{ "source": "doc/api/crypto.md", "modules": [ { "textRaw": "Crypto", "name": "crypto", "introduced_in": "v0.3.6", "stability": 2, "stabilityText": "Stable", "desc": "

The crypto module provides cryptographic functionality that includes a set of\nwrappers for OpenSSL's hash, HMAC, cipher, decipher, sign and verify functions.

\n

Use require('crypto') to access this module.

\n
const crypto = require('crypto');\n\nconst secret = 'abcdefg';\nconst hash = crypto.createHmac('sha256', secret)\n                   .update('I love cupcakes')\n                   .digest('hex');\nconsole.log(hash);\n// Prints:\n//   c0fa1bc00531bd78ef38c628449c5102aeabd49b5dc3a2a516ea6ea959d6658e\n
\n", "modules": [ { "textRaw": "Determining if crypto support is unavailable", "name": "determining_if_crypto_support_is_unavailable", "desc": "

It is possible for Node.js to be built without including support for the\ncrypto module. In such cases, calling require('crypto') will result in an\nerror being thrown.

\n
let crypto;\ntry {\n  crypto = require('crypto');\n} catch (err) {\n  console.log('crypto support is disabled!');\n}\n
\n", "type": "module", "displayName": "Determining if crypto support is unavailable" }, { "textRaw": "`crypto` module methods and properties", "name": "`crypto`_module_methods_and_properties", "properties": [ { "textRaw": "crypto.constants", "name": "constants", "meta": { "added": [ "v6.3.0" ] }, "desc": "

Returns an object containing commonly used constants for crypto and security\nrelated operations. The specific constants currently defined are described in\nCrypto Constants.

\n" }, { "textRaw": "crypto.DEFAULT_ENCODING", "name": "DEFAULT_ENCODING", "meta": { "added": [ "v0.9.3" ] }, "desc": "

The default encoding to use for functions that can take either strings\nor buffers. The default value is 'buffer', which makes methods\ndefault to Buffer objects.

\n

The crypto.DEFAULT_ENCODING mechanism is provided for backwards compatibility\nwith legacy programs that expect 'latin1' to be the default encoding.

\n

New applications should expect the default to be 'buffer'. This property may\nbecome deprecated in a future Node.js release.

\n" }, { "textRaw": "crypto.fips", "name": "fips", "meta": { "added": [ "v6.0.0" ] }, "desc": "

Property for checking and controlling whether a FIPS compliant crypto provider is\ncurrently in use. Setting to true requires a FIPS build of Node.js.

\n" } ], "methods": [ { "textRaw": "crypto.createCipher(algorithm, password)", "type": "method", "name": "createCipher", "meta": { "added": [ "v0.1.94" ] }, "desc": "

Creates and returns a Cipher object that uses the given algorithm and\npassword.

\n

The algorithm is dependent on OpenSSL, examples are 'aes192', etc. On\nrecent OpenSSL releases, openssl list-cipher-algorithms will display the\navailable cipher algorithms.

\n

The password is used to derive the cipher key and initialization vector (IV).\nThe value must be either a 'latin1' encoded string or a Buffer.

\n

The implementation of crypto.createCipher() derives keys using the OpenSSL\nfunction EVP_BytesToKey with the digest algorithm set to MD5, one\niteration, and no salt. The lack of salt allows dictionary attacks as the same\npassword always creates the same key. The low iteration count and\nnon-cryptographically secure hash algorithm allow passwords to be tested very\nrapidly.

\n

In line with OpenSSL's recommendation to use PBKDF2 instead of\nEVP_BytesToKey it is recommended that developers derive a key and IV on\ntheir own using crypto.pbkdf2() and to use crypto.createCipheriv()\nto create the Cipher object. Users should not use ciphers with counter mode\n(e.g. CTR, GCM or CCM) in crypto.createCipher(). A warning is emitted when\nthey are used in order to avoid the risk of IV reuse that causes\nvulnerabilities. For the case when IV is reused in GCM, see Nonce-Disrespecting\nAdversaries for details.

\n", "signatures": [ { "params": [ { "name": "algorithm" }, { "name": "password" } ] } ] }, { "textRaw": "crypto.createCipheriv(algorithm, key, iv)", "type": "method", "name": "createCipheriv", "desc": "

Creates and returns a Cipher object, with the given algorithm, key and\ninitialization vector (iv).

\n

The algorithm is dependent on OpenSSL, examples are 'aes192', etc. On\nrecent OpenSSL releases, openssl list-cipher-algorithms will display the\navailable cipher algorithms.

\n

The key is the raw key used by the algorithm and iv is an\ninitialization vector. Both arguments must be 'utf8' encoded strings or\nbuffers.

\n", "signatures": [ { "params": [ { "name": "algorithm" }, { "name": "key" }, { "name": "iv" } ] } ] }, { "textRaw": "crypto.createCredentials(details)", "type": "method", "name": "createCredentials", "meta": { "added": [ "v0.1.92" ], "deprecated": [ "v0.11.13" ] }, "stability": 0, "stabilityText": "Deprecated: Use [`tls.createSecureContext()`][] instead.", "signatures": [ { "params": [ { "textRaw": "`details` {Object} Identical to [`tls.createSecureContext()`][]. ", "name": "details", "type": "Object", "desc": "Identical to [`tls.createSecureContext()`][]." } ] }, { "params": [ { "name": "details" } ] } ], "desc": "

The crypto.createCredentials() method is a deprecated function for creating\nand returning a tls.SecureContext. It should not be used. Replace it with\ntls.createSecureContext() which has the exact same arguments and return\nvalue.

\n

Returns a tls.SecureContext, as-if tls.createSecureContext() had been\ncalled.

\n" }, { "textRaw": "crypto.createDecipher(algorithm, password)", "type": "method", "name": "createDecipher", "meta": { "added": [ "v0.1.94" ] }, "desc": "

Creates and returns a Decipher object that uses the given algorithm and\npassword (key).

\n

The implementation of crypto.createDecipher() derives keys using the OpenSSL\nfunction EVP_BytesToKey with the digest algorithm set to MD5, one\niteration, and no salt. The lack of salt allows dictionary attacks as the same\npassword always creates the same key. The low iteration count and\nnon-cryptographically secure hash algorithm allow passwords to be tested very\nrapidly.

\n

In line with OpenSSL's recommendation to use PBKDF2 instead of\nEVP_BytesToKey it is recommended that developers derive a key and IV on\ntheir own using crypto.pbkdf2() and to use crypto.createDecipheriv()\nto create the Decipher object.

\n", "signatures": [ { "params": [ { "name": "algorithm" }, { "name": "password" } ] } ] }, { "textRaw": "crypto.createDecipheriv(algorithm, key, iv)", "type": "method", "name": "createDecipheriv", "meta": { "added": [ "v0.1.94" ] }, "desc": "

Creates and returns a Decipher object that uses the given algorithm, key\nand initialization vector (iv).

\n

The algorithm is dependent on OpenSSL, examples are 'aes192', etc. On\nrecent OpenSSL releases, openssl list-cipher-algorithms will display the\navailable cipher algorithms.

\n

The key is the raw key used by the algorithm and iv is an\ninitialization vector. Both arguments must be 'utf8' encoded strings,\nBuffers, TypedArray, or DataViews.

\n", "signatures": [ { "params": [ { "name": "algorithm" }, { "name": "key" }, { "name": "iv" } ] } ] }, { "textRaw": "crypto.createDiffieHellman(prime[, prime_encoding][, generator][, generator_encoding])", "type": "method", "name": "createDiffieHellman", "meta": { "added": [ "v0.11.12" ] }, "desc": "

Creates a DiffieHellman key exchange object using the supplied prime and an\noptional specific generator.

\n

The generator argument can be a number, string, or Buffer. If\ngenerator is not specified, the value 2 is used.

\n

The prime_encoding and generator_encoding arguments can be 'latin1',\n'hex', or 'base64'.

\n

If prime_encoding is specified, prime is expected to be a string; otherwise\na Buffer is expected.

\n

If generator_encoding is specified, generator is expected to be a string;\notherwise either a number or Buffer is expected.

\n", "signatures": [ { "params": [ { "name": "prime" }, { "name": "prime_encoding", "optional": true }, { "name": "generator", "optional": true }, { "name": "generator_encoding", "optional": true } ] } ] }, { "textRaw": "crypto.createDiffieHellman(prime_length[, generator])", "type": "method", "name": "createDiffieHellman", "meta": { "added": [ "v0.5.0" ] }, "desc": "

Creates a DiffieHellman key exchange object and generates a prime of\nprime_length bits using an optional specific numeric generator.\nIf generator is not specified, the value 2 is used.

\n", "signatures": [ { "params": [ { "name": "prime_length" }, { "name": "generator", "optional": true } ] } ] }, { "textRaw": "crypto.createECDH(curve_name)", "type": "method", "name": "createECDH", "meta": { "added": [ "v0.11.14" ] }, "desc": "

Creates an Elliptic Curve Diffie-Hellman (ECDH) key exchange object using a\npredefined curve specified by the curve_name string. Use\ncrypto.getCurves() to obtain a list of available curve names. On recent\nOpenSSL releases, openssl ecparam -list_curves will also display the name\nand description of each available elliptic curve.

\n", "signatures": [ { "params": [ { "name": "curve_name" } ] } ] }, { "textRaw": "crypto.createHash(algorithm)", "type": "method", "name": "createHash", "meta": { "added": [ "v0.1.92" ] }, "desc": "

Creates and returns a Hash object that can be used to generate hash digests\nusing the given algorithm.

\n

The algorithm is dependent on the available algorithms supported by the\nversion of OpenSSL on the platform. Examples are 'sha256', 'sha512', etc.\nOn recent releases of OpenSSL, openssl list-message-digest-algorithms will\ndisplay the available digest algorithms.

\n

Example: generating the sha256 sum of a file

\n
const filename = process.argv[2];\nconst crypto = require('crypto');\nconst fs = require('fs');\n\nconst hash = crypto.createHash('sha256');\n\nconst input = fs.createReadStream(filename);\ninput.on('readable', () => {\n  const data = input.read();\n  if (data)\n    hash.update(data);\n  else {\n    console.log(`${hash.digest('hex')} ${filename}`);\n  }\n});\n
\n", "signatures": [ { "params": [ { "name": "algorithm" } ] } ] }, { "textRaw": "crypto.createHmac(algorithm, key)", "type": "method", "name": "createHmac", "meta": { "added": [ "v0.1.94" ] }, "desc": "

Creates and returns an Hmac object that uses the given algorithm and key.

\n

The algorithm is dependent on the available algorithms supported by the\nversion of OpenSSL on the platform. Examples are 'sha256', 'sha512', etc.\nOn recent releases of OpenSSL, openssl list-message-digest-algorithms will\ndisplay the available digest algorithms.

\n

The key is the HMAC key used to generate the cryptographic HMAC hash.

\n

Example: generating the sha256 HMAC of a file

\n
const filename = process.argv[2];\nconst crypto = require('crypto');\nconst fs = require('fs');\n\nconst hmac = crypto.createHmac('sha256', 'a secret');\n\nconst input = fs.createReadStream(filename);\ninput.on('readable', () => {\n  const data = input.read();\n  if (data)\n    hmac.update(data);\n  else {\n    console.log(`${hmac.digest('hex')} ${filename}`);\n  }\n});\n
\n", "signatures": [ { "params": [ { "name": "algorithm" }, { "name": "key" } ] } ] }, { "textRaw": "crypto.createSign(algorithm)", "type": "method", "name": "createSign", "meta": { "added": [ "v0.1.92" ] }, "desc": "

Creates and returns a Sign object that uses the given algorithm.\nUse crypto.getHashes() to obtain an array of names of the available\nsigning algorithms.

\n", "signatures": [ { "params": [ { "name": "algorithm" } ] } ] }, { "textRaw": "crypto.createVerify(algorithm)", "type": "method", "name": "createVerify", "meta": { "added": [ "v0.1.92" ] }, "desc": "

Creates and returns a Verify object that uses the given algorithm.\nUse crypto.getHashes() to obtain an array of names of the available\nsigning algorithms.

\n", "signatures": [ { "params": [ { "name": "algorithm" } ] } ] }, { "textRaw": "crypto.getCiphers()", "type": "method", "name": "getCiphers", "meta": { "added": [ "v0.9.3" ] }, "desc": "

Returns an array with the names of the supported cipher algorithms.

\n

Example:

\n
const ciphers = crypto.getCiphers();\nconsole.log(ciphers); // ['aes-128-cbc', 'aes-128-ccm', ...]\n
\n", "signatures": [ { "params": [] } ] }, { "textRaw": "crypto.getCurves()", "type": "method", "name": "getCurves", "meta": { "added": [ "v2.3.0" ] }, "desc": "

Returns an array with the names of the supported elliptic curves.

\n

Example:

\n
const curves = crypto.getCurves();\nconsole.log(curves); // ['Oakley-EC2N-3', 'Oakley-EC2N-4', ...]\n
\n", "signatures": [ { "params": [] } ] }, { "textRaw": "crypto.getDiffieHellman(group_name)", "type": "method", "name": "getDiffieHellman", "meta": { "added": [ "v0.7.5" ] }, "desc": "

Creates a predefined DiffieHellman key exchange object. The\nsupported groups are: 'modp1', 'modp2', 'modp5' (defined in\nRFC 2412, but see Caveats) and 'modp14', 'modp15',\n'modp16', 'modp17', 'modp18' (defined in RFC 3526). The\nreturned object mimics the interface of objects created by\ncrypto.createDiffieHellman(), but will not allow changing\nthe keys (with diffieHellman.setPublicKey() for example). The\nadvantage of using this method is that the parties do not have to\ngenerate nor exchange a group modulus beforehand, saving both processor\nand communication time.

\n

Example (obtaining a shared secret):

\n
const crypto = require('crypto');\nconst alice = crypto.getDiffieHellman('modp14');\nconst bob = crypto.getDiffieHellman('modp14');\n\nalice.generateKeys();\nbob.generateKeys();\n\nconst aliceSecret = alice.computeSecret(bob.getPublicKey(), null, 'hex');\nconst bobSecret = bob.computeSecret(alice.getPublicKey(), null, 'hex');\n\n/* aliceSecret and bobSecret should be the same */\nconsole.log(aliceSecret === bobSecret);\n
\n", "signatures": [ { "params": [ { "name": "group_name" } ] } ] }, { "textRaw": "crypto.getHashes()", "type": "method", "name": "getHashes", "meta": { "added": [ "v0.9.3" ] }, "desc": "

Returns an array of the names of the supported hash algorithms,\nsuch as RSA-SHA256.

\n

Example:

\n
const hashes = crypto.getHashes();\nconsole.log(hashes); // ['DSA', 'DSA-SHA', 'DSA-SHA1', ...]\n
\n", "signatures": [ { "params": [] } ] }, { "textRaw": "crypto.pbkdf2(password, salt, iterations, keylen, digest, callback)", "type": "method", "name": "pbkdf2", "meta": { "added": [ "v0.5.5" ] }, "desc": "

Provides an asynchronous Password-Based Key Derivation Function 2 (PBKDF2)\nimplementation. A selected HMAC digest algorithm specified by digest is\napplied to derive a key of the requested byte length (keylen) from the\npassword, salt and iterations.

\n

The supplied callback function is called with two arguments: err and\nderivedKey. If an error occurs, err will be set; otherwise err will be\nnull. The successfully generated derivedKey will be passed as a Buffer.

\n

The iterations argument must be a number set as high as possible. The\nhigher the number of iterations, the more secure the derived key will be,\nbut will take a longer amount of time to complete.

\n

The salt should also be as unique as possible. It is recommended that the\nsalts are random and their lengths are at least 16 bytes. See\nNIST SP 800-132 for details.

\n

Example:

\n
const crypto = require('crypto');\ncrypto.pbkdf2('secret', 'salt', 100000, 512, 'sha512', (err, key) => {\n  if (err) throw err;\n  console.log(key.toString('hex'));  // '3745e48...aa39b34'\n});\n
\n

An array of supported digest functions can be retrieved using\ncrypto.getHashes().

\n", "signatures": [ { "params": [ { "name": "password" }, { "name": "salt" }, { "name": "iterations" }, { "name": "keylen" }, { "name": "digest" }, { "name": "callback" } ] } ] }, { "textRaw": "crypto.pbkdf2Sync(password, salt, iterations, keylen, digest)", "type": "method", "name": "pbkdf2Sync", "meta": { "added": [ "v0.9.3" ] }, "desc": "

Provides a synchronous Password-Based Key Derivation Function 2 (PBKDF2)\nimplementation. A selected HMAC digest algorithm specified by digest is\napplied to derive a key of the requested byte length (keylen) from the\npassword, salt and iterations.

\n

If an error occurs an Error will be thrown, otherwise the derived key will be\nreturned as a Buffer.

\n

The iterations argument must be a number set as high as possible. The\nhigher the number of iterations, the more secure the derived key will be,\nbut will take a longer amount of time to complete.

\n

The salt should also be as unique as possible. It is recommended that the\nsalts are random and their lengths are at least 16 bytes. See\nNIST SP 800-132 for details.

\n

Example:

\n
const crypto = require('crypto');\nconst key = crypto.pbkdf2Sync('secret', 'salt', 100000, 512, 'sha512');\nconsole.log(key.toString('hex'));  // '3745e48...aa39b34'\n
\n

An array of supported digest functions can be retrieved using\ncrypto.getHashes().

\n", "signatures": [ { "params": [ { "name": "password" }, { "name": "salt" }, { "name": "iterations" }, { "name": "keylen" }, { "name": "digest" } ] } ] }, { "textRaw": "crypto.privateDecrypt(private_key, buffer)", "type": "method", "name": "privateDecrypt", "meta": { "added": [ "v0.11.14" ] }, "desc": "

Decrypts buffer with private_key.

\n

private_key can be an object or a string. If private_key is a string, it is\ntreated as the key with no passphrase and will use RSA_PKCS1_OAEP_PADDING.\nIf private_key is an object, it is interpreted as a hash object with the\nkeys:

\n\n

All paddings are defined in crypto.constants.

\n", "signatures": [ { "params": [ { "name": "private_key" }, { "name": "buffer" } ] } ] }, { "textRaw": "crypto.timingSafeEqual(a, b)", "type": "method", "name": "timingSafeEqual", "meta": { "added": [ "v6.6.0" ] }, "desc": "

This function is based on a constant-time algorithm.\nReturns true if a is equal to b, without leaking timing information that\nwould allow an attacker to guess one of the values. This is suitable for\ncomparing HMAC digests or secret values like authentication cookies or\ncapability urls.

\n

a and b must both be Buffers, and they must have the same length.

\n

Note: Use of crypto.timingSafeEqual does not guarantee that the\nsurrounding code is timing-safe. Care should be taken to ensure that the\nsurrounding code does not introduce timing vulnerabilities.

\n", "signatures": [ { "params": [ { "name": "a" }, { "name": "b" } ] } ] }, { "textRaw": "crypto.privateEncrypt(private_key, buffer)", "type": "method", "name": "privateEncrypt", "meta": { "added": [ "v1.1.0" ] }, "desc": "

Encrypts buffer with private_key.

\n

private_key can be an object or a string. If private_key is a string, it is\ntreated as the key with no passphrase and will use RSA_PKCS1_PADDING.\nIf private_key is an object, it is interpreted as a hash object with the\nkeys:

\n\n

All paddings are defined in crypto.constants.

\n", "signatures": [ { "params": [ { "name": "private_key" }, { "name": "buffer" } ] } ] }, { "textRaw": "crypto.publicDecrypt(public_key, buffer)", "type": "method", "name": "publicDecrypt", "meta": { "added": [ "v1.1.0" ] }, "desc": "

Decrypts buffer with public_key.

\n

public_key can be an object or a string. If public_key is a string, it is\ntreated as the key with no passphrase and will use RSA_PKCS1_PADDING.\nIf public_key is an object, it is interpreted as a hash object with the\nkeys:

\n\n

Because RSA public keys can be derived from private keys, a private key may\nbe passed instead of a public key.

\n

All paddings are defined in crypto.constants.

\n", "signatures": [ { "params": [ { "name": "public_key" }, { "name": "buffer" } ] } ] }, { "textRaw": "crypto.publicEncrypt(public_key, buffer)", "type": "method", "name": "publicEncrypt", "meta": { "added": [ "v0.11.14" ] }, "desc": "

Encrypts buffer with public_key.

\n

public_key can be an object or a string. If public_key is a string, it is\ntreated as the key with no passphrase and will use RSA_PKCS1_OAEP_PADDING.\nIf public_key is an object, it is interpreted as a hash object with the\nkeys:

\n\n

Because RSA public keys can be derived from private keys, a private key may\nbe passed instead of a public key.

\n

All paddings are defined in crypto.constants.

\n", "signatures": [ { "params": [ { "name": "public_key" }, { "name": "buffer" } ] } ] }, { "textRaw": "crypto.randomBytes(size[, callback])", "type": "method", "name": "randomBytes", "meta": { "added": [ "v0.5.8" ] }, "desc": "

Generates cryptographically strong pseudo-random data. The size argument\nis a number indicating the number of bytes to generate.

\n

If a callback function is provided, the bytes are generated asynchronously\nand the callback function is invoked with two arguments: err and buf.\nIf an error occurs, err will be an Error object; otherwise it is null. The\nbuf argument is a Buffer containing the generated bytes.

\n
// Asynchronous\nconst crypto = require('crypto');\ncrypto.randomBytes(256, (err, buf) => {\n  if (err) throw err;\n  console.log(`${buf.length} bytes of random data: ${buf.toString('hex')}`);\n});\n
\n

If the callback function is not provided, the random bytes are generated\nsynchronously and returned as a Buffer. An error will be thrown if\nthere is a problem generating the bytes.

\n
// Synchronous\nconst buf = crypto.randomBytes(256);\nconsole.log(\n  `${buf.length} bytes of random data: ${buf.toString('hex')}`);\n
\n

The crypto.randomBytes() method will not complete until there is\nsufficient entropy available.\nThis should normally never take longer than a few milliseconds. The only time\nwhen generating the random bytes may conceivably block for a longer period of\ntime is right after boot, when the whole system is still low on entropy.

\n", "signatures": [ { "params": [ { "name": "size" }, { "name": "callback", "optional": true } ] } ] }, { "textRaw": "crypto.randomFillSync(buffer[, offset][, size])", "type": "method", "name": "randomFillSync", "meta": { "added": [ "v6.13.0" ] }, "signatures": [ { "params": [ { "textRaw": "`buffer` {Buffer|Uint8Array} Must be supplied. ", "name": "buffer", "type": "Buffer|Uint8Array", "desc": "Must be supplied." }, { "textRaw": "`offset` {number} Defaults to `0`. ", "name": "offset", "type": "number", "desc": "Defaults to `0`.", "optional": true }, { "textRaw": "`size` {number} Defaults to `buffer.length - offset`. ", "name": "size", "type": "number", "desc": "Defaults to `buffer.length - offset`.", "optional": true } ] }, { "params": [ { "name": "buffer" }, { "name": "offset", "optional": true }, { "name": "size", "optional": true } ] } ], "desc": "

Synchronous version of crypto.randomFill().

\n

Returns buffer

\n
const buf = Buffer.alloc(10);\nconsole.log(crypto.randomFillSync(buf).toString('hex'));\n\ncrypto.randomFillSync(buf, 5);\nconsole.log(buf.toString('hex'));\n\n// The above is equivalent to the following:\ncrypto.randomFillSync(buf, 5, 5);\nconsole.log(buf.toString('hex'));\n
\n" }, { "textRaw": "crypto.randomFill(buffer[, offset][, size], callback)", "type": "method", "name": "randomFill", "meta": { "added": [ "v6.13.0" ] }, "signatures": [ { "params": [ { "textRaw": "`buffer` {Buffer|Uint8Array} Must be supplied. ", "name": "buffer", "type": "Buffer|Uint8Array", "desc": "Must be supplied." }, { "textRaw": "`offset` {number} Defaults to `0`. ", "name": "offset", "type": "number", "desc": "Defaults to `0`.", "optional": true }, { "textRaw": "`size` {number} Defaults to `buffer.length - offset`. ", "name": "size", "type": "number", "desc": "Defaults to `buffer.length - offset`.", "optional": true }, { "textRaw": "`callback` {Function} `function(err, buf) {}`. ", "name": "callback", "type": "Function", "desc": "`function(err, buf) {}`." } ] }, { "params": [ { "name": "buffer" }, { "name": "offset", "optional": true }, { "name": "size", "optional": true }, { "name": "callback" } ] } ], "desc": "

This function is similar to crypto.randomBytes() but requires the first\nargument to be a Buffer that will be filled. It also\nrequires that a callback is passed in.

\n

If the callback function is not provided, an error will be thrown.

\n
const buf = Buffer.alloc(10);\ncrypto.randomFill(buf, (err, buf) => {\n  if (err) throw err;\n  console.log(buf.toString('hex'));\n});\n\ncrypto.randomFill(buf, 5, (err, buf) => {\n  if (err) throw err;\n  console.log(buf.toString('hex'));\n});\n\n// The above is equivalent to the following:\ncrypto.randomFill(buf, 5, 5, (err, buf) => {\n  if (err) throw err;\n  console.log(buf.toString('hex'));\n});\n
\n" }, { "textRaw": "crypto.setEngine(engine[, flags])", "type": "method", "name": "setEngine", "meta": { "added": [ "v0.11.11" ] }, "desc": "

Load and set the engine for some or all OpenSSL functions (selected by flags).

\n

engine could be either an id or a path to the engine's shared library.

\n

The optional flags argument uses ENGINE_METHOD_ALL by default. The flags\nis a bit field taking one of or a mix of the following flags (defined in\ncrypto.constants):

\n\n", "signatures": [ { "params": [ { "name": "engine" }, { "name": "flags", "optional": true } ] } ] } ], "type": "module", "displayName": "`crypto` module methods and properties" }, { "textRaw": "Notes", "name": "notes", "modules": [ { "textRaw": "Legacy Streams API (pre Node.js v0.10)", "name": "legacy_streams_api_(pre_node.js_v0.10)", "desc": "

The Crypto module was added to Node.js before there was the concept of a\nunified Stream API, and before there were Buffer objects for handling\nbinary data. As such, the many of the crypto defined classes have methods not\ntypically found on other Node.js classes that implement the streams\nAPI (e.g. update(), final(), or digest()). Also, many methods accepted\nand returned 'latin1' encoded strings by default rather than Buffers. This\ndefault was changed after Node.js v0.8 to use Buffer objects by default\ninstead.

\n", "type": "module", "displayName": "Legacy Streams API (pre Node.js v0.10)" }, { "textRaw": "Recent ECDH Changes", "name": "recent_ecdh_changes", "desc": "

Usage of ECDH with non-dynamically generated key pairs has been simplified.\nNow, ecdh.setPrivateKey() can be called with a preselected private key\nand the associated public point (key) will be computed and stored in the object.\nThis allows code to only store and provide the private part of the EC key pair.\necdh.setPrivateKey() now also validates that the private key is valid for\nthe selected curve.

\n

The ecdh.setPublicKey() method is now deprecated as its inclusion in the\nAPI is not useful. Either a previously stored private key should be set, which\nautomatically generates the associated public key, or ecdh.generateKeys()\nshould be called. The main drawback of using ecdh.setPublicKey() is that\nit can be used to put the ECDH key pair into an inconsistent state.

\n", "type": "module", "displayName": "Recent ECDH Changes" }, { "textRaw": "Support for weak or compromised algorithms", "name": "support_for_weak_or_compromised_algorithms", "desc": "

The crypto module still supports some algorithms which are already\ncompromised and are not currently recommended for use. The API also allows\nthe use of ciphers and hashes with a small key size that are considered to be\ntoo weak for safe use.

\n

Users should take full responsibility for selecting the crypto\nalgorithm and key size according to their security requirements.

\n

Based on the recommendations of NIST SP 800-131A:

\n\n

See the reference for other recommendations and details.

\n", "type": "module", "displayName": "Support for weak or compromised algorithms" } ], "type": "module", "displayName": "Notes" }, { "textRaw": "Crypto Constants", "name": "crypto_constants", "desc": "

The following constants exported by crypto.constants apply to various uses of\nthe crypto, tls, and https modules and are generally specific to OpenSSL.

\n", "modules": [ { "textRaw": "OpenSSL Options", "name": "openssl_options", "desc": "\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ConstantDescription
SSL_OP_ALLApplies multiple bug workarounds within OpenSSL. See\n https://www.openssl.org/docs/man1.0.2/ssl/SSL_CTX_set_options.html for\n detail.
SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATIONAllows legacy insecure renegotiation between OpenSSL and unpatched\n clients or servers. See\n https://www.openssl.org/docs/man1.0.2/ssl/SSL_CTX_set_options.html.
SSL_OP_CIPHER_SERVER_PREFERENCEAttempts to use the server's preferences instead of the client's when\n selecting a cipher. Behavior depends on protocol version. See\n https://www.openssl.org/docs/man1.0.2/ssl/SSL_CTX_set_options.html.
SSL_OP_CISCO_ANYCONNECTInstructs OpenSSL to use Cisco's "speshul" version of DTLS_BAD_VER.
SSL_OP_COOKIE_EXCHANGEInstructs OpenSSL to turn on cookie exchange.
SSL_OP_CRYPTOPRO_TLSEXT_BUGInstructs OpenSSL to add server-hello extension from an early version\n of the cryptopro draft.
SSL_OP_DONT_INSERT_EMPTY_FRAGMENTSInstructs OpenSSL to disable a SSL 3.0/TLS 1.0 vulnerability\n workaround added in OpenSSL 0.9.6d.
SSL_OP_EPHEMERAL_RSAInstructs OpenSSL to always use the tmp_rsa key when performing RSA\n operations.
SSL_OP_LEGACY_SERVER_CONNECTAllows initial connection to servers that do not support RI.
SSL_OP_MICROSOFT_BIG_SSLV3_BUFFER
SSL_OP_MICROSOFT_SESS_ID_BUG
SSL_OP_MSIE_SSLV2_RSA_PADDINGInstructs OpenSSL to disable the workaround for a man-in-the-middle\n protocol-version vulnerability in the SSL 2.0 server implementation.
SSL_OP_NETSCAPE_CA_DN_BUG
SSL_OP_NETSCAPE_CHALLENGE_BUG
SSL_OP_NETSCAPE_DEMO_CIPHER_CHANGE_BUG
SSL_OP_NETSCAPE_REUSE_CIPHER_CHANGE_BUG
SSL_OP_NO_COMPRESSIONInstructs OpenSSL to disable support for SSL/TLS compression.
SSL_OP_NO_QUERY_MTU
SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATIONInstructs OpenSSL to always start a new session when performing\n renegotiation.
SSL_OP_NO_SSLv2Instructs OpenSSL to turn off SSL v2
SSL_OP_NO_SSLv3Instructs OpenSSL to turn off SSL v3
SSL_OP_NO_TICKETInstructs OpenSSL to disable use of RFC4507bis tickets.
SSL_OP_NO_TLSv1Instructs OpenSSL to turn off TLS v1
SSL_OP_NO_TLSv1_1Instructs OpenSSL to turn off TLS v1.1
SSL_OP_NO_TLSv1_2Instructs OpenSSL to turn off TLS v1.2
SSL_OP_PKCS1_CHECK_1
SSL_OP_PKCS1_CHECK_2
SSL_OP_SINGLE_DH_USEInstructs OpenSSL to always create a new key when using\n temporary/ephemeral DH parameters.
SSL_OP_SINGLE_ECDH_USEInstructs OpenSSL to always create a new key when using\n temporary/ephemeral ECDH parameters.
SSL_OP_SSLEAY_080_CLIENT_DH_BUG
SSL_OP_SSLREF2_REUSE_CERT_TYPE_BUG
SSL_OP_TLS_BLOCK_PADDING_BUG
SSL_OP_TLS_D5_BUG
SSL_OP_TLS_ROLLBACK_BUGInstructs OpenSSL to disable version rollback attack detection.
\n\n", "type": "module", "displayName": "OpenSSL Options" }, { "textRaw": "OpenSSL Engine Constants", "name": "openssl_engine_constants", "desc": "\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ConstantDescription
ENGINE_METHOD_RSALimit engine usage to RSA
ENGINE_METHOD_DSALimit engine usage to DSA
ENGINE_METHOD_DHLimit engine usage to DH
ENGINE_METHOD_RANDLimit engine usage to RAND
ENGINE_METHOD_ECDHLimit engine usage to ECDH
ENGINE_METHOD_ECDSALimit engine usage to ECDSA
ENGINE_METHOD_CIPHERSLimit engine usage to CIPHERS
ENGINE_METHOD_DIGESTSLimit engine usage to DIGESTS
ENGINE_METHOD_STORELimit engine usage to STORE
ENGINE_METHOD_PKEY_METHSLimit engine usage to PKEY_METHDS
ENGINE_METHOD_PKEY_ASN1_METHSLimit engine usage to PKEY_ASN1_METHS
ENGINE_METHOD_ALL
ENGINE_METHOD_NONE
\n\n", "type": "module", "displayName": "OpenSSL Engine Constants" }, { "textRaw": "Other OpenSSL Constants", "name": "other_openssl_constants", "desc": "\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ConstantDescription
DH_CHECK_P_NOT_SAFE_PRIME
DH_CHECK_P_NOT_PRIME
DH_UNABLE_TO_CHECK_GENERATOR
DH_NOT_SUITABLE_GENERATOR
NPN_ENABLED
ALPN_ENABLED
RSA_PKCS1_PADDING
RSA_SSLV23_PADDING
RSA_NO_PADDING
RSA_PKCS1_OAEP_PADDING
RSA_X931_PADDING
RSA_PKCS1_PSS_PADDING
RSA_PSS_SALTLEN_DIGESTSets the salt length for RSA_PKCS1_PSS_PADDING to the digest size\n when signing or verifying.
RSA_PSS_SALTLEN_MAX_SIGNSets the salt length for RSA_PKCS1_PSS_PADDING to the maximum\n permissible value when signing data.
RSA_PSS_SALTLEN_AUTOCauses the salt length for RSA_PKCS1_PSS_PADDING to be determined\n automatically when verifying a signature.
POINT_CONVERSION_COMPRESSED
POINT_CONVERSION_UNCOMPRESSED
POINT_CONVERSION_HYBRID
\n\n", "type": "module", "displayName": "Other OpenSSL Constants" }, { "textRaw": "Node.js Crypto Constants", "name": "node.js_crypto_constants", "desc": "\n \n \n \n \n \n \n \n \n \n \n \n \n
ConstantDescription
defaultCoreCipherListSpecifies the built-in default cipher list used by Node.js.
defaultCipherListSpecifies the active default cipher list used by the current Node.js\n process.
\n\n\n", "type": "module", "displayName": "Node.js Crypto Constants" } ], "type": "module", "displayName": "Crypto Constants" } ], "classes": [ { "textRaw": "Class: Certificate", "type": "class", "name": "Certificate", "meta": { "added": [ "v0.11.8" ] }, "desc": "

SPKAC is a Certificate Signing Request mechanism originally implemented by\nNetscape and now specified formally as part of HTML5's keygen element.

\n

The crypto module provides the Certificate class for working with SPKAC\ndata. The most common usage is handling output generated by the HTML5\n<keygen> element. Node.js uses OpenSSL's SPKAC implementation internally.

\n", "methods": [ { "textRaw": "new crypto.Certificate()", "type": "method", "name": "Certificate", "desc": "

Instances of the Certificate class can be created using the new keyword\nor by calling crypto.Certificate() as a function:

\n
const crypto = require('crypto');\n\nconst cert1 = new crypto.Certificate();\nconst cert2 = crypto.Certificate();\n
\n", "signatures": [ { "params": [] } ] }, { "textRaw": "certificate.exportChallenge(spkac)", "type": "method", "name": "exportChallenge", "meta": { "added": [ "v0.11.8" ] }, "desc": "

The spkac data structure includes a public key and a challenge. The\ncertificate.exportChallenge() returns the challenge component in the\nform of a Node.js Buffer. The spkac argument can be either a string\nor a Buffer.

\n
const cert = require('crypto').Certificate();\nconst spkac = getSpkacSomehow();\nconst challenge = cert.exportChallenge(spkac);\nconsole.log(challenge.toString('utf8'));\n// Prints: the challenge as a UTF8 string\n
\n", "signatures": [ { "params": [ { "name": "spkac" } ] } ] }, { "textRaw": "certificate.exportPublicKey(spkac)", "type": "method", "name": "exportPublicKey", "meta": { "added": [ "v0.11.8" ] }, "desc": "

The spkac data structure includes a public key and a challenge. The\ncertificate.exportPublicKey() returns the public key component in the\nform of a Node.js Buffer. The spkac argument can be either a string\nor a Buffer.

\n
const cert = require('crypto').Certificate();\nconst spkac = getSpkacSomehow();\nconst publicKey = cert.exportPublicKey(spkac);\nconsole.log(publicKey);\n// Prints: the public key as <Buffer ...>\n
\n", "signatures": [ { "params": [ { "name": "spkac" } ] } ] }, { "textRaw": "certificate.verifySpkac(spkac)", "type": "method", "name": "verifySpkac", "meta": { "added": [ "v0.11.8" ] }, "desc": "

Returns true if the given spkac data structure is valid, false otherwise.\nThe spkac argument must be a Node.js Buffer.

\n
const cert = require('crypto').Certificate();\nconst spkac = getSpkacSomehow();\nconsole.log(cert.verifySpkac(Buffer.from(spkac)));\n// Prints: true or false\n
\n", "signatures": [ { "params": [ { "name": "spkac" } ] } ] } ] }, { "textRaw": "Class: Cipher", "type": "class", "name": "Cipher", "meta": { "added": [ "v0.1.94" ] }, "desc": "

Instances of the Cipher class are used to encrypt data. The class can be\nused in one of two ways:

\n\n

The crypto.createCipher() or crypto.createCipheriv() methods are\nused to create Cipher instances. Cipher objects are not to be created\ndirectly using the new keyword.

\n

Example: Using Cipher objects as streams:

\n
const crypto = require('crypto');\nconst cipher = crypto.createCipher('aes192', 'a password');\n\nlet encrypted = '';\ncipher.on('readable', () => {\n  const data = cipher.read();\n  if (data)\n    encrypted += data.toString('hex');\n});\ncipher.on('end', () => {\n  console.log(encrypted);\n  // Prints: ca981be48e90867604588e75d04feabb63cc007a8f8ad89b10616ed84d815504\n});\n\ncipher.write('some clear text data');\ncipher.end();\n
\n

Example: Using Cipher and piped streams:

\n
const crypto = require('crypto');\nconst fs = require('fs');\nconst cipher = crypto.createCipher('aes192', 'a password');\n\nconst input = fs.createReadStream('test.js');\nconst output = fs.createWriteStream('test.enc');\n\ninput.pipe(cipher).pipe(output);\n
\n

Example: Using the cipher.update() and cipher.final() methods:

\n
const crypto = require('crypto');\nconst cipher = crypto.createCipher('aes192', 'a password');\n\nlet encrypted = cipher.update('some clear text data', 'utf8', 'hex');\nencrypted += cipher.final('hex');\nconsole.log(encrypted);\n// Prints: ca981be48e90867604588e75d04feabb63cc007a8f8ad89b10616ed84d815504\n
\n", "methods": [ { "textRaw": "cipher.final([output_encoding])", "type": "method", "name": "final", "meta": { "added": [ "v0.1.94" ] }, "desc": "

Returns any remaining enciphered contents. If output_encoding\nparameter is one of 'latin1', 'base64' or 'hex', a string is returned.\nIf an output_encoding is not provided, a Buffer is returned.

\n

Once the cipher.final() method has been called, the Cipher object can no\nlonger be used to encrypt data. Attempts to call cipher.final() more than\nonce will result in an error being thrown.

\n", "signatures": [ { "params": [ { "name": "output_encoding", "optional": true } ] } ] }, { "textRaw": "cipher.setAAD(buffer)", "type": "method", "name": "setAAD", "meta": { "added": [ "v1.0.0" ] }, "desc": "

When using an authenticated encryption mode (only GCM is currently\nsupported), the cipher.setAAD() method sets the value used for the\nadditional authenticated data (AAD) input parameter.

\n

Returns this for method chaining.

\n", "signatures": [ { "params": [ { "name": "buffer" } ] } ] }, { "textRaw": "cipher.getAuthTag()", "type": "method", "name": "getAuthTag", "meta": { "added": [ "v1.0.0" ] }, "desc": "

When using an authenticated encryption mode (only GCM is currently\nsupported), the cipher.getAuthTag() method returns a Buffer containing\nthe authentication tag that has been computed from the given data.

\n

The cipher.getAuthTag() method should only be called after encryption has\nbeen completed using the cipher.final() method.

\n", "signatures": [ { "params": [] } ] }, { "textRaw": "cipher.setAutoPadding(auto_padding=true)", "type": "method", "name": "setAutoPadding", "meta": { "added": [ "v0.7.1" ] }, "desc": "

When using block encryption algorithms, the Cipher class will automatically\nadd padding to the input data to the appropriate block size. To disable the\ndefault padding call cipher.setAutoPadding(false).

\n

When auto_padding is false, the length of the entire input data must be a\nmultiple of the cipher's block size or cipher.final() will throw an Error.\nDisabling automatic padding is useful for non-standard padding, for instance\nusing 0x0 instead of PKCS padding.

\n

The cipher.setAutoPadding() method must be called before cipher.final().

\n

Returns this for method chaining.

\n", "signatures": [ { "params": [ { "name": "auto_padding", "default": "true" } ] } ] }, { "textRaw": "cipher.update(data[, input_encoding][, output_encoding])", "type": "method", "name": "update", "meta": { "added": [ "v0.1.94" ] }, "desc": "

Updates the cipher with data. If the input_encoding argument is given,\nits value must be one of 'utf8', 'ascii', or 'latin1' and the data\nargument is a string using the specified encoding. If the input_encoding\nargument is not given, data must be a Buffer. If data is a\nBuffer then input_encoding is ignored.

\n

The output_encoding specifies the output format of the enciphered\ndata, and can be 'latin1', 'base64' or 'hex'. If the output_encoding\nis specified, a string using the specified encoding is returned. If no\noutput_encoding is provided, a Buffer is returned.

\n

The cipher.update() method can be called multiple times with new data until\ncipher.final() is called. Calling cipher.update() after\ncipher.final() will result in an error being thrown.

\n", "signatures": [ { "params": [ { "name": "data" }, { "name": "input_encoding", "optional": true }, { "name": "output_encoding", "optional": true } ] } ] } ] }, { "textRaw": "Class: Decipher", "type": "class", "name": "Decipher", "meta": { "added": [ "v0.1.94" ] }, "desc": "

Instances of the Decipher class are used to decrypt data. The class can be\nused in one of two ways:

\n\n

The crypto.createDecipher() or crypto.createDecipheriv() methods are\nused to create Decipher instances. Decipher objects are not to be created\ndirectly using the new keyword.

\n

Example: Using Decipher objects as streams:

\n
const crypto = require('crypto');\nconst decipher = crypto.createDecipher('aes192', 'a password');\n\nlet decrypted = '';\ndecipher.on('readable', () => {\n  const data = decipher.read();\n  if (data)\n    decrypted += data.toString('utf8');\n});\ndecipher.on('end', () => {\n  console.log(decrypted);\n  // Prints: some clear text data\n});\n\nconst encrypted =\n  'ca981be48e90867604588e75d04feabb63cc007a8f8ad89b10616ed84d815504';\ndecipher.write(encrypted, 'hex');\ndecipher.end();\n
\n

Example: Using Decipher and piped streams:

\n
const crypto = require('crypto');\nconst fs = require('fs');\nconst decipher = crypto.createDecipher('aes192', 'a password');\n\nconst input = fs.createReadStream('test.enc');\nconst output = fs.createWriteStream('test.js');\n\ninput.pipe(decipher).pipe(output);\n
\n

Example: Using the decipher.update() and decipher.final() methods:

\n
const crypto = require('crypto');\nconst decipher = crypto.createDecipher('aes192', 'a password');\n\nconst encrypted =\n  'ca981be48e90867604588e75d04feabb63cc007a8f8ad89b10616ed84d815504';\nlet decrypted = decipher.update(encrypted, 'hex', 'utf8');\ndecrypted += decipher.final('utf8');\nconsole.log(decrypted);\n// Prints: some clear text data\n
\n", "methods": [ { "textRaw": "decipher.final([output_encoding])", "type": "method", "name": "final", "meta": { "added": [ "v0.1.94" ] }, "desc": "

Returns any remaining deciphered contents. If output_encoding\nparameter is one of 'latin1', 'ascii' or 'utf8', a string is returned.\nIf an output_encoding is not provided, a Buffer is returned.

\n

Once the decipher.final() method has been called, the Decipher object can\nno longer be used to decrypt data. Attempts to call decipher.final() more\nthan once will result in an error being thrown.

\n", "signatures": [ { "params": [ { "name": "output_encoding", "optional": true } ] } ] }, { "textRaw": "decipher.setAAD(buffer)", "type": "method", "name": "setAAD", "meta": { "added": [ "v1.0.0" ] }, "desc": "

When using an authenticated encryption mode (only GCM is currently\nsupported), the decipher.setAAD() method sets the value used for the\nadditional authenticated data (AAD) input parameter.

\n

Returns this for method chaining.

\n", "signatures": [ { "params": [ { "name": "buffer" } ] } ] }, { "textRaw": "decipher.setAuthTag(buffer)", "type": "method", "name": "setAuthTag", "meta": { "added": [ "v1.0.0" ] }, "desc": "

When using an authenticated encryption mode (only GCM is currently\nsupported), the decipher.setAuthTag() method is used to pass in the\nreceived authentication tag. If no tag is provided, or if the cipher text\nhas been tampered with, decipher.final() will throw, indicating that the\ncipher text should be discarded due to failed authentication.

\n

Returns this for method chaining.

\n", "signatures": [ { "params": [ { "name": "buffer" } ] } ] }, { "textRaw": "decipher.setAutoPadding(auto_padding=true)", "type": "method", "name": "setAutoPadding", "meta": { "added": [ "v0.7.1" ] }, "desc": "

When data has been encrypted without standard block padding, calling\ndecipher.setAutoPadding(false) will disable automatic padding to prevent\ndecipher.final() from checking for and removing padding.

\n

Turning auto padding off will only work if the input data's length is a\nmultiple of the ciphers block size.

\n

The decipher.setAutoPadding() method must be called before\ndecipher.update().

\n

Returns this for method chaining.

\n", "signatures": [ { "params": [ { "name": "auto_padding", "default": "true" } ] } ] }, { "textRaw": "decipher.update(data[, input_encoding][, output_encoding])", "type": "method", "name": "update", "meta": { "added": [ "v0.1.94" ] }, "desc": "

Updates the decipher with data. If the input_encoding argument is given,\nits value must be one of 'latin1', 'base64', or 'hex' and the data\nargument is a string using the specified encoding. If the input_encoding\nargument is not given, data must be a Buffer. If data is a\nBuffer then input_encoding is ignored.

\n

The output_encoding specifies the output format of the enciphered\ndata, and can be 'latin1', 'ascii' or 'utf8'. If the output_encoding\nis specified, a string using the specified encoding is returned. If no\noutput_encoding is provided, a Buffer is returned.

\n

The decipher.update() method can be called multiple times with new data until\ndecipher.final() is called. Calling decipher.update() after\ndecipher.final() will result in an error being thrown.

\n", "signatures": [ { "params": [ { "name": "data" }, { "name": "input_encoding", "optional": true }, { "name": "output_encoding", "optional": true } ] } ] } ] }, { "textRaw": "Class: DiffieHellman", "type": "class", "name": "DiffieHellman", "meta": { "added": [ "v0.5.0" ] }, "desc": "

The DiffieHellman class is a utility for creating Diffie-Hellman key\nexchanges.

\n

Instances of the DiffieHellman class can be created using the\ncrypto.createDiffieHellman() function.

\n
const crypto = require('crypto');\nconst assert = require('assert');\n\n// Generate Alice's keys...\nconst alice = crypto.createDiffieHellman(2048);\nconst aliceKey = alice.generateKeys();\n\n// Generate Bob's keys...\nconst bob = crypto.createDiffieHellman(alice.getPrime(), alice.getGenerator());\nconst bobKey = bob.generateKeys();\n\n// Exchange and generate the secret...\nconst aliceSecret = alice.computeSecret(bobKey);\nconst bobSecret = bob.computeSecret(aliceKey);\n\n// OK\nassert.strictEqual(aliceSecret.toString('hex'), bobSecret.toString('hex'));\n
\n", "methods": [ { "textRaw": "diffieHellman.computeSecret(other_public_key[, input_encoding][, output_encoding])", "type": "method", "name": "computeSecret", "meta": { "added": [ "v0.5.0" ] }, "desc": "

Computes the shared secret using other_public_key as the other\nparty's public key and returns the computed shared secret. The supplied\nkey is interpreted using the specified input_encoding, and secret is\nencoded using specified output_encoding. Encodings can be\n'latin1', 'hex', or 'base64'. If the input_encoding is not\nprovided, other_public_key is expected to be a Buffer.

\n

If output_encoding is given a string is returned; otherwise, a\nBuffer is returned.

\n", "signatures": [ { "params": [ { "name": "other_public_key" }, { "name": "input_encoding", "optional": true }, { "name": "output_encoding", "optional": true } ] } ] }, { "textRaw": "diffieHellman.generateKeys([encoding])", "type": "method", "name": "generateKeys", "meta": { "added": [ "v0.5.0" ] }, "desc": "

Generates private and public Diffie-Hellman key values, and returns\nthe public key in the specified encoding. This key should be\ntransferred to the other party. Encoding can be 'latin1', 'hex',\nor 'base64'. If encoding is provided a string is returned; otherwise a\nBuffer is returned.

\n", "signatures": [ { "params": [ { "name": "encoding", "optional": true } ] } ] }, { "textRaw": "diffieHellman.getGenerator([encoding])", "type": "method", "name": "getGenerator", "meta": { "added": [ "v0.5.0" ] }, "desc": "

Returns the Diffie-Hellman generator in the specified encoding, which can\nbe 'latin1', 'hex', or 'base64'. If encoding is provided a string is\nreturned; otherwise a Buffer is returned.

\n", "signatures": [ { "params": [ { "name": "encoding", "optional": true } ] } ] }, { "textRaw": "diffieHellman.getPrime([encoding])", "type": "method", "name": "getPrime", "meta": { "added": [ "v0.5.0" ] }, "desc": "

Returns the Diffie-Hellman prime in the specified encoding, which can\nbe 'latin1', 'hex', or 'base64'. If encoding is provided a string is\nreturned; otherwise a Buffer is returned.

\n", "signatures": [ { "params": [ { "name": "encoding", "optional": true } ] } ] }, { "textRaw": "diffieHellman.getPrivateKey([encoding])", "type": "method", "name": "getPrivateKey", "meta": { "added": [ "v0.5.0" ] }, "desc": "

Returns the Diffie-Hellman private key in the specified encoding,\nwhich can be 'latin1', 'hex', or 'base64'. If encoding is provided a\nstring is returned; otherwise a Buffer is returned.

\n", "signatures": [ { "params": [ { "name": "encoding", "optional": true } ] } ] }, { "textRaw": "diffieHellman.getPublicKey([encoding])", "type": "method", "name": "getPublicKey", "meta": { "added": [ "v0.5.0" ] }, "desc": "

Returns the Diffie-Hellman public key in the specified encoding, which\ncan be 'latin1', 'hex', or 'base64'. If encoding is provided a\nstring is returned; otherwise a Buffer is returned.

\n", "signatures": [ { "params": [ { "name": "encoding", "optional": true } ] } ] }, { "textRaw": "diffieHellman.setPrivateKey(private_key[, encoding])", "type": "method", "name": "setPrivateKey", "meta": { "added": [ "v0.5.0" ] }, "desc": "

Sets the Diffie-Hellman private key. If the encoding argument is provided\nand is either 'latin1', 'hex', or 'base64', private_key is expected\nto be a string. If no encoding is provided, private_key is expected\nto be a Buffer.

\n", "signatures": [ { "params": [ { "name": "private_key" }, { "name": "encoding", "optional": true } ] } ] }, { "textRaw": "diffieHellman.setPublicKey(public_key[, encoding])", "type": "method", "name": "setPublicKey", "meta": { "added": [ "v0.5.0" ] }, "desc": "

Sets the Diffie-Hellman public key. If the encoding argument is provided\nand is either 'latin1', 'hex' or 'base64', public_key is expected\nto be a string. If no encoding is provided, public_key is expected\nto be a Buffer.

\n", "signatures": [ { "params": [ { "name": "public_key" }, { "name": "encoding", "optional": true } ] } ] } ], "properties": [ { "textRaw": "diffieHellman.verifyError", "name": "verifyError", "meta": { "added": [ "v0.11.12" ] }, "desc": "

A bit field containing any warnings and/or errors resulting from a check\nperformed during initialization of the DiffieHellman object.

\n

The following values are valid for this property (as defined in constants\nmodule):

\n\n" } ] }, { "textRaw": "Class: ECDH", "type": "class", "name": "ECDH", "meta": { "added": [ "v0.11.14" ] }, "desc": "

The ECDH class is a utility for creating Elliptic Curve Diffie-Hellman (ECDH)\nkey exchanges.

\n

Instances of the ECDH class can be created using the\ncrypto.createECDH() function.

\n
const crypto = require('crypto');\nconst assert = require('assert');\n\n// Generate Alice's keys...\nconst alice = crypto.createECDH('secp521r1');\nconst aliceKey = alice.generateKeys();\n\n// Generate Bob's keys...\nconst bob = crypto.createECDH('secp521r1');\nconst bobKey = bob.generateKeys();\n\n// Exchange and generate the secret...\nconst aliceSecret = alice.computeSecret(bobKey);\nconst bobSecret = bob.computeSecret(aliceKey);\n\nassert.strictEqual(aliceSecret.toString('hex'), bobSecret.toString('hex'));\n// OK\n
\n", "methods": [ { "textRaw": "ecdh.computeSecret(other_public_key[, input_encoding][, output_encoding])", "type": "method", "name": "computeSecret", "meta": { "added": [ "v0.11.14" ] }, "desc": "

Computes the shared secret using other_public_key as the other\nparty's public key and returns the computed shared secret. The supplied\nkey is interpreted using specified input_encoding, and the returned secret\nis encoded using the specified output_encoding. Encodings can be\n'latin1', 'hex', or 'base64'. If the input_encoding is not\nprovided, other_public_key is expected to be a Buffer.

\n

If output_encoding is given a string will be returned; otherwise a\nBuffer is returned.

\n", "signatures": [ { "params": [ { "name": "other_public_key" }, { "name": "input_encoding", "optional": true }, { "name": "output_encoding", "optional": true } ] } ] }, { "textRaw": "ecdh.generateKeys([encoding[, format]])", "type": "method", "name": "generateKeys", "meta": { "added": [ "v0.11.14" ] }, "desc": "

Generates private and public EC Diffie-Hellman key values, and returns\nthe public key in the specified format and encoding. This key should be\ntransferred to the other party.

\n

The format arguments specifies point encoding and can be 'compressed',\n'uncompressed', or 'hybrid'. If format is not specified, the point will\nbe returned in 'uncompressed' format.

\n

The encoding argument can be 'latin1', 'hex', or 'base64'. If\nencoding is provided a string is returned; otherwise a Buffer\nis returned.

\n", "signatures": [ { "params": [ { "name": "encoding", "optional": true }, { "name": "format", "optional": true } ] } ] }, { "textRaw": "ecdh.getPrivateKey([encoding])", "type": "method", "name": "getPrivateKey", "meta": { "added": [ "v0.11.14" ] }, "desc": "

Returns the EC Diffie-Hellman private key in the specified encoding,\nwhich can be 'latin1', 'hex', or 'base64'. If encoding is provided\na string is returned; otherwise a Buffer is returned.

\n", "signatures": [ { "params": [ { "name": "encoding", "optional": true } ] } ] }, { "textRaw": "ecdh.getPublicKey([encoding[, format]])", "type": "method", "name": "getPublicKey", "meta": { "added": [ "v0.11.14" ] }, "desc": "

Returns the EC Diffie-Hellman public key in the specified encoding and\nformat.

\n

The format argument specifies point encoding and can be 'compressed',\n'uncompressed', or 'hybrid'. If format is not specified the point will be\nreturned in 'uncompressed' format.

\n

The encoding argument can be 'latin1', 'hex', or 'base64'. If\nencoding is specified, a string is returned; otherwise a Buffer is\nreturned.

\n", "signatures": [ { "params": [ { "name": "encoding", "optional": true }, { "name": "format", "optional": true } ] } ] }, { "textRaw": "ecdh.setPrivateKey(private_key[, encoding])", "type": "method", "name": "setPrivateKey", "meta": { "added": [ "v0.11.14" ] }, "desc": "

Sets the EC Diffie-Hellman private key. The encoding can be 'latin1',\n'hex' or 'base64'. If encoding is provided, private_key is expected\nto be a string; otherwise private_key is expected to be a Buffer. If\nprivate_key is not valid for the curve specified when the ECDH object was\ncreated, an error is thrown. Upon setting the private key, the associated\npublic point (key) is also generated and set in the ECDH object.

\n", "signatures": [ { "params": [ { "name": "private_key" }, { "name": "encoding", "optional": true } ] } ] }, { "textRaw": "ecdh.setPublicKey(public_key[, encoding])", "type": "method", "name": "setPublicKey", "meta": { "added": [ "v0.11.14" ], "deprecated": [ "v5.2.0" ] }, "stability": 0, "stabilityText": "Deprecated", "desc": "

Sets the EC Diffie-Hellman public key. Key encoding can be 'latin1',\n'hex' or 'base64'. If encoding is provided public_key is expected to\nbe a string; otherwise a Buffer is expected.

\n

Note that there is not normally a reason to call this method because ECDH\nonly requires a private key and the other party's public key to compute the\nshared secret. Typically either ecdh.generateKeys() or\necdh.setPrivateKey() will be called. The ecdh.setPrivateKey() method\nattempts to generate the public point/key associated with the private key being\nset.

\n

Example (obtaining a shared secret):

\n
const crypto = require('crypto');\nconst alice = crypto.createECDH('secp256k1');\nconst bob = crypto.createECDH('secp256k1');\n\n// Note: This is a shortcut way to specify one of Alice's previous private\n// keys. It would be unwise to use such a predictable private key in a real\n// application.\nalice.setPrivateKey(\n  crypto.createHash('sha256').update('alice', 'utf8').digest()\n);\n\n// Bob uses a newly generated cryptographically strong\n// pseudorandom key pair\nbob.generateKeys();\n\nconst aliceSecret = alice.computeSecret(bob.getPublicKey(), null, 'hex');\nconst bobSecret = bob.computeSecret(alice.getPublicKey(), null, 'hex');\n\n// aliceSecret and bobSecret should be the same shared secret value\nconsole.log(aliceSecret === bobSecret);\n
\n", "signatures": [ { "params": [ { "name": "public_key" }, { "name": "encoding", "optional": true } ] } ] } ] }, { "textRaw": "Class: Hash", "type": "class", "name": "Hash", "meta": { "added": [ "v0.1.92" ] }, "desc": "

The Hash class is a utility for creating hash digests of data. It can be\nused in one of two ways:

\n\n

The crypto.createHash() method is used to create Hash instances. Hash\nobjects are not to be created directly using the new keyword.

\n

Example: Using Hash objects as streams:

\n
const crypto = require('crypto');\nconst hash = crypto.createHash('sha256');\n\nhash.on('readable', () => {\n  const data = hash.read();\n  if (data) {\n    console.log(data.toString('hex'));\n    // Prints:\n    //   6a2da20943931e9834fc12cfe5bb47bbd9ae43489a30726962b576f4e3993e50\n  }\n});\n\nhash.write('some data to hash');\nhash.end();\n
\n

Example: Using Hash and piped streams:

\n
const crypto = require('crypto');\nconst fs = require('fs');\nconst hash = crypto.createHash('sha256');\n\nconst input = fs.createReadStream('test.js');\ninput.pipe(hash).pipe(process.stdout);\n
\n

Example: Using the hash.update() and hash.digest() methods:

\n
const crypto = require('crypto');\nconst hash = crypto.createHash('sha256');\n\nhash.update('some data to hash');\nconsole.log(hash.digest('hex'));\n// Prints:\n//   6a2da20943931e9834fc12cfe5bb47bbd9ae43489a30726962b576f4e3993e50\n
\n", "methods": [ { "textRaw": "hash.digest([encoding])", "type": "method", "name": "digest", "meta": { "added": [ "v0.1.92" ] }, "desc": "

Calculates the digest of all of the data passed to be hashed (using the\nhash.update() method). The encoding can be 'hex', 'latin1' or\n'base64'. If encoding is provided a string will be returned; otherwise\na Buffer is returned.

\n

The Hash object can not be used again after hash.digest() method has been\ncalled. Multiple calls will cause an error to be thrown.

\n", "signatures": [ { "params": [ { "name": "encoding", "optional": true } ] } ] }, { "textRaw": "hash.update(data[, input_encoding])", "type": "method", "name": "update", "meta": { "added": [ "v0.1.92" ] }, "desc": "

Updates the hash content with the given data, the encoding of which\nis given in input_encoding and can be 'utf8', 'ascii' or\n'latin1'. If encoding is not provided, and the data is a string, an\nencoding of 'utf8' is enforced. If data is a Buffer then\ninput_encoding is ignored.

\n

This can be called many times with new data as it is streamed.

\n", "signatures": [ { "params": [ { "name": "data" }, { "name": "input_encoding", "optional": true } ] } ] } ] }, { "textRaw": "Class: Hmac", "type": "class", "name": "Hmac", "meta": { "added": [ "v0.1.94" ] }, "desc": "

The Hmac Class is a utility for creating cryptographic HMAC digests. It can\nbe used in one of two ways:

\n\n

The crypto.createHmac() method is used to create Hmac instances. Hmac\nobjects are not to be created directly using the new keyword.

\n

Example: Using Hmac objects as streams:

\n
const crypto = require('crypto');\nconst hmac = crypto.createHmac('sha256', 'a secret');\n\nhmac.on('readable', () => {\n  const data = hmac.read();\n  if (data) {\n    console.log(data.toString('hex'));\n    // Prints:\n    //   7fd04df92f636fd450bc841c9418e5825c17f33ad9c87c518115a45971f7f77e\n  }\n});\n\nhmac.write('some data to hash');\nhmac.end();\n
\n

Example: Using Hmac and piped streams:

\n
const crypto = require('crypto');\nconst fs = require('fs');\nconst hmac = crypto.createHmac('sha256', 'a secret');\n\nconst input = fs.createReadStream('test.js');\ninput.pipe(hmac).pipe(process.stdout);\n
\n

Example: Using the hmac.update() and hmac.digest() methods:

\n
const crypto = require('crypto');\nconst hmac = crypto.createHmac('sha256', 'a secret');\n\nhmac.update('some data to hash');\nconsole.log(hmac.digest('hex'));\n// Prints:\n//   7fd04df92f636fd450bc841c9418e5825c17f33ad9c87c518115a45971f7f77e\n
\n", "methods": [ { "textRaw": "hmac.digest([encoding])", "type": "method", "name": "digest", "meta": { "added": [ "v0.1.94" ] }, "desc": "

Calculates the HMAC digest of all of the data passed using hmac.update().\nThe encoding can be 'hex', 'latin1' or 'base64'. If encoding is\nprovided a string is returned; otherwise a Buffer is returned;

\n

The Hmac object can not be used again after hmac.digest() has been\ncalled. Multiple calls to hmac.digest() will result in an error being thrown.

\n", "signatures": [ { "params": [ { "name": "encoding", "optional": true } ] } ] }, { "textRaw": "hmac.update(data[, input_encoding])", "type": "method", "name": "update", "meta": { "added": [ "v0.1.94" ] }, "desc": "

Updates the Hmac content with the given data, the encoding of which\nis given in input_encoding and can be 'utf8', 'ascii' or\n'latin1'. If encoding is not provided, and the data is a string, an\nencoding of 'utf8' is enforced. If data is a Buffer then\ninput_encoding is ignored.

\n

This can be called many times with new data as it is streamed.

\n", "signatures": [ { "params": [ { "name": "data" }, { "name": "input_encoding", "optional": true } ] } ] } ] }, { "textRaw": "Class: Sign", "type": "class", "name": "Sign", "meta": { "added": [ "v0.1.92" ] }, "desc": "

The Sign Class is a utility for generating signatures. It can be used in one\nof two ways:

\n\n

The crypto.createSign() method is used to create Sign instances. The\nargument is the string name of the hash function to use. Sign objects are not\nto be created directly using the new keyword.

\n

Example: Using Sign objects as streams:

\n
const crypto = require('crypto');\nconst sign = crypto.createSign('SHA256');\n\nsign.write('some data to sign');\nsign.end();\n\nconst privateKey = getPrivateKeySomehow();\nconsole.log(sign.sign(privateKey, 'hex'));\n// Prints: the calculated signature using the specified private key and\n// SHA-256. For RSA keys, the algorithm is RSASSA-PKCS1-v1_5 (see padding\n// parameter below for RSASSA-PSS). For EC keys, the algorithm is ECDSA.\n
\n

Example: Using the sign.update() and sign.sign() methods:

\n
const crypto = require('crypto');\nconst sign = crypto.createSign('SHA256');\n\nsign.update('some data to sign');\n\nconst privateKey = getPrivateKeySomehow();\nconsole.log(sign.sign(privateKey, 'hex'));\n// Prints: the calculated signature\n
\n

In some cases, a Sign instance can also be created by passing in a signature\nalgorithm name, such as 'RSA-SHA256'. This will use the corresponding digest\nalgorithm. This does not work for all signature algorithms, such as\n'ecdsa-with-SHA256'. Use digest names instead.

\n

Example: signing using legacy signature algorithm name

\n
const crypto = require('crypto');\nconst sign = crypto.createSign('RSA-SHA256');\n\nsign.update('some data to sign');\n\nconst privateKey = getPrivateKeySomehow();\nconsole.log(sign.sign(privateKey, 'hex'));\n// Prints: the calculated signature\n
\n", "methods": [ { "textRaw": "sign.sign(private_key[, output_format])", "type": "method", "name": "sign", "meta": { "added": [ "v0.1.92" ], "changes": [ { "version": "v6.12.0", "pr-url": "https://github.com/nodejs/node/pull/11705", "description": "Support for RSASSA-PSS and additional options was added." } ] }, "desc": "

Calculates the signature on all the data passed through using either\nsign.update() or sign.write().

\n

The private_key argument can be an object or a string. If private_key is a\nstring, it is treated as a raw key with no passphrase. If private_key is an\nobject, it must contain one or more of the following properties:

\n\n

The output_format can specify one of 'latin1', 'hex' or 'base64'. If\noutput_format is provided a string is returned; otherwise a Buffer is\nreturned.

\n

The Sign object can not be again used after sign.sign() method has been\ncalled. Multiple calls to sign.sign() will result in an error being thrown.

\n", "signatures": [ { "params": [ { "name": "private_key" }, { "name": "output_format", "optional": true } ] } ] }, { "textRaw": "sign.update(data[, input_encoding])", "type": "method", "name": "update", "meta": { "added": [ "v0.1.92" ] }, "desc": "

Updates the Sign content with the given data, the encoding of which\nis given in input_encoding and can be 'utf8', 'ascii' or\n'latin1'. If encoding is not provided, and the data is a string, an\nencoding of 'utf8' is enforced. If data is a Buffer then\ninput_encoding is ignored.

\n

This can be called many times with new data as it is streamed.

\n", "signatures": [ { "params": [ { "name": "data" }, { "name": "input_encoding", "optional": true } ] } ] } ] }, { "textRaw": "Class: Verify", "type": "class", "name": "Verify", "meta": { "added": [ "v0.1.92" ] }, "desc": "

The Verify class is a utility for verifying signatures. It can be used in one\nof two ways:

\n\n

The crypto.createVerify() method is used to create Verify instances.\nVerify objects are not to be created directly using the new keyword.

\n

Example: Using Verify objects as streams:

\n
const crypto = require('crypto');\nconst verify = crypto.createVerify('SHA256');\n\nverify.write('some data to sign');\nverify.end();\n\nconst publicKey = getPublicKeySomehow();\nconst signature = getSignatureToVerify();\nconsole.log(verify.verify(publicKey, signature));\n// Prints: true or false\n
\n

Example: Using the verify.update() and verify.verify() methods:

\n
const crypto = require('crypto');\nconst verify = crypto.createVerify('SHA256');\n\nverify.update('some data to sign');\n\nconst publicKey = getPublicKeySomehow();\nconst signature = getSignatureToVerify();\nconsole.log(verify.verify(publicKey, signature));\n// Prints: true or false\n
\n", "methods": [ { "textRaw": "verifier.update(data[, input_encoding])", "type": "method", "name": "update", "meta": { "added": [ "v0.1.92" ] }, "desc": "

Updates the Verify content with the given data, the encoding of which\nis given in input_encoding and can be 'utf8', 'ascii' or\n'latin1'. If encoding is not provided, and the data is a string, an\nencoding of 'utf8' is enforced. If data is a Buffer then\ninput_encoding is ignored.

\n

This can be called many times with new data as it is streamed.

\n", "signatures": [ { "params": [ { "name": "data" }, { "name": "input_encoding", "optional": true } ] } ] }, { "textRaw": "verifier.verify(object, signature[, signature_format])", "type": "method", "name": "verify", "meta": { "added": [ "v0.1.92" ], "changes": [ { "version": "v6.12.0", "pr-url": "https://github.com/nodejs/node/pull/11705", "description": "Support for RSASSA-PSS and additional options was added." } ] }, "signatures": [ { "params": [ { "textRaw": "`object` {string | Object} ", "name": "object", "type": "string | Object" }, { "textRaw": "`signature` {string | Buffer | Uint8Array} ", "name": "signature", "type": "string | Buffer | Uint8Array" }, { "textRaw": "`signature_format` {string} ", "name": "signature_format", "type": "string", "optional": true } ] }, { "params": [ { "name": "object" }, { "name": "signature" }, { "name": "signature_format", "optional": true } ] } ], "desc": "

Verifies the provided data using the given object and signature.\nThe object argument can be either a string containing a PEM encoded object,\nwhich can be an RSA public key, a DSA public key, or an X.509 certificate,\nor an object with one or more of the following properties:

\n\n

The signature argument is the previously calculated signature for the data, in\nthe signature_format which can be 'latin1', 'hex' or 'base64'.\nIf a signature_format is specified, the signature is expected to be a\nstring; otherwise signature is expected to be a Buffer.

\n

Returns true or false depending on the validity of the signature for\nthe data and public key.

\n

The verifier object can not be used again after verify.verify() has been\ncalled. Multiple calls to verify.verify() will result in an error being\nthrown.

\n" } ] } ], "type": "module", "displayName": "Crypto" } ] }