{ "info": { "author": "Yizheng Huang", "author_email": "huangyz0918@gmail.com", "bugtrack_url": null, "classifiers": [ "Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "Intended Audience :: Education", "Intended Audience :: Financial and Insurance Industry", "Intended Audience :: Information Technology", "Intended Audience :: Science/Research", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", "Programming Language :: Python :: 3" ], "description": "# ALaaS: Active Learning as a Service.\n\n [](https://pepy.tech/project/alaas) [](https://github.com/MLSysOps/alaas/actions/workflows/main.yml)  \n\n\n\nActive Learning as a Service (ALaaS) is a fast and scalable framework for automatically selecting a subset to be labeled\nfrom a full dataset so to reduce labeling cost. It provides a out-of-the-box and standalone experience for users to quickly\nutilize active learning.\n\n\nALaaS is featured for\n\n- :hatching_chick: **Easy-to-use** With <10 lines of code to start the system to employ active learning.\n- :rocket: **Fast** Use the stage-level parallellism to achieve over 10x speedup than under-optimized active learning process.\n- :collision: **Elastic** Scale up and down multiple active workers, depending on the number of GPU devices.\n\n*The project is still under the active development. Welcome to join us!*\n\n- [Demo on AWS](https://github.com/MLSysOps/Active-Learning-as-a-Service#demo-on-aws-coffee)\n- [Installation](https://github.com/MLSysOps/Active-Learning-as-a-Service#installation-construction)\n- [Quick Start](https://github.com/MLSysOps/Active-Learning-as-a-Service#quick-start-truck)\n- [ALaaS Server Customization (for Advance users)](https://github.com/MLSysOps/Active-Learning-as-a-Service#alaas-server-customization-wrench)\n- [Strategy Zoo](https://github.com/MLSysOps/Active-Learning-as-a-Service#strategy-zoo-art)\n- [Citation](https://github.com/MLSysOps/Active-Learning-as-a-Service#citation)\n\n## Demo on AWS :coffee:\n\n**Free ALaaS demo on AWS (Support HTTP & gRPC)**\n\nUse least confidence sampling with [ResNet-18](https://pytorch.org/vision/main/models/generated/torchvision.models.resnet18.html) \nto select images to be labeled for your tasks! \n\nWe have deployed ALaaS on AWS for demonstration. Try it by yourself!\n\n
Call ALaaS with HTTP \ud83c\udf10 | \nCall ALaaS with gRPC \ud83d\udd10 | \n
\n\n```bash\ncurl \\\n-X POST http://13.213.29.8:8081/post \\\n-H 'Content-Type: application/json' \\\n-d '{\"data\":[{\"uri\": \"https://www.cs.toronto.edu/~kriz/cifar-10-sample/airplane1.png\"},\n {\"uri\": \"https://www.cs.toronto.edu/~kriz/cifar-10-sample/airplane2.png\"},\n {\"uri\": \"https://www.cs.toronto.edu/~kriz/cifar-10-sample/airplane3.png\"},\n {\"uri\": \"https://www.cs.toronto.edu/~kriz/cifar-10-sample/airplane4.png\"},\n {\"uri\": \"https://www.cs.toronto.edu/~kriz/cifar-10-sample/airplane5.png\"}], \n \"parameters\": {\"budget\": 3},\n \"execEndpoint\":\"/query\"}'\n```\n\n | \n\n\n```python\n# pip install alaas\nfrom alaas.client import Client\n\nurl_list = [\n 'https://www.cs.toronto.edu/~kriz/cifar-10-sample/airplane1.png',\n 'https://www.cs.toronto.edu/~kriz/cifar-10-sample/airplane2.png',\n 'https://www.cs.toronto.edu/~kriz/cifar-10-sample/airplane3.png',\n 'https://www.cs.toronto.edu/~kriz/cifar-10-sample/airplane4.png',\n 'https://www.cs.toronto.edu/~kriz/cifar-10-sample/airplane5.png'\n]\nclient = Client('grpc://13.213.29.8:60035')\nprint(client.query_by_uri(url_list, budget=3))\n``` \n | \n
Yizheng Huang \ud83d\ude87 \u26a0\ufe0f \ud83d\udcbb | \n Huaizheng \ud83d\udd8b \u26a0\ufe0f \ud83d\udcd6 | \n Yuanming Li \u26a0\ufe0f \ud83d\udcbb | \n