305", "description": "The `digest` parameter is always required now." }, { "version": "v6.0.0", "pr-url": "https://github.com/nodejs/node/pull/4047", "description": "Calling this function without passing the `digest` parameter is deprecated now and will emit a warning." }, { "version": "v6.0.0", "pr-url": "https://github.com/nodejs/node/pull/5522", "description": "The default encoding for `password` if it is a string changed from `binary` to `utf8`." } ] }, "signatures": [ { "params": [ { "textRaw": "`password` {string|Buffer|TypedArray|DataView}", "name": "password", "type": "string|Buffer|TypedArray|DataView" }, { "textRaw": "`salt` {string|Buffer|TypedArray|DataView}", "name": "salt", "type": "string|Buffer|TypedArray|DataView" }, { "textRaw": "`iterations` {number}", "name": "iterations", "type": "number" }, { "textRaw": "`keylen` {number}", "name": "keylen", "type": "number" }, { "textRaw": "`digest` {string}", "name": "digest", "type": "string" }, { "textRaw": "`callback` {Function}", "name": "callback", "type": "Function", "options": [ { "textRaw": "`err` {Error}", "name": "err", "type": "Error" }, { "textRaw": "`derivedKey` {Buffer}", "name": "derivedKey", "type": "Buffer" } ] } ] } ], "desc": "

Provides an asynchronous Password-Based Key Derivation Function 2 (PBKDF2)\nimplementation. A selected HMAC digest algorithm specified by digest is\napplied to derive a key of the requested byte length (keylen) from the\npassword, salt and iterations.

\n

The supplied callback function is called with two arguments: err and\nderivedKey. If an error occurs while deriving the key, err will be set;\notherwise err will be null. By default, the successfully generated\nderivedKey will be passed to the callback as a Buffer. An error will be\nthrown if any of the input arguments specify invalid values or types.

\n

If digest is null, 'sha1' will be used. This behavior will be deprecated\nin a future version of Node.js.

\n

The iterations argument must be a number set as high as possible. The\nhigher the number of iterations, the more secure the derived key will be,\nbut will take a longer amount of time to complete.

\n

The salt should be as unique as possible. It is recommended that a salt is\nrandom and at least 16 bytes long. See NIST SP 800-132 for details.

\n
const crypto = require('crypto');\ncrypto.pbkdf2('secret', 'salt', 100000, 64, 'sha512', (err, derivedKey) => {\n  if (err) throw err;\n  console.log(derivedKey.toString('hex'));  // '3745e48...08d59ae'\n});\n
\n

The crypto.DEFAULT_ENCODING property can be used to change the way the\nderivedKey is passed to the callback. This property, however, has been\ndeprecated and use should be avoided.

\n
const crypto = require('crypto');\ncrypto.DEFAULT_ENCODING = 'hex';\ncrypto.pbkdf2('secret', 'salt', 100000, 512, 'sha512', (err, derivedKey) => {\n  if (err) throw err;\n  console.log(derivedKey);  // '3745e48...aa39b34'\n});\n
\n

An array of supported digest functions can be retrieved using\ncrypto.getHashes().

\n

Note that this API uses libuv's threadpool, which can have surprising and\nnegative performance implications for some applications, see the\nUV_THREADPOOL_SIZE documentation for more information.

" }, { "textRaw": "crypto.pbkdf2Sync(password, salt, iterations, keylen, digest)", "type": "method", "name": "pbkdf2Sync", "meta": { "added": [ "v0.9.3" ], "changes": [ { "version": "v6.0.0", "pr-url": "https://github.com/nodejs/node/pull/4047", "description": "Calling this function without passing the `digest` parameter is deprecated now and will emit a warning." }, { "version": "v6.0.0", "pr-url": "https://github.com/nodejs/node/pull/5522", "description": "The default encoding for `password` if it is a string changed from `binary` to `utf8`." } ] }, "signatures": [ { "return": { "textRaw": "Returns: {Buffer}", "name": "return", "type": "Buffer" }, "params": [ { "textRaw": "`password` {string|Buffer|TypedArray|DataView}", "name": "password", "type": "string|Buffer|TypedArray|DataView" }, { "textRaw": "`salt` {string|Buffer|TypedArray|DataView}", "name": "salt", "type": "string|Buffer|TypedArray|DataView" }, { "textRaw": "`iterations` {number}", "name": "iterations", "type": "number" }, { "textRaw": "`keylen` {number}", "name": "keylen", "type": "number" }, { "textRaw": "`digest` {string}", "name": "digest", "type": "string" } ] } ], "desc": "

Provides a synchronous Password-Based Key Derivation Function 2 (PBKDF2)\nimplementation. A selected HMAC digest algorithm specified by digest is\napplied to derive a key of the requested byte length (keylen) from the\npassword, salt and iterations.

\n

If an error occurs an Error will be thrown, otherwise the derived key will be\nreturned as a Buffer.

\n

If digest is null, 'sha1' will be used. This behavior will be deprecated\nin a future version of Node.js.

\n

The iterations argument must be a number set as high as possible. The\nhigher the number of iterations, the more secure the derived key will be,\nbut will take a longer amount of time to complete.

\n

The salt should be as unique as possible. It is recommended that a salt is\nrandom and at least 16 bytes long. See NIST SP 800-132 for details.

\n
const crypto = require('crypto');\nconst key = crypto.pbkdf2Sync('secret', 'salt', 100000, 64, 'sha512');\nconsole.log(key.toString('hex'));  // '3745e48...08d59ae'\n
\n

The crypto.DEFAULT_ENCODING property may be used to change the way the\nderivedKey is returned. This property, however, is deprecated and use\nshould be avoided.

\n
const crypto = require('crypto');\ncrypto.DEFAULT_ENCODING = 'hex';\nconst key = crypto.pbkdf2Sync('secret', 'salt', 100000, 512, 'sha512');\nconsole.log(key);  // '3745e48...aa39b34'\n
\n

An array of supported digest functions can be retrieved using\ncrypto.getHashes().

" }, { "textRaw": "crypto.privateDecrypt(privateKey, buffer)", "type": "method", "name": "privateDecrypt", "meta": { "added": [ "v0.11.14" ], "changes": [] }, "signatures": [ { "return": { "textRaw": "Returns: {Buffer} A new `Buffer` with the decrypted content.", "name": "return", "type": "Buffer", "desc": "A new `Buffer` with the decrypted content." }, "params": [ { "textRaw": "`privateKey` {Object | string}", "name": "privateKey", "type": "Object | string", "options": [ { "textRaw": "`key` {string} A PEM encoded private key.", "name": "key", "type": "string", "desc": "A PEM encoded private key." }, { "textRaw": "`passphrase` {string} An optional passphrase for the private key.", "name": "passphrase", "type": "string", "desc": "An optional passphrase for the private key." }, { "textRaw": "`padding` {crypto.constants} An optional padding value defined in `crypto.constants`, which may be: `crypto.constants.RSA_NO_PADDING`, `crypto.constants.RSA_PKCS1_PADDING`, or `crypto.constants.RSA_PKCS1_OAEP_PADDING`.", "name": "padding", "type": "crypto.constants", "desc": "An optional padding value defined in `crypto.constants`, which may be: `crypto.constants.RSA_NO_PADDING`, `crypto.constants.RSA_PKCS1_PADDING`, or `crypto.constants.RSA_PKCS1_OAEP_PADDING`." } ] }, { "textRaw": "`buffer` {Buffer | TypedArray | DataView}", "name": "buffer", "type": "Buffer | TypedArray | DataView" } ] } ], "desc": "

Decrypts buffer with privateKey. buffer was previously encrypted using\nthe corresponding public key, for example using crypto.publicEncrypt().

\n

privateKey can be an object or a string. If privateKey is a string, it is\ntreated as the key with no passphrase and will use RSA_PKCS1_OAEP_PADDING.

" }, { "textRaw": "crypto.privateEncrypt(privateKey, buffer)", "type": "method", "name": "privateEncrypt", "meta": { "added": [ "v1.1.0" ], "changes": [] }, "signatures": [ { "return": { "textRaw": "Returns: {Buffer} A new `Buffer` with the encrypted content.", "name": "return", "type": "Buffer", "desc": "A new `Buffer` with the encrypted content." }, "params": [ { "textRaw": "`privateKey` {Object | string}", "name": "privateKey", "type": "Object | string", "options": [ { "textRaw": "`key` {string} A PEM encoded private key.", "name": "key", "type": "string", "desc": "A PEM encoded private key." }, { "textRaw": "`passphrase` {string} An optional passphrase for the private key.", "name": "passphrase", "type": "string", "desc": "An optional passphrase for the private key." }, { "textRaw": "`padding` {crypto.constants} An optional padding value defined in `crypto.constants`, which may be: `crypto.constants.RSA_NO_PADDING` or `crypto.constants.RSA_PKCS1_PADDING`.", "name": "padding", "type": "crypto.constants", "desc": "An optional padding value defined in `crypto.constants`, which may be: `crypto.constants.RSA_NO_PADDING` or `crypto.constants.RSA_PKCS1_PADDING`." } ] }, { "textRaw": "`buffer` {Buffer | TypedArray | DataView}", "name": "buffer", "type": "Buffer | TypedArray | DataView" } ] } ], "desc": "

Encrypts buffer with privateKey. The returned data can be decrypted using\nthe corresponding public key, for example using crypto.publicDecrypt().

\n

privateKey can be an object or a string. If privateKey is a string, it is\ntreated as the key with no passphrase and will use RSA_PKCS1_PADDING.

" }, { "textRaw": "crypto.publicDecrypt(key, buffer)", "type": "method", "name": "publicDecrypt", "meta": { "added": [ "v1.1.0" ], "changes": [] }, "signatures": [ { "return": { "textRaw": "Returns: {Buffer} A new `Buffer` with the decrypted content.", "name": "return", "type": "Buffer", "desc": "A new `Buffer` with the decrypted content." }, "params": [ { "textRaw": "`key` {Object | string}", "name": "key", "type": "Object | string", "options": [ { "textRaw": "`key` {string} A PEM encoded public or private key.", "name": "key", "type": "string", "desc": "A PEM encoded public or private key." }, { "textRaw": "`passphrase` {string} An optional passphrase for the private key.", "name": "passphrase", "type": "string", "desc": "An optional passphrase for the private key." }, { "textRaw": "`padding` {crypto.constants} An optional padding value defined in `crypto.constants`, which may be: `crypto.constants.RSA_NO_PADDING` or `crypto.constants.RSA_PKCS1_PADDING`.", "name": "padding", "type": "crypto.constants", "desc": "An optional padding value defined in `crypto.constants`, which may be: `crypto.constants.RSA_NO_PADDING` or `crypto.constants.RSA_PKCS1_PADDING`." } ] }, { "textRaw": "`buffer` {Buffer | TypedArray | DataView}", "name": "buffer", "type": "Buffer | TypedArray | DataView" } ] } ], "desc": "

Decrypts buffer with key.buffer was previously encrypted using\nthe corresponding private key, for example using crypto.privateEncrypt().

\n

key can be an object or a string. If key is a string, it is treated as\nthe key with no passphrase and will use RSA_PKCS1_PADDING.

\n

Because RSA public keys can be derived from private keys, a private key may\nbe passed instead of a public key.

" }, { "textRaw": "crypto.publicEncrypt(key, buffer)", "type": "method", "name": "publicEncrypt", "meta": { "added": [ "v0.11.14" ], "changes": [] }, "signatures": [ { "return": { "textRaw": "Returns: {Buffer} A new `Buffer` with the encrypted content.", "name": "return", "type": "Buffer", "desc": "A new `Buffer` with the encrypted content." }, "params": [ { "textRaw": "`key` {Object | string}", "name": "key", "type": "Object | string", "options": [ { "textRaw": "`key` {string} A PEM encoded public or private key.", "name": "key", "type": "string", "desc": "A PEM encoded public or private key." }, { "textRaw": "`passphrase` {string} An optional passphrase for the private key.", "name": "passphrase", "type": "string", "desc": "An optional passphrase for the private key." }, { "textRaw": "`padding` {crypto.constants} An optional padding value defined in `crypto.constants`, which may be: `crypto.constants.RSA_NO_PADDING`, `crypto.constants.RSA_PKCS1_PADDING`, or `crypto.constants.RSA_PKCS1_OAEP_PADDING`.", "name": "padding", "type": "crypto.constants", "desc": "An optional padding value defined in `crypto.constants`, which may be: `crypto.constants.RSA_NO_PADDING`, `crypto.constants.RSA_PKCS1_PADDING`, or `crypto.constants.RSA_PKCS1_OAEP_PADDING`." } ] }, { "textRaw": "`buffer` {Buffer | TypedArray | DataView}", "name": "buffer", "type": "Buffer | TypedArray | DataView" } ] } ], "desc": "

Encrypts the content of buffer with key and returns a new\nBuffer with encrypted content. The returned data can be decrypted using\nthe corresponding private key, for example using crypto.privateDecrypt().

\n

key can be an object or a string. If key is a string, it is treated as\nthe key with no passphrase and will use RSA_PKCS1_OAEP_PADDING.

\n

Because RSA public keys can be derived from private keys, a private key may\nbe passed instead of a public key.

" }, { "textRaw": "crypto.randomBytes(size[, callback])", "type": "method", "name": "randomBytes", "meta": { "added": [ "v0.5.8" ], "changes": [ { "version": "v9.0.0", "pr-url": "https://github.com/nodejs/node/pull/16454", "description": "Passing `null` as the `callback` argument now throws `ERR_INVALID_CALLBACK`." } ] }, "signatures": [ { "return": { "textRaw": "Returns: {Buffer} if the `callback` function is not provided.", "name": "return", "type": "Buffer", "desc": "if the `callback` function is not provided." }, "params": [ { "textRaw": "`size` {number}", "name": "size", "type": "number" }, { "textRaw": "`callback` {Function}", "name": "callback", "type": "Function", "options": [ { "textRaw": "`err` {Error}", "name": "err", "type": "Error" }, { "textRaw": "`buf` {Buffer}", "name": "buf", "type": "Buffer" } ], "optional": true } ] } ], "desc": "

Generates cryptographically strong pseudo-random data. The size argument\nis a number indicating the number of bytes to generate.

\n

If a callback function is provided, the bytes are generated asynchronously\nand the callback function is invoked with two arguments: err and buf.\nIf an error occurs, err will be an Error object; otherwise it is null. The\nbuf argument is a Buffer containing the generated bytes.

\n
// Asynchronous\nconst crypto = require('crypto');\ncrypto.randomBytes(256, (err, buf) => {\n  if (err) throw err;\n  console.log(`${buf.length} bytes of random data: ${buf.toString('hex')}`);\n});\n
\n

If the callback function is not provided, the random bytes are generated\nsynchronously and returned as a Buffer. An error will be thrown if\nthere is a problem generating the bytes.

\n
// Synchronous\nconst buf = crypto.randomBytes(256);\nconsole.log(\n  `${buf.length} bytes of random data: ${buf.toString('hex')}`);\n
\n

The crypto.randomBytes() method will not complete until there is\nsufficient entropy available.\nThis should normally never take longer than a few milliseconds. The only time\nwhen generating the random bytes may conceivably block for a longer period of\ntime is right after boot, when the whole system is still low on entropy.

\n

Note that this API uses libuv's threadpool, which can have surprising and\nnegative performance implications for some applications, see the\nUV_THREADPOOL_SIZE documentation for more information.

\n

The asynchronous version of crypto.randomBytes() is carried out in a single\nthreadpool request. To minimize threadpool task length variation, partition\nlarge randomBytes requests when doing so as part of fulfilling a client\nrequest.

" }, { "textRaw": "crypto.randomFillSync(buffer[, offset][, size])", "type": "method", "name": "randomFillSync", "meta": { "added": [ "v7.10.0", "v6.13.0" ], "changes": [ { "version": "v9.0.0", "pr-url": "https://github.com/nodejs/node/pull/15231", "description": "The `buffer` argument may be any `TypedArray` or `DataView`." } ] }, "signatures": [ { "return": { "textRaw": "Returns: {Buffer|TypedArray|DataView} The object passed as `buffer` argument.", "name": "return", "type": "Buffer|TypedArray|DataView", "desc": "The object passed as `buffer` argument." }, "params": [ { "textRaw": "`buffer` {Buffer|TypedArray|DataView} Must be supplied.", "name": "buffer", "type": "Buffer|TypedArray|DataView", "desc": "Must be supplied." }, { "textRaw": "`offset` {number} **Default:** `0`", "name": "offset", "type": "number", "default": "`0`", "optional": true }, { "textRaw": "`size` {number} **Default:** `buffer.length - offset`", "name": "size", "type": "number", "default": "`buffer.length - offset`", "optional": true } ] } ], "desc": "

Synchronous version of crypto.randomFill().

\n
const buf = Buffer.alloc(10);\nconsole.log(crypto.randomFillSync(buf).toString('hex'));\n\ncrypto.randomFillSync(buf, 5);\nconsole.log(buf.toString('hex'));\n\n// The above is equivalent to the following:\ncrypto.randomFillSync(buf, 5, 5);\nconsole.log(buf.toString('hex'));\n
\n

Any TypedArray or DataView instance may be passed as buffer.

\n
const a = new Uint32Array(10);\nconsole.log(Buffer.from(crypto.randomFillSync(a).buffer,\n                        a.byteOffset, a.byteLength).toString('hex'));\n\nconst b = new Float64Array(10);\nconsole.log(Buffer.from(crypto.randomFillSync(b).buffer,\n                        b.byteOffset, b.byteLength).toString('hex'));\n\nconst c = new DataView(new ArrayBuffer(10));\nconsole.log(Buffer.from(crypto.randomFillSync(c).buffer,\n                        c.byteOffset, c.byteLength).toString('hex'));\n
" }, { "textRaw": "crypto.randomFill(buffer[, offset][, size], callback)", "type": "method", "name": "randomFill", "meta": { "added": [ "v7.10.0", "v6.13.0" ], "changes": [ { "version": "v9.0.0", "pr-url": "https://github.com/nodejs/node/pull/15231", "description": "The `buffer` argument may be any `TypedArray` or `DataView`." } ] }, "signatures": [ { "params": [ { "textRaw": "`buffer` {Buffer|TypedArray|DataView} Must be supplied.", "name": "buffer", "type": "Buffer|TypedArray|DataView", "desc": "Must be supplied." }, { "textRaw": "`offset` {number} **Default:** `0`", "name": "offset", "type": "number", "default": "`0`", "optional": true }, { "textRaw": "`size` {number} **Default:** `buffer.length - offset`", "name": "size", "type": "number", "default": "`buffer.length - offset`", "optional": true }, { "textRaw": "`callback` {Function} `function(err, buf) {}`.", "name": "callback", "type": "Function", "desc": "`function(err, buf) {}`." } ] } ], "desc": "

This function is similar to crypto.randomBytes() but requires the first\nargument to be a Buffer that will be filled. It also\nrequires that a callback is passed in.

\n

If the callback function is not provided, an error will be thrown.

\n
const buf = Buffer.alloc(10);\ncrypto.randomFill(buf, (err, buf) => {\n  if (err) throw err;\n  console.log(buf.toString('hex'));\n});\n\ncrypto.randomFill(buf, 5, (err, buf) => {\n  if (err) throw err;\n  console.log(buf.toString('hex'));\n});\n\n// The above is equivalent to the following:\ncrypto.randomFill(buf, 5, 5, (err, buf) => {\n  if (err) throw err;\n  console.log(buf.toString('hex'));\n});\n
\n

Any TypedArray or DataView instance may be passed as buffer.

\n
const a = new Uint32Array(10);\ncrypto.randomFill(a, (err, buf) => {\n  if (err) throw err;\n  console.log(Buffer.from(buf.buffer, buf.byteOffset, buf.byteLength)\n    .toString('hex'));\n});\n\nconst b = new Float64Array(10);\ncrypto.randomFill(b, (err, buf) => {\n  if (err) throw err;\n  console.log(Buffer.from(buf.buffer, buf.byteOffset, buf.byteLength)\n    .toString('hex'));\n});\n\nconst c = new DataView(new ArrayBuffer(10));\ncrypto.randomFill(c, (err, buf) => {\n  if (err) throw err;\n  console.log(Buffer.from(buf.buffer, buf.byteOffset, buf.byteLength)\n    .toString('hex'));\n});\n
\n

Note that this API uses libuv's threadpool, which can have surprising and\nnegative performance implications for some applications, see the\nUV_THREADPOOL_SIZE documentation for more information.

\n

The asynchronous version of crypto.randomFill() is carried out in a single\nthreadpool request. To minimize threadpool task length variation, partition\nlarge randomFill requests when doing so as part of fulfilling a client\nrequest.

" }, { "textRaw": "crypto.scrypt(password, salt, keylen[, options], callback)", "type": "method", "name": "scrypt", "meta": { "added": [ "v10.5.0" ], "changes": [ { "version": "v10.17.0", "pr-url": "https://github.com/nodejs/node/pull/28799", "description": "The `maxmem` value can now be any safe integer." }, { "version": "v10.9.0", "pr-url": "https://github.com/nodejs/node/pull/21525", "description": "The `cost`, `blockSize` and `parallelization` option names have been added." } ] }, "signatures": [ { "params": [ { "textRaw": "`password` {string|Buffer|TypedArray|DataView}", "name": "password", "type": "string|Buffer|TypedArray|DataView" }, { "textRaw": "`salt` {string|Buffer|TypedArray|DataView}", "name": "salt", "type": "string|Buffer|TypedArray|DataView" }, { "textRaw": "`keylen` {number}", "name": "keylen", "type": "number" }, { "textRaw": "`options` {Object}", "name": "options", "type": "Object", "options": [ { "textRaw": "`cost` {number} CPU/memory cost parameter. Must be a power of two greater", "name": "cost", "type": "number", "desc": "CPU/memory cost parameter. Must be a power of two greater" }, { "textRaw": "`N` {number} CPU/memory cost parameter. Must be a power of two greater than one. **Default:** `16384`.", "name": "N", "type": "number", "default": "`16384`", "desc": "CPU/memory cost parameter. Must be a power of two greater than one." }, { "textRaw": "`blockSize` {number} Block size parameter. **Default:** `8`.", "name": "blockSize", "type": "number", "default": "`8`", "desc": "Block size parameter." }, { "textRaw": "`parallelization` {number} Parallelization parameter. **Default:** `1`.", "name": "parallelization", "type": "number", "default": "`1`", "desc": "Parallelization parameter." }, { "textRaw": "`N` {number} Alias for `cost`. Only one of both may be specified.", "name": "N", "type": "number", "desc": "Alias for `cost`. Only one of both may be specified." }, { "textRaw": "`r` {number} Alias for `blockSize`. Only one of both may be specified.", "name": "r", "type": "number", "desc": "Alias for `blockSize`. Only one of both may be specified." }, { "textRaw": "`p` {number} Alias for `parallelization`. Only one of both may be specified.", "name": "p", "type": "number", "desc": "Alias for `parallelization`. Only one of both may be specified." }, { "textRaw": "`maxmem` {number} Memory upper bound. It is an error when (approximately) `128 * N * r > maxmem`. **Default:** `32 * 1024 * 1024`.", "name": "maxmem", "type": "number", "default": "`32 * 1024 * 1024`", "desc": "Memory upper bound. It is an error when (approximately) `128 * N * r > maxmem`." } ], "optional": true }, { "textRaw": "`callback` {Function}", "name": "callback", "type": "Function", "options": [ { "textRaw": "`err` {Error}", "name": "err", "type": "Error" }, { "textRaw": "`derivedKey` {Buffer}", "name": "derivedKey", "type": "Buffer" } ] } ] } ], "desc": "

Provides an asynchronous scrypt implementation. Scrypt is a password-based\nkey derivation function that is designed to be expensive computationally and\nmemory-wise in order to make brute-force attacks unrewarding.

\n

The salt should be as unique as possible. It is recommended that a salt is\nrandom and at least 16 bytes long. See NIST SP 800-132 for details.

\n

The callback function is called with two arguments: err and derivedKey.\nerr is an exception object when key derivation fails, otherwise err is\nnull. derivedKey is passed to the callback as a Buffer.

\n

An exception is thrown when any of the input arguments specify invalid values\nor types.

\n
const crypto = require('crypto');\n// Using the factory defaults.\ncrypto.scrypt('secret', 'salt', 64, (err, derivedKey) => {\n  if (err) throw err;\n  console.log(derivedKey.toString('hex'));  // '3745e48...08d59ae'\n});\n// Using a custom N parameter. Must be a power of two.\ncrypto.scrypt('secret', 'salt', 64, { N: 1024 }, (err, derivedKey) => {\n  if (err) throw err;\n  console.log(derivedKey.toString('hex'));  // '3745e48...aa39b34'\n});\n
" }, { "textRaw": "crypto.scryptSync(password, salt, keylen[, options])", "type": "method", "name": "scryptSync", "meta": { "added": [ "v10.5.0" ], "changes": [ { "version": "v10.17.0", "pr-url": "https://github.com/nodejs/node/pull/28799", "description": "The `maxmem` value can now be any safe integer." }, { "version": "v10.9.0", "pr-url": "https://github.com/nodejs/node/pull/21525", "description": "The `cost`, `blockSize` and `parallelization` option names have been added." } ] }, "signatures": [ { "return": { "textRaw": "Returns: {Buffer}", "name": "return", "type": "Buffer" }, "params": [ { "textRaw": "`password` {string|Buffer|TypedArray|DataView}", "name": "password", "type": "string|Buffer|TypedArray|DataView" }, { "textRaw": "`salt` {string|Buffer|TypedArray|DataView}", "name": "salt", "type": "string|Buffer|TypedArray|DataView" }, { "textRaw": "`keylen` {number}", "name": "keylen", "type": "number" }, { "textRaw": "`options` {Object}", "name": "options", "type": "Object", "options": [ { "textRaw": "`cost` {number} CPU/memory cost parameter. Must be a power of two greater", "name": "cost", "type": "number", "desc": "CPU/memory cost parameter. Must be a power of two greater" }, { "textRaw": "`N` {number} CPU/memory cost parameter. Must be a power of two greater than one. **Default:** `16384`.", "name": "N", "type": "number", "default": "`16384`", "desc": "CPU/memory cost parameter. Must be a power of two greater than one." }, { "textRaw": "`blockSize` {number} Block size parameter. **Default:** `8`.", "name": "blockSize", "type": "number", "default": "`8`", "desc": "Block size parameter." }, { "textRaw": "`parallelization` {number} Parallelization parameter. **Default:** `1`.", "name": "parallelization", "type": "number", "default": "`1`", "desc": "Parallelization parameter." }, { "textRaw": "`N` {number} Alias for `cost`. Only one of both may be specified.", "name": "N", "type": "number", "desc": "Alias for `cost`. Only one of both may be specified." }, { "textRaw": "`r` {number} Alias for `blockSize`. Only one of both may be specified.", "name": "r", "type": "number", "desc": "Alias for `blockSize`. Only one of both may be specified." }, { "textRaw": "`p` {number} Alias for `parallelization`. Only one of both may be specified.", "name": "p", "type": "number", "desc": "Alias for `parallelization`. Only one of both may be specified." }, { "textRaw": "`maxmem` {number} Memory upper bound. It is an error when (approximately) `128 * N * r > maxmem`. **Default:** `32 * 1024 * 1024`.", "name": "maxmem", "type": "number", "default": "`32 * 1024 * 1024`", "desc": "Memory upper bound. It is an error when (approximately) `128 * N * r > maxmem`." } ], "optional": true } ] } ], "desc": "

Provides a synchronous scrypt implementation. Scrypt is a password-based\nkey derivation function that is designed to be expensive computationally and\nmemory-wise in order to make brute-force attacks unrewarding.

\n

The salt should be as unique as possible. It is recommended that a salt is\nrandom and at least 16 bytes long. See NIST SP 800-132 for details.

\n

An exception is thrown when key derivation fails, otherwise the derived key is\nreturned as a Buffer.

\n

An exception is thrown when any of the input arguments specify invalid values\nor types.

\n
const crypto = require('crypto');\n// Using the factory defaults.\nconst key1 = crypto.scryptSync('secret', 'salt', 64);\nconsole.log(key1.toString('hex'));  // '3745e48...08d59ae'\n// Using a custom N parameter. Must be a power of two.\nconst key2 = crypto.scryptSync('secret', 'salt', 64, { N: 1024 });\nconsole.log(key2.toString('hex'));  // '3745e48...aa39b34'\n
" }, { "textRaw": "crypto.setEngine(engine[, flags])", "type": "method", "name": "setEngine", "meta": { "added": [ "v0.11.11" ], "changes": [] }, "signatures": [ { "params": [ { "textRaw": "`engine` {string}", "name": "engine", "type": "string" }, { "textRaw": "`flags` {crypto.constants} **Default:** `crypto.constants.ENGINE_METHOD_ALL`", "name": "flags", "type": "crypto.constants", "default": "`crypto.constants.ENGINE_METHOD_ALL`", "optional": true } ] } ], "desc": "

Load and set the engine for some or all OpenSSL functions (selected by flags).

\n

engine could be either an id or a path to the engine's shared library.

\n

The optional flags argument uses ENGINE_METHOD_ALL by default. The flags\nis a bit field taking one of or a mix of the following flags (defined in\ncrypto.constants):

\n\n

The flags below are deprecated in OpenSSL-1.1.0.

\n" }, { "textRaw": "crypto.setFips(bool)", "type": "method", "name": "setFips", "meta": { "added": [ "v10.0.0" ], "changes": [] }, "signatures": [ { "params": [ { "textRaw": "`bool` {boolean} `true` to enable FIPS mode.", "name": "bool", "type": "boolean", "desc": "`true` to enable FIPS mode." } ] } ], "desc": "

Enables the FIPS compliant crypto provider in a FIPS-enabled Node.js build.\nThrows an error if FIPS mode is not available.

" }, { "textRaw": "crypto.timingSafeEqual(a, b)", "type": "method", "name": "timingSafeEqual", "meta": { "added": [ "v6.6.0" ], "changes": [] }, "signatures": [ { "return": { "textRaw": "Returns: {boolean}", "name": "return", "type": "boolean" }, "params": [ { "textRaw": "`a` {Buffer | TypedArray | DataView}", "name": "a", "type": "Buffer | TypedArray | DataView" }, { "textRaw": "`b` {Buffer | TypedArray | DataView}", "name": "b", "type": "Buffer | TypedArray | DataView" } ] } ], "desc": "

This function is based on a constant-time algorithm.\nReturns true if a is equal to b, without leaking timing information that\nwould allow an attacker to guess one of the values. This is suitable for\ncomparing HMAC digests or secret values like authentication cookies or\ncapability urls.

\n

a and b must both be Buffers, TypedArrays, or DataViews, and they\nmust have the same length.

\n

Use of crypto.timingSafeEqual does not guarantee that the surrounding code\nis timing-safe. Care should be taken to ensure that the surrounding code does\nnot introduce timing vulnerabilities.

" } ], "type": "module", "displayName": "`crypto` module methods and properties" }, { "textRaw": "Notes", "name": "notes", "modules": [ { "textRaw": "Legacy Streams API (pre Node.js v0.10)", "name": "legacy_streams_api_(pre_node.js_v0.10)", "desc": "

The Crypto module was added to Node.js before there was the concept of a\nunified Stream API, and before there were Buffer objects for handling\nbinary data. As such, the many of the crypto defined classes have methods not\ntypically found on other Node.js classes that implement the streams\nAPI (e.g. update(), final(), or digest()). Also, many methods accepted\nand returned 'latin1' encoded strings by default rather than Buffers. This\ndefault was changed after Node.js v0.8 to use Buffer objects by default\ninstead.

", "type": "module", "displayName": "Legacy Streams API (pre Node.js v0.10)" }, { "textRaw": "Recent ECDH Changes", "name": "recent_ecdh_changes", "desc": "

Usage of ECDH with non-dynamically generated key pairs has been simplified.\nNow, ecdh.setPrivateKey() can be called with a preselected private key\nand the associated public point (key) will be computed and stored in the object.\nThis allows code to only store and provide the private part of the EC key pair.\necdh.setPrivateKey() now also validates that the private key is valid for\nthe selected curve.

\n

The ecdh.setPublicKey() method is now deprecated as its inclusion in the\nAPI is not useful. Either a previously stored private key should be set, which\nautomatically generates the associated public key, or ecdh.generateKeys()\nshould be called. The main drawback of using ecdh.setPublicKey() is that\nit can be used to put the ECDH key pair into an inconsistent state.

", "type": "module", "displayName": "Recent ECDH Changes" }, { "textRaw": "Support for weak or compromised algorithms", "name": "support_for_weak_or_compromised_algorithms", "desc": "

The crypto module still supports some algorithms which are already\ncompromised and are not currently recommended for use. The API also allows\nthe use of ciphers and hashes with a small key size that are considered to be\ntoo weak for safe use.

\n

Users should take full responsibility for selecting the crypto\nalgorithm and key size according to their security requirements.

\n

Based on the recommendations of NIST SP 800-131A:

\n\n

See the reference for other recommendations and details.

", "type": "module", "displayName": "Support for weak or compromised algorithms" }, { "textRaw": "CCM mode", "name": "ccm_mode", "desc": "

CCM is one of the supported AEAD algorithms. Applications which use this\nmode must adhere to certain restrictions when using the cipher API:

\n\n
const crypto = require('crypto');\n\nconst key = 'keykeykeykeykeykeykeykey';\nconst nonce = crypto.randomBytes(12);\n\nconst aad = Buffer.from('0123456789', 'hex');\n\nconst cipher = crypto.createCipheriv('aes-192-ccm', key, nonce, {\n  authTagLength: 16\n});\nconst plaintext = 'Hello world';\ncipher.setAAD(aad, {\n  plaintextLength: Buffer.byteLength(plaintext)\n});\nconst ciphertext = cipher.update(plaintext, 'utf8');\ncipher.final();\nconst tag = cipher.getAuthTag();\n\n// Now transmit { ciphertext, nonce, tag }.\n\nconst decipher = crypto.createDecipheriv('aes-192-ccm', key, nonce, {\n  authTagLength: 16\n});\ndecipher.setAuthTag(tag);\ndecipher.setAAD(aad, {\n  plaintextLength: ciphertext.length\n});\nconst receivedPlaintext = decipher.update(ciphertext, null, 'utf8');\n\ntry {\n  decipher.final();\n} catch (err) {\n  console.error('Authentication failed!');\n}\n\nconsole.log(receivedPlaintext);\n
", "type": "module", "displayName": "CCM mode" } ], "type": "module", "displayName": "Notes" }, { "textRaw": "Crypto Constants", "name": "crypto_constants", "desc": "

The following constants exported by crypto.constants apply to various uses of\nthe crypto, tls, and https modules and are generally specific to OpenSSL.

", "modules": [ { "textRaw": "OpenSSL Options", "name": "openssl_options", "desc": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ConstantDescription
SSL_OP_ALLApplies multiple bug workarounds within OpenSSL. See\n https://www.openssl.org/docs/man1.0.2/ssl/SSL_CTX_set_options.html\n for detail.
SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATIONAllows legacy insecure renegotiation between OpenSSL and unpatched\n clients or servers. See\n https://www.openssl.org/docs/man1.0.2/ssl/SSL_CTX_set_options.html.
SSL_OP_CIPHER_SERVER_PREFERENCEAttempts to use the server's preferences instead of the client's when\n selecting a cipher. Behavior depends on protocol version. See\n https://www.openssl.org/docs/man1.0.2/ssl/SSL_CTX_set_options.html.
SSL_OP_CISCO_ANYCONNECTInstructs OpenSSL to use Cisco's \"speshul\" version of DTLS_BAD_VER.
SSL_OP_COOKIE_EXCHANGEInstructs OpenSSL to turn on cookie exchange.
SSL_OP_CRYPTOPRO_TLSEXT_BUGInstructs OpenSSL to add server-hello extension from an early version\n of the cryptopro draft.
SSL_OP_DONT_INSERT_EMPTY_FRAGMENTSInstructs OpenSSL to disable a SSL 3.0/TLS 1.0 vulnerability\n workaround added in OpenSSL 0.9.6d.
SSL_OP_EPHEMERAL_RSAInstructs OpenSSL to always use the tmp_rsa key when performing RSA\n operations.
SSL_OP_LEGACY_SERVER_CONNECTAllows initial connection to servers that do not support RI.
SSL_OP_MICROSOFT_BIG_SSLV3_BUFFER
SSL_OP_MICROSOFT_SESS_ID_BUG
SSL_OP_MSIE_SSLV2_RSA_PADDINGInstructs OpenSSL to disable the workaround for a man-in-the-middle\n protocol-version vulnerability in the SSL 2.0 server implementation.
SSL_OP_NETSCAPE_CA_DN_BUG
SSL_OP_NETSCAPE_CHALLENGE_BUG
SSL_OP_NETSCAPE_DEMO_CIPHER_CHANGE_BUG
SSL_OP_NETSCAPE_REUSE_CIPHER_CHANGE_BUG
SSL_OP_NO_COMPRESSIONInstructs OpenSSL to disable support for SSL/TLS compression.
SSL_OP_NO_QUERY_MTU
SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATIONInstructs OpenSSL to always start a new session when performing\n renegotiation.
SSL_OP_NO_SSLv2Instructs OpenSSL to turn off SSL v2
SSL_OP_NO_SSLv3Instructs OpenSSL to turn off SSL v3
SSL_OP_NO_TICKETInstructs OpenSSL to disable use of RFC4507bis tickets.
SSL_OP_NO_TLSv1Instructs OpenSSL to turn off TLS v1
SSL_OP_NO_TLSv1_1Instructs OpenSSL to turn off TLS v1.1
SSL_OP_NO_TLSv1_2Instructs OpenSSL to turn off TLS v1.2
SSL_OP_PKCS1_CHECK_1
SSL_OP_PKCS1_CHECK_2
SSL_OP_SINGLE_DH_USEInstructs OpenSSL to always create a new key when using\n temporary/ephemeral DH parameters.
SSL_OP_SINGLE_ECDH_USEInstructs OpenSSL to always create a new key when using\n temporary/ephemeral ECDH parameters.
SSL_OP_SSLEAY_080_CLIENT_DH_BUG
SSL_OP_SSLREF2_REUSE_CERT_TYPE_BUG
SSL_OP_TLS_BLOCK_PADDING_BUG
SSL_OP_TLS_D5_BUG
SSL_OP_TLS_ROLLBACK_BUGInstructs OpenSSL to disable version rollback attack detection.
", "type": "module", "displayName": "OpenSSL Options" }, { "textRaw": "OpenSSL Engine Constants", "name": "openssl_engine_constants", "desc": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ConstantDescription
ENGINE_METHOD_RSALimit engine usage to RSA
ENGINE_METHOD_DSALimit engine usage to DSA
ENGINE_METHOD_DHLimit engine usage to DH
ENGINE_METHOD_RANDLimit engine usage to RAND
ENGINE_METHOD_ECLimit engine usage to EC
ENGINE_METHOD_CIPHERSLimit engine usage to CIPHERS
ENGINE_METHOD_DIGESTSLimit engine usage to DIGESTS
ENGINE_METHOD_PKEY_METHSLimit engine usage to PKEY_METHDS
ENGINE_METHOD_PKEY_ASN1_METHSLimit engine usage to PKEY_ASN1_METHS
ENGINE_METHOD_ALL
ENGINE_METHOD_NONE
", "type": "module", "displayName": "OpenSSL Engine Constants" }, { "textRaw": "Other OpenSSL Constants", "name": "other_openssl_constants", "desc": "\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ConstantDescription
DH_CHECK_P_NOT_SAFE_PRIME
DH_CHECK_P_NOT_PRIME
DH_UNABLE_TO_CHECK_GENERATOR
DH_NOT_SUITABLE_GENERATOR
ALPN_ENABLED
RSA_PKCS1_PADDING
RSA_SSLV23_PADDING
RSA_NO_PADDING
RSA_PKCS1_OAEP_PADDING
RSA_X931_PADDING
RSA_PKCS1_PSS_PADDING
RSA_PSS_SALTLEN_DIGESTSets the salt length for RSA_PKCS1_PSS_PADDING to the\n digest size when signing or verifying.
RSA_PSS_SALTLEN_MAX_SIGNSets the salt length for RSA_PKCS1_PSS_PADDING to the\n maximum permissible value when signing data.
RSA_PSS_SALTLEN_AUTOCauses the salt length for RSA_PKCS1_PSS_PADDING to be\n determined automatically when verifying a signature.
POINT_CONVERSION_COMPRESSED
POINT_CONVERSION_UNCOMPRESSED
POINT_CONVERSION_HYBRID
", "type": "module", "displayName": "Other OpenSSL Constants" }, { "textRaw": "Node.js Crypto Constants", "name": "node.js_crypto_constants", "desc": "\n \n \n \n \n \n \n \n \n \n \n \n \n
ConstantDescription
defaultCoreCipherListSpecifies the built-in default cipher list used by Node.js.
defaultCipherListSpecifies the active default cipher list used by the current Node.js\n process.
", "type": "module", "displayName": "Node.js Crypto Constants" } ], "type": "module", "displayName": "Crypto Constants" } ], "classes": [ { "textRaw": "Class: Certificate", "type": "class", "name": "Certificate", "meta": { "added": [ "v0.11.8" ], "changes": [] }, "desc": "

SPKAC is a Certificate Signing Request mechanism originally implemented by\nNetscape and was specified formally as part of HTML5's keygen element.

\n

Note that <keygen> is deprecated since HTML 5.2 and new projects\nshould not use this element anymore.

\n

The crypto module provides the Certificate class for working with SPKAC\ndata. The most common usage is handling output generated by the HTML5\n<keygen> element. Node.js uses OpenSSL's SPKAC implementation internally.

", "methods": [ { "textRaw": "Certificate.exportChallenge(spkac)", "type": "method", "name": "exportChallenge", "meta": { "added": [ "v9.0.0" ], "changes": [] }, "signatures": [ { "return": { "textRaw": "Returns: {Buffer} The challenge component of the `spkac` data structure, which includes a public key and a challenge.", "name": "return", "type": "Buffer", "desc": "The challenge component of the `spkac` data structure, which includes a public key and a challenge." }, "params": [ { "textRaw": "`spkac` {string | Buffer | TypedArray | DataView}", "name": "spkac", "type": "string | Buffer | TypedArray | DataView" } ] } ], "desc": "
const { Certificate } = require('crypto');\nconst spkac = getSpkacSomehow();\nconst challenge = Certificate.exportChallenge(spkac);\nconsole.log(challenge.toString('utf8'));\n// Prints: the challenge as a UTF8 string\n
" }, { "textRaw": "Certificate.exportPublicKey(spkac[, encoding])", "type": "method", "name": "exportPublicKey", "meta": { "added": [ "v9.0.0" ], "changes": [] }, "signatures": [ { "return": { "textRaw": "Returns: {Buffer} The public key component of the `spkac` data structure, which includes a public key and a challenge.", "name": "return", "type": "Buffer", "desc": "The public key component of the `spkac` data structure, which includes a public key and a challenge." }, "params": [ { "textRaw": "`spkac` {string | Buffer | TypedArray | DataView}", "name": "spkac", "type": "string | Buffer | TypedArray | DataView" }, { "textRaw": "`encoding` {string} The [encoding][] of the `spkac` string.", "name": "encoding", "type": "string", "desc": "The [encoding][] of the `spkac` string.", "optional": true } ] } ], "desc": "
const { Certificate } = require('crypto');\nconst spkac = getSpkacSomehow();\nconst publicKey = Certificate.exportPublicKey(spkac);\nconsole.log(publicKey);\n// Prints: the public key as <Buffer ...>\n
" }, { "textRaw": "Certificate.verifySpkac(spkac)", "type": "method", "name": "verifySpkac", "meta": { "added": [ "v9.0.0" ], "changes": [] }, "signatures": [ { "return": { "textRaw": "Returns: {boolean} `true` if the given `spkac` data structure is valid, `false` otherwise.", "name": "return", "type": "boolean", "desc": "`true` if the given `spkac` data structure is valid, `false` otherwise." }, "params": [ { "textRaw": "`spkac` {Buffer | TypedArray | DataView}", "name": "spkac", "type": "Buffer | TypedArray | DataView" } ] } ], "desc": "
const { Certificate } = require('crypto');\nconst spkac = getSpkacSomehow();\nconsole.log(Certificate.verifySpkac(Buffer.from(spkac)));\n// Prints: true or false\n
" } ], "modules": [ { "textRaw": "Legacy API", "name": "legacy_api", "desc": "

As a still supported legacy interface, it is possible (but not recommended) to\ncreate new instances of the crypto.Certificate class as illustrated in the\nexamples below.

", "ctors": [ { "textRaw": "new crypto.Certificate()", "type": "ctor", "name": "crypto.Certificate", "signatures": [ { "params": [] } ], "desc": "

Instances of the Certificate class can be created using the new keyword\nor by calling crypto.Certificate() as a function:

\n
const crypto = require('crypto');\n\nconst cert1 = new crypto.Certificate();\nconst cert2 = crypto.Certificate();\n
" } ], "methods": [ { "textRaw": "certificate.exportChallenge(spkac)", "type": "method", "name": "exportChallenge", "meta": { "added": [ "v0.11.8" ], "changes": [] }, "signatures": [ { "return": { "textRaw": "Returns: {Buffer} The challenge component of the `spkac` data structure, which includes a public key and a challenge.", "name": "return", "type": "Buffer", "desc": "The challenge component of the `spkac` data structure, which includes a public key and a challenge." }, "params": [ { "textRaw": "`spkac` {string | Buffer | TypedArray | DataView}", "name": "spkac", "type": "string | Buffer | TypedArray | DataView" } ] } ], "desc": "
const cert = require('crypto').Certificate();\nconst spkac = getSpkacSomehow();\nconst challenge = cert.exportChallenge(spkac);\nconsole.log(challenge.toString('utf8'));\n// Prints: the challenge as a UTF8 string\n
" }, { "textRaw": "certificate.exportPublicKey(spkac)", "type": "method", "name": "exportPublicKey", "meta": { "added": [ "v0.11.8" ], "changes": [] }, "signatures": [ { "return": { "textRaw": "Returns: {Buffer} The public key component of the `spkac` data structure, which includes a public key and a challenge.", "name": "return", "type": "Buffer", "desc": "The public key component of the `spkac` data structure, which includes a public key and a challenge." }, "params": [ { "textRaw": "`spkac` {string | Buffer | TypedArray | DataView}", "name": "spkac", "type": "string | Buffer | TypedArray | DataView" } ] } ], "desc": "
const cert = require('crypto').Certificate();\nconst spkac = getSpkacSomehow();\nconst publicKey = cert.exportPublicKey(spkac);\nconsole.log(publicKey);\n// Prints: the public key as <Buffer ...>\n
" }, { "textRaw": "certificate.verifySpkac(spkac)", "type": "method", "name": "verifySpkac", "meta": { "added": [ "v0.11.8" ], "changes": [] }, "signatures": [ { "return": { "textRaw": "Returns: {boolean} `true` if the given `spkac` data structure is valid, `false` otherwise.", "name": "return", "type": "boolean", "desc": "`true` if the given `spkac` data structure is valid, `false` otherwise." }, "params": [ { "textRaw": "`spkac` {Buffer | TypedArray | DataView}", "name": "spkac", "type": "Buffer | TypedArray | DataView" } ] } ], "desc": "
const cert = require('crypto').Certificate();\nconst spkac = getSpkacSomehow();\nconsole.log(cert.verifySpkac(Buffer.from(spkac)));\n// Prints: true or false\n
" } ], "type": "module", "displayName": "Legacy API" } ] }, { "textRaw": "Class: Cipher", "type": "class", "name": "Cipher", "meta": { "added": [ "v0.1.94" ], "changes": [] }, "desc": "

Instances of the Cipher class are used to encrypt data. The class can be\nused in one of two ways:

\n\n

The crypto.createCipher() or crypto.createCipheriv() methods are\nused to create Cipher instances. Cipher objects are not to be created\ndirectly using the new keyword.

\n

Example: Using Cipher objects as streams:

\n
const crypto = require('crypto');\n\nconst algorithm = 'aes-192-cbc';\nconst password = 'Password used to generate key';\n// Key length is dependent on the algorithm. In this case for aes192, it is\n// 24 bytes (192 bits).\n// Use async `crypto.scrypt()` instead.\nconst key = crypto.scryptSync(password, 'salt', 24);\n// Use `crypto.randomBytes()` to generate a random iv instead of the static iv\n// shown here.\nconst iv = Buffer.alloc(16, 0); // Initialization vector.\n\nconst cipher = crypto.createCipheriv(algorithm, key, iv);\n\nlet encrypted = '';\ncipher.on('readable', () => {\n  let chunk;\n  while (null !== (chunk = cipher.read())) {\n    encrypted += chunk.toString('hex');\n  }\n});\ncipher.on('end', () => {\n  console.log(encrypted);\n  // Prints: e5f79c5915c02171eec6b212d5520d44480993d7d622a7c4c2da32f6efda0ffa\n});\n\ncipher.write('some clear text data');\ncipher.end();\n
\n

Example: Using Cipher and piped streams:

\n
const crypto = require('crypto');\nconst fs = require('fs');\n\nconst algorithm = 'aes-192-cbc';\nconst password = 'Password used to generate key';\n// Use the async `crypto.scrypt()` instead.\nconst key = crypto.scryptSync(password, 'salt', 24);\n// Use `crypto.randomBytes()` to generate a random iv instead of the static iv\n// shown here.\nconst iv = Buffer.alloc(16, 0); // Initialization vector.\n\nconst cipher = crypto.createCipheriv(algorithm, key, iv);\n\nconst input = fs.createReadStream('test.js');\nconst output = fs.createWriteStream('test.enc');\n\ninput.pipe(cipher).pipe(output);\n
\n

Example: Using the cipher.update() and cipher.final() methods:

\n
const crypto = require('crypto');\n\nconst algorithm = 'aes-192-cbc';\nconst password = 'Password used to generate key';\n// Use the async `crypto.scrypt()` instead.\nconst key = crypto.scryptSync(password, 'salt', 24);\n// Use `crypto.randomBytes` to generate a random iv instead of the static iv\n// shown here.\nconst iv = Buffer.alloc(16, 0); // Initialization vector.\n\nconst cipher = crypto.createCipheriv(algorithm, key, iv);\n\nlet encrypted = cipher.update('some clear text data', 'utf8', 'hex');\nencrypted += cipher.final('hex');\nconsole.log(encrypted);\n// Prints: e5f79c5915c02171eec6b212d5520d44480993d7d622a7c4c2da32f6efda0ffa\n
", "methods": [ { "textRaw": "cipher.final([outputEncoding])", "type": "method", "name": "final", "meta": { "added": [ "v0.1.94" ], "changes": [] }, "signatures": [ { "return": { "textRaw": "Returns: {Buffer | string} Any remaining enciphered contents. If `outputEncoding` is specified, a string is returned. If an `outputEncoding` is not provided, a [`Buffer`][] is returned.", "name": "return", "type": "Buffer | string", "desc": "Any remaining enciphered contents. If `outputEncoding` is specified, a string is returned. If an `outputEncoding` is not provided, a [`Buffer`][] is returned." }, "params": [ { "textRaw": "`outputEncoding` {string} The [encoding][] of the return value.", "name": "outputEncoding", "type": "string", "desc": "The [encoding][] of the return value.", "optional": true } ] } ], "desc": "

Once the cipher.final() method has been called, the Cipher object can no\nlonger be used to encrypt data. Attempts to call cipher.final() more than\nonce will result in an error being thrown.

" }, { "textRaw": "cipher.setAAD(buffer[, options])", "type": "method", "name": "setAAD", "meta": { "added": [ "v1.0.0" ], "changes": [] }, "signatures": [ { "return": { "textRaw": "Returns: {Cipher} for method chaining.", "name": "return", "type": "Cipher", "desc": "for method chaining." }, "params": [ { "textRaw": "`buffer` {Buffer}", "name": "buffer", "type": "Buffer" }, { "textRaw": "`options` {Object} [`stream.transform` options][]", "name": "options", "type": "Object", "desc": "[`stream.transform` options][]", "options": [ { "textRaw": "`plaintextLength` {number}", "name": "plaintextLength", "type": "number" } ], "optional": true } ] } ], "desc": "

When using an authenticated encryption mode (GCM, CCM and OCB are\ncurrently supported), the cipher.setAAD() method sets the value used for the\nadditional authenticated data (AAD) input parameter.

\n

The options argument is optional for GCM and OCB. When using CCM, the\nplaintextLength option must be specified and its value must match the length\nof the plaintext in bytes. See CCM mode.

\n

The cipher.setAAD() method must be called before cipher.update().

" }, { "textRaw": "cipher.getAuthTag()", "type": "method", "name": "getAuthTag", "meta": { "added": [ "v1.0.0" ], "changes": [] }, "signatures": [ { "return": { "textRaw": "Returns: {Buffer} When using an authenticated encryption mode (`GCM`, `CCM` and `OCB` are currently supported), the `cipher.getAuthTag()` method returns a [`Buffer`][] containing the _authentication tag_ that has been computed from the given data.", "name": "return", "type": "Buffer", "desc": "When using an authenticated encryption mode (`GCM`, `CCM` and `OCB` are currently supported), the `cipher.getAuthTag()` method returns a [`Buffer`][] containing the _authentication tag_ that has been computed from the given data." }, "params": [] } ], "desc": "

The cipher.getAuthTag() method should only be called after encryption has\nbeen completed using the cipher.final() method.

" }, { "textRaw": "cipher.setAutoPadding([autoPadding])", "type": "method", "name": "setAutoPadding", "meta": { "added": [ "v0.7.1" ], "changes": [] }, "signatures": [ { "return": { "textRaw": "Returns: {Cipher} for method chaining.", "name": "return", "type": "Cipher", "desc": "for method chaining." }, "params": [ { "textRaw": "`autoPadding` {boolean} **Default:** `true`", "name": "autoPadding", "type": "boolean", "default": "`true`", "optional": true } ] } ], "desc": "

When using block encryption algorithms, the Cipher class will automatically\nadd padding to the input data to the appropriate block size. To disable the\ndefault padding call cipher.setAutoPadding(false).

\n

When autoPadding is false, the length of the entire input data must be a\nmultiple of the cipher's block size or cipher.final() will throw an error.\nDisabling automatic padding is useful for non-standard padding, for instance\nusing 0x0 instead of PKCS padding.

\n

The cipher.setAutoPadding() method must be called before\ncipher.final().

" }, { "textRaw": "cipher.update(data[, inputEncoding][, outputEncoding])", "type": "method", "name": "update", "meta": { "added": [ "v0.1.94" ], "changes": [ { "version": "v6.0.0", "pr-url": "https://github.com/nodejs/node/pull/5522", "description": "The default `inputEncoding` changed from `binary` to `utf8`." } ] }, "signatures": [ { "return": { "textRaw": "Returns: {Buffer | string}", "name": "return", "type": "Buffer | string" }, "params": [ { "textRaw": "`data` {string | Buffer | TypedArray | DataView}", "name": "data", "type": "string | Buffer | TypedArray | DataView" }, { "textRaw": "`inputEncoding` {string} The [encoding][] of the data.", "name": "inputEncoding", "type": "string", "desc": "The [encoding][] of the data.", "optional": true }, { "textRaw": "`outputEncoding` {string} The [encoding][] of the return value.", "name": "outputEncoding", "type": "string", "desc": "The [encoding][] of the return value.", "optional": true } ] } ], "desc": "

Updates the cipher with data. If the inputEncoding argument is given,\nthe data\nargument is a string using the specified encoding. If the inputEncoding\nargument is not given, data must be a Buffer, TypedArray, or\nDataView. If data is a Buffer, TypedArray, or DataView, then\ninputEncoding is ignored.

\n

The outputEncoding specifies the output format of the enciphered\ndata. If the outputEncoding\nis specified, a string using the specified encoding is returned. If no\noutputEncoding is provided, a Buffer is returned.

\n

The cipher.update() method can be called multiple times with new data until\ncipher.final() is called. Calling cipher.update() after\ncipher.final() will result in an error being thrown.

" } ] }, { "textRaw": "Class: Decipher", "type": "class", "name": "Decipher", "meta": { "added": [ "v0.1.94" ], "changes": [] }, "desc": "

Instances of the Decipher class are used to decrypt data. The class can be\nused in one of two ways:

\n\n

The crypto.createDecipher() or crypto.createDecipheriv() methods are\nused to create Decipher instances. Decipher objects are not to be created\ndirectly using the new keyword.

\n

Example: Using Decipher objects as streams:

\n
const crypto = require('crypto');\n\nconst algorithm = 'aes-192-cbc';\nconst password = 'Password used to generate key';\n// Key length is dependent on the algorithm. In this case for aes192, it is\n// 24 bytes (192 bits).\n// Use the async `crypto.scrypt()` instead.\nconst key = crypto.scryptSync(password, 'salt', 24);\n// The IV is usually passed along with the ciphertext.\nconst iv = Buffer.alloc(16, 0); // Initialization vector.\n\nconst decipher = crypto.createDecipheriv(algorithm, key, iv);\n\nlet decrypted = '';\ndecipher.on('readable', () => {\n  while (null !== (chunk = decipher.read())) {\n    decrypted += chunk.toString('utf8');\n  }\n});\ndecipher.on('end', () => {\n  console.log(decrypted);\n  // Prints: some clear text data\n});\n\n// Encrypted with same algorithm, key and iv.\nconst encrypted =\n  'e5f79c5915c02171eec6b212d5520d44480993d7d622a7c4c2da32f6efda0ffa';\ndecipher.write(encrypted, 'hex');\ndecipher.end();\n
\n

Example: Using Decipher and piped streams:

\n
const crypto = require('crypto');\nconst fs = require('fs');\n\nconst algorithm = 'aes-192-cbc';\nconst password = 'Password used to generate key';\n// Use the async `crypto.scrypt()` instead.\nconst key = crypto.scryptSync(password, 'salt', 24);\n// The IV is usually passed along with the ciphertext.\nconst iv = Buffer.alloc(16, 0); // Initialization vector.\n\nconst decipher = crypto.createDecipheriv(algorithm, key, iv);\n\nconst input = fs.createReadStream('test.enc');\nconst output = fs.createWriteStream('test.js');\n\ninput.pipe(decipher).pipe(output);\n
\n

Example: Using the decipher.update() and decipher.final() methods:

\n
const crypto = require('crypto');\n\nconst algorithm = 'aes-192-cbc';\nconst password = 'Password used to generate key';\n// Use the async `crypto.scrypt()` instead.\nconst key = crypto.scryptSync(password, 'salt', 24);\n// The IV is usually passed along with the ciphertext.\nconst iv = Buffer.alloc(16, 0); // Initialization vector.\n\nconst decipher = crypto.createDecipheriv(algorithm, key, iv);\n\n// Encrypted using same algorithm, key and iv.\nconst encrypted =\n  'e5f79c5915c02171eec6b212d5520d44480993d7d622a7c4c2da32f6efda0ffa';\nlet decrypted = decipher.update(encrypted, 'hex', 'utf8');\ndecrypted += decipher.final('utf8');\nconsole.log(decrypted);\n// Prints: some clear text data\n
", "methods": [ { "textRaw": "decipher.final([outputEncoding])", "type": "method", "name": "final", "meta": { "added": [ "v0.1.94" ], "changes": [] }, "signatures": [ { "return": { "textRaw": "Returns: {Buffer | string} Any remaining deciphered contents. If `outputEncoding` is specified, a string is returned. If an `outputEncoding` is not provided, a [`Buffer`][] is returned.", "name": "return", "type": "Buffer | string", "desc": "Any remaining deciphered contents. If `outputEncoding` is specified, a string is returned. If an `outputEncoding` is not provided, a [`Buffer`][] is returned." }, "params": [ { "textRaw": "`outputEncoding` {string} The [encoding][] of the return value.", "name": "outputEncoding", "type": "string", "desc": "The [encoding][] of the return value.", "optional": true } ] } ], "desc": "

Once the decipher.final() method has been called, the Decipher object can\nno longer be used to decrypt data. Attempts to call decipher.final() more\nthan once will result in an error being thrown.

" }, { "textRaw": "decipher.setAAD(buffer[, options])", "type": "method", "name": "setAAD", "meta": { "added": [ "v1.0.0" ], "changes": [ { "version": "v7.2.0", "pr-url": "https://github.com/nodejs/node/pull/9398", "description": "This method now returns a reference to `decipher`." } ] }, "signatures": [ { "return": { "textRaw": "Returns: {Decipher} for method chaining.", "name": "return", "type": "Decipher", "desc": "for method chaining." }, "params": [ { "textRaw": "`buffer` {Buffer | TypedArray | DataView}", "name": "buffer", "type": "Buffer | TypedArray | DataView" }, { "textRaw": "`options` {Object} [`stream.transform` options][]", "name": "options", "type": "Object", "desc": "[`stream.transform` options][]", "options": [ { "textRaw": "`plaintextLength` {number}", "name": "plaintextLength", "type": "number" } ], "optional": true } ] } ], "desc": "

When using an authenticated encryption mode (GCM, CCM and OCB are\ncurrently supported), the decipher.setAAD() method sets the value used for the\nadditional authenticated data (AAD) input parameter.

\n

The options argument is optional for GCM. When using CCM, the\nplaintextLength option must be specified and its value must match the length\nof the plaintext in bytes. See CCM mode.

\n

The decipher.setAAD() method must be called before decipher.update().

" }, { "textRaw": "decipher.setAuthTag(buffer)", "type": "method", "name": "setAuthTag", "meta": { "added": [ "v1.0.0" ], "changes": [ { "version": "v7.2.0", "pr-url": "https://github.com/nodejs/node/pull/9398", "description": "This method now returns a reference to `decipher`." } ] }, "signatures": [ { "return": { "textRaw": "Returns: {Decipher} for method chaining.", "name": "return", "type": "Decipher", "desc": "for method chaining." }, "params": [ { "textRaw": "`buffer` {Buffer | TypedArray | DataView}", "name": "buffer", "type": "Buffer | TypedArray | DataView" } ] } ], "desc": "

When using an authenticated encryption mode (GCM, CCM and OCB are\ncurrently supported), the decipher.setAuthTag() method is used to pass in the\nreceived authentication tag. If no tag is provided, or if the cipher text\nhas been tampered with, decipher.final() will throw, indicating that the\ncipher text should be discarded due to failed authentication.

\n

Note that this Node.js version does not verify the length of GCM authentication\ntags. Such a check must be implemented by applications and is crucial to the\nauthenticity of the encrypted data, otherwise, an attacker can use an\narbitrarily short authentication tag to increase the chances of successfully\npassing authentication (up to 0.39%). It is highly recommended to associate one\nof the values 16, 15, 14, 13, 12, 8 or 4 bytes with each key, and to only permit\nauthentication tags of that length, see NIST SP 800-38D.

\n

The decipher.setAuthTag() method must be called before\ndecipher.final().

" }, { "textRaw": "decipher.setAutoPadding([autoPadding])", "type": "method", "name": "setAutoPadding", "meta": { "added": [ "v0.7.1" ], "changes": [] }, "signatures": [ { "return": { "textRaw": "Returns: {Decipher} for method chaining.", "name": "return", "type": "Decipher", "desc": "for method chaining." }, "params": [ { "textRaw": "`autoPadding` {boolean} **Default:** `true`", "name": "autoPadding", "type": "boolean", "default": "`true`", "optional": true } ] } ], "desc": "

When data has been encrypted without standard block padding, calling\ndecipher.setAutoPadding(false) will disable automatic padding to prevent\ndecipher.final() from checking for and removing padding.

\n

Turning auto padding off will only work if the input data's length is a\nmultiple of the ciphers block size.

\n

The decipher.setAutoPadding() method must be called before\ndecipher.final().

" }, { "textRaw": "decipher.update(data[, inputEncoding][, outputEncoding])", "type": "method", "name": "update", "meta": { "added": [ "v0.1.94" ], "changes": [ { "version": "v6.0.0", "pr-url": "https://github.com/nodejs/node/pull/5522", "description": "The default `inputEncoding` changed from `binary` to `utf8`." } ] }, "signatures": [ { "return": { "textRaw": "Returns: {Buffer | string}", "name": "return", "type": "Buffer | string" }, "params": [ { "textRaw": "`data` {string | Buffer | TypedArray | DataView}", "name": "data", "type": "string | Buffer | TypedArray | DataView" }, { "textRaw": "`inputEncoding` {string} The [encoding][] of the `data` string.", "name": "inputEncoding", "type": "string", "desc": "The [encoding][] of the `data` string.", "optional": true }, { "textRaw": "`outputEncoding` {string} The [encoding][] of the return value.", "name": "outputEncoding", "type": "string", "desc": "The [encoding][] of the return value.", "optional": true } ] } ], "desc": "

Updates the decipher with data. If the inputEncoding argument is given,\nthe data\nargument is a string using the specified encoding. If the inputEncoding\nargument is not given, data must be a Buffer. If data is a\nBuffer then inputEncoding is ignored.

\n

The outputEncoding specifies the output format of the enciphered\ndata. If the outputEncoding\nis specified, a string using the specified encoding is returned. If no\noutputEncoding is provided, a Buffer is returned.

\n

The decipher.update() method can be called multiple times with new data until\ndecipher.final() is called. Calling decipher.update() after\ndecipher.final() will result in an error being thrown.

" } ] }, { "textRaw": "Class: DiffieHellman", "type": "class", "name": "DiffieHellman", "meta": { "added": [ "v0.5.0" ], "changes": [] }, "desc": "

The DiffieHellman class is a utility for creating Diffie-Hellman key\nexchanges.

\n

Instances of the DiffieHellman class can be created using the\ncrypto.createDiffieHellman() function.

\n
const crypto = require('crypto');\nconst assert = require('assert');\n\n// Generate Alice's keys...\nconst alice = crypto.createDiffieHellman(2048);\nconst aliceKey = alice.generateKeys();\n\n// Generate Bob's keys...\nconst bob = crypto.createDiffieHellman(alice.getPrime(), alice.getGenerator());\nconst bobKey = bob.generateKeys();\n\n// Exchange and generate the secret...\nconst aliceSecret = alice.computeSecret(bobKey);\nconst bobSecret = bob.computeSecret(aliceKey);\n\n// OK\nassert.strictEqual(aliceSecret.toString('hex'), bobSecret.toString('hex'));\n
", "methods": [ { "textRaw": "diffieHellman.computeSecret(otherPublicKey[, inputEncoding][, outputEncoding])", "type": "method", "name": "computeSecret", "meta": { "added": [ "v0.5.0" ], "changes": [] }, "signatures": [ { "return": { "textRaw": "Returns: {Buffer | string}", "name": "return", "type": "Buffer | string" }, "params": [ { "textRaw": "`otherPublicKey` {string | Buffer | TypedArray | DataView}", "name": "otherPublicKey", "type": "string | Buffer | TypedArray | DataView" }, { "textRaw": "`inputEncoding` {string} The [encoding][] of an `otherPublicKey` string.", "name": "inputEncoding", "type": "string", "desc": "The [encoding][] of an `otherPublicKey` string.", "optional": true }, { "textRaw": "`outputEncoding` {string} The [encoding][] of the return value.", "name": "outputEncoding", "type": "string", "desc": "The [encoding][] of the return value.", "optional": true } ] } ], "desc": "

Computes the shared secret using otherPublicKey as the other\nparty's public key and returns the computed shared secret. The supplied\nkey is interpreted using the specified inputEncoding, and secret is\nencoded using specified outputEncoding.\nIf the inputEncoding is not\nprovided, otherPublicKey is expected to be a Buffer,\nTypedArray, or DataView.

\n

If outputEncoding is given a string is returned; otherwise, a\nBuffer is returned.

" }, { "textRaw": "diffieHellman.generateKeys([encoding])", "type": "method", "name": "generateKeys", "meta": { "added": [ "v0.5.0" ], "changes": [] }, "signatures": [ { "return": { "textRaw": "Returns: {Buffer | string}", "name": "return", "type": "Buffer | string" }, "params": [ { "textRaw": "`encoding` {string} The [encoding][] of the return value.", "name": "encoding", "type": "string", "desc": "The [encoding][] of the return value.", "optional": true } ] } ], "desc": "

Generates private and public Diffie-Hellman key values, and returns\nthe public key in the specified encoding. This key should be\ntransferred to the other party.\nIf encoding is provided a string is returned; otherwise a\nBuffer is returned.

" }, { "textRaw": "diffieHellman.getGenerator([encoding])", "type": "method", "name": "getGenerator", "meta": { "added": [ "v0.5.0" ], "changes": [] }, "signatures": [ { "return": { "textRaw": "Returns: {Buffer | string}", "name": "return", "type": "Buffer | string" }, "params": [ { "textRaw": "`encoding` {string} The [encoding][] of the return value.", "name": "encoding", "type": "string", "desc": "The [encoding][] of the return value.", "optional": true } ] } ], "desc": "

Returns the Diffie-Hellman generator in the specified encoding.\nIf encoding is provided a string is\nreturned; otherwise a Buffer is returned.

" }, { "textRaw": "diffieHellman.getPrime([encoding])", "type": "method", "name": "getPrime", "meta": { "added": [ "v0.5.0" ], "changes": [] }, "signatures": [ { "return": { "textRaw": "Returns: {Buffer | string}", "name": "return", "type": "Buffer | string" }, "params": [ { "textRaw": "`encoding` {string} The [encoding][] of the return value.", "name": "encoding", "type": "string", "desc": "The [encoding][] of the return value.", "optional": true } ] } ], "desc": "

Returns the Diffie-Hellman prime in the specified encoding.\nIf encoding is provided a string is\nreturned; otherwise a Buffer is returned.

" }, { "textRaw": "diffieHellman.getPrivateKey([encoding])", "type": "method", "name": "getPrivateKey", "meta": { "added": [ "v0.5.0" ], "changes": [] }, "signatures": [ { "return": { "textRaw": "Returns: {Buffer | string}", "name": "return", "type": "Buffer | string" }, "params": [ { "textRaw": "`encoding` {string} The [encoding][] of the return value.", "name": "encoding", "type": "string", "desc": "The [encoding][] of the return value.", "optional": true } ] } ], "desc": "

Returns the Diffie-Hellman private key in the specified encoding.\nIf encoding is provided a\nstring is returned; otherwise a Buffer is returned.

" }, { "textRaw": "diffieHellman.getPublicKey([encoding])", "type": "method", "name": "getPublicKey", "meta": { "added": [ "v0.5.0" ], "changes": [] }, "signatures": [ { "return": { "textRaw": "Returns: {Buffer | string}", "name": "return", "type": "Buffer | string" }, "params": [ { "textRaw": "`encoding` {string} The [encoding][] of the return value.", "name": "encoding", "type": "string", "desc": "The [encoding][] of the return value.", "optional": true } ] } ], "desc": "

Returns the Diffie-Hellman public key in the specified encoding.\nIf encoding is provided a\nstring is returned; otherwise a Buffer is returned.

" }, { "textRaw": "diffieHellman.setPrivateKey(privateKey[, encoding])", "type": "method", "name": "setPrivateKey", "meta": { "added": [ "v0.5.0" ], "changes": [] }, "signatures": [ { "params": [ { "textRaw": "`privateKey` {string | Buffer | TypedArray | DataView}", "name": "privateKey", "type": "string | Buffer | TypedArray | DataView" }, { "textRaw": "`encoding` {string} The [encoding][] of the `privateKey` string.", "name": "encoding", "type": "string", "desc": "The [encoding][] of the `privateKey` string.", "optional": true } ] } ], "desc": "

Sets the Diffie-Hellman private key. If the encoding argument is provided,\nprivateKey is expected\nto be a string. If no encoding is provided, privateKey is expected\nto be a Buffer, TypedArray, or DataView.

" }, { "textRaw": "diffieHellman.setPublicKey(publicKey[, encoding])", "type": "method", "name": "setPublicKey", "meta": { "added": [ "v0.5.0" ], "changes": [] }, "signatures": [ { "params": [ { "textRaw": "`publicKey` {string | Buffer | TypedArray | DataView}", "name": "publicKey", "type": "string | Buffer | TypedArray | DataView" }, { "textRaw": "`encoding` {string} The [encoding][] of the `publicKey` string.", "name": "encoding", "type": "string", "desc": "The [encoding][] of the `publicKey` string.", "optional": true } ] } ], "desc": "

Sets the Diffie-Hellman public key. If the encoding argument is provided,\npublicKey is expected\nto be a string. If no encoding is provided, publicKey is expected\nto be a Buffer, TypedArray, or DataView.

" } ], "properties": [ { "textRaw": "diffieHellman.verifyError", "name": "verifyError", "meta": { "added": [ "v0.11.12" ], "changes": [] }, "desc": "

A bit field containing any warnings and/or errors resulting from a check\nperformed during initialization of the DiffieHellman object.

\n

The following values are valid for this property (as defined in constants\nmodule):

\n" } ] }, { "textRaw": "Class: ECDH", "type": "class", "name": "ECDH", "meta": { "added": [ "v0.11.14" ], "changes": [] }, "desc": "

The ECDH class is a utility for creating Elliptic Curve Diffie-Hellman (ECDH)\nkey exchanges.

\n

Instances of the ECDH class can be created using the\ncrypto.createECDH() function.

\n
const crypto = require('crypto');\nconst assert = require('assert');\n\n// Generate Alice's keys...\nconst alice = crypto.createECDH('secp521r1');\nconst aliceKey = alice.generateKeys();\n\n// Generate Bob's keys...\nconst bob = crypto.createECDH('secp521r1');\nconst bobKey = bob.generateKeys();\n\n// Exchange and generate the secret...\nconst aliceSecret = alice.computeSecret(bobKey);\nconst bobSecret = bob.computeSecret(aliceKey);\n\nassert.strictEqual(aliceSecret.toString('hex'), bobSecret.toString('hex'));\n// OK\n
", "classMethods": [ { "textRaw": "Class Method: ECDH.convertKey(key, curve[, inputEncoding[, outputEncoding[, format]]])", "type": "classMethod", "name": "convertKey", "meta": { "added": [ "v10.0.0" ], "changes": [] }, "signatures": [ { "return": { "textRaw": "Returns: {Buffer | string}", "name": "return", "type": "Buffer | string" }, "params": [ { "textRaw": "`key` {string | Buffer | TypedArray | DataView}", "name": "key", "type": "string | Buffer | TypedArray | DataView" }, { "textRaw": "`curve` {string}", "name": "curve", "type": "string" }, { "textRaw": "`inputEncoding` {string} The [encoding][] of the `key` string.", "name": "inputEncoding", "type": "string", "desc": "The [encoding][] of the `key` string.", "optional": true }, { "textRaw": "`outputEncoding` {string} The [encoding][] of the return value.", "name": "outputEncoding", "type": "string", "desc": "The [encoding][] of the return value.", "optional": true }, { "textRaw": "`format` {string} **Default:** `'uncompressed'`", "name": "format", "type": "string", "default": "`'uncompressed'`", "optional": true } ] } ], "desc": "

Converts the EC Diffie-Hellman public key specified by key and curve to the\nformat specified by format. The format argument specifies point encoding\nand can be 'compressed', 'uncompressed' or 'hybrid'. The supplied key is\ninterpreted using the specified inputEncoding, and the returned key is encoded\nusing the specified outputEncoding.

\n

Use crypto.getCurves() to obtain a list of available curve names.\nOn recent OpenSSL releases, openssl ecparam -list_curves will also display\nthe name and description of each available elliptic curve.

\n

If format is not specified the point will be returned in 'uncompressed'\nformat.

\n

If the inputEncoding is not provided, key is expected to be a Buffer,\nTypedArray, or DataView.

\n

Example (uncompressing a key):

\n
const { createECDH, ECDH } = require('crypto');\n\nconst ecdh = createECDH('secp256k1');\necdh.generateKeys();\n\nconst compressedKey = ecdh.getPublicKey('hex', 'compressed');\n\nconst uncompressedKey = ECDH.convertKey(compressedKey,\n                                        'secp256k1',\n                                        'hex',\n                                        'hex',\n                                        'uncompressed');\n\n// the converted key and the uncompressed public key should be the same\nconsole.log(uncompressedKey === ecdh.getPublicKey('hex'));\n
" } ], "methods": [ { "textRaw": "ecdh.computeSecret(otherPublicKey[, inputEncoding][, outputEncoding])", "type": "method", "name": "computeSecret", "meta": { "added": [ "v0.11.14" ], "changes": [ { "version": "v6.0.0", "pr-url": "https://github.com/nodejs/node/pull/5522", "description": "The default `inputEncoding` changed from `binary` to `utf8`" }, { "version": "v10.0.0", "pr-url": "https://github.com/nodejs/node/pull/16849", "description": "Changed error format to better support invalid public key error" } ] }, "signatures": [ { "return": { "textRaw": "Returns: {Buffer | string}", "name": "return", "type": "Buffer | string" }, "params": [ { "textRaw": "`otherPublicKey` {string | Buffer | TypedArray | DataView}", "name": "otherPublicKey", "type": "string | Buffer | TypedArray | DataView" }, { "textRaw": "`inputEncoding` {string} The [encoding][] of the `otherPublicKey` string.", "name": "inputEncoding", "type": "string", "desc": "The [encoding][] of the `otherPublicKey` string.", "optional": true }, { "textRaw": "`outputEncoding` {string} The [encoding][] of the return value.", "name": "outputEncoding", "type": "string", "desc": "The [encoding][] of the return value.", "optional": true } ] } ], "desc": "

Computes the shared secret using otherPublicKey as the other\nparty's public key and returns the computed shared secret. The supplied\nkey is interpreted using specified inputEncoding, and the returned secret\nis encoded using the specified outputEncoding.\nIf the inputEncoding is not\nprovided, otherPublicKey is expected to be a Buffer, TypedArray, or\nDataView.

\n

If outputEncoding is given a string will be returned; otherwise a\nBuffer is returned.

\n

ecdh.computeSecret will throw an\nERR_CRYPTO_ECDH_INVALID_PUBLIC_KEY error when otherPublicKey\nlies outside of the elliptic curve. Since otherPublicKey is\nusually supplied from a remote user over an insecure network,\nits recommended for developers to handle this exception accordingly.

" }, { "textRaw": "ecdh.generateKeys([encoding[, format]])", "type": "method", "name": "generateKeys", "meta": { "added": [ "v0.11.14" ], "changes": [] }, "signatures": [ { "return": { "textRaw": "Returns: {Buffer | string}", "name": "return", "type": "Buffer | string" }, "params": [ { "textRaw": "`encoding` {string} The [encoding][] of the return value.", "name": "encoding", "type": "string", "desc": "The [encoding][] of the return value.", "optional": true }, { "textRaw": "`format` {string} **Default:** `'uncompressed'`", "name": "format", "type": "string", "default": "`'uncompressed'`", "optional": true } ] } ], "desc": "

Generates private and public EC Diffie-Hellman key values, and returns\nthe public key in the specified format and encoding. This key should be\ntransferred to the other party.

\n

The format argument specifies point encoding and can be 'compressed' or\n'uncompressed'. If format is not specified, the point will be returned in\n'uncompressed' format.

\n

If encoding is provided a string is returned; otherwise a Buffer\nis returned.

" }, { "textRaw": "ecdh.getPrivateKey([encoding])", "type": "method", "name": "getPrivateKey", "meta": { "added": [ "v0.11.14" ], "changes": [] }, "signatures": [ { "return": { "textRaw": "Returns: {Buffer | string} The EC Diffie-Hellman in the specified `encoding`.", "name": "return", "type": "Buffer | string", "desc": "The EC Diffie-Hellman in the specified `encoding`." }, "params": [ { "textRaw": "`encoding` {string} The [encoding][] of the return value.", "name": "encoding", "type": "string", "desc": "The [encoding][] of the return value.", "optional": true } ] } ], "desc": "

If encoding is specified, a string is returned; otherwise a Buffer is\nreturned.

" }, { "textRaw": "ecdh.getPublicKey([encoding][, format])", "type": "method", "name": "getPublicKey", "meta": { "added": [ "v0.11.14" ], "changes": [] }, "signatures": [ { "return": { "textRaw": "Returns: {Buffer | string} The EC Diffie-Hellman public key in the specified `encoding` and `format`.", "name": "return", "type": "Buffer | string", "desc": "The EC Diffie-Hellman public key in the specified `encoding` and `format`." }, "params": [ { "textRaw": "`encoding` {string} The [encoding][] of the return value.", "name": "encoding", "type": "string", "desc": "The [encoding][] of the return value.", "optional": true }, { "textRaw": "`format` {string} **Default:** `'uncompressed'`", "name": "format", "type": "string", "default": "`'uncompressed'`", "optional": true } ] } ], "desc": "

The format argument specifies point encoding and can be 'compressed' or\n'uncompressed'. If format is not specified the point will be returned in\n'uncompressed' format.

\n

If encoding is specified, a string is returned; otherwise a Buffer is\nreturned.

" }, { "textRaw": "ecdh.setPrivateKey(privateKey[, encoding])", "type": "method", "name": "setPrivateKey", "meta": { "added": [ "v0.11.14" ], "changes": [] }, "signatures": [ { "params": [ { "textRaw": "`privateKey` {string | Buffer | TypedArray | DataView}", "name": "privateKey", "type": "string | Buffer | TypedArray | DataView" }, { "textRaw": "`encoding` {string} The [encoding][] of the `privateKey` string.", "name": "encoding", "type": "string", "desc": "The [encoding][] of the `privateKey` string.", "optional": true } ] } ], "desc": "

Sets the EC Diffie-Hellman private key.\nIf encoding is provided, privateKey is expected\nto be a string; otherwise privateKey is expected to be a Buffer,\nTypedArray, or DataView.

\n

If privateKey is not valid for the curve specified when the ECDH object was\ncreated, an error is thrown. Upon setting the private key, the associated\npublic point (key) is also generated and set in the ECDH object.

" }, { "textRaw": "ecdh.setPublicKey(publicKey[, encoding])", "type": "method", "name": "setPublicKey", "meta": { "added": [ "v0.11.14" ], "deprecated": [ "v5.2.0" ], "changes": [] }, "stability": 0, "stabilityText": "Deprecated", "signatures": [ { "params": [ { "textRaw": "`publicKey` {string | Buffer | TypedArray | DataView}", "name": "publicKey", "type": "string | Buffer | TypedArray | DataView" }, { "textRaw": "`encoding` {string} The [encoding][] of the `publicKey` string.", "name": "encoding", "type": "string", "desc": "The [encoding][] of the `publicKey` string.", "optional": true } ] } ], "desc": "

Sets the EC Diffie-Hellman public key.\nIf encoding is provided publicKey is expected to\nbe a string; otherwise a Buffer, TypedArray, or DataView is expected.

\n

Note that there is not normally a reason to call this method because ECDH\nonly requires a private key and the other party's public key to compute the\nshared secret. Typically either ecdh.generateKeys() or\necdh.setPrivateKey() will be called. The ecdh.setPrivateKey() method\nattempts to generate the public point/key associated with the private key being\nset.

\n

Example (obtaining a shared secret):

\n
const crypto = require('crypto');\nconst alice = crypto.createECDH('secp256k1');\nconst bob = crypto.createECDH('secp256k1');\n\n// This is a shortcut way of specifying one of Alice's previous private\n// keys. It would be unwise to use such a predictable private key in a real\n// application.\nalice.setPrivateKey(\n  crypto.createHash('sha256').update('alice', 'utf8').digest()\n);\n\n// Bob uses a newly generated cryptographically strong\n// pseudorandom key pair\nbob.generateKeys();\n\nconst aliceSecret = alice.computeSecret(bob.getPublicKey(), null, 'hex');\nconst bobSecret = bob.computeSecret(alice.getPublicKey(), null, 'hex');\n\n// aliceSecret and bobSecret should be the same shared secret value\nconsole.log(aliceSecret === bobSecret);\n
" } ] }, { "textRaw": "Class: Hash", "type": "class", "name": "Hash", "meta": { "added": [ "v0.1.92" ], "changes": [] }, "desc": "

The Hash class is a utility for creating hash digests of data. It can be\nused in one of two ways:

\n\n

The crypto.createHash() method is used to create Hash instances. Hash\nobjects are not to be created directly using the new keyword.

\n

Example: Using Hash objects as streams:

\n
const crypto = require('crypto');\nconst hash = crypto.createHash('sha256');\n\nhash.on('readable', () => {\n  // Only one element is going to be produced by the\n  // hash stream.\n  const data = hash.read();\n  if (data) {\n    console.log(data.toString('hex'));\n    // Prints:\n    //   6a2da20943931e9834fc12cfe5bb47bbd9ae43489a30726962b576f4e3993e50\n  }\n});\n\nhash.write('some data to hash');\nhash.end();\n
\n

Example: Using Hash and piped streams:

\n
const crypto = require('crypto');\nconst fs = require('fs');\nconst hash = crypto.createHash('sha256');\n\nconst input = fs.createReadStream('test.js');\ninput.pipe(hash).pipe(process.stdout);\n
\n

Example: Using the hash.update() and hash.digest() methods:

\n
const crypto = require('crypto');\nconst hash = crypto.createHash('sha256');\n\nhash.update('some data to hash');\nconsole.log(hash.digest('hex'));\n// Prints:\n//   6a2da20943931e9834fc12cfe5bb47bbd9ae43489a30726962b576f4e3993e50\n
", "methods": [ { "textRaw": "hash.digest([encoding])", "type": "method", "name": "digest", "meta": { "added": [ "v0.1.92" ], "changes": [] }, "signatures": [ { "return": { "textRaw": "Returns: {Buffer | string}", "name": "return", "type": "Buffer | string" }, "params": [ { "textRaw": "`encoding` {string} The [encoding][] of the return value.", "name": "encoding", "type": "string", "desc": "The [encoding][] of the return value.", "optional": true } ] } ], "desc": "

Calculates the digest of all of the data passed to be hashed (using the\nhash.update() method).\nIf encoding is provided a string will be returned; otherwise\na Buffer is returned.

\n

The Hash object can not be used again after hash.digest() method has been\ncalled. Multiple calls will cause an error to be thrown.

" }, { "textRaw": "hash.update(data[, inputEncoding])", "type": "method", "name": "update", "meta": { "added": [ "v0.1.92" ], "changes": [ { "version": "v6.0.0", "pr-url": "https://github.com/nodejs/node/pull/5522", "description": "The default `inputEncoding` changed from `binary` to `utf8`." } ] }, "signatures": [ { "params": [ { "textRaw": "`data` {string | Buffer | TypedArray | DataView}", "name": "data", "type": "string | Buffer | TypedArray | DataView" }, { "textRaw": "`inputEncoding` {string} The [encoding][] of the `data` string.", "name": "inputEncoding", "type": "string", "desc": "The [encoding][] of the `data` string.", "optional": true } ] } ], "desc": "

Updates the hash content with the given data, the encoding of which\nis given in inputEncoding.\nIf encoding is not provided, and the data is a string, an\nencoding of 'utf8' is enforced. If data is a Buffer, TypedArray, or\nDataView, then inputEncoding is ignored.

\n

This can be called many times with new data as it is streamed.

" } ] }, { "textRaw": "Class: Hmac", "type": "class", "name": "Hmac", "meta": { "added": [ "v0.1.94" ], "changes": [] }, "desc": "

The Hmac Class is a utility for creating cryptographic HMAC digests. It can\nbe used in one of two ways:

\n\n

The crypto.createHmac() method is used to create Hmac instances. Hmac\nobjects are not to be created directly using the new keyword.

\n

Example: Using Hmac objects as streams:

\n
const crypto = require('crypto');\nconst hmac = crypto.createHmac('sha256', 'a secret');\n\nhmac.on('readable', () => {\n  // Only one element is going to be produced by the\n  // hash stream.\n  const data = hmac.read();\n  if (data) {\n    console.log(data.toString('hex'));\n    // Prints:\n    //   7fd04df92f636fd450bc841c9418e5825c17f33ad9c87c518115a45971f7f77e\n  }\n});\n\nhmac.write('some data to hash');\nhmac.end();\n
\n

Example: Using Hmac and piped streams:

\n
const crypto = require('crypto');\nconst fs = require('fs');\nconst hmac = crypto.createHmac('sha256', 'a secret');\n\nconst input = fs.createReadStream('test.js');\ninput.pipe(hmac).pipe(process.stdout);\n
\n

Example: Using the hmac.update() and hmac.digest() methods:

\n
const crypto = require('crypto');\nconst hmac = crypto.createHmac('sha256', 'a secret');\n\nhmac.update('some data to hash');\nconsole.log(hmac.digest('hex'));\n// Prints:\n//   7fd04df92f636fd450bc841c9418e5825c17f33ad9c87c518115a45971f7f77e\n
", "methods": [ { "textRaw": "hmac.digest([encoding])", "type": "method", "name": "digest", "meta": { "added": [ "v0.1.94" ], "changes": [] }, "signatures": [ { "return": { "textRaw": "Returns: {Buffer | string}", "name": "return", "type": "Buffer | string" }, "params": [ { "textRaw": "`encoding` {string} The [encoding][] of the return value.", "name": "encoding", "type": "string", "desc": "The [encoding][] of the return value.", "optional": true } ] } ], "desc": "

Calculates the HMAC digest of all of the data passed using hmac.update().\nIf encoding is\nprovided a string is returned; otherwise a Buffer is returned;

\n

The Hmac object can not be used again after hmac.digest() has been\ncalled. Multiple calls to hmac.digest() will result in an error being thrown.

" }, { "textRaw": "hmac.update(data[, inputEncoding])", "type": "method", "name": "update", "meta": { "added": [ "v0.1.94" ], "changes": [ { "version": "v6.0.0", "pr-url": "https://github.com/nodejs/node/pull/5522", "description": "The default `inputEncoding` changed from `binary` to `utf8`." } ] }, "signatures": [ { "params": [ { "textRaw": "`data` {string | Buffer | TypedArray | DataView}", "name": "data", "type": "string | Buffer | TypedArray | DataView" }, { "textRaw": "`inputEncoding` {string} The [encoding][] of the `data` string.", "name": "inputEncoding", "type": "string", "desc": "The [encoding][] of the `data` string.", "optional": true } ] } ], "desc": "

Updates the Hmac content with the given data, the encoding of which\nis given in inputEncoding.\nIf encoding is not provided, and the data is a string, an\nencoding of 'utf8' is enforced. If data is a Buffer, TypedArray, or\nDataView, then inputEncoding is ignored.

\n

This can be called many times with new data as it is streamed.

" } ] }, { "textRaw": "Class: Sign", "type": "class", "name": "Sign", "meta": { "added": [ "v0.1.92" ], "changes": [] }, "desc": "

The Sign Class is a utility for generating signatures. It can be used in one\nof two ways:

\n\n

The crypto.createSign() method is used to create Sign instances. The\nargument is the string name of the hash function to use. Sign objects are not\nto be created directly using the new keyword.

\n

Example: Using Sign objects as streams:

\n
const crypto = require('crypto');\nconst sign = crypto.createSign('SHA256');\n\nsign.write('some data to sign');\nsign.end();\n\nconst privateKey = getPrivateKeySomehow();\nconsole.log(sign.sign(privateKey, 'hex'));\n// Prints: the calculated signature using the specified private key and\n// SHA-256. For RSA keys, the algorithm is RSASSA-PKCS1-v1_5 (see padding\n// parameter below for RSASSA-PSS). For EC keys, the algorithm is ECDSA.\n
\n

Example: Using the sign.update() and sign.sign() methods:

\n
const crypto = require('crypto');\nconst sign = crypto.createSign('SHA256');\n\nsign.update('some data to sign');\n\nconst privateKey = getPrivateKeySomehow();\nconsole.log(sign.sign(privateKey, 'hex'));\n// Prints: the calculated signature\n
\n

In some cases, a Sign instance can also be created by passing in a signature\nalgorithm name, such as 'RSA-SHA256'. This will use the corresponding digest\nalgorithm. This does not work for all signature algorithms, such as\n'ecdsa-with-SHA256'. Use digest names instead.

\n

Example: signing using legacy signature algorithm name

\n
const crypto = require('crypto');\nconst sign = crypto.createSign('RSA-SHA256');\n\nsign.update('some data to sign');\n\nconst privateKey = getPrivateKeySomehow();\nconsole.log(sign.sign(privateKey, 'hex'));\n// Prints: the calculated signature\n
", "methods": [ { "textRaw": "sign.sign(privateKey[, outputEncoding])", "type": "method", "name": "sign", "meta": { "added": [ "v0.1.92" ], "changes": [ { "version": "v8.0.0", "pr-url": "https://github.com/nodejs/node/pull/11705", "description": "Support for RSASSA-PSS and additional options was added." } ] }, "signatures": [ { "return": { "textRaw": "Returns: {Buffer | string}", "name": "return", "type": "Buffer | string" }, "params": [ { "textRaw": "`privateKey` {string | Object}", "name": "privateKey", "type": "string | Object", "options": [ { "textRaw": "`key` {string}", "name": "key", "type": "string" }, { "textRaw": "`passphrase` {string}", "name": "passphrase", "type": "string" }, { "textRaw": "`padding` {integer}", "name": "padding", "type": "integer" }, { "textRaw": "`saltLength` {integer}", "name": "saltLength", "type": "integer" } ] }, { "textRaw": "`outputEncoding` {string} The [encoding][] of the return value.", "name": "outputEncoding", "type": "string", "desc": "The [encoding][] of the return value.", "optional": true } ] } ], "desc": "

Calculates the signature on all the data passed through using either\nsign.update() or sign.write().

\n

The privateKey argument can be an object or a string. If privateKey is a\nstring, it is treated as a raw key with no passphrase. If privateKey is an\nobject, it must contain one or more of the following properties:

\n\n

If outputEncoding is provided a string is returned; otherwise a Buffer\nis returned.

\n

The Sign object can not be again used after sign.sign() method has been\ncalled. Multiple calls to sign.sign() will result in an error being thrown.

" }, { "textRaw": "sign.update(data[, inputEncoding])", "type": "method", "name": "update", "meta": { "added": [ "v0.1.92" ], "changes": [ { "version": "v6.0.0", "pr-url": "https://github.com/nodejs/node/pull/5522", "description": "The default `inputEncoding` changed from `binary` to `utf8`." } ] }, "signatures": [ { "params": [ { "textRaw": "`data` {string | Buffer | TypedArray | DataView}", "name": "data", "type": "string | Buffer | TypedArray | DataView" }, { "textRaw": "`inputEncoding` {string} The [encoding][] of the `data` string.", "name": "inputEncoding", "type": "string", "desc": "The [encoding][] of the `data` string.", "optional": true } ] } ], "desc": "

Updates the Sign content with the given data, the encoding of which\nis given in inputEncoding.\nIf encoding is not provided, and the data is a string, an\nencoding of 'utf8' is enforced. If data is a Buffer, TypedArray, or\nDataView, then inputEncoding is ignored.

\n

This can be called many times with new data as it is streamed.

" } ] }, { "textRaw": "Class: Verify", "type": "class", "name": "Verify", "meta": { "added": [ "v0.1.92" ], "changes": [] }, "desc": "

The Verify class is a utility for verifying signatures. It can be used in one\nof two ways:

\n\n

The crypto.createVerify() method is used to create Verify instances.\nVerify objects are not to be created directly using the new keyword.

\n

Example: Using Verify objects as streams:

\n
const crypto = require('crypto');\nconst verify = crypto.createVerify('SHA256');\n\nverify.write('some data to sign');\nverify.end();\n\nconst publicKey = getPublicKeySomehow();\nconst signature = getSignatureToVerify();\nconsole.log(verify.verify(publicKey, signature));\n// Prints: true or false\n
\n

Example: Using the verify.update() and verify.verify() methods:

\n
const crypto = require('crypto');\nconst verify = crypto.createVerify('SHA256');\n\nverify.update('some data to sign');\n\nconst publicKey = getPublicKeySomehow();\nconst signature = getSignatureToVerify();\nconsole.log(verify.verify(publicKey, signature));\n// Prints: true or false\n
", "methods": [ { "textRaw": "verify.update(data[, inputEncoding])", "type": "method", "name": "update", "meta": { "added": [ "v0.1.92" ], "changes": [ { "version": "v6.0.0", "pr-url": "https://github.com/nodejs/node/pull/5522", "description": "The default `inputEncoding` changed from `binary` to `utf8`." } ] }, "signatures": [ { "params": [ { "textRaw": "`data` {string | Buffer | TypedArray | DataView}", "name": "data", "type": "string | Buffer | TypedArray | DataView" }, { "textRaw": "`inputEncoding` {string} The [encoding][] of the `data` string.", "name": "inputEncoding", "type": "string", "desc": "The [encoding][] of the `data` string.", "optional": true } ] } ], "desc": "

Updates the Verify content with the given data, the encoding of which\nis given in inputEncoding.\nIf inputEncoding is not provided, and the data is a string, an\nencoding of 'utf8' is enforced. If data is a Buffer, TypedArray, or\nDataView, then inputEncoding is ignored.

\n

This can be called many times with new data as it is streamed.

" }, { "textRaw": "verify.verify(object, signature[, signatureEncoding])", "type": "method", "name": "verify", "meta": { "added": [ "v0.1.92" ], "changes": [ { "version": "v8.0.0", "pr-url": "https://github.com/nodejs/node/pull/11705", "description": "Support for RSASSA-PSS and additional options was added." } ] }, "signatures": [ { "return": { "textRaw": "Returns: {boolean} `true` or `false` depending on the validity of the signature for the data and public key.", "name": "return", "type": "boolean", "desc": "`true` or `false` depending on the validity of the signature for the data and public key." }, "params": [ { "textRaw": "`object` {string | Object}", "name": "object", "type": "string | Object" }, { "textRaw": "`signature` {string | Buffer | TypedArray | DataView}", "name": "signature", "type": "string | Buffer | TypedArray | DataView" }, { "textRaw": "`signatureEncoding` {string} The [encoding][] of the `signature` string.", "name": "signatureEncoding", "type": "string", "desc": "The [encoding][] of the `signature` string.", "optional": true } ] } ], "desc": "

Verifies the provided data using the given object and signature.\nThe object argument can be either a string containing a PEM encoded object,\nwhich can be an RSA public key, a DSA public key, or an X.509 certificate,\nor an object with one or more of the following properties:

\n\n

The signature argument is the previously calculated signature for the data, in\nthe signatureEncoding.\nIf a signatureEncoding is specified, the signature is expected to be a\nstring; otherwise signature is expected to be a Buffer,\nTypedArray, or DataView.

\n

The verify object can not be used again after verify.verify() has been\ncalled. Multiple calls to verify.verify() will result in an error being\nthrown.

" } ] } ], "type": "module", "displayName": "Crypto" } ] }