
1

NatLink:
A Python Macro System

for Dragon NaturallySpeaking

Joel Gould
Director of Emerging Technologies

Dragon Systems

2

Copyright Information

This is version 1.1 of this presentation
– Changes: look in corner of slides for V 1.1 indication

This version of the presentation was given to the
Voice Coder’s group on June 25, 2000

The contents of this presentation are
© Copyright 1999-2000 by Joel Gould

Permission is hereby given to freely distribute this
presentation unmodified

Contact Joel Gould for more information
joelg@alum.mit.edu

3

Outline of Today’s Talk

Introduction
Getting started with NatLink
Basics of Python programming
Specifying Grammars
Handling Recognition Results
Controlling Active Grammars
Examples of advanced projects
Where to go for more help

4

What is NaturallySpeaking?

World’s first and best large vocabulary
continuous speech recognition system

Primarily designed for dictation by voice
Also contains fully functional continuous

command recognition (based on SAPI 4)
Professional Edition includes simple basic-

like language for writing simple macros

5

What is Python?

Interpreted, object-oriented pgm. language
Often compared to Perl, but more powerful
Free and open-source, runs on multiple OSs
Ideal as a macro language since it is

interpreted and interfaces easily with C
Also used for web programming, numeric

programming, rapid prototyping, etc.

6

What is NatLink?

A compatibility module (like NatText):
– NatLink allows you to write NatSpeak

command macros in Python

A Python language extension:
– NatLink allows you to control NatSpeak from

Python

Works with all versions of NatSpeak
Free and open-source, freely distributable*

7

*Licensing Restrictions

NatLink requires that you have a legally
licensed copy of Dragon NaturallySpeaking

To use NatLink you must also agree to the
license agreement for the NatSpeak toolkit
– Soon Natlink will require the NatSpeak toolkit
– The NatSpeak toolkit is a free download from

http://www.dragonsys.com

V 1.1

8

NatLink is Better than Prof. Ed.

Grammars can include alternates, optionals,
repeats and nested rules

Can restrict recognition to one grammar
Can change grammars at start of any recog.
Can have multiple macro files
Changes to macro files load immediately
Macros have access to all features of

Python

9

NatLink is Harder to Use

NatLink is not a supported product
Do not call Tech Support with questions

NatLink may not work with NatSpeak > 5
– It will work fine with NatSpeak 5.0

Documentation is not complete
No GUI or fancy user interface
Requires some knowledge of Python
More like real programming

V 1.1

10

Outline of Today’s Talk

Introduction
Getting started with NatLink
Basics of Python programming
Specifying Grammars
Handling Recognition Results
Controlling Active Grammars
Examples of advanced projects
Where to go for more help

11

What you Need to Install

Dragon NaturallySpeaking
– Any edition, version 3.0 or better

Python 1.5.2 for Windows:
py152.exe from http://www.python.org/

– You do not need to install Tcl/Tk

NatLink: natlink.zip from
http://www.synapseadaptive.com/joel/default.htm

Win32 extensions are optional:
win32all.exe from http://www.python.org/

12

Setting up NatLink

Install NatSpeak and Python
Unzip natlink.zip into c:\NatLink
Run \NatLink\MacroSystem\EnableNL.exe

– This sets the necessary registry variables

– This also turns NatLink on or off

To run sample macros, copy macro files
– From: \NatLink\SampleMacros

– To: \NatLink\MacroSystem

13

How to Create Macro Files

Macro files are Python source files
Use Wordpad or any other text editor

– save files as text with .py extension

Global files should be named _xxx.py
App-specific files should be named with the

application name (ex: wordpad_xxx.py)
Copy files to \NatLink\MacroSystem

– Or to \NatSpeak\Users\username\Current

14

Sample Example 1

File _sample1.py contains one command
Say “demo sample one” and it types:

Heard macro “sample one”

15

Source Code for _sample1.py

import natlink
from natlinkutils import *

class ThisGrammar(GrammarBase):

 gramSpec = """
 <start> exported = demo sample one;
 """

 def gotResults_start(self,words,fullResults):
 natlink.playString('Heard macro "sample one"{enter}')

 def initialize(self):
 self.load(self.gramSpec)
 self.activateAll()

thisGrammar = ThisGrammar()
thisGrammar.initialize()

def unload():
 global thisGrammar
 if thisGrammar: thisGrammar.unload()
 thisGrammar = None

This is the grammar.
 You can say:
“demo sample one”

This is the grammar.
 You can say:
“demo sample one”

This is the action.
We type text into the
active window.

This is the action.
We type text into the
active window.

Most of the rest of this
file is boiler plate.

Most of the rest of this
file is boiler plate.

16

Sample Example 2

Add a second command with alternatives
Type (into application) the command and

alternative which was recognized
NatLink will tell you which rule was

recognized by calling a named function
– gotResults_firstRule for <firstRule>

– gotResults_secondRule for <secondRule>

17

Extract from _sample2.py

...

class ThisGrammar(GrammarBase):

 gramSpec = """

 <firstRule> exported = demo sample two [help];

 <secondRule> exported = demo sample two

 (red | blue | green | purple | black | white | yellow |

 orange | magenta | cyan | gray);

 """

 def gotResults_firstRule(self,words,fullResults):

 natlink.playString('Say "demo sample two {ctrl+i}color{ctrl+i}"{enter}')

 def gotResults_secondRule(self,words,fullResults):

 natlink.playString('The color is "%s" {enter}'%words[3])

 def initialize(self):

 self.load(self.gramSpec)

 self.activateAll()

...

This is the grammar.
 It has two rules.

This is the grammar.
 It has two rules.

What we do when
“firstRule” is heard.

What we do when
“firstRule” is heard.

What we do when
“secondRule” is heard.
Words[3] is the 4th word in
the result.

What we do when
“secondRule” is heard.
Words[3] is the 4th word in
the result.

18

Outline of Today’s Talk

Introduction
Getting started with NatLink
Basics of Python programming
Specifying Grammars
Handling Recognition Results
Controlling Active Grammars
Examples of advanced projects
Where to go for more help

19

Strings and Things

String constants can use either single quote
or double quotes
'This is a string'

"This string has a single quote (') inside"

Use triple quotes for multiple line strings
"""line 1 of string

line 2 of string"""

Plus will concatenate two strings
'one'+'two'='onetwo'

Percent sign allows sprintf-like functions
'I heard %d' % 13 = 'I heard 13'

'the %s costs $%1.2f' % ('book',5) = 'the book costs $5.00'

20

Comments and Blocks

Comments begin with pound sign
 # Comment from here until end of line
 print 'hello' # comment starts at pound sign

Blocks are delimited by indentation, the line
which introduces a block ends in a colon
 if a==1 and b==2:

print 'a is one'
print 'b is two'

 else:
print 'either a is not one or b is not two'

 x = 0
 while x < 10:

print x
x = x + 1

 print 'all done'

21

Lists and Loops

Lists are like arrays; they are sets of things
Uses brackets when defining a list

 myList = [1,2,3]
 another = ['one',2,myList]

Use brackets to get or change a list element
 print myList[1] # prints 2
 print another[2] # prints [1,2,3]

The “for” statement can iterate over a list
 total = 0
 for x in myList:

total = total + x
 print x # prints 6 (1+2+3)

22

Defining and Calling Functions

Use the “def” statement to define a function
List the arguments in parens after the name

 def globalFunction(x,y):
total = x + y
print 'the total is',total

Example of a function call
 globalFunction(4,7) # this prints "the total is 11"

Return statement is optional
 def addNumbers(x,y)

return x + y
 print addNumbers(4,7) # this prints "11"

23

Modules and Classes

Call functions inside other modules by
using the module name before the function
 import string
 print string.upper('word')

Define classes with “class” statement and
class functions with “def” statement
 class MyClass:

def localFunction(self,x):
print 'value is x'

 object = MyClass # create instance of MyClass
 object.localFunction(10) # prints "value is 10"

24

Self and Class Inheritance

“Self” param passed to class functions
points back to that instance
 class ParentClass:

def sampleFunc(self,value):
self.variable = value

def parentFunc(self):
self.sampleFunc(10)
return self.variable # returns 10

You can also use “self” to reference
functions in parent classes (inherence)
 class ChildClass(ParentClass):

def childFunc(self):
print self.parentFunc() # prints "10"
print self.variable # also prints "10"

25

Outline of Today’s Talk

Introduction
Getting started with NatLink
Basics of Python programming
Specifying Grammars
Handling Recognition Results
Controlling Active Grammars
Examples of advanced projects
Where to go for more help

26

Introduction to Grammars

NatLink grammars are based on SAPI
Grammars include: rules, lists and words

– distinguished by how they are spelled

– <rule>, {list}, word, "word with space"

Grammar specification is a set of rules
A rule is combination of references to

words, lists and other rules
 <myRule> = one <subRule> and {number} ;
 <subRule> = hundred | thousand ;

27

Specifying Rules

NatLink compiles a set of rules when a
grammar is loaded
 def initialize(self):

 self.load(self.gramSpec) # this compiles and load rules
 self.activateAll()

Rules should be defined in a Python string
 gramSpec = "<myRule> = one two three;"
 gramSpec2 = """

<ruleOne> = go to sleep;
<ruleTwo> = wake up;

 """

Define rules as rule-name, equal-sign,
expression; end rule with a semicolon

28

Basic Rule Expressions

Words in a sequence must spoken in order
– <rule> = one two three;
– Must say “one two three”

Use brackets for options expressions
– <rule> = one [two] three;
– Can say “one two three” or “one three”

Vertical bar for alternatives, parens to group
– <rule> = one (two | three four) five;
– Can say “one two five” or “one three four five”

29

Nested Rules and Repeats

Rules can refer to other rules
– <rule> = one <subRule> four;
– <subRule> = two | three;
– Can say “one two four” or “one three four”

Use plus sign for repeats, one or more times
– <rule> = one (two)+ three
– Can say “one two three”, “one two two three”,

“one two two two three”, etc.

30

Exported and Imported Rules

You can only activate “exported” rules
– <myRule> exported = one two three;

Exported rules can also be used by other
grammars; define external rule as imported
– <myRule> imported;
– <rule> = number <myRule>;

NatSpeak defines three importable rules:
– <dgnwords> = set of all dictation words
– <dgndictation> = repeated dictation words
– <dgnletters> = repeated spelling letters

31

Dealing with (Grammar) Lists

Lists are sets of words defined later
Referencing a list causes it to be created

– <rule> = number {myList};
Fill list with words using setList function

 def initialize(self):
self.load(self.gramSpec)
self.setList('myList',['one','two','three']) # fill the list
self.activateAll()

– You can now say “number one”, “number two”
or “number three”

32

What is a Word?

Words in NatSpeak and NatLink are strings
– Words can have embedded spaces

– “hello”, “New York”, “:-)”

In NatLink grammars, use quotes around
words if the word is not just text or numbers

Grammar lists are lists of words
For recognition, words from lists are

returned just like words in rules

33

Special Word Spellings

Words with separate spoken form are
spelled with backslash: “written\spoken”

Punctuation is most common example
– “.\period”

– “{\open brace”

Letters are spelled with two backslashes
– “a\\l”, “b\\l”, “c\\l”, etc.

V 1.1

34

Grammar Syntax

NatSpeak requires rules in binary format
– Binary format is defined by SAPI and is

documented in SAPI documentation

Gramparser.py converts text to binary
Rule syntax is described in gramparser.py
NatSpeak also supports dictation grammars

and “Select XYZ” grammars. These are
covered in another talk.

V 1.1

35

Outline of Today’s Talk

Introduction
Getting started with NatLink
Basics of Python programming
Specifying Grammars
Handling Recognition Results
Controlling Active Grammars
Examples of advanced projects
Where to go for more help

36

Getting Results

When a rule is recognized, NatLink calls
your function named “gotResults_xxx”
– where “xxx” is the name of the rule

You get passed the sequential words
recognized in that rule
– gotResults(self,words,fullResults)

Function called for innermost rule only
– consider the following example

37

Extract from _sample3.py

...

class ThisGrammar(GrammarBase):

 gramSpec = """

 <mainRule> exported = <ruleOne>;

 <ruleOne> = demo <ruleTwo> now please;

 <ruleTwo> = sample three;

 """

 def gotResults_mainRule(self,words,fullResults):

 natlink.playString('Saw <mainRule> = %s{enter}' % repr(words))

 def gotResults_ruleOne(self,words,fullResults):

 natlink.playString('Saw <ruleOne> = %s{enter}' % repr(words))

 def gotResults_ruleTwo(self,words,fullResults):

 natlink.playString('Saw <ruleTwo> = %s{enter}' % repr(words))

 def initialize(self):

...
“repr(x)” formats “x”
into a printable string.

“repr(x)” formats “x”
into a printable string.

38

Running Demo Sample 3

When you say “demo sample 3 now
please”, resulting text sent to application is:
Saw <ruleOne> = ['demo']

Saw <ruleTwo> = ['sample', 'three']

Saw <ruleOne> = ['now','please']

Rule “mainRule” has no words so
gotResults_mainRule is never called

gotResults_ruleOne is called twice, before
and after gotResults_ruleTwo is called

Each function only sees relevant words

39

Other gotResults Callbacks

If defined, “gotResultsInit” is called first
If defined, “gotResults” is called last

– Both get passed all the words recognized

Called functions from previous example:
gotResultsInit(['demo','sample','three','now','please'])

gotResults_ruleOne(['demo'])

gotResults_ruleTwo(['sample','three'])

gotResults_ruleOne(['now','please'])

gotResults(['demo','sample','three','now','please'])

40

Common Functions

natlink.playString(keys) sends keystrokes
– works just like “SendKeys” in NatSpeak Pro.
– include special keystrokes in braces: “{enter}”

natlink.setMicState(state) controls mic
– where state is 'on', 'off' or 'sleeping'
– natlink.getMicState() returns current state

natlink.execScript(command) runs any
built-in NatSpeak scripting command
– natlink.execScript('SendKeys "{enter}"')

41

More Common Functions

natlink.recognitionMimic(words) behaves
as if passed words were “heard”
 natlink.recognitionMimic(['Select','hello','there'])

– works just like “HeardWord” in NatSpeak Pro.

natlink.playEvents(list) to control mouse
– pass in a list of windows input events

– natlinkutils.py has constants and buttonClick()

natlink.getClipboard() returns clipboard text
– use this to get text from application

42

Mouse Movement _sample4.py

...

class ThisGrammar(GrammarBase):

 gramSpec = """

 <start> exported = demo sample four;
 """

 def gotResults_start(self,words,fullResults):
 # execute a control-left drag down 30 pixels
 x,y = natlink.getCursorPos()
 natlink.playEvents([(wm_keydown,vk_control,1),
 (wm_lbuttondown,x,y),
 (wm_mousemove,x,y+30),
 (wm_lbuttonup,x,y+30),
 (wm_keyup,vk_control,1)])

 def initialize(self):
 self.load(self.gramSpec)
 self.activateAll()

...

Press control keyPress control key

Release control keyRelease control key

Press left buttonPress left button

Move mouseMove mouse

Release left button
(at new position)

Release left button
(at new position)

Get current
mouse position

Get current
mouse position

43

Clipboard Example _sample5.py

...
class ThisGrammar(GrammarBase):

 gramSpec = """
 <start> exported = demo sample five
 [(1 | 2 | 3 | 4) words];
 """

 def gotResults_start(self,words,fullResults):
 # figure out how many words
 if len(words) > 3:
 count = int(words[3])
 else:
 count = 1
 # select that many words
 natlink.playString('{ctrl+right}{left}')
 natlink.playString('{ctrl+shift+left %d}'%count)
 natlink.playString('{ctrl+c}')
 text = natlink.getClipboard()
 # reverse the text
 newText = reverse(text)
 natlink.playString(newText)
... Reverse function

defined later in file

Reverse function
defined later in file

If more than 3 words
recognized, 4th word
will be word count.

If more than 3 words
recognized, 4th word
will be word count.

This selects previous
“count” words

This selects previous
“count” words

Copy selected text to
clipboard, then fetch it

Copy selected text to
clipboard, then fetch it

44

Debugging and using Print

If file is changed on disk, it is automatically
reloads at start of utterance

Turning on mic also looks for new files
Python output is shown in popup window

– Window automatically appears when necessary

Python errors cause tracebacks in window
– Correct file, toggle microphone to reload

Use “print” statement to display debug info

45

Outline of Today’s Talk

Introduction
Getting started with NatLink
Basics of Python programming
Specifying Grammars
Handling Recognition Results
Controlling Active Grammars
Examples of advanced projects
Where to go for more help

46

Global vs App-Specific

Files whose name begins with underscore
are always loaded; ex: _mouse.py

Files whose name begins with a module
name only load when that module is active
– Ex: wordpad.py, excel_sample.py

Once a file is loaded it is always active
To restrict grammars:

– test for active application at start of utterance
– or, activate grammar for one specific window

47

Activating Rules

Any exported rule can be activated
GrammarBase has functions to activate and

deactivate rules or sets of rules
– self.activate(rule) - makes name rule active
– self.activateAll() - activates all exported rules

By default, activated rule is global
– self.activate(rule,window=N) - activates a rule

only when window N is active
You can (de)activate rules at any time

48

Start of Utterance Callback

If defined, “gotBegin” function is called at
the start of every recognition
– it gets passed the module information:

module filename, window caption, window id

The “window id” can be passed to activate()
Use matchWindow() to test window title

 if matchWindow(moduleInfo,’wordpad’,’font’):

self.activate(‘fontRule’,noError=1)
 else:

self.deactivate(‘fontRule’,noError=1)
Prevents errors
if rule is already
(not) active.

Prevents errors
if rule is already
(not) active.

49

Using Exclusive Grammars

If any grammar is “exclusive” then only
exclusive grammars will be active

Allows you to restrict recognition
– But you can not turn off dictation without also

turning off all built-in command and control

Use self.setExclusive(state), state is 0 or 1
– Can also call self.activate(rule,exclusive=1)

Any number of rules from any number of
grammars can all be exclusive together

50

Activation Example _sample6.py

class ThisGrammar(GrammarBase):

 gramSpec = """

 <mainRule> exported = demo sample six [main];

 <fontRule> exported = demo sample six font;

 """

 def initialize(self):

 self.load(self.gramSpec)

 def gotBegin(self,moduleInfo):

 windowId = matchWindow(moduleInfo,'natspeak','Dragon')

 if windowId:

 self.activate('mainRule',window=windowId,noError=1)

 windowId = matchWindow(moduleInfo,'natspeak','Font')

 if windowId:

 self.activate('fontRule',exclusive=1,noError=1)

 else:

 self.deactivate('fontRule',noError=1)

 self.setExclusive(0)

Link <mainRule> to
main window (has
“Dragon” in title).

Link <mainRule> to
main window (has
“Dragon” in title).

Turn on <fontRule>
exclusively when
window title
contains “Font”

Turn on <fontRule>
exclusively when
window title
contains “Font”

Otherwise, turn off
<fontRule> and
exclusiveness.

Otherwise, turn off
<fontRule> and
exclusiveness.

No activateAll() in
initialize function !

No activateAll() in
initialize function !

51

Activating Rules from a Table

This is from my own Lotus Notes macros:

def gotBegin(self, moduleInfo):

 self.deactivateAll()

 captions = [

 ('New Memo -', 'newMemo'),

 ('New Reply -', 'newReply'),

 ('Inbox -', 'inbox'),

 ('- Lotus Notes', 'readMemo'),

]

 for caption,rule_name in captions:

 winHandle = matchWindow(moduleInfo, 'nlnotes', caption)

 if winHandle:

 self.activate(rule_name, window=winHandle)

 return

This table maps
caption substring to
rule-name to activate

This table maps
caption substring to
rule-name to activate

Activate nothing by defaultActivate nothing by default

Loop over table to find
first window caption
which matches

Loop over table to find
first window caption
which matchesV 1.1

52

Outline of Today’s Talk

Introduction
Getting started with NatLink
Basics of Python programming
Specifying Grammars
Handling Recognition Results
Controlling Active Grammars
Examples of advanced projects
Where to go for more help

53

Using OLE Automation

You can use OLE Automation from Python
with the Python Win32 extensions

Using excel_sample7.py:
– say “demo sample seven”

Any cells which contain the name of colors
will change to match that color

54

Extract from excel_sample7.py

class ThisGrammar(GrammarBase):

 gramSpec = """
 <start> exported = demo sample seven;
 """

 def initialize(self):
 self.load(self.gramSpec)

 def gotBegin(self,moduleInfo):
 winHandle=matchWindow(moduleInfo,'excel','Microsoft Excel')
 if winHandle:
 self.activateAll(window=winHandle)

 def gotResults_start(self,words,fullResults):
 application=win32com.client.Dispatch('Excel.Application')
 worksheet=application.Workbooks(1).Worksheets(1)
 for row in range(1,50):
 for col in 'ABCDEFGHIJKLMNOPQRSTUVWXYZ':
 cell=worksheet.Range(col+str(row))
 if colorMap.has_key(cell.Value):
 cell.Font.Color=colorMap[cell.Value]
 cell.Borders.Weight = consts.xlThick
...

“colorMap” maps
name of color to value
(defined earlier)

“colorMap” maps
name of color to value
(defined earlier)

OLE Automation
code just like using
Visual Basic

OLE Automation
code just like using
Visual Basic

Activate grammar when
we know window handle

Activate grammar when
we know window handle

55

Mouse Control in Python

_mouse.py included in NatLink download
Control mouse and caret like in DDWin:

– "mouse down … slower … left … button click"

– "move down … faster … stop"

Uses exclusive mode to limit commands
Uses timer callback to move the mouse

56

Implementing “Repeat That” 1
...

lastResult = None

class CatchAllGrammar(GrammarBase):

 gramSpec = """

 <start> exported = {emptyList};

 """

 def initialize(self):

 self.load(self.gramSpec,allResults=1)

 self.activateAll()

 def gotResultsObject(self,recogType,resObj):

 global lastResult

 if recogType == 'reject':

 lastResult = None

 else:

 lastResult = resObj.getWords(0)

...

V 1.1

This grammar is never
recognized because list is empty

This grammar is never
recognized because list is empty

But, allResults flag means
that gotResultsObject is
called for every recognition

But, allResults flag means
that gotResultsObject is
called for every recognition

After every recognition,
we remember what words
were just recognized

After every recognition,
we remember what words
were just recognized

57

Implementing “Repeat That” 2
class RepeatGrammar(GrammarBase):

 gramSpec = """

 <start> exported = repeat that

 [(1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

 10 | 20 | 30 | 40 | 50 | 100) times];

 """

 def initialize(self):

 self.load(self.gramSpec)

 self.activateAll()

 def gotResults_start(self,words,fullResults):

 global lastResult

 if len(words) > 2: count = int(words[2])

 else: count = 1

 if lastResult:

 for i in range(count):

 natlink.recognitionMimic(lastResult)

...

V 1.1

Notice that the count is optionalNotice that the count is optional

 The 3rd word in the result is the count The 3rd word in the result is the count

Use recognitionMimic to
simulate the recognition of
the same words; NatSpeak
will test against active
grammars or dictation as it
the words were spoken.

Use recognitionMimic to
simulate the recognition of
the same words; NatSpeak
will test against active
grammars or dictation as it
the words were spoken.

58

Grammars with Dictation
class ThisGrammar(GrammarBase):

 gramSpec = """

 <dgndictation> imported;

 <ruleOne> exported = demo sample eight <dgndictation> [stop];

 <dgnletters> imported;

 <ruleTwo> exported = demo sample eight spell <dgnletters> [stop];

 """

 def gotResults_dgndictation(self,words,fullResults):

 words.reverse()

 natlink.playString(' ' + string.join(words))

 def gotResults_dgnletters(self,words,fullResults):

 words = map(lambda x: x[:1], words)

 natlink.playString(' ' + string.join(words, ''))

 def initialize(self):

 self.load(self.gramSpec)

 self.activateAll()

...

V 1.1

<dgndictation> is built-in rule for dictation.
Optional word ”stop” is never recognized.

<dgndictation> is built-in rule for dictation.
Optional word ”stop” is never recognized.

<dgnletters> is built-in rule for spelling.
I had to add word “spell” or the spelling
was confused with dictation in <ruleOne>

<dgnletters> is built-in rule for spelling.
I had to add word “spell” or the spelling
was confused with dictation in <ruleOne>

59

Outline of Today’s Talk

Introduction
Getting started with NatLink
Basics of Python programming
Specifying Grammars
Handling Recognition Results
Controlling Active Grammars
Examples of advanced projects
Where to go for more help

60

NatLink Documentation

\NatLink\NatLinkSource\NatLink.txt
contains the documentation for calling the
natlink module from Python

Example macro files are all heavily
documented; in \NatLink\SampleMacros

Grammar syntax defined in gramparser.py
GrammarBase defined in natlinkutils.py

– also defines utility functions and constants

61

Where to Get More Help

Joel’s NatSpeak web site:
http://www.synapseadaptive.com/joel/default.htm

Python language web site:
http://www.python.org/

Books on Python
– See Joel’s NatSpeak site for recommendations

NatPython mailing list:
http://harvee.billerica.ma.us/mailman/listinfo/natpython

Using COM from Python:
Python Programming on Win32 by Mark Hammond

62

Looking at the Source Code

NatLink source code included in download
Source code is well documented
Written in Microsoft Visual C++ 6.0
Some features from Microsoft SAPI

– get SAPI documentation from Microsoft

Dragon-specific extensions not documented

63

All Done

“Microphone Off”

	NatLink: A Python Macro System for Dragon NaturallySpeaking
	Copyright Information
	Outline of Today’s Talk
	What is NaturallySpeaking?
	What is Python?
	What is NatLink?
	*Licensing Restrictions
	NatLink is Better than Prof. Ed.
	NatLink is Harder to Use
	Dia 10
	What you Need to Install
	Setting up NatLink
	How to Create Macro Files
	Sample Example 1
	Source Code for _sample1.py
	Sample Example 2
	Extract from _sample2.py
	Dia 18
	Strings and Things
	Comments and Blocks
	Lists and Loops
	Defining and Calling Functions
	Modules and Classes
	Self and Class Inheritance
	Dia 25
	Introduction to Grammars
	Specifying Rules
	Basic Rule Expressions
	Nested Rules and Repeats
	Exported and Imported Rules
	Dealing with (Grammar) Lists
	What is a Word?
	Special Word Spellings
	Grammar Syntax
	Dia 35
	Getting Results
	Extract from _sample3.py
	Running Demo Sample 3
	Other gotResults Callbacks
	Common Functions
	More Common Functions
	Mouse Movement _sample4.py
	Clipboard Example _sample5.py
	Debugging and using Print
	Dia 45
	Global vs App-Specific
	Activating Rules
	Start of Utterance Callback
	Using Exclusive Grammars
	Activation Example _sample6.py
	Activating Rules from a Table
	Dia 52
	Using OLE Automation
	Extract from excel_sample7.py
	Mouse Control in Python
	Implementing “Repeat That” 1
	Implementing “Repeat That” 2
	Grammars with Dictation
	Dia 59
	NatLink Documentation
	Where to Get More Help
	Looking at the Source Code
	All Done

