
1

Secrets of VDct:
Replacing dictation components

in Dragon NaturallySpeaking

Joel Gould
Director of Emerging Technologies

Dragon Systems

2

Copyright Information

This presentation was given to the Voice
Coder’s group on June 25, 2000

The contents of this presentation are
© Copyright 2000 by Joel Gould

Permission is hereby given to freely
distribute this presentation unmodified

Contact Joel Gould for more information
joelg@alum.mit.edu

3

Introduction

This presentation explains how to replace
VDct, the dictation subsystem in Dragon
NaturallySpeaking, with your own.

Based around NatLink, the Python Macro
System for Dragon NaturallySpeaking

4

Licensing Restrictions

NatLink requires that you have a legally
licensed copy of Dragon NaturallySpeaking

To use NatLink you must also agree to the
license agreement for the NatSpeak toolkit
– Soon Natlink will require the NatSpeak toolkit
– The NatSpeak toolkit is a free download from

http://www.dragonsys.com

5

What is SAPI?

Speech Application Programming Interface
Designed by Microsoft as a uniform way of

supporting speech recognition in Windows
NatSpeak is architected to mirror SAPI 4.0

– Implements SAPI SR, VDct and VCmd APIs

– Although NatSpeak contains no Microsoft code

– Includes numerous Dragon-specific extensions

6

SAPI Architecture

“SR” API“SR” API

“VCmd” API“VCmd” API “VDct” API“VDct” API

Voice Dictation
Support

Voice Dictation
Support

Voice Command
Support

Voice Command
Support

Dragon NaturallySpeaking “Server”Dragon NaturallySpeaking “Server”

Most NatLink funcs
talk directly to this
API. GramObj and
ResObj inside here.

Most NatLink funcs
talk directly to this
API. GramObj and
ResObj inside here.

NatLink exposes
this API through
DictObj.

NatLink exposes
this API through
DictObj.

Not exposed by NatLink.
 Used for Professional
Edition macros.

Not exposed by NatLink.
 Used for Professional
Edition macros.

7

Overview of Server Objects

Clients create grammar objects
– Command (CFG) grammars, like NatLink macros
– Dictation grammars, which return text words
– Selection grammars, for “Select XYZ”

Client registers a callback function for when that
grammar is recognized

At end of recognition, server creates result object
– Passes result object back to recognized grammar
– Result object can be queried for choice list

8

Natlink Interface to Server 1

GramObj exposes grammar objects in Python
– GramObj.load() creates grammar from binary
– Same function creates all 3 grammar types

GramObj.setResultsCallback() to register a
callback when grammar is recognized

GrammarBase is a wrapper around GramObj
– DictGramBase for dictation grammars
– SelectGramBase for selection grammars

Using the grammar base classes is optional
– Have code to build binary form (which can be copied)
– Turns callbacks into calls of member functions

9

NatLink Interface to Server 2

ResObj exposes result objects in Python
Reference to ResObj is passed to callback function

(GramObj.setResultCallback)
ResObj.getWords(N) returns recognized words for

Nth choice
ResObj.correction() is used to train recognizer

after correction
ResObj.getWave() returns wave for playback

10

VDct Overview

VDct implements formatting and correction
Based on concept of “Hidden Edit Control”

– VDct contains a copy of the user’s document

– If user types, changes made to user’s document are
copied into VDct’s copy of text

– If user dictates, VDct inserts dictated text into its copy
and then tells user’s document about the changes

DictObj exposes VDct object in Python
– See windict.py (sample code) and natlink.txt (doc)

11

VDct: Example of Typing

User types
Edit control updates its text
Text changes copied to VDct’s copy of text

– DictObj.setText()

VDct updates Select XYZ grammar

12

VDct: Example of Dictating

User dictates a phrase
VDct gets grammar callback with result
VDct formats text and inserts it in its copy
VDct calls back to edit control

– DictObj.setChangeCallback()

– Passes back information about the text change

Edit control updates its contents

13

How to Replace VDct

Design a module which talks directly to NatSpeak
Server (using NatLink or in C++ directly)

 Implement desired subset of VDct components
 Interface to application can be anything

– I recommend using the hidden edit control model and
mimicking the same VDct data flow

No need to modify NatSpeak, your applications
simply use your replacement VDct
– NatSpeak editor, Microsoft Word, etc. will continue to

use built-in version of VDct

14

List of VDct Components 1

Dictation Grammar
Basic formatting

– Spacing, capitalization, etc. from punctuation

Advanced formatting
– Dates, times, numbers, currency, phone numbers, etc.

Dictation context
Selection grammar
 “Scratch That” command

15

List of VDct Components 2

Correction commands
– “Correct That”, “Spell That”, etc.

Choice list for correction
Spelling grammar during correction
Adaptation after correction
“Resume With” command
Playback of recorded speech

16

Implementing VDct Components

. . .

17

Dictation Grammar

Create an instance of DictGramBase
– Wrapper around GramObj, defined in natlinkutils.py

Define gotResultsObject()
– Called when recognition occurs
– Passed recognized words and ResObj

Activate the grammar whenever the target
application has the focus
– Use beginCallback() to test for active window
– Call activate() with window handle

• do not make your dictation grammar global, it will conflict
with NaturalText)

18

Dictation Sample Code

class MyGrammar(DictGramBase):

 def __init__(self):

 DictGramBase.__init__(self)

 self.load()

 self.state = None

 self.isActive = 0

 def gotBegin(self, moduleInfo):

 print 'Start of recognition...'

 if not self.isActive:

 self.activate(moduleInfo[2])

 self.isActive = 1

 def gotResults(self, words):

 print 'Heard: <%s>' % string.join(words)

 output, self.state = nsformat.formatWords(words, self.state)

 print 'Formatted: <%s>' % output

Use DictGramBase for
dictation grammars

Use DictGramBase for
dictation grammars

Just call load(), there is no
text form of the grammar

Just call load(), there is no
text form of the grammar

Activate like a command
grammar except there is
no rule name

Activate like a command
grammar except there is
no rule name

gotResults() is called with the
list of recognized words;
gotResultObject() also works

gotResults() is called with the
list of recognized words;
gotResultObject() also works

19

Recognition Hyphothesis

While speaking, current best guess at the
recognized text is available (“hyphothesis”)

Define a hypothesisCallback
– Will be passed a list of words

Format the words and display during recog
– Either in the application window itself
– Or in a pop-up window like with NatSpeak
– Do not call back into NatLink from hyphothesis

callback (wordInfo is not available)

Seeing hypothesis displayed makes recognizer
seem more responsive

20

Basic Formatting

Every word has an associated 32-bit wordInfo
Most of those bits control basic formatting
To format text, use a state machine

– State is current capitalization/spacing state
– Input is 32-bit wordInfo value for each word

• NatSpeak never tests the spelling of the word

– Output is modified state, formatted text

Bits are defined in natlinkutils.py
Use VocEdit to look at flags for existing words

21

Formatting State Machine

Now distributing a new file: nsformat.py
– Will be part of next NatLink release

 nsformat.py contains a simplified formatting state
machine for NatSpeak

Handles capitalization and spacing for normal text
To use:

– output,state = formatWords(words,state)
– Use an initial state of None for empty document
– Or call formatWord for every word so you can record

the formatting state after every word

22

Formatting States

Remember the formatting state after every word
 If the insertion point is moved, you can use the

formatting state for that position in the document
 If necessary, compute the formatting state by

looking backwards
– After normal word:

formatting state = 0
– Start of document:

flag_no_space_next, flag_active_cap_next
– After period:

flag_two_spaces_next, flag_active_cap_next

23

Other Word Flags

Bit 0 – set for all user added words
– This causes word to be marked in Voc Editor

Bit 3 – set to prevent deletion of word
– Turn this off to allow word to be deleted

– Do not delete too many words marked as do-not-delete

Bit 29 – set if word added from Voc Builder
– Causes word to be added with a lower LM score

– Use this flag when adding hundreds of words to avoid
screwing up the language model

24

Advanced Formatting

NatSpeak’s VDct uses a chart parser to format
dates, time, numbers, currency, etc.
– one hundred dollars and two cents  $100.02

 It is driven from a set of rewrite rules
– If indicated sequence of tokens is seen in hidden edit,
– Compute a block of replacement text

 If you want advanced formatting in your own
VDct, you will have to:
– (1) Code a simple chart parser
– (2) Develop your own set of rewrite rules

25

Dictation Context

Recognition is more accurate if you tell recognizer
the words just before cursor

Call DictGramBase.setContext() at recog start
– Pass in text just before insertion point

– Include at least two words if possible

– Words after insertion point are not used

Not needed if cursor is not changed after dictation
– NatSpeak automatically remembers the last result as the

context for the next recognition

26

Selection Grammar

NatSpeak has special grammar type to implement
“Select XYZ”

Create an instance of SelectGramBase
– Wrapper around gramObj, defined in natlinkutils.py

When creating the grammar, pass in a list of verbs
– NatSpeak uses “Select”, “Correct”, “Insert After”, …

At recog start, make sure grammar contains a copy
of the text currently on the screen
– SelectGramBase.setSelectText()
– NatSpeak automatically parses text into words

27

Getting Selection Results

Selection grammar gotResultsObject() gets called
when user says “Select XYZ”
– Results include the verb (select or correct)
– Results also include the range of text selected

NatSpeak automatically handles “Select XYZ
through ABC”

NatSpeak does not always find closest text
– Search through choice list to find alternatives
– Pick the alternative which is closest to cursor

28

Selection Sample Code 1
class MyGrammar(SelectGramBase):

 def __init__(self):

 DictGramBase.__init__(self)

 self.load(['Select', 'Correct'])

 self.setSelectText(textBuffer)

 self.isActive = 0

 def gotBegin(self, moduleInfo):

 print 'Start of recognition...'

 if not self.isActive:

 self.activate(moduleInfo[2])

 self.isActive = 1

 def gotResults(self, words, startPos, endPos):

 # Print the results of the Select recognition

 print 'Heard: <%s>' % string.join(words)

 output = textBuffer

 output = (output[:startPos] + '<' +

 output[startPos:endPos] + '>' + output[endPos:])

 print 'Top choice =',output

Tell the selection
grammar the block of
text to select within

Tell the selection
grammar the block of
text to select within

Use SelectGramBase for
selection grammars

Use SelectGramBase for
selection grammars

Call load() and pass
in a list of verbs

Call load() and pass
in a list of verbs

gotResults() returns
the range of one
possible selection

gotResults() returns
the range of one
possible selection

29

Selection Sample Code 2

You need to search the choice list for all
blocks of text which match the selection

def gotResultsObject(self,recogType,resObj):

 self.ranges = []

 try:

 bestScore = resObj.getWordInfo(0)[0][2]

 for i in range(100):

 wordInfo = resObj.getWordInfo(i)

 if wordInfo[0][2] != bestScore:

 return

 self.ranges.append(resObj.getSelectInfo(self.gramObj, i))

 except natlink.OutOfRange:

 return

Score is 3rd element
of wordInfo tuple for
first word in result

Score is 3rd element
of wordInfo tuple for
first word in result

Look up the selection range
for every entry in the choice
list with the same score

Look up the selection range
for every entry in the choice
list with the same score

30

Dictation Commands

You can create command grammars inside
of your VDct for correction and formatting

Create an instance of GrammarBase
Pass a set of rules to GrammarBase.load()
Command processing is the same as when

you use NatLink as a macro system
Use command grammars for:

– Scratch That, Correct That, Spell That, …

31

Undo, Redo, Scratch That

Implement your own undo/redo stack
– Algorithms are very easy and well understood

“Scratch That” is like an undo
– But does nothing if last change was not speech

– Multiple Scratch That’s do multiple undos

– But, undo should undo Scratch That

You are free to define your own behavior

32

Correction Commands

You will have to implement your own correction
commands and mechanism

Use command grammar for correction cmds
– <cmd1> = correct that

– <cmd2> = spell that [<dgnletters>]

Create your own user interface for correction
Remember that you know what text is selected

33

Creating a Choice List

ResObj can be queried for choice list
– ResObj.getWords(N) for Nth choice

 If you are correcting only part of an utterance, you
have to extract choices from list:
– ResObj.getWordInfo() returns word times

– Look up word start and end time for word/phrase being
corrected

– Search through other choices to find word/phrases
which similar start and end times

34

Backup Dictionary

Once the user start typing, you will have to get
words from a word list

You can not use Dragon’s word list
– The iterator function has not been exposed

Find a list of words from somewhere else
– Build a dictionary which can be queried by prefix

– You do not need prons, once you have a word list
NatSpeak can look up the prons in its own dictionary

35

Adapting after Correction

After a real correction, perform adaptation
– Compute the words which match the whole

utterance (only a part may have been corrected)

– Call ResObj.correction()

Recognizer may reject is correction is too
different from utterance to use for training
– No further action is required in either case

36

“Resume With” Command

 “Resume With <word> <more text>”
– Where <word> was dictated recently

– Replaces everything after <word> with <more text>

 If you want this command, you will have to
implement it with a command grammar
– <rule> = resume with {words} <dgndictation>

– Set list “words” with last N words dictated

When grammar is recognized, modify the text

37

Using Playback

You can get the wave for any result
– resObj.getWave()

Wave is 11.025Khz, 16 bit, mono
Playback using Windows multimedia API

– You will have to find or write your own code for this

To play part of an utterance
– Index into the wave using the word starts

– From resObj.getWordInfo()

38

Implementation Hints

. . .

39

Keeping Track of Results

For many of the VDct algorithms you need to
know what result object corresponds to a block of
text on the screen
– For example: correction and playback

Remember the result objects passed to
gotResultsObject() for the dictation grammar

Keep a link between the copy of the user’s text
and the result object for that dictated text

40

Handling Text Modifications

What happens if user types or overspeaks a
portion of an utterance?

NatSpeak version 1 and 2 simply discarded
the result object for the modified text
– This prevented adaptation and playback

Modern NatSpeaks try to keep track of
sections of result objects
– But this extreme is probably not necessary

41

Keeping Text Synchronized

Keep the real text and VDct’s copy of the text
synchronized at all times

 It is best to update VDct as soon as user changes
the edit control (i.e. by typing)
– This allows VDct to update Select grammar
– Makes it easier to keep text and results aligned

For correctness, it is enough to update the contents
of the hidden edit control at recognition start

 It is also best to lock out user input in the middle
of recognition
– To avoid user changes at the same time as dictation

42

Recognition Start Bookkeeping

 gotBeginCallback() is called at start of every
recognition

Recognizer will pause until you return from func.
During callback, do bookkeeping:

– Make sure text is synchronized with application
– Get the location of the insertion point from the app.
– Activate or deactivate grammars
– Update select grammar from text
– Update dictation context
– Update “Resume With” word list

43

Mixing Commands in Dictation

Command (and select) grammars are only
recognized when surrounded by pauses

 It is possible to implement pause-less commands
when you rewrite VDct

Write your commands in some CFG format
Scan every dictation result for a sequence of

words which matches CFG
– For example, with a chart parser

Remove those words from the text to be inserted
and execute the command action

44

Managing Words

 addWord() adds a word to dictation state
– You do not need to specify the pron, NatSpeak will

either lookup the pron or guess it

Be sure to set the word flags
– dgnwordflag_useradded for all new words
– dgnwordflag_topicadded if adding lots of words
– Other formatting flags as appropiate

NatSpeak’s VDct automatically adds any words
which are in the user’s document if they are also
in the backup dictionary
– Use getWordInfo() to see if the word is in backup dict.

45

Who Calls Whom

To use NatLink (or NatSpeak), you must be in a
Windows message loop for receive callbacks

You can:
– Write a NatLink grammar file which will be loaded

automatically; in this case the message loop is inside
NatSpeak itself

– Be run from a Win32 GUI which includes a message
loop (like DoModal() in winspch.py)

– Or, include a call to natlink.waitForSpeech() which
enters a message box modal loop (like dictsamp.py)

46

Summary

VDct is designed for dictating English text
 Its behavior makes it hard to use for programming
But most VDct functionality can be written

outside of NatSpeak, using the Server API
By replacing VDct, you can change:

– Formatting, correction mechanism, correction
commands, selection behavior, etc.

NatLink wraps enough of Server API to make it
possible to rewrite VDct in Python

47

All Done

“Microphone Off”

	Secrets of VDct: Replacing dictation components in Dragon NaturallySpeaking
	Copyright Information
	Introduction
	Licensing Restrictions
	What is SAPI?
	SAPI Architecture
	Overview of Server Objects
	Natlink Interface to Server 1
	NatLink Interface to Server 2
	VDct Overview
	VDct: Example of Typing
	VDct: Example of Dictating
	How to Replace VDct
	List of VDct Components 1
	List of VDct Components 2
	Implementing VDct Components
	Dictation Grammar
	Dictation Sample Code
	Recognition Hyphothesis
	Basic Formatting
	Formatting State Machine
	Formatting States
	Other Word Flags
	Advanced Formatting
	Dictation Context
	Selection Grammar
	Getting Selection Results
	Selection Sample Code 1
	Selection Sample Code 2
	Dictation Commands
	Undo, Redo, Scratch That
	Correction Commands
	Creating a Choice List
	Backup Dictionary
	Adapting after Correction
	“Resume With” Command
	Using Playback
	Implementation Hints
	Keeping Track of Results
	Handling Text Modifications
	Keeping Text Synchronized
	Recognition Start Bookkeeping
	Mixing Commands in Dictation
	Managing Words
	Who Calls Whom
	Summary
	All Done

