{ "info": { "author": "Your Name", "author_email": "you@example.com", "bugtrack_url": null, "classifiers": [ "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.10", "Programming Language :: Python :: 3.11" ], "description": "

\n
\n \"gnnnas\n
\n

\n\n

Library to write symbolic programs to generate expressive message passing neural networks

\n\n

kgforge Documentation

\n\n

\n\n \n \n \n \"Code\n \n \n \n \"Supported\n \n \n \"Downloads\n \n \n \"License\"\n \n \n \"Contribute\"\n \n\n

\n\n

\n What is it? \u2022\n Features \u2022\n Installation \u2022\n Usage \u2022\n Contributing\n

\n\n## What is it?\n`kgforge` is a library which automates the generation of knowledge graphs from scholarly text.\n\n## Features:\n - **TODO**: TODO: Description.\n\n## Installation:\n\n### Poetry\n\n```bash\npoetry add kgforge\n```\n\n### Pip\n\n```bash\npip install kgforge\n```\n\nSetup your local environment:\n\nAny necessary environment variables description:\n\n\n```shell\nexport SAMPLE_ENV_VARIABLE=${VALUE}\n```\n\n## Usage\n\nNow that `kgforge` is installed, you're ready to start using it!\n\nIt's time to point you to the official [Documentation Website](https://akhilpandey95.github.io/gnnNAS/) for more information on how to use `kgforge`\n\n\n## Contributing\nIf you'd like to contribute, be sure to check out our [contributing guide](./CONTRIBUTING.md)! If you'd like to work on any outstanding items, check out the `roadmap` section in the docs and get started :smiley:\n\nThanks goes to these incredible people.\n\n\n \n\n\n \n", "description_content_type": "text/markdown", "docs_url": null, "download_url": "", "downloads": { "last_day": -1, "last_month": -1, "last_week": -1 }, "home_page": "", "keywords": "", "license": "MIT", "maintainer": "", "maintainer_email": "", "name": "gnnnas", "package_url": "https://pypi.org/project/gnnnas/", "platform": null, "project_url": "https://pypi.org/project/gnnnas/", "project_urls": null, "release_url": "https://pypi.org/project/gnnnas/0.0.2/", "requires_dist": [ "numpy (>=1.26.1,<2.0.0)", "scikit-learn (>=1.3.1,<2.0.0)", "pdoc3 (>=0.10.0,<0.11.0)", "pytest (>=7.4.2,<8.0.0)", "torch (==1.12.1)", "torch-geometric (>=2.4.0,<3.0.0)" ], "requires_python": ">=3.10,<3.13", "summary": "Library to help write symbolic programs to generate expressive message passing neural networks.", "version": "0.0.2", "yanked": false, "yanked_reason": null }, "last_serial": 20251082, "releases": { "0.0.2": [ { "comment_text": "", "digests": { "blake2b_256": "d4e3a5baa77d1c715dba580d90be4708e3b52e2b879ece34b37feb22ea0fafad", "md5": "330374fd402a6161a37985af553fe85d", "sha256": "35995efa1684230a5b043cb3f6668670ec78fec11ece2f0cd1d45d243f00fc36" }, "downloads": -1, "filename": "gnnnas-0.0.2-py3-none-any.whl", "has_sig": false, "md5_digest": "330374fd402a6161a37985af553fe85d", "packagetype": "bdist_wheel", "python_version": "py3", "requires_python": ">=3.10,<3.13", "size": 7241, "upload_time": "2023-10-19T18:55:19", "upload_time_iso_8601": "2023-10-19T18:55:19.361296Z", "url": "https://files.pythonhosted.org/packages/d4/e3/a5baa77d1c715dba580d90be4708e3b52e2b879ece34b37feb22ea0fafad/gnnnas-0.0.2-py3-none-any.whl", "yanked": false, "yanked_reason": null }, { "comment_text": "", "digests": { "blake2b_256": "73d3fccddc2496d8edb5a5f8af2b54136da22a8dd1bcb00a1062622432fafc25", "md5": "021eaf69b3ca1a920f20119d4ba30b40", "sha256": "a0bc2980a60c5322069371f084cc41f7eca521ff518843ac15d3e6467528d42d" }, "downloads": -1, "filename": "gnnnas-0.0.2.tar.gz", "has_sig": false, "md5_digest": "021eaf69b3ca1a920f20119d4ba30b40", "packagetype": "sdist", "python_version": "source", "requires_python": ">=3.10,<3.13", "size": 5808, "upload_time": "2023-10-19T18:55:21", "upload_time_iso_8601": "2023-10-19T18:55:21.078722Z", "url": "https://files.pythonhosted.org/packages/73/d3/fccddc2496d8edb5a5f8af2b54136da22a8dd1bcb00a1062622432fafc25/gnnnas-0.0.2.tar.gz", "yanked": false, "yanked_reason": null } ] }, "urls": [ { "comment_text": "", "digests": { "blake2b_256": "d4e3a5baa77d1c715dba580d90be4708e3b52e2b879ece34b37feb22ea0fafad", "md5": "330374fd402a6161a37985af553fe85d", "sha256": "35995efa1684230a5b043cb3f6668670ec78fec11ece2f0cd1d45d243f00fc36" }, "downloads": -1, "filename": "gnnnas-0.0.2-py3-none-any.whl", "has_sig": false, "md5_digest": "330374fd402a6161a37985af553fe85d", "packagetype": "bdist_wheel", "python_version": "py3", "requires_python": ">=3.10,<3.13", "size": 7241, "upload_time": "2023-10-19T18:55:19", "upload_time_iso_8601": "2023-10-19T18:55:19.361296Z", "url": "https://files.pythonhosted.org/packages/d4/e3/a5baa77d1c715dba580d90be4708e3b52e2b879ece34b37feb22ea0fafad/gnnnas-0.0.2-py3-none-any.whl", "yanked": false, "yanked_reason": null }, { "comment_text": "", "digests": { "blake2b_256": "73d3fccddc2496d8edb5a5f8af2b54136da22a8dd1bcb00a1062622432fafc25", "md5": "021eaf69b3ca1a920f20119d4ba30b40", "sha256": "a0bc2980a60c5322069371f084cc41f7eca521ff518843ac15d3e6467528d42d" }, "downloads": -1, "filename": "gnnnas-0.0.2.tar.gz", "has_sig": false, "md5_digest": "021eaf69b3ca1a920f20119d4ba30b40", "packagetype": "sdist", "python_version": "source", "requires_python": ">=3.10,<3.13", "size": 5808, "upload_time": "2023-10-19T18:55:21", "upload_time_iso_8601": "2023-10-19T18:55:21.078722Z", "url": "https://files.pythonhosted.org/packages/73/d3/fccddc2496d8edb5a5f8af2b54136da22a8dd1bcb00a1062622432fafc25/gnnnas-0.0.2.tar.gz", "yanked": false, "yanked_reason": null } ], "vulnerabilities": [] }