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Abstract

The risk control, and more precisely the reduction of specific risks, is vital
for different institutions, such as financial corporations or firms that require
to reduce potential losses. The quantitative risk management gives statistical
implementations to achieve the purposes cited before. In fact, the aim of this
paper is to find a better estimation of quantiles of the returns distribution and
the tail of innovation distribution related to the S&P500 and SMI indexes. The
approaches and methodology are based on the Alexander J. McNeil and Frey
researches. The first chapter introduces the dataset used and an explanation of
mathematical instruments employed to approach the estimations. The second
chapter gives a better view on the empirical results and methods applied on
the financial return series. Finally, the conclusion chapter exhibits the final
comparison between using the VaR (Value at Risk) or Expected shortfall and
which of the distribution fits better the value-at-risk estimation.

1 Data and Methodology

The dataset consists of closed prices of S&P500 and SMI indexes reached from
the Reuters and Yahoo. The two samples take into account the dividends pay-
ments and have a daily frequency that goes from January 1991 to mid-May 2020.
Each daily VaR were computed on a 10 days basis like the bale commitment
state.
In order to estimate VaR and expected shortfall, which describe the tails of
conditional distribution of heteroskedastic sample of S&P500 and SMI indexes
sample, the methodology chosen in this paper is a combination of quasi maxi-
mum likelihood fitting GARCH models and the extreme value theory. The use
of the Quasi-Log Likelihood estimation (Maximum Likelihood estimation plus a
robust Covariance estimator) and GARCH model is prompt to estimate condi-
tional volatility, which will reveal the non conformity for the financial datasets.
Meanwhile, the non parametric estimations, or in other words the historical
simulations, are used to estimate the central part of the distribution. Finally,
the estimation of the distribution of residuals generated by the GARCH model
is made by the extreme value theory using a Generalized Pareto Distribution
that we are going to discover across this paper.

We have:

Xt = µt + σtZt

where Xt is a strictly stationary time series, which represents daily observation
of negative log returns. We consider the innovations (Zt) as a strict white noise
(iid) with a mean of zero and a variance of one, as well as a marginal distribution
FZ(z). µt and σt are assumed to be measurable with respect to the information
about the return process available up to t− 1 (Gt−1).
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We are considering a measure of risk for the tail of a distribution, which is
called the expected shortfall. The unconditional expected shortfall is defined
as:

Sq = E[X|X > xq]

and the conditional expected shortfall is:

Stq(h) = E[

h∑
j=1

Xt+j |
h∑
j=1

Xt+j > xtq(h), Gt]

with h being the number of days. As we are particularly interested in the
quantiles and the expected shortfall for the 1-step predictive distribution (xtq
and Stq ). As we have :

FXt+1|Gt
(x) = P (σt+1Zt+1 + µt+1 ≤ x|Gt)

= FZ(
x− µt+1

σt+1
)

which we can simplify in order to get:

xtq = µt+1 + σt+1zq

Stq = µt+1 + σt+1E[Z|Z > zq]

Where zq is the upper qth quantile of the marginal distribution of Zt which does
not depend on t by assumption. In order to implement an estimation procedure
for these values, we are going to use the GARCH(1, 1) process for the volatility.
As for the dynamics of the conditional mean, we are going to use an AR(1)
model. When we estimate xtq, we assume that the distribution of the innovation
is standard normal which leads to the quantile of the innovation distribution to
be : zq = φ−1(q), where φ(z) is the standard normal distribution function.

There is also another approach which is to assume that the innovations have
a leptokurtic distribution (a Student t distribution for instance which is scaled

in order to have a variance of 1). We suppose the following: Z =
√

v−2
v T where

T has a t-distribution on v >2 degrees of freedom with the density function

FT (t). We then have zq =
√

v−2
v F−1

T (q). t-innovations using a GARCH like

model can be fitted using a maximum likelihood. However it has an additional
parameter: the degree of freedom v which can be estimated. This approach
yields good results if both the positive and negative tails are somewhat equal.

In order to estimate σt+1 and µt+1, we use a constant memory (n), which will
let us have a data set consisting of the last n negative log returns at the end of
day t . These values are the realisations from an AR(1) - GARCH(1, 1) process.
Therefore, the conditional variance of the mean-adjusted series εt = Xt − µt
which is given by:

σ2
t = α− 1ε2t−1 + βσ2

t−1
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where α0>0, α1>0 and β>0.
We then obtain the following conditional mean:

µt = φXt−1

The εt (mean-adjusted series) is strictly stationary when:

E[log(β + α1Z
2
t−1)] < 0

We can ensure that the marginal distribution Fx(x) has a finite second moment
by using Jensen’s inequality and the convexity of -log(x), which leads to a suf-
ficient condition for the above equation: β + α1 < 1
We calculate the residuals in order to check the adequacy of the GARCH mod-
elling as well as as for the EVT model. They are calculated in the following
manner:

(zt−n+1, ..., zt) = (
xt−n+1 − µ̂t−n+1

σ̂t−n+1
, ...,

xt − µ̂t
σ̂t

)

The residuals are supposed to be iid if the fitted model is sustainable. If we
consider the fitted model as satisfying, we can end the first part by calculating
estimates of the conditional mean and variance for the day t+ 1 :

µ̂t+1 = φ̂xt

σ̂2
t+1 = α̂0 + α̂1ε̂

2
t + β̂σ̂2

t

where ε̂t = xt − µ̂t
For the second part of the project, we have to fix a threshold u. We then

assume that any excess residuals that are over u have a generalized Pareto
distribution (GPD):

Gξ,β(y) =

{
1− (1 + ξy

β )
−1
ξ if ξ 6= 0

1− exp(−y
β ) if ξ = 0

with β > 0, the support y ≥ 0 when ξ ≥ 0 and 0 ≤ y ≤ −β
ξ when ξ < 0

Let Fu(y) be an excess distribution above the chosen threshold u :

Fu(y) = P{X − u ≤ y|X > u} =
F (y + u)− F (u)

1− F (u)

with 0 ≤ y < x0, where x0 is the right endpoint of F .
Now we can consider an equality point for x > u in the tail of F .

1− F (x) = (1− F (u))(1− Fu(x− u))

We can now obtain the tail estimator by estimating the first term on the right of
the above equation using a random proportion of the data in the tail Nn , as well
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as estimating the second term by approximating the excess distribution with a
GPD that we fit with a maximum likelihood for x > u

F̂ (x) = 1− N

n
(1 + ξ̂

x− u
β̂

)
−1

ξ̂

We then fix the number of data in the tail to N = k with k << n. This
allows us to obtain a random threshold at the (k+1)th order statistic. We then
order the residuals (z(1) ≥ z(2) ≥ ... ≥ z(n)). The GPD parameters ξ and β are
fitted to the data and we obtain the excess amounts over the threshold for all
residuals which were exceeding the threshold : (z(1) − z(k+1), ..., z(k) − z(k+1))
which gives us the tail estimator for Fz(z) of the form:

F̂z(z) = 1− k

n
(1 + ξ̂

z − zk+1

β̂
)
−1

ξ̂

when q > 1− k
n we are allowed to invert the formula, which gives us:

ẑq = ẑq,k = zk+1 +
β̂

ξ̂
((

1− q
k
n

)−ξ̂ − 1)

When the data is more symmetric, the t-distribution works better. It can
even be considered as a special case of the method we are doing. This distribu-
tion is a heavy-tailed distribution whose limiting excess distribution is a GPD
with ξ>0 which was characterized by Gnedenko (1943) as the following:

1− F (x) = x
−1
ξ L(x)

With:

• L(x) being a slowly varying function

• ξ the positive limiting parameter of the GPD

Also 1
ξ is the tail index of F . When we have a t-distribution with v degrees of

freedom, the tail satisfies the following:

1− F (x) ∼ v
v−2
2

B( 1
2 ,

v
2 )
x−v

B(.) is the beta function. This gives us a symmetric distribution that recipro-
cates the value ξ with the degrees of freedom.

Next, we are going to use the Hill estimator in order to compare the GPD
approach. The Hill estimator (Hill, 1975), which has been designed for heavy-
tailed distribution data when we acknowledge the representation with ξ>0. The
estimator for ξ which is based on the k in excess of the (k+1)th order statistic
is:

ξ̂(H) = ξ̂
(H)
k = k−1

k∑
j=1

logz(j) − logzk+1
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Given this, the associated quantile estimator is the following:

ẑq
(H) = ˆzq,k

(H) = z(k+1)(
1− q
k
n

)−ξ̂
(H)

The next part consists in estimating the expected shortfall in our model. We
remember from earlier the conditional expected shortfall:

Stq = µt+1 + σt+1E[Z|Z > zq]

In order to estimate this, we need to estimate the expected shortfall for the
innovation distribution. We use W, a random variable with a GPD distribution
with the following parameters:

• ξ < 0

• β

We can then verify that :

E[W |W > w] =
w + β

1− ξ

with β+wξ>0. Now we assume that the excess values over the threshold u will
have this exact distribution, for example Z − u|Z>u ∼ Gξ,β . When zq>u , we
get :

Z − zq|Z > zq = (Z − u)− (zq − u)|(Z − u) > (zq − u)

we can then show that the excess over the threshold zq have a GPD distribution:

Z − zq|Z > zq ∼ Gξ,β+ξ(zq−u)

with the same shape parameter ξ , however it has a different scaling parameter.
By using the above equations, we can obtain:

E[Z|Z > zq] = zq(
1

1− ξ
+

β − ξu
(1− ξ)zq

)

These equations finally allows us to get the conditional expected shortfall esti-
mate by replacing the values in the formula seen above with the unknown values
by the estimates based on GPD and replacing u with z(k+1). We then obtain:

Ŝtq = ût+1 + σ̂t+1ẑq(
1

1− ξ̂
+
β̂ − ξ̂zk+1

(1− ξ̂)ẑq
)

We can finally get the shortfall to quantile ratio:

Stq
xtq
≈
Stq − µt+1

xtq − µt+1
=
E[Z|Z > zq]

zq
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This gives us the relation between the conditional one step quantiles and the
shortfalls of the return process when µt+1 is small.

For the last part, we have used a few tests in order to compare the methods
we have used.

First, the binomial test, which compares the observed number of exceptions
with the expected number of exceptions. We can do so using the properties of
the binomial distribution with a test stat z such as:

z =
x−Np√
Np(1− p)

where:

• x is the number of failures

• N is the number of observations

• p = 1-VaR level

This binomial test is approximately distributed as a standard normal distribu-
tion.

The second test we are using is the Kupiec’s POF test. It is a variation
on the binomial test and it stands for proportion of failures. It works with the
binomial distribution approach and it uses a likelihood ratio in order to test if
the probability of exceptions and the probability implied by the VaR confidence
level are synchronized. The VaR model is rejected if the data shows that the
probability of exceptions is different than p. We use the following POF statistic
test:

LRPOF = −2log(
(1− p)N−xpx

(1− x
N )N−x( xN )x

)

Then we use the Christoffersen’s test, which measures if the probability of ob-
serving an exception on a given day depends on the occurrence of an exception.
This test measures the dependency between consecutive days only. The test
stat for this test is :

LRCCI = −2log(
(1− π)n00+n10πn01+n11

(1− π0)n00πn010 (1− π1)n10πn111

)

with:

• n00 being the number of periods with no failures followed by a period with
no failures

• n10 is the number of periods with failures followed by a period with no
failures

• n01 is the number of periods with no failures followed by a period with
failures
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• n11 being the number of periods with failures followed by a period with
failures

• π0 is the probability of having a failure on period t, given that no failure
occurred on period t-1 = n01

n00+n01

• π1 is the probability of having a failure on period t, given that a failure
occurred on period t-1 = n11

n10+n11

• π is the probability of having a failure on period t = n01+n11
n00+n01+n10+n11

This test statistic is distributed asymptotically as a chi-square with 1 degree
of freedom. It is possible to combine this statistic with the POF test in order
to get a conditional coverage mixed test in the following manner:

LRcc = LRPOF + LRCCI

This test is also asymptotically distributed as a chi-square, however it has 2
degrees of freedom.

In order to calculate the VaR for the normal distribution, we suppose L ∼
N(µ, σ2). Then the VaR is computed as the following:

V aRα = µ+ σΦ−1(α)

where φ(.) is the standard normal CDF. This allows us then to calculate the
expected shortfall with a normal distribution:

ESα = µ+ σ
φ(Φ−1(α))

1− α

with φ(.) being the PDF of the standard normal distribution.
As for the VaR using a t-distribution, we assume L ∼ t(v, µ, σ2). L−µ

σ
would have a standard t distribution with v>2 degrees of freedom. The VaR is
calculated in the following manner:

V aRα = µ+ σt−1
v (α)

where tv is the CDF for the t distribution with v degrees of freedom. If we
let L ∼ t(v, µ, σ2) such that L̃ := L−µ

σ has a standard t distribution with v>2

degrees of freedom. We can then see that ESα(L) = µ+ σESα(L̃). This allows
us to obtain the following:

ESα(L̃) =
gv(t

−1
v (α))

1− α
(
v + (t−1

v (α))2

v − 1
)

with tv(.) and gv(.) being the CDF and PDF of a standard t distribution with
v degrees of freedom
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2 Results

After transforming prices in daily log returns and assuming their dynamics as
a linear combination µ and σZt, the estimation of the conditional quantiles is
done, assuming a predictive distribution of returns over 252 days.

The first phase is the estimation of AR(1) and GARCH(1,1) models for the
conditional mean and conditional volatility respectively. For the GARCH model,
it is also useful to assume that the Zt are normally standardize distributed in
order to fit the model using the quasi-maximum-likelihood approach and obtain
consistent parameters. So as to predict µt+1 and σt+1, it is needed to implement
the AR(1)-GARCH(1,1), for each historical, t-student distribution and normal
conditional distribution.

Coeff t-value p-value
SMI Const 0.0589 5.929 3.050e-09

Coeff 0.0329 2.491 1.272e-02
S&P500 Const 0.0623 6.831 8.447e-12

Coeff -0.0263 -2.136 3.271e-02

Table 1: AR(1) mean estimation for Normal distribution

Coeff t-value p-value
SMI Ω 0.0447 3.263 1.104e-03

α 0.1359 8.612 7.195e-18
β 0.8271 35.798 1.190e-280

S&P500 Ω 0.0181 4.790 1.667e-06
α 0.1076 8.989 2.503e-19
β 0.8776 70.061 0.000

Table 2: GARCH(1,1) volatility estimation for Normal distribution

Coeff t-value p-value
SMI Const 0.0697 7.406 1.300e-13

Coeff 0.0193 1.635 0.102
S&P500 Const 0.0734 8.985 2.588e-19

Coeff -0.0369 -3.324 8.883e-04

Table 3: AR(1) mean estimation for t-student distribution
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Coeff t-value p-value
SMI Ω 0.0268 6.038 1.562e-09

α 0.1206 10.822 2.710e-27
β 0.8587 69.385 0.000
ν 7.8298 9.940 0.000

S&P500 Ω 0.0101 4.320 1.562e-05
α 0.0991 9.843 7.362e-23
β 0.8975 89.482 0.000
ν 5.9251 13.911 0.000

Table 4: GARCH(1,1) volatility estimation for t-student distribution

The following graphs show the main market crashes for the SMI and S&P500
indexes. Comparing the two conditional volatility, the SMI tends to have more
high peaks rather than the S&P500. For both indexes, residuals are consistent
with the conditional volatility estimated from the model.

Figure 1: SMI negative residuals derived from AR(1)-GARCH(1,1) model under
normal distribution

Figure 2: SMI conditional volatility from AR(1)-GARCH(1,1) model under nor-
mal distribution
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Figure 3: S&P500 negative residuals derived from AR(1)-GARCH(1,1) model
under normal distribution

Figure 4: S&P500 conditional volatility from AR(1)-GARCH(1,1) model under
normal distribution

Furthermore, the auto correlations for the absolute and relative values of
the time series for the returns of each index and their residuals are showed in
graphs from 5 to 12. We can see that there is auto correlations for the absolute
returns but not for the absolute residuals, the i.i.d. condition seems to state
only for the residuals.

Figure 5: Autocorrelation of
S&P500 returns

Figure 6: Autocorrelation of
S&P500 absolute returns
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Figure 7: Autocorrelation of
S&P500 residuals

Figure 8: Autocorrelation of
S&P500 absolute residuals

Figure 9: Autocorrelation of
SMI returns

Figure 10: Autocorrelation of
SMI absolute returns

Figure 11: Autocorrelation of
SMI residuals

Figure 12: Autocorrelation of
SMI absolute residuals

We confirmed the i.i.d hypothesis by the results from the Ljung-Box test.
The test shows up that in all four first lags: only for the residuals,the hypothesis
of i.i.d is not rejected in contrary to with the returns.
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Lags LB statistic p-value
1 2.73 0.4365
2 3.36 0.567
3 4.54 0.282
4 4.87 0.294

Table 5: Ljung-Box test for S&P500

Lags LB statistic p-value
1 1.0519 0.305
2 2.506 0.289
3 5.567 0.136
4 10.550 0.033

Table 6: Ljung-Box test for SMI

The quantile-quantile plots below show for each index that residuals do not
follow the normal distribution, especially for the S&P500 which manifests higher
gap from the normal quantile distribution for the negative values of the tail and
the opposite for the positive. Overall, they present a fatter tail’s distribution.
The normality is then not an appropriate assumption.

Figure 13: Q-Q plot of residuals versus normal quantile distribution S&P500

Figure 14: Q-Q plot of residuals versus normal quantile distribution SMI

The Hill estimator is the most useful parameter related to the tail behaviour.
It allows to make an efficient decision about the k of the threshold, in this paper
we used k = 10% of the sample. We then can estimate the ξ parameter, which
represents the shape of the tail of a Pareto distribution as a power of its function,
but it is not the best one to estimate the quantile below q = 99%, which is better
done by the GPD (Generalized Pareto Distribution).
The graph below shows the Hill estimation for the S&P500 fitting the empirical
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data and the innovations. When we increase the threshold number, the hill’s
estimator becomes less performing. For this reason, the optimal k is around less
than 300 for the S&P500 innovations.

Figure 15: S&P500 Hill estimator across q

Figure 16: SMI Hill estimator across q

We can conclude that, Hill’s estimator used for estimating the EVT’s quan-
tiles could be an efficient estimator at least as the GPD for q >= 99%.

Following the extreme value theory and because the residuals has a fat tails,
the Pareto’s seems to be the appropriate distribution rather than the normal
one, which usually underestimates the extreme values. Most of all, the gener-
alized Pareto distribution is assumed to be modelling the tails of residuals over
a threshold of 10% of the values by sorting from the lower to the higher. e.g.
modelling excess distribution function. Looking at the figures 18 and 17, it is
clear that the distributions of the residuals tails are approximately the same as
the theoretical Generalized Pareto Cumulative distribution.
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Figure 17: CDF of the SMI lower tail innovations vs the theoretical cdf of a
GDP

Figure 18: CDF of S&P500 lower tail innovations vs the theoretical cdf of a
GDP

Finally, computing the extreme shortfall, known also as the Conditional
value at risk which is obtained by taking the weighted average of extreme tails
of the distribution of the expected residuals. ES is an alternative risk measure
to VaR that grants more information about the size of extreme values of the
distribution, particularly the quantile of the time series losses.

Figure 19: Var and ES of SMI with historical distribution(In sample and at
99%)
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Figure 20: VaR and ES of S&P500 with GDP distribution(In sample and at
99%)

Figures above show the extreme negative values of the historical distribution
obtained by AR(1)-GARCH(1,1) taking constant parameters. Meanwhile, the
following graphs are made in Sample. Below we will see what are the results if
we use the EVT conditional, the student-t conditional, the normal conditional
and EVT unconditional.

Figure 21: VaR and ES of S&P500 with Generalized Pareto distribution at 95%

Figure 22: VaR and ES of S&P500 with Generalized Pareto distribution at 99%

16



Figure 23: VaR and ES of S&P500 with Generalized Pareto distribution at
99.5%

Figure 24: VaR and ES of S&P500 with conditional normal distribution at 95%

Figure 25: VaR and ES of S&P500 with conditional normal distribution at 99%
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Figure 26: VaR and ES of S&P500 with conditional normal distribution at
99.5%

Figure 27: VaR and ES of S&P500 with t-student distribution at 95%

Figure 28: VaR and ES of S&P500 with t-student distribution at 99%

18



Figure 29: VaR and ES of S&P500 with t-student distribution at 99.5%

Figure 30: VaR and ES of SMI with Generalized Pareto distribution at 95%

Figure 31: VaR and ES of SMI with Generalized Pareto distribution at 95%
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Figure 32: VaR and ES of SMI with Generalized Pareto distribution at 99.5%

Figure 33: VaR and ES of SMI with conditional normal distribution at 95%

Figure 34: VaR and ES of SMI with conditional normal distribution at 99%
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Figure 35: VaR and ES of SMI with conditional normal distribution at 99.5%

Figure 36: VaR and ES of SMI with t-student distribution at 95%

Figure 37: VaR and ES of SMI with t-student distribution at 99%
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Figure 38: VaR and ES of SMI with t-student distribution at 99.5%

It is clear that the CVaR captures heaviest tails shape in the left tails for
both S&P500 and SMI index, leading to the conclusion that ES reveals more
risk in the distribution. In order to understand which risk of measure is more
adapted, it is useful to look at the violations which each measure takes. The
observed number of violations are reported in the following table for each ES
and VaR for each distribution.

Daily VaR Expected violations
EVT Conditional 291 325

EVT Unconditional 375 325
Normal 344 319

T-student 367 319

Table 7: Violations for SMI at 95% quantile

Daily VaR Expected violations
EVT Conditional 46 65

EVT Unconditional 89 65
Normal 100 65

T-student 73 64

Table 8: Violations for SMI at 99% quantile

Daily VaR Expected violations
EVT Conditional 29 32

EVT Unconditional 50 32
Normal 68 32

T-student 40 32

Table 9: Violations for SMI at 99.5% quantile
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Daily VaR Expected violations
EVT Conditional 245 320

EVT Unconditional 469 320
Normal 280 320

T-student 303 320

Table 10: Violations for S&P500 at 95% quantile

Daily VaR Expected violations
EVT Conditional 46 64

EVT Unconditional 47 64
Normal 104 64

T-student 78 64

Table 11: Violations for S&P500 at 99% quantile

Daily VaR Expected violations
EVT Conditional 24 32

EVT Unconditional 65 32
Normal 67 32

T-student 42 32

Table 12: Violations for S&P500 at 99.5% quantile

Testing of the SP500
Tests or Distribu-
tions

Christoffersen Log
Ratio

Binomial p-val

Student-t 95 1.428 0.35
Student-t 99 15.74 0.067
Student-t 99.5 12.115 0.076
Normal 95 7.18 0.02
Normal 99 31.16 0
Normal 99.5 45.32 0
Condit EVT 95 22.96 0
Condit EVT 99 16.92 0.04
Condit EVT 99.5 18.13 0.18
Uncondit EVT 95 86.19 0
Uncondit EVT 99 47.75 0
Uncondit EVT 99.5 43.08 0

In the above table, we can find the p-values for the Binomial test as well
as the Christoffersen Log-ratio for the S&P500 index. As we can see, the null
hypothesis, for the binomial test on S&P500, the null hypothesis is rejected in 8
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cases with 95% confidence. We always reject the null hypothesis with the normal
distribution. We also always reject with the conditional EVT except at 99.5%
as the test statistic is 0.18 which is higher than 0.05. Finally, we also always
reject for the unconditional EVT. The student-t distribution is the only one
with which we never reject the null hypothesis.it means that this model seems
well adapted and not too conservative or too flawed. As for the Christoffersen
test(the convergence coverage test), we have the following critical values for a
Chi-square with 2 degrees of freedom:

Critical values for a Chi-square with 2 degrees of freedom

quantiles 0.95 0.99 0.995
Critical values 5.991 9.210 10.597

For the student-t we reject for the 99th and 99.5th percentiles as their test
statistics are higher than the critical value(15.74 and 12.115 respectively),the
VaR interval forecasts and the probability of exception may be respectively not
independent and/or different than theta .But for the 95th quantile the Log
ratio is unsignificant at the 95th percentile. With the normal distribution we
always reject the null hypothesis only for the 99th and the 99.5th.For the 95th
quantile,the CC test is also unsignificant at 99th percentile. For the conditional
EVT and the unconditional EVT we get the same results as for the normal: We
always reject the null hypothesis as the test statistics are higher than critical
values.

From these tests, we can conclude that with the S&P500 index the Student-t
distribution VaR estimation at 95th quantile is the best.It seems that the model
is not flawed and it’s estimations are independent,it’s theta(1-q) observed is close
to the same theta.Moreover it seems that the model fits well the datas, we are
not too permissive or too conservative on the Var

Testing of the SMI index
Tests or Distribu-
tions

Christoffersen Log
Ratio

Binomial p-val

Student-t 95 7.805 0.818
Student-t 99 11.329 0.256
Student-t 99.5 6.865 0.154
Normal 95 7.429 0.117
Normal 99 19.294 0
Normal 99.5 33.917 0
Condit EVT 95 7.669 0.722
Condit EVT 99 11.231 0.3457
Condit EVT 99.5 12.731 0.033
Uncondit EVT 95 51.16 0.0024
Uncondit EVT 99 60.75 0.0024
Uncondit EVT 99.5 74.86 0.0069
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We have done the same tests with the SMI index. With the binomial, we
have 6 cases where the null hypothesis are rejected. We always reject when
using a normal distribution, except with 95% as we get a test statistic of 0.117
which is higher than 0.05. As for the conditional EVT we only reject once at
99.5% with a test statistic of 0.033 which is lower than 0.05. Finally, we always
reject with the unconditional EVT as the test statistics are always lower than
0.05.For the Conditional we always reject the VaR except at the 95th quan-
tile. As for the Christoffersen test, we almost always reject the null hypothe-
sis as the test statistics are higher than the critical values for the Chi-square
with 2 degrees of freedom shown earlier. The only times we can not reject the
null hypothesis is with the Conditional Student-t at 99.5% as its test statistic
is 6.865 which is lower than 9.210(the critical value at 99%),the Conditional
EVT at 95%(7.669),the Conditional Normal at 95%(7.429) and the Conditional
Student-t at 99.5%(6.865) We can conclude the same thing with the SMI index.
The Student-t distribution fits best with the models we test.

For the SMI we do have much more usable VaR models.the conditional
student-t 95th percentile,he conditional student-t 99th percentile,the conditional
normal 95th percentile,and the conditional EVT 95th percentile.Here the best
VaR model to use seems to be the conditional student-t 95th percentile as it
has the highest p-value under the binomial test with practically the same log
ratios than the others.

Quantile Ratio (ES / VaR) for the SMI index
Tests or Quantile Ratio 95% 99% 99.5%
GPD 1.34 1.20 1.17
Normal 1.21 1.13 1.11
Student 1.40 1.32 1.30

We can see from this table, using the S&P500index, the ratio is larger with
a GPD or a Student than with a Normal distribution. We can also see that
the ratio is non negligibly larger than the asymptotic value. This means that
using a normal distribution would lead to an underestimation of the expected
shortfall.

Quantile Ratio (ES / VaR) for the SMI index
Tests or Quantile Ratio 95% 99% 99.5%
GPD 1.38 1.27 1.24
Normal 1.13 1.05 1.03
Student 1.48 1.32 1.30

When we observe the table with the SMI index, it becomes even more clear.
The ratio for the normal distribution goes really close to 1 when we go from
95% to 99.5%. We can make the same conclusion as with the S&P500. The
ratio under the normal distribution converges to 1 whereas the other two stay
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far. This shows that scaling quantiles with the asymptotic ratio leads to an
underestimation of the expected shortfall.

Bootstrap test whether the overage residuals are equal to 0 (6mln observations)
pvalues/Quantile Ratio 95% 99% 99.5%
SP500 0.25 0.99 1
SMI 0.12 0.814 0.69

We observe under the bootstrap test that all the overage residuals in the
GPD are not significantly different than 0 under all the index and quantiles
across them.

3 Conclusion

In this paper, we have used the GARCH model in combination with extreme-
value theory to solve the problem of non-normality of S&P500 and SMI index log
returns. We have also compared the use of ES and VaR through different type of
distributions. This allows us to conclude that the student distribution fits better
in order to estimate innovations as it is able to take into account larger tails,
opposed to the normal distribution which underestimates the extreme values.
However, the student distribution is limited as this only works if the tails are
symmetric. This is where the GDP comes in superior as it can handle the
asymmetry in the tails. The results gained from the A.J. McNeil and R. Frey
paper are similar to this study. Starting from the residuals, their distributions
are most of the time with fat tails, which follows that they are consistently far
away from the normality.

The biggest point of this project was to understand the importance of the
risk management in finance. Especially by understanding how the way risk
behaves in the extreme cases. To see that, we had to examine the left tail of
the distribution of the return. The ways to do it are known as Value at Risk
(VaR) and Expected Shortfall (ES). And our results shows that McNeil, A. J.,
and R. Frey were precursors for the time in their field of work.
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