{ "info": { "author": null, "author_email": "Ivan , Jakob ", "bugtrack_url": null, "classifiers": [ "Operating System :: OS Independent", "Programming Language :: Python :: 3" ], "description": "Acmetric-Social-3 \n# Introducing ACMetric package!\n### Current version: `1.3.2`\n\nThis package is created to help you use ACMetric's brand colors and build plots without hours of tuning. Enjoy!\n\n## Installing on Google Colab \nSetting up in Google Colab is described [here](https://github.com/ACMetric/acmetric_package/blob/master/colab_setup.md).\n\n## Importing\nWe recommend importing it along with `matplotlib` and `seaborn`.\n\n```python3\n%matplotlib inline # display plots in the notebook right away\n%config InlineBackend.figure_format='retina' # high resolution\nimport matplotlib.pyplot as plt\nimport seaborn as sns\nimport acmetric_plotting as ac\n```\n\nAnd it is ready to go!\n\n### You can find code examples here: [Jupyter](https://github.com/ACMetric/acmetric_package/blob/master/notebooks/acmetric_package_intro.ipynb) | [Google Colab](https://colab.research.google.com/drive/14eYxEthMcPohkTFC9CLhe-nzHbQDoEsu?usp=sharing)\n***\n## Some things you need to know\n\n`ac.display_colors()` will show you a table with all the colors available and their names.\n\n`ac.colors` module contains ACMetric colors, you can access them by writing `ac.colors.coral`, `ac.colors.sky_60`, etc. \n\n`ac.palette` is a `matplotlib` color palette. You can call it and choose a color you like by index, e.g. `ac.palette[3]`.\n\n`ac.cmap` is a gradient colormap that can be used in `seaborn` heatmap and other plots.\n\nRun `ac.params.layout_color('black')` to make axes and text black. Run `ac.params.layout_color('default')` to make them grey again.\n\nNow 4 kinds of plots are available in the package: bar chart, pie chart, scatter plot and box plot. You can make them using `ac.bar`, `ac.pie`, `ac.scatter` and `ac.box`. All the possible parameters can be found in the docstring.\n\n**Note:** it doesn't mean you can't build other kinds of plots. Just import `matplotlib` or `seaborn`, and all the plots you create will also be ACMetric branded!\n", "description_content_type": "text/markdown", "docs_url": null, "download_url": null, "downloads": { "last_day": -1, "last_month": -1, "last_week": -1 }, "dynamic": null, "home_page": null, "keywords": null, "license": null, "maintainer": null, "maintainer_email": null, "name": "acmetric-plotting", "package_url": "https://pypi.org/project/acmetric-plotting/", "platform": null, "project_url": "https://pypi.org/project/acmetric-plotting/", "project_urls": { "Bug Tracker": "https://github.com/ACMetric/acmetric_package/issues", "Homepage": "https://github.com/ACMetric/acmetric_package" }, "provides_extra": null, "release_url": "https://pypi.org/project/acmetric-plotting/1.3.2/", "requires_dist": [ "cycler>=0.11.0", "matplotlib>=3.5", "seaborn>=0.11.2", "numpy>=1.20.0", "scipy>=1.7.0" ], "requires_python": ">=3.7", "summary": "A package to easily build ACMetric branded plots", "version": "1.3.2", "yanked": false, "yanked_reason": null }, "last_serial": 22766809, "releases": { "1.3.0": [ { "comment_text": "", "digests": { "blake2b_256": "2fe3c198d29e9f00f988d18ab7664aee3d9ede226dbb7d16eb72cd89f5d4ba88", "md5": "9f408b02a3dbfa1cd7c5d52bae42e133", "sha256": "f2ed958e8bc0545e64a49873f5b6cbe74abb297a621f4a2613501195360abd87" }, "downloads": -1, "filename": "acmetric_plotting-1.3.0-py3-none-any.whl", "has_sig": false, "md5_digest": "9f408b02a3dbfa1cd7c5d52bae42e133", "packagetype": "bdist_wheel", "python_version": "py3", "requires_python": ">=3.7", "size": 42899, "upload_time": "2024-04-11T14:19:11", "upload_time_iso_8601": "2024-04-11T14:19:11.643469Z", "url": "https://files.pythonhosted.org/packages/2f/e3/c198d29e9f00f988d18ab7664aee3d9ede226dbb7d16eb72cd89f5d4ba88/acmetric_plotting-1.3.0-py3-none-any.whl", "yanked": false, "yanked_reason": null }, { "comment_text": "", "digests": { "blake2b_256": "42a5ec8d6bdc7f018b6a6ad64a961a0d7495d6ffe3cd0ccabe0be29a2a357afc", "md5": "b30ee9c6cbd12842ebd8c1926f4cefb4", "sha256": "3aa7cc83e662bee80a9b6e8195e3e607402a1dcc92028f488ca660ad021cd2d6" }, "downloads": -1, "filename": "acmetric_plotting-1.3.0.tar.gz", "has_sig": false, "md5_digest": "b30ee9c6cbd12842ebd8c1926f4cefb4", "packagetype": "sdist", "python_version": "source", "requires_python": ">=3.7", "size": 44227, "upload_time": "2024-04-11T14:19:21", "upload_time_iso_8601": "2024-04-11T14:19:21.221966Z", "url": "https://files.pythonhosted.org/packages/42/a5/ec8d6bdc7f018b6a6ad64a961a0d7495d6ffe3cd0ccabe0be29a2a357afc/acmetric_plotting-1.3.0.tar.gz", "yanked": false, "yanked_reason": null } ], "1.3.1": [ { "comment_text": "", "digests": { "blake2b_256": "dc999ddc5acc725215bab82187b2213ab7ad268a8e8d0e791aac3acc82bf4a1b", "md5": "31ba5b36e97a7628056aff07a99beaa7", "sha256": "e8ab56668b30fcc5d78aa7c0962266210ab93629c732acac397f3b743b842c99" }, "downloads": -1, "filename": "acmetric_plotting-1.3.1-py3-none-any.whl", "has_sig": false, "md5_digest": "31ba5b36e97a7628056aff07a99beaa7", "packagetype": "bdist_wheel", "python_version": "py3", "requires_python": ">=3.7", "size": 43035, "upload_time": "2024-04-11T14:29:48", "upload_time_iso_8601": "2024-04-11T14:29:48.718191Z", "url": "https://files.pythonhosted.org/packages/dc/99/9ddc5acc725215bab82187b2213ab7ad268a8e8d0e791aac3acc82bf4a1b/acmetric_plotting-1.3.1-py3-none-any.whl", "yanked": false, "yanked_reason": null }, { "comment_text": "", "digests": { "blake2b_256": "2c9169aaca1daf2dfd035d8bf8ee5c369fce85bfbf9eb11f0e2fe5bb96db714e", "md5": "6e1bc4b025afc66d258645f710811931", "sha256": "5e28715ea60b7e976814db4819dc5d6bef655298027b3f5880ab8cdc31ee8e3d" }, "downloads": -1, "filename": "acmetric_plotting-1.3.1.tar.gz", "has_sig": false, "md5_digest": "6e1bc4b025afc66d258645f710811931", "packagetype": "sdist", "python_version": "source", "requires_python": ">=3.7", "size": 44263, "upload_time": "2024-04-11T14:29:50", "upload_time_iso_8601": "2024-04-11T14:29:50.549584Z", "url": "https://files.pythonhosted.org/packages/2c/91/69aaca1daf2dfd035d8bf8ee5c369fce85bfbf9eb11f0e2fe5bb96db714e/acmetric_plotting-1.3.1.tar.gz", "yanked": false, "yanked_reason": null } ], "1.3.2": [ { "comment_text": "", "digests": { "blake2b_256": "4d1c7ad5d733ef7f95a87d7713ed3c9e728fb152a14031c01efc34c1dca99090", "md5": "4d64357839ab1af315e5dc8a7a4b700b", "sha256": "21cd5ac3c65b7a3ab13bb4e9f8150128f6660522de347f64334661cbe8c9d44a" }, "downloads": -1, "filename": "acmetric_plotting-1.3.2-py3-none-any.whl", "has_sig": false, "md5_digest": "4d64357839ab1af315e5dc8a7a4b700b", "packagetype": "bdist_wheel", "python_version": "py3", "requires_python": ">=3.7", "size": 43031, "upload_time": "2024-04-15T06:41:30", "upload_time_iso_8601": "2024-04-15T06:41:30.583413Z", "url": "https://files.pythonhosted.org/packages/4d/1c/7ad5d733ef7f95a87d7713ed3c9e728fb152a14031c01efc34c1dca99090/acmetric_plotting-1.3.2-py3-none-any.whl", "yanked": false, "yanked_reason": null }, { "comment_text": "", "digests": { "blake2b_256": "dbc3387b93de126015342b192c09789c03dce2179de9c87e484d4fd54b78cb72", "md5": "bdb40011598da6f3b9e5b8e00c9b2cce", "sha256": "3e5751fea824822440e034046e7b9ea7693d1cb023e901dfb98cb6ab475d2d8f" }, "downloads": -1, "filename": "acmetric_plotting-1.3.2.tar.gz", "has_sig": false, "md5_digest": "bdb40011598da6f3b9e5b8e00c9b2cce", "packagetype": "sdist", "python_version": "source", "requires_python": ">=3.7", "size": 44271, "upload_time": "2024-04-15T06:41:32", "upload_time_iso_8601": "2024-04-15T06:41:32.766467Z", "url": "https://files.pythonhosted.org/packages/db/c3/387b93de126015342b192c09789c03dce2179de9c87e484d4fd54b78cb72/acmetric_plotting-1.3.2.tar.gz", "yanked": false, "yanked_reason": null } ] }, "urls": [ { "comment_text": "", "digests": { "blake2b_256": "4d1c7ad5d733ef7f95a87d7713ed3c9e728fb152a14031c01efc34c1dca99090", "md5": "4d64357839ab1af315e5dc8a7a4b700b", "sha256": "21cd5ac3c65b7a3ab13bb4e9f8150128f6660522de347f64334661cbe8c9d44a" }, "downloads": -1, "filename": "acmetric_plotting-1.3.2-py3-none-any.whl", "has_sig": false, "md5_digest": "4d64357839ab1af315e5dc8a7a4b700b", "packagetype": "bdist_wheel", "python_version": "py3", "requires_python": ">=3.7", "size": 43031, "upload_time": "2024-04-15T06:41:30", "upload_time_iso_8601": "2024-04-15T06:41:30.583413Z", "url": "https://files.pythonhosted.org/packages/4d/1c/7ad5d733ef7f95a87d7713ed3c9e728fb152a14031c01efc34c1dca99090/acmetric_plotting-1.3.2-py3-none-any.whl", "yanked": false, "yanked_reason": null }, { "comment_text": "", "digests": { "blake2b_256": "dbc3387b93de126015342b192c09789c03dce2179de9c87e484d4fd54b78cb72", "md5": "bdb40011598da6f3b9e5b8e00c9b2cce", "sha256": "3e5751fea824822440e034046e7b9ea7693d1cb023e901dfb98cb6ab475d2d8f" }, "downloads": -1, "filename": "acmetric_plotting-1.3.2.tar.gz", "has_sig": false, "md5_digest": "bdb40011598da6f3b9e5b8e00c9b2cce", "packagetype": "sdist", "python_version": "source", "requires_python": ">=3.7", "size": 44271, "upload_time": "2024-04-15T06:41:32", "upload_time_iso_8601": "2024-04-15T06:41:32.766467Z", "url": "https://files.pythonhosted.org/packages/db/c3/387b93de126015342b192c09789c03dce2179de9c87e484d4fd54b78cb72/acmetric_plotting-1.3.2.tar.gz", "yanked": false, "yanked_reason": null } ], "vulnerabilities": [] }