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Preface

While Bayesian networks have flourished in academia over the past three de-
cades, their application for research has developed more slowly. One of the 

reasons has been the sheer difficulty of generating Bayesian networks for practical re-
search and analytics use. For many years, researchers had to create their own software 
to utilize Bayesian networks. Needless to say, this made Bayesian networks inaccessi-
ble to the vast majority of scientists. 

The launch of BayesiaLab 1.0 in 2002 was a major initiative by a newly-formed 
French company to address this challenge. The development team, lead by Dr. Lio-
nel Jouffe and Dr. Paul Munteanu, designed BayesiaLab with research practitioners 
in mind—rather than fellow computer scientists. First and foremost, practitioner 
orientation is reflected in the graphical user interface of BayesiaLab, which allows 
researchers to work interactively with Bayesian networks in their native form using 
graphs, as opposed to working with computer code. At the time of writing, Bayesia-
Lab is approaching its sixth major release and has developed into a software platform 
that provides a comprehensive “laboratory” environment for many research ques-
tions. 

However, the point-and-click convenience of BayesiaLab does not relieve one 
of the duty of understanding the fundamentals of Bayesian networks for conducting 
sound research. With BayesiaLab making Bayesian networks accessible to a much 
broader audience than ever, demand for the corresponding training has grown tre-
mendously. We recognized the need for a book that supports a self-guided explora-
tion of this field. The objective of this book is to provide a practice-oriented introduc-
tion to both Bayesian networks and BayesiaLab. 

This book reflects the inherently visual nature of Bayesian networks. Hundreds 
of illustrations and screenshots provide a tutorial-style explanations of BayesiaLab’s 
core functions. Particularly important steps are repeatedly shown in the context of 
different examples. The key objective is to provide the reader with step-by-step in-
structions for transitioning from Bayesian network theory to fully-functional net-
work implementations in BayesiaLab. 
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The fundamentals of the Bayesian network formalism are linked to numerous 
disciplines, including computer science, probability theory, information theory, log-
ic, machine learning, and statistics. Also, in terms of applications, Bayesian networks 
can be utilized in virtually all disciplines. Hence, we meander across many fields of 
study with the examples presented in this book. Ultimately, we will show how all of 
them relate to the Bayesian network paradigm. At the same time, we present Bayesia-
Lab as the technology platform, allowing the reader to move immediately from the-
ory to practice. Our goal is to use practical examples for revealing the Bayesian net-
work theory and simultaneously teaching the BayesiaLab technology. 

Structure of the Book

Part 1

The intention of the three short chapters in Part 1 of the book is providing a basic 
familiarity with Bayesian networks and BayesiaLab, from where the reader should 
feel comfortable to jump into any of the subsequent chapters. For a more cursory 
observer of this field, Part 1 could serve as an executive summary.

•	 Chapter 1 provides a motivation for using Bayesian networks from the per-
spective of analytical modeling. 

•	 Chapter 2 is adapted from Pearl (2000) and introduces the Bayesian net-
work formalism and semantics.

•	 Chapter 3 presents a brief overview of the BayesiaLab software platform 
and its core functions.

Part 2

The chapters in Part 2 are mostly self-contained tutorials, which can be studied out of 
sequence. However, beyond Chapter 8, we assume a certain degree of familiarity with 
BayesiaLab’s core functions. 

•	 In Chapter 4, we discuss how to encode causal knowledge in a Bayesian 
network for subsequent probabilistic reasoning. In fact, this is the field in 
which Bayesian networks gained prominence in the 1980s, in the context of 
building expert systems.

•	 Chapter 5 introduces data and information theory as a foundation for sub-
sequent chapters. In this context, BayesiaLab’s data handling techniques 
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are presented, such as the Data Import Wizard, including Discretization. 
Furthermore, we describe a number of information-theoretic measures that 
will subsequently be required for machine learning and network analysis.

•	 Chapter 6 introduces BayesiaLab’s Supervised Learning algorithms for pre-
dictive modeling in the context of a classification task in the field of cancer 
diagnostics.

•	 Chapter 7 demonstrates BayesiaLab’s Unsupervised Learning algorithms 
for knowledge discovery from financial data.

•	 Chapter 8 builds on these machine-learning methods and shows a proto-
typical research workflow for creating a Probabilistic Structural Equation 
Model for a market research application.

•	 Chapter 9 deals with missing values, which are typically not of principal re-
search interest but do adversely affect most studies. BayesiaLab leverages 
conceptual advantages of machine learning and Bayesian networks for reli-
ably imputing missing values. 

•	 Chapter 10 closes the loop by returning to the topic of causality, which we 
first introduced in Chapter 4. We examine approaches for identifying and 
estimating causal effects from observational data. Simpson’s Paradox serves 
as the example for this study.

Notation

To clearly distinguish between natural language, software-specific functions, and ex-
ample-specific jargon, we use the following notation:

•	 BayesiaLab-specific functions, keywords, commands, and menu items are 
capitalized and shown in bold type. Very frequently used terms, such as 
“node” or “state” are excluded from this rule in order not to clutter the pre-
sentation.

•	 Names of attributes, variables, node names, node states, and node values 
are italicized.

All highlighted BayesiaLab keywords can also be found in the index.
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Chapter 1

1. Introduction

With Professor Judea Pearl receiving the prestigious 2011 A.M. Turing Award, 
Bayesian networks have presumably received more public recognition than 

ever before. Judea Pearl’s achievement of establishing Bayesian networks as a new 
paradigm is fittingly summarized by Stuart Russell (2011): 

“[ Judea Pearl] is credited with the invention of Bayesian 
networks, a mathematical formalism for defining complex 
probability models, as well as the principal algorithms used 
for inference in these models. This work not only revolution-
ized the field of artificial intelligence but also became an 
important tool for many other branches of engineering and 
the natural sciences. He later created a mathematical frame-
work for causal inference that has had significant impact in 
the social sciences.”

While their theoretical properties made Bayesian networks immediately attractive 
for academic research, notably concerning the study of causality, only the arrival of 
practical machine learning algorithms has allowed Bayesian networks to grow be-
yond their origin in the field of computer science. With the first release of the Bayesia-
Lab software package in 2002, Bayesian networks finally became accessible to a wide 
range of scientists for use in other disciplines.

All Roads Lead to Bayesian Networks

There are numerous ways we could take to provide motivation for using Bayesian 
networks. A selection of quotes illustrates that we could approach Bayesian networks 
from many different perspectives, such as machine learning, probability theory, or 
knowledge management.
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“Bayesian networks are as important to AI and machine 
learning as Boolean circuits are to computer science.” (Stuart 
Russell in Darwiche, 2009)

“Bayesian networks are to probability calculus what spread-
sheets are for arithmetic.” (Conrady and Jouffe, 2015)

“Currently, Bayesian Networks have become one of the 
most complete, self-sustained and coherent formalisms used 
for knowledge acquisition, representation and application 
through computer systems.” (Bouhamed, 2015)

In this first chapter, however, we approach Bayesian networks from the viewpoint of 
analytical modeling. Given today’s enormous interest in analytics, we wish to relate 
Bayesian networks to traditional analytic methods from the field of statistics and, fur-
thermore, compare them to more recent innovations in data mining. This context is 
particularly important given the attention that Big Data and related technologies re-
ceive these days. Their dominance in terms of publicity does perhaps drown out some 
other important methods of scientific inquiry, whose relevance becomes evident by 
employing Bayesian networks. 

Once we have established how Bayesian networks fit into the “world of an-
alytics,” Chapter 2 explains the mathematical formalism that underpins the Bayes-
ian network paradigm. For an authoritative account, Chapter 2 is largely based on 
a technical report by Judea Pearl. While employing Bayesian networks for research 
has become remarkably easy with BayesiaLab, we need to emphasize the importance 
of theory. Only a solid understanding of this theory will allow researchers to employ 
Bayesian networks correctly. 

Finally, Chapter 3 concludes the first part of this book with an overview of the 
BayesiaLab software platform. We show how the theoretical properties of Bayesian 
networks translate into an capable research tool for many fields of study, ranging from 
bioinformatics to marketing science and beyond.
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Chapter 1

A Map of Analytic Modeling

Following the ideas of Breiman (2001) and Shmueli (2010), we create a map of analyt-
ic modeling that is defined by two axes (Figure 1.1):

•	 The x-axis reflects the Modeling Purpose, ranging from Association/Cor-
relation to Causation. Labels on the x-axis furthermore indicate a concep-
tual progression, which includes Description, Prediction, Explanation, 
Simulation, and Optimization.

•	 The y-axis represents Model Source, i.e. the source of the model specifi-
cation. Model Source ranges from Theory (bottom) to Data (top). Theo-
ry is also tagged with Parametric as the predominant modeling approach. 
Additionally, it is tagged with Human Intelligence, hinting at the origin of 
Theory. On the opposite end of the y-axis, Data is associated with Machine 
Learning and Artificial Intelligence. It is also tagged with Algorithmic as a 
contrast to Parametric modeling.

Figure 1.1	
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Needless to say, Figure 1.1 displays an highly simplified view of the world of analytics, 
and readers can rightfully point out the limitations of this presentation. Despite this 
caveat, we will use this map and its coordinate system to position different modeling 
approaches.
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Quadrant 2: Predictive Modeling

Many of today’s predictive modeling techniques are algorithmic and would fall most-
ly into Quadrant 2. In Quadrant 2, a researcher would be primarily interested in the 
predictive performance of a model, i.e. Y is of interest.

(1.1)

Neural networks are a typical example of implementing machine learning techniques 
in this context. Such models often lack theory. However, they can be excellent “statis-
tical devices” for producing predictions.

Quadrant 4: Explanatory Modeling

In Quadrant 4, the researcher is interested in identifying a model structure that best 
reflects the underlying “true” data generating process, i.e. we are looking for an ex-
planatory model. Thus, the function f is of greater interest than Y:

(1.2)

Traditional statistical techniques that have an explanatory purpose, and which are 
used in epidemiology and the social sciences, would mostly belong in Quadrant 4. 
Regressions are the best-known models in this context. Extending further into the 
causal direction, we would progress into the field of operations research, including 
simulation and optimization.

Despite the diverging objectives of predictive modeling versus explanatory 
modeling, i.e. predicting Y versus understanding f, the respective methods are not 
necessarily incompatible. In Figure 1.1, this is suggested by the blue boxes that gradu-
ally fade out as they cross the boundaries and extend beyond their “home” quadrant. 
However, the best-performing modeling approaches do rarely serve predictive and 
explanatory purposes equally well. In many situations, the optimal fit-for-purpose 
models remain very distinct from each other. In fact, Shmueli (2010) has shown that a 
structurally “less true” model can yield better predictive performance than the “true” 
explanatory model.

We should also point out that recent advances in machine learning and data 
mining have mostly occurred in Quadrant 2 and disproportionately benefited predic-
tive modeling. Unfortunately, most machine-learned models are remarkably difficult 
to interpret in terms of their structural meaning, so new theories are rarely generated 

( )Y f X
intof erest
=

( )Y f X
intof erest

=
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Chapter 1

this way. For instance, the well-known Netflix Prize competition produced well-per-
forming predictive models, but they yielded little explanatory insight into the struc-
tural drivers of choice behavior. 

Conversely, in Quadrant 4, deliberately machine learning explanatory models 
remains rather difficult. As opposed to Quadrant 2, the availability of ever-increasing 
amounts of data is not necessarily an advantage for discovering theory through ma-
chine learning.

Bayesian Networks: Theory and Data

Concerning the horizontal division between Theory and Data on the Model Source 
axis, Bayesian networks have a special characteristic. Bayesian networks can be built 
from human knowledge, i.e. from Theory, or they can be machine-learned from Data. 
Thus, they can use the entire spectrum as Model Source . 

Also, due to their graphical structure, machine-learned Bayesian networks 
are visually interpretable, therefore promoting human learning and theory building. 
As indicated by the bi-directional arc in Figure 1.2, Bayesian networks allow human 
learning and machine learning to work in tandem, i.e. Bayesian networks can be de-

veloped from a combination of human and artificial intelligence.

Figure 1.2	
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Bayesian Networks: Association and Causation

Beyond crossing the boundaries between Theory and Data, Bayesian networks also 
have special qualities concerning causality. Under certain conditions and with specif-
ic theory-driven assumptions, Bayesian networks facilitate causal inference. In fact, 
Bayesian network models can cover the entire range from Association/Correlation 
to Causation, spanning the entire x-axis of our map (Figure 1.3). In practice, this 
means that we can add causal assumptions to an existing non-causal network and, 
thus, create a causal Bayesian network. This is of particular importance when we try 
to simulate an intervention in a domain, such as estimating the effects of a treatment. 
In this context, it is imperative to work with a causal model, and Bayesian networks 
help us make that transition. 

Figure 1.3	
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As a result, Bayesian networks are a versatile modeling framework, making them 
suitable for many problem domains. The mathematical formalism underpinning the 
Bayesian network paradigm will be presented in the next chapter.

▶ Chapter 10. Causal 
Identification & Estima-
tion, p. 325.
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Chapter 2

2. Bayesian Network Theory1

Probabilistic models based on directed acyclic graphs (DAG) have a long and 
rich tradition, beginning with the work of geneticist Sewall Wright in the 1920s. 

Variants have appeared in many fields. Within statistics, such models are known as 
directed graphical models; within cognitive science and artificial intelligence, such 
models are known as Bayesian networks. The name honors the Rev. Thomas Bayes 
(1702-1761), whose rule for updating probabilities in the light of new evidence is the 
foundation of the approach.

Rev. Bayes addressed both the case of discrete probability distributions of data 
and the more complicated case of continuous probability distributions. In the dis-
crete case, Bayes’ theorem relates the conditional and marginal probabilities of events 
A and B, provided that the probability of B not equal zero:

(2.1)﻿

In Bayes’ theorem, each probability has a conventional name: P(A) is the prior proba-
bility (or “unconditional” or “marginal” probability) of A. It is “prior” in the sense that 
it does not take into account any information about B; however, the event B need not 
occur after event A. In the nineteenth century, the unconditional probability P(A) in 
Bayes’ rule was called the “antecedent” probability; in deductive logic, the anteced-
ent set of propositions and the inference rule imply consequences. The unconditional 
probability P(A) was called “a priori” by Ronald A. Fisher.

1  This chapter is largely based on Pearl and Russell (2000) and was adapted with permis-
sion.

( | ) ( )
( )
( | )

P A B P A
P B

P B A
#=
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•	 P(A|B) is the conditional probability of A, given B. It is also called the pos-
terior probability because it is derived from or depends upon the specified 
value of B.

•	 P(B|A) is the conditional probability of B given A. It is also called the like-
lihood.

•	 P(B) is the prior or marginal probability of B, and acts as a normalizing con-
stant.

•	
( )
( )
P B

P B A;  is the Bayes factor or likelihood ratio. 

Bayes theorem in this form gives a mathematical representation of how the condi-
tional probability of event A given B is related to the converse conditional probability 
of B given A.

The initial development of Bayesian networks in the late 1970s was motivat-
ed by the necessity of modeling top-down (semantic) and bottom-up (perceptual) 
combinations of evidence for inference. The capability for bi-directional inferences, 
combined with a rigorous probabilistic foundation, led to the rapid emergence of 
Bayesian networks. They became the method of choice for uncertain reasoning in ar-
tificial intelligence and expert systems, replacing earlier, ad hoc rule-based schemes.

Bayesian networks are models that consist of two parts, a qualitative one based 
on a DAG for indicating the dependencies, and a quantitative one based on local 
probability distributions for specifying the probabilistic relationships. The DAG con-
sists of nodes and directed links: 

•	 Nodes represent variables of interest (e.g. the temperature of a device, the 
gender of a patient, a feature of an object, the occurrence of an event). Even 
though Bayesian networks can handle continuous variables, we exclusively 
discuss Bayesian networks with discrete nodes in this book. Such nodes can 
correspond to symbolic/categorical variables, numerical variables with dis-
crete values, or discretized continuous variables.

•	 Directed links represent statistical (informational) or causal dependencies 
among the variables. The directions are used to define kinship relations, i.e. 
parent-child relationships. For example, in a Bayesian network with a link 
from X to Y, X is the parent node of Y, and Y is the child node.

The local probability distributions can be either marginal, for nodes without parents 
(root nodes), or conditional, for nodes with parents. In the latter case, the dependen-
cies are quantified by conditional probability tables (CPT) for each node given its 
parents in the graph. 

▶ Chapter 10. Causal 
Identification & Estima-
tion, p. 325.
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Once fully specified, a Bayesian network compactly represents the joint prob-
ability distribution ( JPD) and, thus, can be used for computing the posterior proba-
bilities of any subset of variables given evidence2 about any other subset.

A Non-Causal Bayesian Network Example

Figure 2.1 shows a simple Bayesian network, which consists of only two nodes and 
one link. It represents the JPD of the variables Eye Color and Hair Color in a popula-
tion of students (Snee, 1974). In this case, the conditional probabilities of Hair Color 
given the values of its parent node, Eye Color, are provided in a CPT. It is important to 
point out that this Bayesian network does not contain any causal assumptions, i.e. we 
have no knowledge of the causal order between the variables. Thus, the interpretation 
of this network should be merely statistical (informational).

Figure 2.1	

A Causal Network Example

Figure 2.2 illustrates another simple yet typical Bayesian network. In contrast to the 
statistical relationships in Figure 2.1, the diagram in Figure 2.2 describes the causal 
relationships among the seasons of the year (X1), whether it is raining (X2), whether 
the sprinkler is on (X3), whether the pavement is wet (X4), and whether the pavement 
is slippery (X5). Here, the absence of a direct link between X1 and X5, for example, 
captures our understanding that there is no direct influence of season on slipperiness. 

2  Throughout this book we use “setting evidence on a variable” and “observing a variable” 
interchangeably.
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The influence is mediated by the wetness of the pavement (if freezing were a possibil-
ity, a direct link could be added).

Figure 2.2	

Perhaps the most important aspect of Bayesian networks is that they are direct rep-
resentations of the world, not of reasoning processes. The arrows in the diagram 
represent real causal connections and not the flow of information during reasoning 
(as in rule-based systems and neural networks). Reasoning processes can operate on 
Bayesian networks by propagating information in any direction. For example, if the 
sprinkler is on, then the pavement is probably wet (prediction, simulation). If some-
one slips on the pavement, that will also provide evidence that it is wet (abduction, 
reasoning to a probable cause, or diagnosis). On the other hand, if we see that the 
pavement is wet, that will make it more likely that the sprinkler is on or that it is 
raining (abduction); but if we then observe that the sprinkler is on, that will reduce 
the likelihood that it is raining (explaining away). It is the latter form of reasoning, 
explaining away, that is especially difficult to model in rule-based systems and neural 
networks in a natural way, because it seems to require the propagation of information 
in two directions.

A Dynamic Bayesian Network Example

Entities that live in a changing environment must keep track of variables whose values 
change over time. Dynamic Bayesian networks capture this process by representing 
multiple copies of the state variables, one for each time step. A set of variables Xt-1 and 
Xt denotes the world state at times t-1 and t respectively. A set of evidence variables Et 
denotes the observations available at time t. The sensor model P(Et|Xt) is encoded in 
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the conditional probability distributions for the observable variables, given the state 
variables. The transition model P(Xt|Xt-1) relates the state at time t-1 to the state at 
time t. Keeping track of the world means computing the current probability distribu-
tion over world states given all past observations, i.e. P(Xt|E1,…,Et). 

Dynamic Bayesian networks (DBN) are a generalization of Hidden Markov 
Models (HMM) and Kalman Filters (KF). Every HMM and KF can be represent-
ed with a DBN. Furthermore, the DBN representation of an HMM is much more 
compact and, thus, much better understandable. The nodes in the HMM represent 
the states of the system, whereas the nodes in the DBN represent the dimensions of 
the system. For example, the HMM representation of the valve system in Figure 2.3 
is made of 26 nodes and 36 arcs, versus 9 nodes and 11 arcs in the DBN (Weber and 
Jouffe, 2003).

Figure 2.3	

Representation of the Joint Probability Distribution

Any complete probabilistic model of a domain must—either explicitly or implicit-
ly—represent the joint probability distribution ( JPD), i.e. the probability of every 
possible event as defined by the combination of the values of all the variables. There 
are exponentially many such events, yet Bayesian networks achieve compactness by 
factoring the JPD into local, conditional distributions for each variable given its par-
ents. If xi denotes some value of the variable Xi and pai denotes some set of values for 
the parents of Xi, then P(xi|pai) denotes this conditional probability distribution. For 
example, in the graph in Figure 2.4, P(x4|x2,x3) is the probability of Wetness given the 
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values of Sprinkler and Rain. The global semantics of Bayesian networks specifies that 
the full JPD is given by the product rule (or chain rule):

(2.2)

In our example network, we have:

(2.3)

It becomes clear that the number of parameters grows linearly with the size of the 
network, i.e. the number of variables, whereas the size of the JPD itself grows expo-
nentially. Given a discrete representation of the CPD with a CPT, the size of a local 
CPD grows exponentially with the number of parents. Savings can be achieved using 
compact CPD representations—such as noisy-OR models, trees, or neural networks.

The JPD representation with Bayesian networks also translates into a local se-
mantics, which asserts that each variable is independent of non-descendants in the 
network given its parents. For example, the parents of X4 in Figure 2.4 are X2 and X3, 
and they render X4 independent of the remaining non-descendant, X1:

(2.4)

Figure 2.4	

Non-Descendants

Descendant

Parents

 

The collection of independence assertions formed in this way suffices to derive the 
global assertion of the product rule (or chain rule) in (2.2), and vice versa. The lo-
cal semantics is most useful for constructing Bayesian networks because selecting 
as parents all the direct causes (or direct relationships) of a given variable invariably 

( , ..., ) ( )P x x P x pai n i
i

i;=%

, , , , ,P x x x x x P x P x x P x x P x x x P x x1 2 3 4 5 1 2 1 3 1 4 2 3 5 4; ; ; ;=^ ^ ^ ^ ^ ^h h h h h h

( , , ) ( , )P x x x x P x x x4 1 2 3 4 2 3; ;=



27

Chapter 2

satisfies the local conditional independence conditions. The global semantics leads 
directly to a variety of algorithms for reasoning.

Evidential Reasoning

From the product rule (or chain rule) in (2.2), one can express the probability of any 
desired proposition in terms of the conditional probabilities specified in the network. 
For example, the probability that the Sprinkler is on given that the Pavement is slip-
pery is:

(2.5)

These expressions can often be simplified in ways that reflect the structure of the 
network itself. The first algorithms proposed for probabilistic calculations in Bayes-
ian networks used a local distributed message-passing architecture, typical of many 
cognitive activities. Initially, this approach was limited to tree-structured networks 
but was later extended to general networks in Lauritzen and Spiegelhalter’s (1988) 
method of junction tree propagation. A number of other exact methods have been 
developed and can be found in recent textbooks.

It is easy to show that reasoning in Bayesian networks subsumes the satisfiabil-
ity problem in propositional logic and, therefore, exact inference is NP-hard. Monte 
Carlo simulation methods can be used for approximate inference (Pearl, 1988) giving 
gradually improving estimates as sampling proceeds. These methods use local mes-
sage propagation on the original network structure, unlike junction-tree methods. 
Alternatively, variational methods provide bounds on the true probability.

Causal Reasoning

Most probabilistic models, including general Bayesian networks, describe a joint 
probability distribution ( JPD) over possible observed events, but say nothing about 
what will happen if a certain intervention occurs. For example, what if I turn the 
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Sprinkler on instead of just observing that it is turned on? What effect does that have 
on the Season, or on the connection between Wet and Slippery? A causal network, 
intuitively speaking, is a Bayesian network with the added property that the parents 
of each node are its direct causes, as in Figure 2.4. In such a network, the result of an 
intervention is obvious: the Sprinkler node is set to X3=on and the causal link between 
the Season X1 and the Sprinkler X3 is removed (Figure 2.5). All other causal links and 
conditional probabilities remain intact, so the new model is:

(2.6)

Notice that this differs from observing that X3=on, which would result in a new model 
that included the term P(X3=on|x1). This mirrors the difference between seeing and 
doing: after observing that the Sprinkler is on, we wish to infer that the Season is dry, 
that it probably did not rain, and so on. An arbitrary decision to turn on the Sprinkler 
should not result in any such beliefs.

Figure 2.5	

Causal networks are more properly defined, then, as Bayesian networks in which the 
correct probability model—after intervening to fix any node’s value—is given simply 
by deleting links from the node’s parents. For example, Fire → Smoke is a causal net-
work, whereas Smoke → Fire is not, even though both networks are equally capable of 
representing any joint probability distribution of the two variables. Causal networks 
model the environment as a collection of stable component mechanisms. These 
mechanisms may be reconfigured locally by interventions, with corresponding local 
changes in the model. This, in turn, allows causal networks to be used very naturally 
for prediction by an agent that is considering various courses of action. 
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Learning Bayesian Network Parameters

Given a qualitative Bayesian network structure, the conditional probability tables, 
P(xi|pai), are typically estimated with the maximum likelihood approach from the 
observed frequencies in the dataset associated with the network. 

In pure Bayesian approaches, Bayesian networks are designed from expert 
knowledge and include hyperparameter nodes. Data (usually scarce) is used as piec-
es of evidence for incrementally updating the distributions of the hyperparameters 
(Bayesian Updating).

Learning Bayesian Network Structure

It is also possible to machine learn the structure of a Bayesian network, and two fami-
lies of methods are available for that purpose. The first one, using constraint-based al-
gorithms, is based on the probabilistic semantic of Bayesian networks. Links are add-
ed or deleted according to the results of statistical tests, which identify marginal and 
conditional independencies. The second approach, using score-based algorithms, is 
based on a metric that measures the quality of candidate networks with respect to the 
observed data. This metric trades off network complexity against the degree of fit to 
the data, which is typically expressed as the likelihood of the data given the network.

As a substrate for learning, Bayesian networks have the advantage that it is rel-
atively easy to encode prior knowledge in network form, either by fixing portions of 
the structure, forbidding relations, or by using prior distributions over the network 
parameters. Such prior knowledge can allow a system to learn accurate models from 
much fewer data than are required for clean sheet approaches.

Causal Discovery

One of the most exciting prospects in recent years has been the possibility of using 
Bayesian networks to discover causal structures in raw statistical data—a task previ-
ously considered impossible without controlled experiments. Consider, for example, 
the following intransitive pattern of dependencies among three events: A and B are 
dependent, B and C are dependent, yet A and C are independent. If you asked a per-
son to supply an example of three such events, the example would invariably portray 
A and C as two independent causes and B as their common effect, namely A → B ← C. 

▶ Bayesian Updating in 
Chapter 3, p. 38.
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For instance, A and C could be the outcomes of two fair coins, and B represents a bell 
that rings whenever either coin comes up heads. 

Figure 2.6	

Fitting this dependence pattern with a scenario in which B is the cause and A and C 
are the effects is mathematically feasible but very unnatural, because it must entail 
fine tuning of the probabilities involved. The desired dependence pattern will be de-
stroyed as soon as the probabilities undergo a slight change.

Such thought experiments tell us that certain patterns of dependency, which 
are totally void of temporal information, are conceptually characteristic of certain 
causal directionalities and not others. When put together systematically, such pat-
terns can be used to infer causal structures from raw data and to guarantee that any 
alternative structure compatible with the data must be less stable than the one(s) in-
ferred; namely slight fluctuations in parameters will render that structure incompat-
ible with the data.

Caveat

Despite recent advances, causal discovery is an area of active research, with countless 
questions remaining unresolved. Thus, no generally accepted causal discovery algo-
rithms are currently available for applied researchers. As a result, all causal networks 
presented in this book are constructed from expert knowledge, or machine-learned 
and then validated as causal by experts. The assumptions necessary for a causal inter-
pretation of a Bayesian network will be discussed in Chapter 10.



31

Chapter 2



32



33

Chapter 3

3. BayesiaLab

While the conceptual advantages of Bayesian networks had been known in the 
world of academia for some time, leveraging these properties for practical 

research applications was very difficult for non-computer scientists prior to Bayesia-
Lab’s first release in 2002.

Figure 3.1	

BayesiaLab is a powerful desktop application (Windows/Mac/Unix) with a sophis-
ticated graphical user interface, which provides scientists a comprehensive “labora-
tory” environment for machine learning, knowledge modeling, diagnosis, analysis, 
simulation, and optimization. With BayesiaLab, Bayesian networks have become 
practical for gaining deep insights into problem domains. BayesiaLab leverages the 
inherently graphical structure of Bayesian networks for exploring and explaining 
complex problems. Figure 3.1 shows a screenshot of a typical research project.

BayesiaLab is the result of nearly twenty years of research and software devel-
opment by Dr. Lionel Jouffe and Dr. Paul Munteanu. In 2001, their research efforts led 
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to the formation of Bayesia S.A.S., headquartered in Laval in northwestern France. 
Today, the company is the world’s leading supplier of Bayesian network software, 
serving hundreds major corporations and research organizations around the world.

BayesiaLab’s Methods, Features, and Functions

As conceptualized in the diagram in Figure 3.2, BayesiaLab is designed around a pro-
totypical workflow with a Bayesian network model at the center. BayesiaLab sup-
ports the research process from model generation to analysis, simulation, and opti-
mization. The entire process is fully contained in a uniform “lab” environment, which 
provides scientists with flexibility in moving back and forth between different ele-
ments of the research task. 

Figure 3.2	
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In Chapter 1, we presented our principal motivation for using Bayesian networks, 
namely their universal suitability across the entire “map” of analytic modeling: Bayes-
ian networks can be modeled from pure theory, and they can be learned from data 
alone; Bayesian networks can serve as predictive models, and they can represent 
causal relationships. Figure 3.3 shows how our claim of “universal modeling capabili-
ty” translates into specific functions provided by BayesiaLab, which are placed as blue 
boxes on the analytics map.
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Figure 3.3	
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Knowledge Modeling

Subject matter experts often express their causal understanding of a domain in the 
form of diagrams, in which arrows indicate causal directions. This visual represen-
tation of causes and effects has a direct analog in the network graph in BayesiaLab. 
Nodes (representing variables) can be added and positioned on BayesiaLab’s Graph 
Panel with a mouse-click, arcs (representing relationships) can be “drawn” between 
nodes. The causal direction can be encoded by orienting the arcs from cause to effect 
(Figure 3.4).

Figure 3.4	
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The quantitative nature of relationships between variables, plus many other attri-
butes, can be managed in BayesiaLab’s Node Editor. In this way, BayesiaLab facili-
tates the straightforward encoding of one’s understanding of a domain. Simultane-
ously, BayesiaLab enforces internal consistency, so that impossible conditions cannot 
be encoded accidentally. In Chapter 4, we will present a practical example of caus-
al knowledge modeling, followed by probabilistic reasoning.

In addition to having individuals directly encode their explicit knowledge in 
BayesiaLab, the Bayesia Expert Knowledge Elicitation Environment (BEKEE)1 is 
available for acquiring the probabilities of a network from a group of experts. BEKEE 
offers a web-based interface for systematically eliciting explicit and tacit knowledge 
from multiple stakeholders.

Discrete, Nonlinear and Nonparametric Modeling

BayesiaLab contains all “parameters” describing probabilistic relationships between 
variables in conditional probability tables (CPT), which means that no functional 
forms are utilized.2 Given this nonparametric, discrete approach, BayesiaLab can 
conveniently handle nonlinear relationships between variables. However, this CPT-
based representation requires a preparation step for dealing with continuous vari-
ables, namely discretization. This consists in defining—manually or automatically—a 
discrete representation of all continuous values. BayesiaLab offers several tools for 
discretization, which are accessible in the Data Import Wizard, in the Node Editor 
(Figure 3.5), and in a standalone Discretization function. In this context, univariate, 
bivariate, and multivariate discretization algorithms are available.

1  BEKEE is an optional subscription service. See www.bayesia.us/bekee.

2  BayesiaLab can utilize formulas and trees to compactly describe the CPT, however, the 
internal representation remains table-based.
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Figure 3.5	

Missing Values Processing

BayesiaLab offers a range of sophisticated methods for missing values processing. 
During network learning, BayesiaLab performs missing values processing automat-
ically “behind the scenes”. More specifically, the Structural EM algorithm or the 
Dynamic Imputation algorithms are applied after each modification of the network 
during learning, i.e. after every single arc addition, suppression and inversion. Bayes-
ian networks provide a few fundamental advantages for dealing with missing values. 
In Chapter 9, we will focus exclusively on this topic.

Parameter Estimation

Parameter Estimation with BayesiaLab is at the intersection of theory-driven and 
data-driven modeling. For a network that was generated either from expert knowl-
edge or through machine learning, BayesiaLab can use the observations contained 
in an associated dataset to populate the CPT via Maximum Likelihood Estimation.

▶ Chapter 9. Missing 
Values Processing, 
p. 289.
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Bayesian Updating

In general, Bayesian networks are nonparametric models. However, a Bayesian net-
work can also serve as a parametric model if an expert uses equations for defining 
local CPDs and, additionally, specifies hyperparameters, i.e. nodes that explicitly rep-
resent parameters that are used in the equations.

As opposed to BayesiaLab’s usual parameter estimation via Maximum Like-
lihood, the associated dataset provides pieces of evidence for incrementally updat-
ing—via probabilistic inference—the distributions of the hyperparameters.

Machine Learning

Despite our repeated emphasis on the relevance of human expert knowledge, es-
pecially for identifying causal relations, much of this book is dedicated to acquiring 
knowledge from data through machine learning. BayesiaLab features a comprehen-
sive array of highly optimized learning algorithms that can quickly uncover structures 
in datasets. The optimization criteria in BayesiaLab’s learning algorithms are based on 
information theory (e.g. the Minimum Description Length). With that, no assump-
tions regarding the variable distributions are made. These algorithms can be used for 
all kinds and all sizes of problem domains, sometimes including thousands of vari-
ables with millions of potentially relevant relationships. 

Unsupervised Structural Learning (Quadrant 2/3)

In statistics, “unsupervised learning” is typically understood to be a classification or 
clustering task. To make a very clear distinction, we place emphasis on “structural” in 
“Unsupervised Structural Learning,” which covers a number of important algorithms 
in BayesiaLab. 

Unsupervised Structural Learning means that BayesiaLab can discover prob-
abilistic relationships between a large number of variables, without having to specify 
input or output nodes. One might say that this is a quintessential form of knowledge 
discovery, as no assumptions are required to perform these algorithms on unknown 
datasets (Figure 3.6).
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Figure 3.6	

Supervised Learning (Quadrant 2)

Supervised Learning in BayesiaLab has the same objective as many traditional mod-
eling methods, i.e. to develop a model for predicting a target variable. Note that nu-
merous statistical packages also offer “Bayesian Networks” as a predictive modeling 
technique. However, in most cases, these packages are restricted in their capabilities 
to a one type of network, i.e. the Naive Bayes network. BayesiaLab offers a much 
greater number of Supervised Learning algorithms to search for the Bayesian net-
work that best predicts the target variable while also taking into account the complex-
ity of the resulting network (Figure 3.7). 

We should highlight the Markov Blanket algorithm for its speed, which is par-
ticularly helpful when dealing with a large number of variables. In this context, the 
Markov Blanket algorithm can serve as an efficient variable selection algorithm. An 
example of Supervised Learning using this algorithm, and the closely-related Aug-
mented Markov Blanket algorithm, will be presented in Chapter 6.

▶ Markov Blanket Defini-
tion in Chapter 6, 
p. 124.
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Figure 3.7	

Clustering (Quadrant 2/3)

Clustering in BayesiaLab covers both Data Clustering and Variable Clustering. The 
former applies to the grouping of records (or observations) in a dataset;3 the latter 
performs a grouping of variables according to the strength of their mutual relation-
ships (Figure 3.8).

A third variation of this concept is of particular importance in BayesiaLab: 
Multiple Clustering can be characterized as a kind of nonlinear, nonparametric and 
nonorthogonal factor analysis. Multiple Clustering often serves as the basis for devel-
oping Probabilistic Structural Equation Models (Quadrant 3/4) with BayesiaLab.

3  Throughout this book, we use “dataset” and “database” interchangeably. 

▶ Chapter 8. Probabilis-
tic Structural Equation 
Models, p. 201.
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Figure 3.8	

Inference: Diagnosis, Prediction, and Simulation

The inherent ability of Bayesian networks to explicitly model uncertainty makes 
them suitable for a broad range of real-world applications. In the Bayesian network 
framework, diagnosis, prediction, and simulation are identical computations. They 
all consist of observational inference conditional upon evidence:

•	 Inference from effect to cause: diagnosis or abduction. 
•	 Inference from cause to effect: simulation or prediction.

This distinction, however, only exists from the perspective of the researcher, who 
would presumably see the symptom of a disease as the effect and the disease itself as 
the cause. Hence, carrying out inference based on observed symptoms is interpreted 
as “diagnosis.” 

Observational Inference (Quadrant 1/2)

One of the central benefits of Bayesian networks is that they compute inference “om-
ni-directionally.” Given an observation with any type of evidence on any of the net-
works’ nodes (or a subset of nodes), BayesiaLab can compute the posterior proba-
bilities of all other nodes in the network, regardless of arc direction. Both exact and 
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approximate observational inference algorithms are implemented in BayesiaLab. 
We briefly illustrate evidence-setting and inference with the expert system network 
shown in Figure 3.9.4

Figure 3.9	

Types of Evidence

1.	 Hard Evidence: no uncertainty regarding the state of the variable (node), 
e.g. P(Smoker=True)=100% (Figure 3.10).

2.	 Probabilistic Evidence (or Soft Evidence), defined by marginal proba-
bility distributions: P(Bronchitis=True)=66.67% (Figure 3.11).

3.	 Numerical Evidence, for numerical variables, or for categorical/symbol-
ic variables that have associated numerical values. BayesiaLab computes 
a marginal probability distribution to generate the specified expected 
value: E(Age)=39 (Figure 3.12).

4.	 Likelihood Evidence (or Virtual Evidence), defined by a likelihood of 
each state, ranging from 0%, i.e. impossible, to 100%, which means that 
no evidence reduces the probability of the state. To be valid as evidence, 
the sum of the likelihoods must be greater than 0. Also, note that the up-
per boundary for the sum of the likelihoods equals the number of states. 

4  This example is adapted from Lauritzen and Spiegelhalter (1988).

▶ Inference with Proba-
bilistic and Numerical 
Evidence in Chap-
ter 7, p. 188.
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Setting the same likelihood to all states corresponds to setting no evi-
dence at all (Figure 3.13).

Figure 3.10	

Figure 3.11	

Figure 3.12	

Figure 3.13	
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Causal Inference (Quadrant 3/4)

Beyond observational inference, BayesiaLab can also perform causal inference for 
computing the impact of intervening on a subset of variables instead of merely observ-
ing these variables. Both Pearl’s Do-Operator and Jouffe’s Likelihood Matching are 
available for this purpose. We will provide a detailed discussion of causal inference in 
Chapter 10.

Effects Analysis (Quadrants 3/4)

Many research activities focus on estimating the size of an effect, e.g. to establish the 
treatment effect of a new drug or to determine the sales boost from a new advertising 
campaign. Other studies attempt to decompose observed effects into their causes, i.e. 
they perform attribution.

BayesiaLab performs simulations to compute effects, as parameters as such 
do not exist in this nonparametric framework. As all the dynamics of the domain 
are encoded in discrete CPTs, effect sizes only manifest themselves when different 
conditions are simulated. Total Effects Analysis, Target Mean Analysis, and several 
other functions offer ways to study effects, including nonlinear effects and variables 
interactions.

Optimization (Quadrant 4)

BayesiaLab’s ability to perform inference over all possible states of all nodes in a net-
work also provides the basis for searching for node values that optimize a target crite-
rion. BayesiaLab’s Target Dynamic Profile and Target Optimization are a set of tools 
for this purpose.

Using these functions in combination with Direct Effects is of particular in-
terest when searching for the optimum combination of variables that have a nonlin-
ear relationship with the target, plus co-relations between them. A typical example 
would be searching for the optimum mix of marketing expenditures to maximize 
sales. BayesiaLab’s Target Optimization will search, within the specified constraints, 
for those scenarios that optimize the target criterion (Figure 3.14). An example of 
Target Dynamic Profile will be presented in Chapter 8.

▶ Target Dynamic Profile 
in Chapter 8, p. 274.
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Figure 3.14	

Model Utilization

BayesiaLab provides a range of functions for systematically utilizing the knowledge 
contained in a Bayesian network. They make a network accessible as an expert system 
that can be queried interactively by an end user or through an automated process.

The Adaptive Questionnaire function provides guidance in terms of the opti-
mum sequence for seeking evidence. BayesiaLab determines dynamically, given the 
evidence already gathered, the next best piece of evidence to obtain, in order to max-
imize the information gain with respect to the target variable, while minimizing the 
cost of acquiring such evidence. In a medical context, for instance, this would allow 
for the optimal “escalation” of diagnostic procedures, from “low-cost/small-gain” 
evidence (e.g. measuring the patient’s blood pressure) to “high-cost/large-gain” evi-
dence (e.g. performing an MRI scan). The Adaptive Questionnaire will be presented 
in the context of an example about tumor classification in Chapter 6.

The WebSimulator is a platform for publishing interactive models and Adap-
tive Questionnaires via the web, which means that any Bayesian network model built 
with BayesiaLab can be shared privately with clients or publicly with a broader audi-

▶ Adaptive Question-
naire in Chapter 6, 
p. 147.
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ence. Once a model is published via the WebSimulator, end users can try out scenar-
ios and examine the dynamics of that model (Figure 3.15).

Figure 3.15	

Batch Inference is available for automatically performing inference on a large num-
ber of records in a dataset. For example, Batch Inference can be used to produce a 
predictive score for all customers in a database. With the same objective, BayesiaLab’s 
optional Export function can translate predictive network models into static code 
that can run in external programs. Modules are available that can generate code for R, 
SAS, PHP, VBA, and JavaScript.

Developers can also access many of BayesiaLab’s functions—outside the graph-
ical user interface—by using the Bayesia Engine APIs. The Bayesia Modeling En-
gine allows constructing and editing networks. The Bayesia Inference Engine can 
access network models programmatically for performing automated inference, e.g. 
as part of a real-time application with streaming data. The Bayesia Engine APIs are 
implemented as pure Java class libraries (jar files), which can be integrated into any 
software project.

Knowledge Communication

While generating a Bayesian network, either by expert knowledge modeling or 
through machine learning, is all about a computer acquiring knowledge, a Bayesian 
network can also be a remarkably powerful tool for humans to extract or “harvest” 
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knowledge. Given that a Bayesian network can serve as a high-dimensional represen-
tation of a real-world domain, BayesiaLab allows us to interactively—even playfully—
engage with this domain to learn about it (Figure 3.16). Through visualization, simu-
lation, and analysis functions, plus the graphical nature of the network model itself, 
BayesiaLab becomes an instructional device that can effectively retrieve and commu-
nicate the knowledge contained within the Bayesian network. As such, BayesiaLab 
becomes a bridge between artificial intelligence and human intelligence.

Figure 3.16	
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4. Knowledge Modeling & Reasoning

This chapter presents a workflow for encoding expert knowledge and subse-
quently performing omni-directional probabilistic inference in the context of a 

real-world reasoning problem. While Chapter 1 provided a general motivation for 
using Bayesian networks as an analytics framework, this chapter highlights the per-
haps unexpected relevance of Bayesian networks for reasoning in everyday life. The 
example proves that “common-sense” reasoning can be rather tricky. On the other 
hand, encoding “common-sense knowledge” in a Bayesian network turns out to be 
uncomplicated. We want to demonstrate that reasoning with Bayesian networks can 

be as straightforward as doing arithmetic with a spreadsheet.

Background & Motivation

Complexity & Cognitive Challenges

It is presumably fair to state that reasoning in complex environments creates cogni-
tive challenges for humans. Adding uncertainty to our observations of the problem 
domain, or even considering uncertainty regarding the structure of the domain itself, 
makes matters worse. When uncertainty blurs so many premises, it can be particular-
ly difficult to find a common reasoning framework for a group of stakeholders.

No Data, No Analytics.

If we had hard observations from our domain in the form of data, it would be quite 
natural to build a traditional analytic model for decision support. However, the real 
world often yields only fragmented data or no data at all. It is not uncommon that we 
merely have the opinions of individuals who are more or less familiar with the prob-
lem domain.
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To an Analyst With Excel, Every Problem Looks Like Arithmetic.

In the business world, it is typical to use spreadsheets to model the relationships be-
tween variables in a problem domain. Also, in the absence of hard observations, it is 
reasonable that experts provide assumptions instead of data. Any such expert knowl-
edge is typically encoded in the form of single-point estimates and formulas. Howev-
er, using of single values and formulas instantly oversimplifies the problem domain: 
firstly, the variables, and the relationships between them, become deterministic; sec-
ondly, the left-hand side versus right-hand side nature of formulas restricts inference 
to only one direction. 

Taking No Chances!

Given that cells and formulas in spreadsheets are deterministic and only work with 
single-point values, they are well suited for encoding “hard” logic, but not at all for 
“soft” probabilistic knowledge that includes uncertainty. As a result, any uncertainty 
has to be addressed with workarounds, often in the form of trying out multiple sce-
narios or by working with simulation add-ons.

It Is a One-Way Street!

The lack of omni-directional inference, however, may the bigger issue in spreadsheets. 
As soon as we create a formula linking two cells in a spreadsheet, e.g. B1=function(A1), 
we preclude any evaluation in the opposite direction, from B1 to A1.

Assuming that A1 is the cause, and B1 is the effect, we can indeed use a spread-
sheet for inference in the causal direction, i.e. perform a simulation. However, even if 
we were certain about the causal direction between them, unidirectionality would re-
main a concern. For instance, if we were only able to observe the effect B1, we could 
not infer the cause A1, i.e. we could not perform a diagnosis from effect to cause. The 
one-way nature of spreadsheet computations prevents this.

Bayesian Networks to the Rescue!

Bayesian networks are probabilistic by default and handle uncertainty “natively.” A 
Bayesian network model can work directly with probabilistic inputs, probabilistic 
relationships, and deliver correctly computed probabilistic outputs. Also, whereas 
traditional models and spreadsheets are of the form y=f(x), Bayesian networks do 
not have to distinguish between independent and dependent variables. Rather, a 
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Bayesian network represents the entire joint probability distribution of the system 
under study. This representation facilitates omni-directional inference, which is what 
we typically require for reasoning about a complex problem domain, such as the ex-
ample in this chapter.

Example: Where is My Bag?

While most other examples in this book resemble proper research topics, we present 
a rather casual narrative to introduce probabilistic reasoning with Bayesian networks. 
It is a common situation taken straight from daily life, for which a “common-sense 
interpretation” may appear more natural than our proposed formal approach. As we 
shall see, dealing formally with informal knowledge provides a robust basis for rea-
soning under uncertainty.

Did My Checked Luggage Make the Connection?

Most travelers will be familiar with the following hypothetical situation, or some-
thing fairly similar: You are traveling between two cities and need to make a flight 
connection in a major hub. Your first flight segment (from the origin city to the hub) 
is significantly delayed, and you arrive at the hub with barely enough time to make 
the connection. The boarding process is already underway by the time you get to the 
departure gate of your second flight segment (from the hub to the final destination). 

Problem #1

Out of breath, you check in with the gate agent, who informs you that the luggage 
you checked at the origin airport may or may not make the connection. She states 
apologetically that there is only a 50/50 chance that you will get your bag upon arrival 
at your destination airport. 

Once you have landed at your destination airport, you head straight to baggage 
claim and wait for the first pieces of luggage to appear on the baggage carousel. Bags 
come down the chute onto the carousel at a steady rate. After five minutes of watch-
ing fellow travelers retrieve their luggage, you wonder what the chances are that you 
will ultimately get your bag. You reason that if the bag had indeed made it onto the 
plane, it would be increasingly likely for it to appear among the remaining pieces to 
be unloaded. However, you do not know for sure that your piece was actually on the 
plane. Then, you think, you better get in line to file a claim at the baggage office. Is 
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that reasonable? As you wait, how should you update your expectation about getting 
your bag?

Problem #2

Just as you contemplate your next move, you see a colleague picking up his suitcase. 
As it turns out, your colleague was traveling on the very same itinerary as you. His 
luggage obviously made it, so you conclude that you better wait at the carousel for the 
very last piece to be delivered. How does the observation of your colleague’s suitcase 
change your belief in the arrival of your bag? Does all that even matter? After all, the 
bag either made the connection or not. The fact that you now observe something 
after the fact cannot influence what happened earlier, right?

Knowledge Modeling for Problem #1

This problem domain can be explained by a causal Bayesian network, only using a few 
common-sense assumptions. We demonstrate how we can combine different pieces 
of available —but uncertain—knowledge into a network model. Our objective is to 
calculate the correct degree of belief in the arrival of your luggage as a function of time 
and your own observations. 

As per our narrative, we obtain the first piece of information from the gate 
agent. She says that there is a 50/50 chance that your bag is on the plane. More for-
mally, we express this as:

(4.1)

We encode this probabilistic knowledge in a Bayesian network by creating a node. 
In BayesiaLab, we click the Node Creation icon ( ) and then point to the desired 
position on the Graph Panel.

( ) .P Your Bag on Plane True 0 5= =
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Figure 4.1	

Once the node is in place, we update its name to “Your Bag on Plane” by double-click-
ing the default name N1. Then, by double-clicking the node itself, we open up Bayesia-
Lab’s Node Editor. Under the tab Probability Distribution > Probabilistic, we de-
fine the probability that Your Bag on Plane=True, which is 50%, as per the gate agent’s 
statement. Given that these probabilities do not depend on any other variables, we 
speak of marginal probabilities (Figure 4.2). Note that in BayesiaLab probabilities are 
always expressed as percentages.

Figure 4.2	  

Assuming that there is no other opportunity for losing luggage within the destination 
airport, your chance of ultimately receiving your bag should be identical to the prob-
ability of your bag being on the plane, i.e. on the flight segment to your final destina-
tion airport. More simply, if it is on the plane, then you will get it:
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(4.2) 

(4.3) 

Conversely, the following must hold too:

(4.4) 

(4.5) 

We now encode this knowledge into our network. We add a second node, Your Bag 
on Carousel and then click the Arc Creation Mode icon ( ). Next, we click and hold 
the cursor on Your Bag on Plane, drag the cursor to Your Bag on Carousel, and finally 
release. This produces a simple, manually specified Bayesian network (Figure 4.3).

Figure 4.3	  

The yellow warning triangle ( ) indicates that probabilities need to be defined for 
the node Your Bag on Carousel. As opposed to the previous instance, where we only 
had to enter marginal probabilities, we now need to define the probabilities of the 
states of the node Your Bag on Carousel conditional on the states of Your Bag on Plane. 
In other words, we need to fill the Conditional Probability Table to quantify this 
parent-child relationship. We open the Node Editor and enter the values from the 
equations above.

( )P Your Bag on Carousel True Your Bag on Plane True 1;= = =

( )P Your Bag on Carousel False Your Bag on Plane True 0;= = =

( )P Your Bag on Carousel False Your Bag on Plane False 1;= = =

( )P Your Bag on Carousel True Your Bag on Plane False 0;= = =
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Figure 4.4	  

Introduction of Time

Now we add another piece of contextual information, which has not been mentioned 
yet in our story. From the baggage handler who monitors the carousel, you learn that 
100 pieces of luggage in total were on your final flight segment, from the hub to the 
destination. After you wait for one minute, 10 bags have appeared on the carousel, 
and they keep coming out at a very steady rate. However, yours is not among the first 
ten that were delivered in the first minute. At the current rate, it would now take 9 
more minutes for all bags to be delivered to the baggage carousel.

Given that your bag was not delivered in the first minute, what is your new ex-
pectation of ultimately getting your bag? How about after the second minute of wait-
ing? Quite obviously, we need to introduce a time variable into our network. We cre-
ate a new node Time and define discrete time intervals [0,...,10] to serve as its states.
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Figure 4.5	

By default, all new nodes initially have two states, True and False. We can see this by 
opening the Node Editor and selecting the States tab (Figure 4.6).

Figure 4.6	  

By clicking on the Generate States button, we create the states we need for our pur-
poses. Here, we define 11 states, starting at 0 and increasing by 1 step (Figure 4.7).
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Figure 4.7	  

The Node Editor now shows the newly-generated states (Figure 4.8).

Figure 4.8	  

Beyond defining the states of Time, we also need to define their marginal probabili-
ty distribution. For this, we select the tab Probability Distribution > Probabilistic. 
Quite naturally, no time interval is more probable than another one, so we should ap-
ply a uniform distribution across all states of Time. BayesiaLab provides a convenient 
shortcut for this purpose. Clicking the Normalize button places a uniform distribu-
tion across all cells, i.e. 9.091% per cell. 
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Figure 4.9	  

Once Time is defined, we draw an arc from Time to Your Bag on Carousel. By doing 
so, we introduce a causal relationship, stating that Time has an influence on the status 
of your bag.

Figure 4.10	  

The warning triangle ( ) once again indicates that we need to define further prob-
abilities concerning Your Bag on Carousel. We open the Node Editor to enter these 
probabilities into the Conditional Probability Table (Figure 4.11). 
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Figure 4.11	  

Note that the probabilities of the states True and False now depend on two parent 
nodes. For the upper half of the table, it is still quite simple to establish the probabili-
ties. If the bag is not on the plane, it will not appear on the baggage carousel under any 
circumstance, regardless of Time. Hence, we set False to 100 (%) for all rows in which 
Your Bag on Plane=False (Figure 4.12).

Figure 4.12	  
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However, given that Your Bag on Plane=True, the probability of seeing it on the car-
ousel depends on the time elapsed. Now, what is the probability of seeing your bag at 
each time step? Assuming that all luggage is shuffled extensively through the loading 
and unloading processes, there is a uniform probability distribution that the bag is 
anywhere in the pile of luggage to be delivered to the carousel. As a result, there is 
a 10% chance that your bag is delivered in the first minute, i.e. within the first batch 
of 10 out of 100 luggage pieces. Over the period of two minutes, there is a 20% prob-
ability that the bag arrives and so on. Only when the last batch of 10 bags remains 
undelivered, we can be certain that your bag is in the final batch, i.e. there is a 100% 
probability of the state True in the tenth minute. We can now fill out the Conditional 
Probability Table in the Node Editor with these values. Note that we only need to 
enter the values in the True column and then highlight the remaining empty cells. 
Clicking Complete prompts BayesiaLab to automatically fill in the False column to 
achieve a row sum of 100% (Figure 4.13).

Figure 4.13	

Now we have a fully specified Bayesian network, which we can evaluate immediately.

Evidential Reasoning for Problem #1

BayesiaLab’s Validation Mode provides the tools for using the Bayesian network we 
built for omni-directional inference. We switch to the Validation Mode via the cor-
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responding icon ( ), in the lower left-hand corner of the main window, or via the 
keyboard shortcut  (Figure 4.14).

Figure 4.14	

Upon switching to this mode, we double-click on all three nodes to bring up their as-
sociated Monitors, which show the nodes’ current marginal probability distributions. 
We find these Monitors inside the Monitor Panel on the right-hand side of the main 
window (Figure 4.15).

Figure 4.15	  

Inference Tasks

If we filled the Conditional Probability Table correctly, we should now be able to 
validate at least the trivial cases straight away, e.g. for Your Bag on Plane=False. 

Inference from Cause to Effect: Your Bag on Plane=False

We perform inference by setting such evidence via the corresponding Monitor in the 
Monitor Panel. We double-click the bar that represents the State False (Figure 4.16).
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Figure 4.16	

The setting of the evidence turns the node and the corresponding bar in the Monitor 
green (Figure 4.17).

Figure 4.17	

The Monitor for Your Bag on Carousel shows the result. The small gray arrows over-
laid on top of the horizontal bars furthermore indicate how the probabilities have 
changed by setting this most recent piece of evidence (Figure 4.18).

Figure 4.18	

Indeed, your bag could not possibly be on the carousel because it was not on the 
plane in the first place. The inference we performed here is indeed trivial, but it is 
reassuring to see that the Bayesian network properly “plays back” the knowledge we 
entered earlier. 

Omni-Directional Inference: Your Bag on Carousel=False, Time=1

The next question, however, typically goes beyond our intuitive reasoning capabili-
ties. We wish to infer the probability that your bag made it onto the plane, given that 
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we are now in minute 1, and the bag has not yet appeared on the carousel. This infer-
ence is tricky because we now have to reason along multiple paths in our network.

Diagnostic Reasoning

The first path is from Your Bag on Carousel to Your Bag on Plane. This type of reason-
ing from effect to cause is more commonly known as diagnosis. More formally, we 
can write:

(4.6) 

Inter-Causal Reasoning

The second reasoning path is from Time via Your Bag on Carousel to Your Bag on 
Plane. Once we condition on Your Bag on Carousel, i.e. by observing the value, we 
open this path, and information can flow from one cause, Time, via the common ef-
fect,1 Your Bag on Carousel, to the other cause, Your Bag on Plane. Hence, we speak of 
“inter-causal reasoning” in this context. The specific computation task is:

(4.7) 

Bayesian Networks as Inference Engine

How do we go about computing this probability? We do not attempt to perform 
this computation ourselves. Rather, we rely on the Bayesian network we built and 
BayesiaLab’s exact inference algorithms. However, before we can perform this in-
ference computation, we need to remove the previous piece of evidence, i.e. Your 
Bag on Plane=True. We do this by right-clicking the relevant node and then selecting 
Remove Evidence from the Contextual Menu (Figure 4.19). Alternatively, we can 
remove all evidence by clicking the Remove All Observations icon ( ).

1  Chapter 10 will formally explain the specific causal roles nodes can play in a network, 
such as “common effect,” along with their implications for observational and causal infer-
ence.

( )P Your Bag on Plane True Your Bag on Carousel False;= =

▶ Common Child (Col-
lider) in Chapter 10, 
p. 337.( , )P Your Bag on Plane True Your Bag on Carousel False Time 1;= = =
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Figure 4.19	  

Then, we set the new observations via the Monitors in the Monitor Panel. The infer-
ence computation then happens automatically (Figure 4.20). 

Figure 4.20	

Given that you do not see your bag in the first minute, the probability that your bag 
made it onto the plane is now no longer at the marginal level of 50%, but is reduced 
to 47.37%.

Inference as a Function of Time

Continuing with this example, how about if the bag has not shown up in the second 
minute, in the third minute, etc.? We can use one of BayesiaLab’s built-in visualiza-
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tion functions to analyze this automatically. To prepare the network for this type of 
analysis, we first need to set a Target Node, which, in our case, is Your Bag on Plane. 
Upon right-clicking this node, we select Set as Target Node (Figure 4.21). Alterna-
tively, we can double-click the node, or one of its states in the corresponding Moni-
tor, while holding T.

Figure 4.21	  

Upon setting the Target Node, Your Bag on Plane is marked with a bullseye symbol 
( ). Also, the corresponding Monitor is now highlighted in red (Figure 4.22).

Figure 4.22	
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Before we continue, however, we need to remove the evidence from the Time Moni-
tor. We do so by right-clicking the Monitor and selecting Remove Evidence from the 
Contextual Menu (Figure 4.23).

Figure 4.23	

Then, we select Analysis > Visual > Influence Analysis on Target Node (Figure 4.24).

Figure 4.24	  

The resulting graph shows the probabilities of receiving your bag as a function of the 
discrete time steps. To see the progression of the True state, we select the correspond-
ing tab at the top of the window (Figure 4.25).
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Figure 4.25	  

Knowledge Modeling for Problem #2

Continuing with our narrative, you now notice a colleague of yours in the baggage 
claim area. As it turns out, your colleague was traveling on the very same itinerary as 
you, so he had to make the same tight connection. As opposed to you, he has already 
retrieved his bag from the carousel. You assume that his luggage being on the airplane 
is not independent of your luggage being on the same plane, so you take this as a pos-
itive sign. How do we formally integrate this assumption into our existing network? 

To encode any new knowledge, we first need to switch back into the Modeling 
Mode (  or ). Then, we duplicate the existing nodes Your Bag on Plane and Your 
Bag on Carousel by copying and pasting them using the common shortcuts,  
and V, into the same graph (Figure 4.26). 
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Figure 4.26	

In the copy process, BayesiaLab prompts us for a Copy Format (Figure 4.26), which 
would only be relevant if we intended to paste the selected portion of the network 
into another application, such as PowerPoint. As we paste the copied nodes into the 
same Graph Panel, the format does not matter.

Figure 4.27	

Upon pasting, by default, the new nodes have the same names as the original ones 
plus the suffix “[1]” (Figure 4.28). 
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Figure 4.28	

Next, we reposition the nodes on the Graph Panel and rename them to show that 
the new nodes relate to your colleague’s situation, rather than yours. To rename the 
nodes we double-click the Node Names and overwrite the existing label. 

Figure 4.29	

The next assumption is that your colleague’s bag is subject to exactly the same forces 
as your luggage. More specifically, the successful transfer of your and his luggage is a 
function of how many bags could be processed at the hub airport given the limited 
transfer time. To model this, we introduce a new node and name it Transit (Figure 
4.30). 
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Figure 4.30	

We create 7 states of ten-minute intervals for this node, which reflect the amount of 
time available for the transfer, i.e. from 0 to 60 minutes (Figure 4.31). 

Figure 4.31	
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Figure 4.32	

Furthermore, we set the probability distribution for Transit. For expository simplici-
ty, we apply a uniform distribution using the Normalize button (Figure 4.33).

Figure 4.33	

Now that the Transit node is defined, we can draw the arcs connecting it to Your Bag 
on Plane and Colleague’s Bag on Plane (Figure 4.34).
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Figure 4.34	

The yellow warning triangles ( ) indicate that the conditional probability tables of 
Your Bag on Plane and Colleague’s Bag on Plane have yet to be filled. Thus, we need to 
open the Node Editor and set these probabilities. We will assume that the probability 
of your bag making the connection is 0% given a Transit time of 0 minutes and 100% 
with a Transit time of 60 minutes. Between those values, the probability of a success-
ful transfer increases linearly with time (Figure 4.35).

Figure 4.35	  

The very same function also applies to your colleague’s bag, so we enter the same 
conditional probabilities for the node Colleague’s Bag on Plane by copying and pasting 
the previously entered table (Figure 4.35). Figure 4.36 shows the completed network.
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Figure 4.36	

Evidential Reasoning for Problem #2

Now that the probabilities are defined, we switch to the Validation Mode 
(  or ); our updated Bayesian network is ready for inference again (Figure 4.37).

Figure 4.37	  

We simulate a new scenario to test this new network. For instance, we move to the 
fifth minute and set evidence that your bag has not yet arrived (Figure 4.38).
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Figure 4.38	

Given these observations, the probability of Your Bag on Plane=True is now 33.33%. 
Interestingly, the probability of Colleague’s Bag on Plane has also changed. As evi-
dence propagates omni-directionally through the network, our two observed nodes 
do indeed influence Colleague’s Bag on Plane. A further iteration of the scenario in 
our story is that we observe Colleague’s Bag on Carousel=True, also in the fifth minute 
(Figure 4.39).

Figure 4.39	  

Given the observation of Colleague’s Bag on Carousel, even though we have not yet 
seen Your Bag on Carousel, the probability of Your Bag on Plane increases to 56.52%. 
Indeed, this observation should change your expectation quite a bit. The small gray 
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arrows on the blue bars inside the Monitor for Your Bag on Plane indicate the impact 
of this observation.

After removing the evidence from the Time Monitor, we can perform Influence 
Analysis on Target again in order to see the probability of Your Bag on Plane=True 
as a function of Time, given Your Bag on Carousel=False and Colleague’s Bag on Car-
ousel=True (Figure 4.41). To focus our analysis on Time alone, we select the Time 
node and then select Analysis > Visual > Influence Analysis on Target (Figure 4.40).

Figure 4.40	  

As before, we select the True tab in the resulting window to see the evolution of prob-
abilities given Time (Figure 4.41).

Figure 4.41	  
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Summary

This chapter provided a brief introduction to knowledge modeling and evidential 
reasoning with Bayesian networks in BayesiaLab. Bayesian networks can formally 
encode available knowledge, deal with uncertainties, and perform omni-directional 
inference. As a result, we can properly reason about a problem domain despite many 
unknowns.
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5. Bayesian Networks and Data

In the previous chapter, we described the application of Bayesian networks for evi-
dential reasoning. In that example, all available knowledge was manually encoded 

in the Bayesian network. In this chapter, we additionally use data for defining Bayes-
ian networks. This provide the basis for the following chapters, which will present 
applications that utilize machine-learning for generating Bayesian networks entirely 
from data. For machine learning with BayesiaLab, concepts derived from information 
theory, such as entropy and mutual information, are of particular importance and 
should be understood by the researcher. However, to most scientists these measures 
are not nearly as familiar as common statistical measures, e.g. covariance and correla-
tion.

Example: House Prices in Ames, Iowa

To introduce these presumably unfamiliar information-theoretic concepts, we pres-
ent a straightforward research task. The objective is to establish the predictive im-
portance of a range of variables with regard to a target variable. The domain of this 
example is residential real estate, and we wish to examine the relationships between 
home characteristics and sales price. In this context, it is natural to ask questions re-
lated to variable importance, such as, which is the most important predictive vari-
able pertaining to home value? By attempting to answer this question, we can explain 
what entropy and mutual information mean in practice and how BayesiaLab com-
putes these measures. In this process, we also demonstrate a number of BayesiaLab’s 

data handling functions.
The dataset for this chapter’s exercise describes the sale of individual residential 

properties in Ames, Iowa, from 2006 to 2010. It contains a total of 2,930 observations 
and a large number of explanatory variables (23 nominal, 23 ordinal, 14 discrete, and 
20 continuous). This dataset was first used by De Cock (2011) as an educational tool 
for statistics students. The objective of their study was the same as ours, i.e. modeling 
sale prices as a function of the property attributes.
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To make this dataset more convenient for demonstration purposes, we reduced 
the total number of variables to 49. This pre-selection was fairly straightforward as 
there are numerous variables that essentially do not apply to homes in Ames, e.g. 
variables relating to pool quality and pool size (there are practically no pools), or roof 
material (it is the same for virtually all homes). 

Data Import Wizard

As the first step, we start BayesiaLab’s Data Import Wizard by selecting Data > Open 
Data Source > Text File from the main menu.1

Figure 5.1	

Next, we select the file named “ames.csv”, a comma-delimited, flat text file.2 

1  For larger datasets, we could use Data > Open Data Source > Database and connect to a 
database server via BayesiaLab’s JDBC connection.

2  The Ames dataset is available for download via this link: www.bayesia.us/ames
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Figure 5.2	

This brings up the first screen of the Data Import Wizard, which provides a preview 
of the to-be-imported dataset (Figure 5.3). For this example, the coding options for 
Missing Values and Filtered Values are particularly important. By default, Bayesia-
Lab lists commonly used codes that indicate an absence of data, e.g. #NUL! or NR 
(non-response). In the Ames dataset, a blank field (“”) indicates a Missing Value, and 
“FV” stands for Filtered Value. These are recognized automatically. If other codes 
were used, we could add them to the respective lists on this screen.

Figure 5.3	

▶ Chapter 9. Missing 
Values Processing, 
p. 289.



82

Clicking Next, we proceed to the screen that allows us to define variable types (Figure 
5.4).

Figure 5.4	

BayesiaLab scans all variables in the database and comes up with a best guess regard-
ing the variable type (Figure 5.4). Variables identified as Continuous are shown in 
turquoise, and those identified as Discrete are highlighted in pastel red. 

In BayesiaLab, a Continuous variable contains a wide range of numerical val-
ues (discrete or continuous), which need to be transformed into a more limited num-
ber of discrete states. Some other variables in the database only have very few distinct 
numerical values to begin with, e.g. [1,2,3,4,5], and BayesiaLab automatically recog-
nizes such variables as Discrete. For them, the number of numerical states is small 
enough that it is not necessary to create bins of values. Also, variables containing text 
values are automatically considered Discrete.

For this dataset, however, we need to make a number of adjustments to Bayesia-
Lab’s suggested data types. For instance, we set all numerical variables to Continu-
ous, including those highlighted in red that were originally identified as Discrete. As 
a result, all columns in the data preview of the Data Import Wizard are now shown 
in turquoise (Figure 5.5).
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Figure 5.5	

Given that our database contains some missing values, we need to select the type of 
Missing Values Processing in the next step (Figure 5.6). Instead of using ad hoc meth-
ods, such as pairwise or listwise deletion, BayesiaLab can leverage more sophisticat-
ed techniques and provide estimates (or temporary placeholders) for such missing 
values—without discarding any of the original data. We will discuss Missing Values 
Processing in detail in Chapter 9. For this example, however, we leave the default 
setting of Structural EM.

Figure 5.6	

▶ Chapter 9. Missing 
Values Processing, 
p. 289.
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Filtered Values

At this juncture, however, we need to introduce a very special type of missing value 
for which we must not generate any estimates. We are referring to so-called Filtered 
Values. These are “impossible” values that do not or cannot exist—given a specific set 
of evidence, as opposed to values that do exist but are not observed. For example, 
for a home that does not have a garage, there cannot be any value for the variable 
Garage Type, such as Attached to Home, Detached from Home, or Basement Garage. 
Quite simply, if there is no garage, there cannot be a garage type. As a result, it makes 
no sense to calculate an estimate of a Filtered Value. In a database, unfortunately, a 
Filtered Value typically looks identical to “true” missing value that does exist but is 
not observed. The database typically contains the same code, such as a blank, NULL, 
N/A, etc., for both cases. 

Therefore, as opposed to “normal” missing values, which can be left as-is in the 
database, we must mark Filtered Values with a specific code, e.g. “FV.” The Filtered 
Value declaration should be done during data preparation, prior to importing any 
data into BayesiaLab. BayesiaLab will then add a Filtered State (marked with “*”) to 
the discrete states of the variables with Filtered Values, and utilize a special approach 
for actively disregarding such Filtered States, so that they are not taken into account 
during machine-learning or for estimating effects.

Discretization

As the next step in the Data Import Wizard, all Continuous values must be discret-
ized (or binned). We show a sequence of screenshots to highlight the necessary steps. 
The initial view of the Discretization and Aggregation step appears in Figure 5.7.

▶ Filtered Values in 
Chapter 9, p. 296.
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Figure 5.7	

By default, the first column is highlighted, which happens to be SalePrice, the variable 
of principal interest in this example. Instead of selecting any of the available automatic 
discretization algorithms, we pick Manual from the Type drop-down menu, which 
brings up the cumulative distribution function of the SalePrice variable (Figure 5.8).

Figure 5.8	
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By clicking Switch View, we can bring up the probability density function of Sale-
Price (Figure 5.9).

Figure 5.9	

Either view allows us to examine the distribution and identify any salient points. We 
stay on the current screen to set the thresholds for each discretization bin (Figure 
5.10). In many instances, we would use an algorithm to define bins automatically, 
unless the variable will serve as the target variable. In that case, we usually rely on 
available expert knowledge to define the binning. In this example, we wish to have 
evenly-spaced, round numbers for the interval boundaries. We add boundaries by 
right-clicking on the plot (right-clicking on an existing boundary removes it again). 
Furthermore, we can fine-tune a threshold’s position by entering a precise value in 
the Point field. We use {75000, 150000, 225000, 300000} as the interval boundaries 
(Figure 5.10).
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Figure 5.10	

Now that we have manually discretized the target variable SalePrice (column high-
lighted in blue in Figure 5.10), we still need to discretize the remaining continuous 
variables. However, we will take advantage of an automatic discretization algorithm 
for those variables. We click Select All Continuous and then deselect SalePrice by 
clicking on the corresponding column while holding . This excludes SalePrice 
from the subsequent automatic discretization.

Different discretization algorithms are available, five univariate that only use 
the data of the to-be-discretized variable, and one bivariate that uses the data of the 
to-be-discretized variable plus the data of a target variable: 

Equal Distance

Equal Distance uses the range of the variable to define an equal repartition of the 
discretization thresholds. This method is particularly useful for discretizing variables 
that share the same variation domain (e.g. satisfaction measures in surveys). Addi-
tionally, this method is suitable for obtaining a discrete representation of the density 
function. However, it is extremely sensitive to outliers, and it can return bins that do 
not contain any data points.



88

Normalized Equal Distance

Normalized Equal Distance pre-processes the data with a smoothing algorithm to 
remove outliers prior to defining equal partitions.

Equal Frequency

With Equal Frequency, the discretization thresholds are computed with the objec-
tive of obtaining bins with the same number of observations, which usually results in 
a uniform distribution. Thus, the shape of the original density function is no longer 
apparent upon discretization. As we will see later in this chapter, this also leads to 
an artificial increase in the entropy of the system, which has a direct impact on the 
complexity of machine-learned models. However, this type of discretization can be 
useful—once a structure is learned—for further increasing the precision of the repre-
sentation of continuous values.

K-Means

K-Means is based on the classical K-Means data clustering algorithm but uses only 
one dimension, which is to-be-discretized variable. K-Means returns a discretization 
that is directly dependent on the density function of the variable. For example, ap-
plying a three-bin K-Means discretization to a normally distributed variable creates a 
central bin representing 50% of the data points, along with two bins of 25% each for 
the tails. In the absence of a target variable, or if little else is known about the variation 
domain and distribution of the continuous variables, K-Means is recommended as 
the default method.

Tree

Tree is a bivariate discretization method. It machine learns a tree that uses the 
to-be-discretized variable for representing the conditional probability distributions 
of the target variable given the to-be-discretized variable. Once the tree learned, it 
is analyzed to extract the most useful thresholds. This is the method of choice in the 
context of Supervised Learning, i.e. when planning to machine-learn a model to pre-
dict the target variable. 

At the same time, we do not recommend using Tree in the context of Unsu-
pervised Learning. The Tree algorithm creates bins that have a bias towards the 
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designated target variable. Naturally, emphasizing one particular variable would run 
counter the intent of Unsupervised Learning.

Note that if the to-be-discretized variable is independent of the target variable, 
it will be impossible to build a tree and BayesiaLab will prompt for the selection of a 
univariate discretization algorithm.

In this example, we focus our analysis on SalePrice, which can be considered a 
type of Supervised Learning. Therefore, we choose to discretize all continuous vari-
ables with the Tree algorithm, using SalePrice as the Target variable. The Target must 
either be a Discrete variable or a Continuous variable that has already been manually 
discretized, which is the case for SalePrice.

Figure 5.11	

Once this is set, clicking Finish completes the import process. The import process 
concludes with a pop-up window that offers to display the Import Report (Figure 
5.12).

Figure 5.12	
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Clicking Yes brings up the Import Report, which can be saved in HTML format. It 
lists the discretization intervals of Continuous variables, the States of Discrete vari-
ables, and the discretization method that was used for each variable (Figure 5.13).

Figure 5.13	

Graph Panel

Once we close out of this report, we can see the result of the import. Nodes in the 
Graph Panel now represent all the variables from the imported database (Figure 
5.14). The dashed borders of some nodes ( ) indicate that the corresponding vari-
ables were discretized during data import. Furthermore, we can see icons that indi-
cate the presence of Missing Values ( ) and Filtered Values ( ) on the respective 
nodes.
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Figure 5.14	

The lack of warning icons on any of the nodes indicates that all their parameters, i.e. 
their marginal probability distributions, were automatically estimated upon data 
import. To verify, we can double-click SalePrice, go to the Probability Distribu-
tion | Probabilistic tab, and see this node’s marginal distribution. 

Figure 5.15	

Clicking on Occurrences tab shows the observations per cell, which were used for 
the Maximum Likelihood Estimation of the marginal distribution.
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Figure 5.16	

Node Comments

The Node Names that are displayed by default were taken directly from the column 
header in the dataset. Given their typical brevity, to keep the Graph Panel unclut-
tered, we like to keep the column headers from the database as Node Names. On the 
other hand, we may wish to have longer, more descriptive names available as Node 
Comments when interpreting the network. These comments can be edited via the 
Node Editor. Alternatively, we can create a Dictionary, i.e. a file that links Node 
Names to Node Comments.

The syntax for this association is rather straightforward: we simply define a 
text file that includes one Node Name per line. Each Node Name is followed by a 
delimiter (“=”, tab, or space) and then by the long node description, which will serve 
as Node Comment (Figure 5.17). Note that basic HTML tags can be included in the 
dictionary file.

Figure 5.17	

To attach this Dictionary, we select Data > Associate Dictionary > Node > Com-
ments (Figure 5.18).
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Figure 5.18	

Next, we select the location of the Dictionary file, which is appropriately named 
“Node Comments.txt” (Figure 5.19).

Figure 5.19	

Upon loading the Dictionary file, a call-out icon ( ) appears next to each node. This 
means that a Node Comment is available. They can be displayed by clicking the Dis-
play Node Comment icon ( ) in the menu bar (Figure 5.20). Node Comments can 
be turned on or off, depending on the desired view. 
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Figure 5.20	

We now switch to the Validation Mode (  or ), in which we can bring up indi-
vidual Monitors by double-clicking the nodes of interest. We can also select multiple 
nodes and then double-click any one of them to bring up all of their Monitors. (Fig-
ure 5.21).

Figure 5.21	

Now that we have our database internally represented in BayesiaLab, we need to 
become familiar how BayesiaLab can quantify the probabilistic properties of these 
nodes and their relationships.



95

Chapter 5

Information-Theoretic Concepts

Uncertainty, Entropy, and Mutual Information

In a traditional statistical analysis, we would presumably examine correlation and 
covariance between the variables to establish their relative importance, especially 
with regard to the target variable Sale Price. In this chapter, we take an alternative 
approach, which is based on information theory. Instead of computing the correla-
tion coefficient, we consider how the uncertainty of the states of a to-be-predicted 
variable is affected by observing a predictor variable. 

Beyond our common-sense understanding of uncertainty, there is a more for-
mal quantification of uncertainty in information theory, and that is entropy. More 
specifically, we use entropy to quantify the uncertainty manifested in the probability 
distribution of a variable or of a set of variables. In the context of our example, the 
uncertainty relates to the to-be-predicted home price.

It is fair to say that we would need detailed information about a property to 
make a reasonable prediction of its value. However, in the absence of any specific 
information, would we be entirely uncertain about its value? Probably not. Even if 
we did not know anything about a particular house, we would have some contextual 
knowledge, i.e. that the house is in Ames, Iowa, rather than in midtown-Manhattan, 
and that the property is a private home rather than shopping mall. That knowledge 
significantly reduces the range of possible values. True uncertainty would mean that a 
value of $0.01 is as probable as a value of $1 million or $1 billion. That is clearly not the 
case here. So, how uncertain are we about the value of a random home in Ames, prior 
to learning anything about that particular home? The answer is that we can compute 
the entropy from the marginal probability distribution of home values in Ames. Since 
we have the Ames dataset already imported into BayesiaLab, we can display a histo-
gram of SalePrice by bringing up its Monitor (Figure 5.22).

Figure 5.22	

This Monitor reflects the discretization intervals that we defined during the data im-
port. It is now easy to see the frequency of prices in each price interval, i.e. the mar-
ginal distribution of SalePrice. For instance, only about 2% of homes sold had a price 
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of $75,000 or less. On the basis of this probability distribution, we can now compute 
the entropy. The definition of entropy for a discrete distribution is:

(5.1)

Entering the values displayed in the Monitor, we obtain:

(5.2)

In information theory, the unit of information is bit, which is why we use base 2 of the 
logarithm. On its own, the calculated entropy value of 1.85 bits may not be a mean-
ingful measure. To get a sense of how much or how little uncertainty this value rep-
resents, we compare it to two easily-interpretable measures, i.e. “no uncertainty” and 
“complete uncertainty.”

No Uncertainty

No uncertainty means that the probability of one bin (or state) of SalePrice is 100%. 
This could be, for instance, P(SalePrice<=75000)=1 (Figure 5.23).

Figure 5.23	

We now compute the entropy of this distribution once again:

(5.3)

Here, ( )log0 02# is taken as 0, given the limit ( )lim logp p 0
p 0

=
" +

. This simply means 
that “no uncertainty” has zero entropy.

Complete Uncertainty

What about the opposite end of the spectrum, i.e. complete uncertainty? Maximum 
uncertainty exists when all possible states of a distribution are equally probable, when 
we have a uniform distribution, as shown in Figure 5.24.
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Figure 5.24	

Once again, we calculate the entropy:

(5.4)

In addition to the previously computed marginal entropy of 1.85, we now have the 
values 0 and 2.3219 for “no uncertainty” and “complete uncertainty” respectively.3

Entropy and Predictive Importance

How do such entropy values help us to establish the importance of predictive vari-
ables? If there is no uncertainty regarding a variable, one state of this variable has to 
have a 100% probability, and predicting that particular state must be correct. This 
would be like predicting the presence of clouds during rain. On the other hand, if the 
probability distribution of the target variable is uniform, e.g. the outcome of (fair) 
coin toss, a random prediction has to be correct with a probability of 50%. 

In the context of house prices, knowing the marginal distribution of SalePrice 
and assuming this distribution is still true when we are making the prediction, pre-
dicting SalePrice>=150000 would have a 41.28% probability of being correct, even 
if we knew nothing else. However, we would expect that observing an attribute of a 
specific home would reduce our uncertainty concerning its SalePrice and increase our 
probability of making a correct prediction for this particular home. In other words, 
conditional upon learning an attribute of a home, i.e. by observing a predictive vari-
able, we expect a lower uncertainty for the target variable, SalePrice. 

For instance, the moment we learn of a particular home that LotArea=200,000 
(measured in sq ft),4 and assuming, again, that the estimated marginal distribution is 
still true when we are making the prediction, we can be certain that SalePrice>300000. 
This means that upon learning the value of this home’s LotArea, the entropy of Sale-
Price goes from 1.85 to 0. Learning the size reduces our entropy by 1.85 bits. Alterna-
tively, we can say that we gain information amounting to 1.85 bits.

3  The value 5 in the logarithm of the simplified equation (5.4) reflects the number of states. 
This means that the entropy is a function of the variable discretization. 

4  200,000 square feet ≈ 4.6 acres ≈ 18.851 m2 ≈1.86 ha.
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The information gain or entropy reduction from learning about LotArea of 
this house is obvious. Observing a different home with a more common lot size, e.g. 
LotArea=10,000, would presumably provide less information and, thus, have less pre-
dictive value for that home.

Mutual Information

However, we wish to know how much information we would gain on average—con-
sidering all values of LotArea along with their probabilities—by generally observing it 
as a predictive variable for SalePrice. Knowing this “average information gain” would 
reflect the predictive importance of observing the variable LotArea. 

To compute this, we need two quantities. First, the marginal entropy of the 
target variable H(SalePrice) (5.2), and, second, the conditional entropy of the target 
variable given the predictive variable:

(5.5)

The difference between the marginal entropy of the target variable and the con-
ditional entropy of the target given the predictive variable is formally known as Mu-
tual Information, denoted by I. In our example, the Mutual Information I between 
SalePrice and LotArea is the marginal entropy of SalePrice minus the conditional en-
tropy of SalePrice given LotArea:

(5.6)

More generally, the Mutual Information I between variables X and Y is defined by:

(5.7)

which is equivalent to:

(5.8)

and furthermore also equivalent to:

(5.9)

This allows us to compute the Mutual Information between a target variable and any 
possible predictors. As a result, we can find out which predictor provides the maxi-
mum information gain and, thus, has the greatest predictive importance.
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Parameter Estimation

Now we see the real benefit of bringing all variables as nodes into BayesiaLab. All the 
terms of the equation (5.7) can be easily computed with BayesiaLab once we have a 
fully specified network.

We start with a pair of nodes, namely Neighborhood and SalePrice. As opposed 
to LotArea, which is a discretized Continuous variable, Neighborhood is categorical, 
and, as such, it has been automatically treated as Discrete in BayesiaLab. This is the 
reason the node corresponding to Neighborhood has a solid border. We now add an 
arc between these two nodes, as illustrated in Figure 5.25, so as to explicitly represent 
the dependency between them. 

Figure 5.25	

The yellow warning triangle ( ) reminds us that the Conditional Probability Table 
(CPT) of SalePrice given Neighborhood has not been defined yet. In Chapter 4 we 
defined the CPT from existing knowledge. Here, on the other hand, as we have an 
associated database, BayesiaLab can use it to estimate the CPT by using Maximum 
Likelihood, i.e. BayesiaLab “counts” the (co-)occurrences of the states of the vari-
ables in our data. For reference, Figure 5.26 shows the first 10 records of the variables 
SalePrice and Neighborhood from the Ames database.
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Figure 5.26	

SalePrice Neighborhood

<=225000 Old Town
<=150000 College Creek
>300000 College Creek

<=150000 Sawyer
<=225000 Gilbert
<=150000 Mitchell
<=150000 Old Town
<=225000 Gilbert
<=150000 Sawyer
<=225000 Gilbert

Counting all records, we obtain the marginal count of each state of Neighborhood 
(Figure 5.27).

Figure 5.27	

Neighborhood Count of Neighborhood

Bloomington Heights 28
Bluestem 10
Briardale 30

Brookside 108
Clear Creek 44

College Creek 267
Crawford 103
Edwards 194
Gilbert 165

Green Hills 2
Greens 8

Iowa DOT and Rail Road 93
Landmark 1

Meadow Village 37
Mitchell 114

Northpark Villa 23
Northridge 71

Northridge Heights 166
Northwest Ames 131

Old Town 239
Sawyer 151

Sawyer West 125
Somerset 182

South & West of Iowa State University 48
Stone Brook 51
Timberland 72

Veenker 24

Given that our Bayesian network structure says that Neighborhood is the parent node 
of SalePrice, we now count the states of SalePrice conditional on Neighborhood. This 
is simply a cross-tabulation (Figure 5.28).
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Figure 5.28	

Neighborhood <=75000 <=150000 <=225000 <=300000 >300000

Bloomington Heights 0 0 23 5 0
Bluestem 0 6 4 0 0
Briardale 0 30 0 0 0

Brookside 8 82 18 0 0
Clear Creek 0 6 20 16 2

College Creek 0 56 139 62 10
Crawford 0 24 45 24 10
Edwards 8 148 28 7 3
Gilbert 0 4 143 15 3

Green Hills 0 0 0 1 1
Greens 0 0 8 0 0

Iowa DOT and Rail Road 21 65 7 0 0
Landmark 0 1 0 0 0

Meadow Village 3 33 1 0 0
Mitchell 0 53 50 11 0

Northpark Villa 0 22 1 0 0
Northridge 0 0 2 32 37

Northridge Heights 0 0 31 44 91
Northwest Ames 0 14 95 21 1

Old Town 16 184 33 4 2
Sawyer 2 112 37 0 0

Sawyer West 1 33 67 21 3
Somerset 0 10 81 72 19

South & West of Iowa State University 1 32 15 0 0
Stone Brook 0 1 12 11 27
Timberland 0 2 31 24 15

Veenker 0 1 9 10 4

Count of Occurrences of SalePrice Given Neighborhood

Once we translate these counts into probabilities (by normalizing by the total number 
of occurrences for each row in the table), this table becomes a CPT. Together, the 
network structure (qualitative) and the CPTs (quantitative) make up the Bayesian 
network, as shown in the conceptual illustration in Figure 5.29.
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Figure 5.29	

Neighborhood
Marginal 

Probabilities of 
Neighborhood

Neighborhood <=75000 <=150000 <=225000 <=300000 >300000

Bloomington Heights 16.1% Bloomington Heights 0.0% 0.0% 82.1% 17.9% 0.0%
Bluestem 0.3% Bluestem 0.0% 60.0% 40.0% 0.0% 0.0%
Briardale 1.0% Briardale 0.0% 100.0% 0.0% 0.0% 0.0%
Brookside 3.7% Brookside 7.4% 75.9% 16.7% 0.0% 0.0%

Clear Creek 1.5% Clear Creek 0.0% 13.6% 45.5% 36.4% 4.5%
College Creek 9.1% College Creek 0.0% 21.0% 52.1% 23.2% 3.7%

Crawford 3.5% Crawford 0.0% 23.3% 43.7% 23.3% 9.7%
Edwards 6.6% Edwards 4.1% 76.3% 14.4% 3.6% 1.5%
Gilbert 5.6% Gilbert 0.0% 2.4% 86.7% 9.1% 1.8%

Green Hills 0.1% Green Hills 0.0% 0.0% 0.0% 50.0% 50.0%
Greens 0.3% Greens 0.0% 0.0% 100.0% 0.0% 0.0%

Iowa DOT and RR 3.2% Iowa DOT and RR 22.6% 69.9% 7.5% 0.0% 0.0%
Landmark 0.0% Landmark 0.0% 100.0% 0.0% 0.0% 0.0%

Meadow Village 1.3% Meadow Village 8.1% 89.2% 2.7% 0.0% 0.0%
Mitchell 3.9% Mitchell 0.0% 46.5% 43.9% 9.6% 0.0%

Northpark Villa 0.8% Northpark Villa 0.0% 95.7% 4.3% 0.0% 0.0%
Northridge 2.4% Northridge 0.0% 0.0% 2.8% 45.1% 52.1%

Northridge Heights 5.7% Northridge Heights 0.0% 0.0% 18.7% 26.5% 54.8%
Northwest Ames 4.5% Northwest Ames 0.0% 10.7% 72.5% 16.0% 0.8%

Old Town 8.2% Old Town 6.7% 77.0% 13.8% 1.7% 0.8%
Sawyer 5.2% Sawyer 1.3% 74.2% 24.5% 0.0% 0.0%

Sawyer West 4.3% Sawyer West 0.8% 26.4% 53.6% 16.8% 2.4%
Somerset 6.2% Somerset 0.0% 5.5% 44.5% 39.6% 10.4%

South & West of  ISU 1.6% South & West of  ISU 2.1% 66.7% 31.3% 0.0% 0.0%
Stone Brook 1.7% Stone Brook 0.0% 2.0% 23.5% 21.6% 52.9%
Timberland 2.5% Timberland 0.0% 2.8% 43.1% 33.3% 20.8%

Veenker 0.8% Veenker 0.0% 4.2% 37.5% 41.7% 16.7%

Conditional Probabilities of SalePrice Given Neighborhood

In practice, however, we do not need to bother with these individual steps. Rather, 
BayesiaLab can automatically learn all marginal and conditional probabilities from 
the associated database. To perform this task, we select Learning > Parameter Esti-
mation (Figure 5.30).
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Figure 5.30	

Upon completing the Parameter Estimation, the warning triangle ( ) has disap-
peared, and we can verify the results by double-clicking SalePrice to open the Node 
Editor. Under the tab Probability Distribution and sub-tab Probabilistic, we can 
see the probabilities of the states of SalePrice given Neighborhood (Figure 5.31). The 
CPT presented in the Node Editor is indeed identical to the table calculated with the 
spreadsheet (Figure 5.29). 

Figure 5.31	
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This model now provides the basis for computing the Mutual information between 
Neighborhood and SalePrice. BayesiaLab computes Mutual Information on demand 
and can display its value in numerous ways. For instance, from within the Validation 
Mode (  or ), we can select Analysis >Visual > Arcs’ Mutual Information.

Figure 5.32	

The value of Mutual Information is now represented graphically in the thickness of 
the arc. Given that we only have a single arc in this network, this does not give us 
much insight. So, we click Display Arc Comments ( ) to show the numerical values 
(Figure 5.33).

Figure 5.33	
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The top number in the yellow box shows the actual MI value, i.e. 0.5999 bits (Figure 
5.25). We should also point out that Mutual Information is a symmetric measure. As 
such, the amount of MI that Neighborhood provides on SalePrice is the same as the 
amount of MI that SalePrice provides with regard to Neighborhood. This means that 
knowing the SalePrice reduces the uncertainty with regard to Neighborhood, even 
though that may not be of interest.

Figure 5.34	

0.5999
32.4254%
14.338%

Without context, however, the value of Mutual Information number is not meaning-
ful. Hence, BayesiaLab provides two additional measures, shown in red and in blue. 
The blue number shows the Relative Mutual Information with regard to the child 
node, SalePrice, which gives us a sense by how much the entropy of SalePrice was 
reduced. Previously, we computed the marginal entropy of SalePrice to be 1.85. Di-
viding the Mutual Information by the marginal entropy of SalePrice gives us a sense 
of how much our uncertainty is reduced: 

(5.10)

Conversely, the red number shows the Relative Mutual Information with regard to 
the parent node, Neighborhood. Here, we divide the Mutual Information, which is 
the same in both directions, by the marginal entropy of Neighborhood:

(5.11)

This means that by knowing Neighborhood, we reduce our uncertainty regarding Sale-
Price by 32% on average. By knowing SalePrice, we reduce our uncertainty regarding 
Neighborhood by 14% on average. These values are readily interpretable. However, we 
need to know this for all nodes to determine which node is most important.

Naive Bayes Network

Rather than computing the relationships individually for each pair of nodes, we ask 
BayesiaLab to estimate a Naive Bayes network. A Naive Bayes structure is a network 
with only one parent, the Target Node, i.e. the only arcs in the graph are those direct-

.
. . . %1 85
0 5999 0 3243 32 43= =

.

. . . %4 1839
0 5999 0 1434 14 34= =
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ly connecting the Target Node to a set of nodes. 

The Naive Bayes network is perhaps the most commonly used Bayesian net-
work, presumably due to its simplicity. As a result, we find it implemented in 
many software packages. The so-called Bayesian anti-spam systems are based 
on this model. It is important to point out, however, that the Naive Bayes net-
work is simply the first step towards embracing the Bayesian network para-
digm. Therefore, we only show this type of network as an expository aid, rather 
than proposing to use it as a primary model.

By designating SalePrice as the Tar-
get Node, way we can automatically compute its Mutual Information with all other 
available nodes. First, we right-click on the SalePrice node to bring up the Contextu-
al Menu, from which we then select Set as Target Node (Figure 5.35). Alternatively, 
we can double-click the node while pressing T.

Figure 5.35	

A pop-up window requires us to confirm the selection of the Target Node. We also 
have the option of setting a Target State of the Target Node via the drop-down menu. 
In our case, the Target State is not relevant, and we can leave it at the default value 
(Figure 5.36). The Target State is only useful for certain analysis functions but not for 
machine learning a structure.
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Figure 5.36	

The special status of the Target Node is highlighted by the bullseye symbol ( ). We 
can now proceed to learn the Naive Bayes network. From the main menu, we select 
Learning > Supervised Learning > Naive Bayes (Figure 5.37).

Figure 5.37	

Strictly speaking, we are specifying and estimating this network, rather than learning 
it. Indeed, the “naive” design of the network fully defines its structure (Figure 5.38).



108

Figure 5.38	

Now we have the network in place that allows computing the Mutual Information 
for all nodes. We switch to Validation Mode (  or ) and select Analysis > Visu-
al > Arcs’ Mutual Information.

Figure 5.39	

The different levels of Mutual Information are now reflected in the thickness of the 
arcs (Figure 5.40).
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Figure 5.40	

However, given the grid layout of the nodes and the overlapping arcs, it is difficult to 
establish a rank order of the nodes in terms of Mutual Information. To address this, 
we can adjust the layout and select View > Layout > Radial Layout (Figure 5.41).

Figure 5.41	

This generates a circular arrangement of all nodes with the Target Node, SalePrice, 
in the center. By repeatedly clicking the Stretch icon ( ), we expand the network to 
make it fit the available screen space (Figure 5.42). To improve legibility further, we 
click the Hide Information icon in the menu bar ( ).
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Figure 5.42	

By running Radial Layout while the visualization of Arcs’ Mutual Information is still 
active, the nodes are ordered clockwise from strongest to weakest. To make it easier 
to see the details of the network, we show it as a standalone graphic in Figure 5.43
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Figure 5.43	

The illustration shows that Neighborhood provides the highest amount of Mutual In-
formation, and, at the opposite end of the range, RoofMtl (Roof Material) the least. 
As an alternative to this visualization, we can run a report: Analysis > Report > Rela-
tionship Analysis. The resulting Relationship Analysis is shown in Figure 5.44. 
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Figure 5.44	

Mutual Information vs. Correlation

Wouldn’t this report look just the same if it were computed based on correlation? 
In fact, the rightmost column in the Relationship Analysis Report shows Pearson’s 
Correlation for reference. As we can see, the order would be different if we were to 
choose the Pearson’s Correlation as the main metric. So, have we gained anything 
over correlation? One of the key advantages of Mutual Information is that it can be 
computed—and interpreted—between numerical and categorical variables, without 
any variable transformation. For instance, we can easily compute the Mutual Infor-
mation, such as between the Neighborhood and SalePrice. The question regarding the 
most important predictive variable can now be answered. It is Neighborhood.

Now that we have established the central role of entropy and Mutual Infor-
mation, we can apply these concepts in the next chapters for machine learning and 
network analysis.
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6. Supervised Learning

In Chapter 4 we defined the qualitative and the quantitative part of a Bayesian net-
works network from existing (human) knowledge. Chapter 5 described how we 

can define the qualitative part of a Bayesian network manually and then use data to 
estimate the quantitative part. In this chapter, we use BayesiaLab for generating both 
the structure and the parameters of a network automatically from data. This means 
we introduce machine learning for building Bayesian networks. The only guidance 
(or constraint) we provide is that we define the variable of interest, i.e. the target of 
the machine-learning process. Hence, we speak of Supervised Learning (in Chapter 
7 we will remove that constraint as well and perform Unsupervised Learning). 

The objective of what we call Supervised Learning is no different from that 
of predictive modeling. We simply wish to find regularities (a model) between the 
target variable and potential predictors from observations (e.g. historical data). Such 
a model will subsequently allow us to infer a distribution of the target variable from 
new observations. If the target variable is Continuous, the predicted distribution pro-
duces an expected value. For a Discrete target variable, we perform classification. The 
latter will be the objective of the example in this chapter.

Example: Tumor Classification

Given the sheer amount of medical knowledge in existence today, plus advances in ar-
tificial intelligence, so-called medical expert systems have emerged, which are meant 
to support physicians in performing medical diagnoses. In this context, several papers 
by Wolberg, Street, Heisey, and Managasarian became much-cited examples. For in-
stance, Mangasarian, Street and Wolberg (1995) proposed an automated method for 
the classification of Fine Needle Aspirates through imaging processing and machine 
learning with the objective of achieving a greater accuracy in distinguishing between 
malignant and benign cells for the diagnosis of breast cancer. At the time of their 
study, the practice of visual inspection of FNA yielded inconsistent diagnostic accu-
racy. The proposed new approach would increase this accuracy reliably to over 95%. 



114

This research was quickly translated into clinical practice and has since been applied 
with continued success.

As part of their studies in the late 1980s and 1990s, the research team gener-
ated what became known as the Wisconsin Breast Cancer Database, which contains 
measurements of hundreds of FNA samples and the associated diagnoses. This da-
tabase has been extensively studied, even outside the medical field. Statisticians and 
computer scientists have proposed a wide range of techniques for this classification 
problem and have continuously raised the benchmark for predictive performance.

The objective of this chapter is to show how Bayesian networks, in conjunction 
with machine learning, can be used for classification. Furthermore, we wish to illus-
trate how Bayesian networks can help researchers generate a deeper understanding 
of the underlying problem domain. Beyond merely producing predictions, we can 
use Bayesian networks to precisely quantify the importance of individual variables 
and employ BayesiaLab to help identify the most efficient path towards diagnosis.

To provide further background regarding this example, we quote Mangasarian 
et al. (1994):

“Most breast cancers are detected by the patient as a lump in 
the breast. The majority of breast lumps are benign, so it is the 
physician’s responsibility to diagnose breast cancer, that is, 
to distinguish benign lumps from malignant ones. There are 
three available methods for diagnosing breast cancer: mam-
mography, FNA with visual interpretation and surgical biop-
sy. The reported sensitivity (i.e., ability to correctly diagnose 
cancer when the disease is present) of mammography varies 
from 68% to 79%, of FNA with visual interpretation from 
65% to 98%, and of surgical biopsy close to 100%. 

Therefore mammography lacks sensitivity, FNA sensitivity 
varies widely, and surgical biopsy, although accurate, is 
invasive, time consuming and costly. The goal of the diagnos-
tic aspect of our research is to develop a relatively objective 
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system that diagnoses FNAs with an accuracy that approach-
es the best achieved visually.”

Data: Wisconsin Breast Cancer Database

The Wisconsin Breast Cancer Database was created through the clinical work of Dr. 
William H. Wolberg at the University of Wisconsin Hospitals in Madison. As of 1992, 
Dr. Wolberg had collected 699 instances of patient diagnoses in this database, con-
sisting of two classes: 458 benign cases (65.5%) and 241 malignant cases (34.5%). The 
following eleven attributes are included in the database:

1.	 Sample code number
2.	 Clump Thickness (1–10)
3.	 Uniformity of Cell Size (1–10)
4.	 Uniformity of Cell Shape (1–10)
5.	 Marginal Adhesion (1–10)
6.	 Single Epithelial Cell Size (1–10)
7.	 Bare Nuclei (1–10)
8.	 Bland Chromatin (1–10)
9.	 Normal Nucleoli (1–10)
10.	 Mitoses (1–10)
11.	 Class (benign/malignant)

Attributes #2 through #10 were computed from digital images of fine needle aspi-
rates of breast masses. These features describe the characteristics of the cell nuclei in 
the image. Attribute #11, Class, was established via subsequent biopsies or long-term 
monitoring of the tumor. We will not go into detail here regarding the definition of the 
attributes and their measurement. Rather, we refer the reader to papers referenced in 
the bibliography. The Wisconsin Breast Cancer Database is available to any interested 
researcher from the UC Irvine Machine Learning Repository. We use this database in 
its original format without any further transformation, so our results can be directly 
compared to dozens of methods that have been developed since the original study. 

Data Import Wizard

Our modeling process begins with importing the database, which is formatted as 
a text file with comma-separated values. We start the Data Import Wizard with 
Data > Open Data Source >Text File (Figure 6.1).
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Figure 6.1	

Next, we select the file “breast-cancer-wisconsin-data.csv”, a comma-delimited, flat 
text file.1 The Data Import Wizard then guides us through the required steps. In the 
first dialogue box of the Data Import Wizard, we click on Define Typing and specify 
that we wish to set aside a Test Set from the database (Figure 6.2).

Figure 6.2	

We arbitrarily select the first 139 observations as a custom Test Set, and, consequent-
ly, the remaining cases will serve as our Learning Set (Figure 6.3).

1  The Wisconsin Breast Cancer Database is available for download from the Bayesia web-
site: www.bayesia.us/wbcd
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Figure 6.3	

In the next step, the Data Import Wizard suggests the data type for each variable. 
Attributes #2 through #10 are identified as continuous variables, and Class is read as 
a Discrete variable (Figure 6.4). Only for the first variable, Sample code number, we 
have to specify Row Identifier, so it is not mistaken for a continuous predictor vari-
able.

Figure 6.4	

In the next step, the Information Panel reports that we have a total of 16 missing val-
ues in the entire database. We can also see that the column Bare Nuclei is labeled with 
a small question mark ( ), which indicates the presence of missing values in this par-
ticular column. Therefore, we must specify the type of Missing Values Imputation. 
Given the small size of the dataset, and the small number of missing values, we will 
choose the Structural EM method (Figure 6.5). 

▶ Chapter 9. Missing 
Values Processing, 
p. 289.
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Figure 6.5	

A central element of the data import process is the discretization of Continuous vari-
ables. Even though we could select a specific discretization method for each Contin-
uous variables, we choose to apply the same algorithm to all. So, on the next screen 
we click Select All Continuous to apply the same discretization algorithm across all 
Continuous variables.

As the objective of this exercise is classification, we are then in the supervised 
learning framework where we have a Target node. Thus, we choose the Tree algo-
rithm—BayesiaLab’s only bivariate discretization algorithm—from the drop-down 
menu in the Multiple Discretization panel (Figure 6.6).

▶ Tree in Chapter 5, 
p. 88.
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Figure 6.6	

Discretization Intervals

Bayesian networks are non-parametric probabilistic models. Therefore, there is no 
hypothesis with regard to the form of the relationships between variables (e.g. lin-
ear, quadratic, exponential, etc.). However, this flexibility has a cost, the number of 
observations necessary to quantify probabilistic relationships is higher than those re-
quired in parametric models. We use the heuristic of five observations per probability 
cell, which implies that the bigger the size of the probability tables, the larger must be 
the number of observations.

Two parameters affect the size of a probability table: the number of parents 
and the number of states of the parent and child nodes. A machine-learning algo-
rithm usually determines the number of parents based on the strength of the relation-
ships and the number of available observations. The number of states, however, is our 
choice, which we can set by means of Discretization (for Continuous variables) and 
Aggregation (for Discrete variables).

We can use our heuristic of five observations per probability cell to help us with 
the selection of the number of Discretization Intervals:

(6.1)

▶ Data Discretization in 
Chapter 7, p. 170.

StateCount Observations5ParentCount 1# #+
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We usually look for an odd number of states to be able to capture non-linear relation-
ships. Given that we have a relatively small learning set of only 560 observations, we 
should estimate how many parents would be allowed based on this heuristic and a 
discretization with 3 states:

•	 No parent: 3×5=15
•	 One parent: 3×3×5=45
•	 Two parents: 3×3×3×5=135
•	 Three parents: 3×3×3×3×5=405
•	 Four parents: 3×3×3×3×3×5=1,215

Considering a discretization with 5 states, we would obtain:
•	 No parent: 5×5=25
•	 One parent: 5×5×5=125
•	 Two parents: 5×5×5×5=625

By using this heuristic, we hypothesize about the size of the biggest CPT of the to-be-
learned Bayesian network and multiply this value by 5. Experience tells us that this 
is a rather practical heuristic, which typically helps us finding a structure. However, 
this is by no means a guarantee that we will find a precise quantification of the prob-
abilistic relationships.

Indeed, our heuristic is based on the hypothesis that all the cells of the CPT 
are equally likely to be sampled. Of course, such an assumption cannot hold as the 
sampling probability of a cell depends on its probability, i.e. either a marginal proba-
bility if the node does not have parents, or, if it does have parents, a joint probability 
defined by the parent states and the child state.

Given our 560 observations and the scenarios listed above, we select a discret-
ization scheme with a maximum of 3 states. This is a maximum in the sense that the 
Tree discretization algorithm could return 2 states if 3 were not needed, e.g. Mitoses 
in Figure 6.8.

Upon clicking Finish, BayesiaLab imports and discretizes the entire database 
and concludes this process by offering an Import Report. To see the obtained Dis-
cretization Intervals, we click Yes to bring up the report.

Figure 6.7	
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It is interesting to see that all the variables have indeed been discretized with the 
Tree algorithm and that all Discretization Intervals are variable-specific. This means 
that all the variables are marginally dependent on the Target (and vice versa). This is 
promising: the more dependent variables we have, the easier it should be to learn a 
good model for predicting the Target.

Figure 6.8	

Upon closing the Import Report, we see a representation of the newly imported da-
tabase in the form of a fully unconnected Bayesian network in the Graph Panel (Fig-
ure 6.9).
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Figure 6.9	

The question mark symbol ( ), which is associated with the Bare Nuclei node, indi-
cates that Bare Nuclei is the only node with missing values. Hovering over the question 
mark ( ) with the cursor, while pressing I, shows the number of missing values.

State Names

In the original database for the variable Class, codes 2 and 4 represented benign and 
malignant respectively. For reading the analysis reports, however, it will be easier to 
work with a proper State Name as opposed to a numeric code. By double-clicking the 
node Class, we open the Node Editor and then go to the State Names tab. There, we 
associate the States 2 and 4 with new State Names (Figure 6.10).

Figure 6.10	
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Supervised Learning

Model 1: Markov Blanket

Given our objective of predicting the state of the variable Class, i.e. benign versus ma-
lignant, we will define Class as the Target Node. We need to specify this explicitly, so 
the subsequent Supervised Learning algorithm can focus on the characterization of 
the Target Node, rather than on a representation of the entire joint probability dis-
tribution of the learning set. Upon this selection, all Supervised Learning algorithms 
become available under Learning > Supervised Learning (Figure 6.11).

Figure 6.11	
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Markov Blanket Definition

The Markov Blanket of a node A is the set of nodes composed of A’s parents, 
its children, and its children’s other parents (=spouses). The Markov Blanket 
of the node A contains all the nodes that, if we know their states, i.e. we have 
hard evidence for these nodes, will shield the node A from the rest of the net-
work, i.e. make A independent of all the other nodes given its Markov Blanket 
(Figure 6.12).

This means that the Markov Blanket of a node A is the only knowledge 
needed to predict the behavior of that node. Learning a Markov Blanket se-
lects the most relevant predictor nodes, which is particularly helpful when 
there is a large number of variables in a dataset. As a result, this can serve as 
a highly-efficient variable selection method in preparation for other types of 
modeling, e.g. neural networks.

Figure 6.12	

Markov Blanket

A

Upon learning the Markov Blanket for Class, and after having applied the Automatic 
Layout (P), the resulting Bayesian network looks as shown in Figure 6.13.
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Figure 6.13	

We can see that the obtained network is a Naive structure on a subset of nodes. This 
means that Class has a direct probabilistic relationship with all nodes except Unifor-
mity of Cell Shape and Single Epithelial Cell Size, which are both disconnected. The 
lack of their connection with the Target Node implies that these nodes are indepen-
dent of the Target Node given the nodes in the Markov Blanket.

Beyond distinguishing between predictors (connected nodes) and non-predic-
tors (disconnected nodes), we can further examine the relationship versus the Target 
Node Class by highlighting the Mutual Information of the arcs connecting the nodes. 
This function is accessible within the Validation Mode (  or ) via Analysis > Vi-
sual > Arcs’ Mutual Information (Figure 6.14).

Figure 6.14	
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Applying a Radial Layout (View > Layout > Radial Layout) furthermore orders the 
nodes and arcs clockwise according to their Mutual Information with the Target 
Node (Figure 6.15).

Figure 6.15	

Finally, we select View > Display Arc Comments (). This allows us to examine the 
Mutual Information between all nodes and the Target Node Class, which enables us 
to gauge the relative importance of the nodes. 

Figure 6.16	

Model 1: Performance Analysis

As we are not equipped with specific domain knowledge about the nodes, we will 
not further interpret these relationships but rather run an initial test regarding the 

▶ Mutual Information in 
Chapter 5, p. 98.
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Network Performance. We want to know how well this Markov Blanket model can 
predict the states of the Class variable, i.e. Benign versus Malignant. This test is avail-
able via Analysis > Network Performance > Target (Figure 6.17).

Figure 6.17	

As the analysis starts, BayesiaLab prompts us to Define Acceptance Thresholds. With 
the given binary Target Node, we select Evaluate All States and proceed.

Using our previously defined Test Set for evaluating our model, we obtain the 
initial performance results (Figure 6.18), including metrics, such as Total Precision, 
R, R2, etc.
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Figure 6.18	

In the context of this example, however, the table in the center of the report warrants 
special attention. For closer examination, we have copied the tables into an annotated 
spreadsheet (Figure 6.19). Of the 77 Benign cases of the test set, 3 were incorrect-
ly identified, which corresponds to a false positive rate of 3.9%. More importantly 
though, of the 62 Malignant cases, 93.55% were identified correctly (true positives) 
with 4 false negatives. The overall performance can be expressed as the Total Pre-
cision, which is computed as total number of correct predictions (true positives + 
true negatives) divided by the total number of cases in the Test Set , i.e. (58+74)÷ 
139=94.96%.
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Figure 6.19	

Benign (77) Malignant (62)
Benign (78) 74 4
Malignant (61) 3 58

Benign (77) Malignant (62)
Benign (78) 94.87% 5.13%
Malignant (61) 4.92% 95.08%

Benign (77) Malignant (62)
Benign (78) 96.10% 6.45%
Malignant (61) 3.90% 93.55%

Actual

Predicted

Predicted

Predicted

Actual

Actual

Occurences

Reliability

Precision

Of 62 cases that were actually 
malignant, 58 were predicted as 
malignant (True Positives).

Of 61 cases that were predicted 
to be malignant, 58 (95.08%)  
were actually malignant.

Of 62 cases that were actually 
malignant, 58 (93.55%) were 
predicted as malignant.

False Negatives: predicted to be 
benign, but actually malignant.

K-Folds Cross-Validation

While those results may appear encouraging with regard to the model performance, 
we need to bear in mind that we arbitrarily selected a Test Set, i.e. the first 139 cases 
in the database.

To mitigate any sampling artifacts that may occur in such a one-off Test Set, 
we can systematically learn networks on a sequence of different subsets and then ag-
gregate the test results. Similarly to the original studies of this topic, we will perform 
K-Folds Cross Validation, which will iteratively select K different Learning Sets and 
Test Sets and then, based on those, learn the networks and test their performance. 
K-Folds Cross Validation can then be started via Tools > Cross Validation > Target-
ed Evaluation > K-Folds (Figure 6.20).
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Figure 6.20	

We use the same learning algorithm as before, i.e. the Markov Blanket, and we choose 
K=10 as the number of sub-samples to be analyzed. Of the total dataset of 699 cases, 
each of the ten iterations (folds) will create a Test Set of 69 randomly drawn sam-
ples, and use the remaining 630 as the Learning Set (Figure 6.21). This means that 
BayesiaLab learns one network per Learning Set and then tests the performance on 
the respective Test Set. It is important to ensure that Shuffle Samples is checked.2 

Figure 6.21	

2  Unchecking Shuffle Samples will maintain the original order of the records in the gener-
ated folds. This is necessary for datasets with a temporal order, i.e. time series data.
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The summary, including the synthesized results, is shown in Figure 6.22. These results 
confirm a good performance of this model. The Total Precision is 96.7%, with a false 
negative rate of 3.7%. This means 9 of the cases were predicted as Benign, while they 
were actually Malignant.

Figure 6.22	

Clicking Comprehensive Report produces a summary with additional analysis op-
tions (Figure 6.23).

Figure 6.23	
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For instance, the report can be saved in HTML format, which is convenient for sub-
sequently editing the report as a spreadsheet (Figure 6.24).

Figure 6.24	

Value Benign Malignant
Gini Index 33.42% 64.27%
Relative Gini Index 97.69% 97.69%
Mean Lift 1.43 2.11
Relative Lift Index 99.48% 99.02%
ROC Index 98.90% 98.90%

Value Benign (458) Malignant (241)
Benign (453) 444 9

Malignant (246) 14 232

Value Benign (458) Malignant (241)
Benign (453) 98.01% 1.99%

Malignant (246) 5.69% 94.31%

Value Benign (458) Malignant (241)
Benign (453) 96.94% 3.73%

Malignant (246) 3.06% 96.27%

Total Precision: 96.71%
R: 0.99668395772
R2: 0.99337891158
Occurrences

Reliability

Precision

Sampling Method: K-Fold
Learning Algorithm: Markov Blanket
Target: Class

Relative Gini Index Mean: 97.69%
Relative Lift Index Mean: 99.25%
ROC Index Mean: 98.9%

To understand what exactly is happening during K-Folds Cross-Validation, it is help-
ful to click Network Comparison (Figure 6.23), which initially brings up a view of the 
Synthesis Structure of all the networks learned during the Cross-Validation, shown 
in Figure 6.25 (a). Black arcs in (a) indicate the arcs that were present in the Refer-
ence Structure, which is displayed in Figure 6.25 (b). This is the network that was 
learned on the basis on the originally defined Learning/Test Set. The thickness of the 
arcs in (a) reflects how often these links were found in the course of the Cross-Vali-
dation. The blue-colored arcs indicate that those links were found in some folds, but 
that they are not part of the Reference Network. Their thickness also depends on the 
number of folds in which these arcs were added.

More specifically, we can scroll through all the networks discovered during 
the Cross-Validation using the record selector icons ( ). After the Reference 
Network (b), we arrive at Comparison Network 0 (c). This network structure was 
learned from 2 out of 10 folds. The last panel (d) shows that Comparison Network 1 
was found 8 out of 10 times. 
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Figure 6.25	

This provides numerous important insights. It appears that the first network we 
learned with the original Learning Set, i.e. the Reference Network, was not found 
in any of the 10 learned networks. This is because the learning set we had used in the 
initial split is smaller than the ones that we used with the 10-fold cross-validation 
(560 versus 630). The relationships with the two nodes that had been “excluded” are 
probably the weakest ones. 

Model 2: Augmented Markov Blanket

In addition to trying to identify the best network for the Markov Blanket algorithm, 
we also need to consider alternatives within the group of Supervised Learning algo-
rithms. BayesiaLab offers an extension to the Markov Blanket algorithm, namely the 
Augmented Markov Blanket, which performs an Unsupervised Learning algorithm 
on the nodes in the Markov Blanket. This relaxes the constraint of requiring orthogo-
nal child nodes. Thus, it helps identify any influence paths between the predictor vari-
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ables and potentially improve the predictive performance. Adding such arcs would be 
similar to automatically creating interaction terms in a regression analysis.

After returning to the Modeling Mode (  or ), we start this learning algo-
rithm via Learning > Supervised Learning > Augmented Markov Blanket (Figure 
6.26). Note, however, that we are still using the original Learning/Test Sets. The T 
symbol ( ) on top of the database icon ( ) reminds us that this database split re-
mains in place.

Figure 6.26	

As expected, the resulting network is somewhat more complex than the standard 
Markov Blanket (Figure 6.27).

Figure 6.27	
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If we save the original Markov Blanket and the new Augmented Markov Blanket 
under different file names, we can use Tools  >  Compare  >  Structure to highlight 
the differences between both (Figure 6.28). Given that the addition of two arcs is 
immediately visible, this function may appear as overkill for our example. However, 
in more complex situations, Structure Comparison can be rather helpful, and so we 
will spell out the details.

Figure 6.28	

We choose the original network and the newly learned network as the Reference 
Network and the Comparison Network respectively (Figure 6.29).

Figure 6.29	

Upon selection, a table provides a list of common arcs and of those arcs that have 
been added to the Comparison Network, which was learned with the Augmented 
Markov Blanket algorithm (Figure 6.30):
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Figure 6.30	

Clicking Charts provides a visualization of these differences. The arcs that were add-
ed by the Augmented Markov Blanket are now highlighted in blue. Conversely, had 
any arcs been deleted, those would be shown in red (Figure 6.31).

Figure 6.31	

Cross-Validation

Given the experience with the Markov Blanket model, we perform the K-Folds 
Cross-Validation again: Tools > Cross-Validation > Targeted Evaluation > K-Fold. 
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The steps are identical to what we did earlier, so we move straight to the report (Fig-
ure 6.32).

Figure 6.32	

At first glance, the predictive performance appears comparable with the Markov 
Blanket model. However, the Augmented Markov Blanket model performs slightly 
better with regard to false negatives, which might be particularly important in the 
context of cancer diagnostics. 



138

Figure 6.33	

For the remainder of this example, we simply remove the Learning/Test Set split 
from the database by right-clicking the database icon ( ) and selecting Remove 
Learning/Test (Figure 6.34). 

Figure 6.34	

Structural Coefficient

Up to this point, the difference in network complexity was only a function of the 
choice of the learning algorithm and the learning set. We now introduce the Struc-
tural Coefficient (SC). This parameter allows changing the internal number of obser-
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vations and, thus, determines a kind of “significance threshold” for network learning. 
Consequently, it influences the degree of complexity of the induced networks. The 
internal number of observations is defined as:

(6.2)

where N is the number of samples in the dataset.
By default, SC is set to 1, which reliably prevents the learning algorithms from 

overfitting the model to the data. However, in studies with relatively few observa-
tions, the analyst’s judgment is needed as to whether a downward adjustment of this 
parameter can be justified. Reducing SC means increasing Nˇ , which is like increasing 
the number of observations in the dataset via resampling.

 On the other hand, increasing SC beyond 1 means reducing Nˇ, which can help 
manage the complexity of networks learned from large datasets. Conceptually, reduc-
ing Nˇ is equivalent to sampling the dataset.

Given the fairly simple network structure of the Markov Blanket model, com-
plexity was of no concern. The Augmented Markov Blanket is more complex but still 
very manageable. The question is, could a more complex network provide greater 
precision without over-fitting? To answer this question, we perform a Structural Co-
efficient Analysis, which generates several metrics that help in making the trade-off 
between complexity and precision: Tools  >  Cross Validation  >  Structural Coeffi-
cient Analysis (Figure 6.35). 

Figure 6.35	

N SC
N=l
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BayesiaLab prompts us to specify the range of SC value to be examined and the num-
ber of iterations to be performed (Figure 6.36). It is worth noting that the minimum 
SC value should not be set to 0, or even close to 0, without careful consideration. An 
SC value of 0 would create a fully connected network, which can take a very long time 
to learn, depending on the number of variables, or even exceed the memory capacity 
of the computer running BayesiaLab. Technically, SC=0 implies an infinite dataset, 
which results in all relationships between nodes becoming significant.

Number of Iterations determines the interval steps to be taken within the 
specified range of the Structural Coefficient. Given the relatively light computational 
load, we choose 25 iterations. With more complex models, we might be more conser-
vative, as each iteration re-learns and re-evaluates the network (Figure 6.36).

Figure 6.36	

The resulting report shows how the network changes as a function of the Structural 
Coefficient (Figure 6.37).

Figure 6.37	
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Our objective is to determine the correct level of network complexity for a reliably 
high predictive performance while avoiding the over-fitting the data. By clicking 
Curve, we can plot several different metrics for this purpose.

Figure 6.38	

Structure/Target Ratio

The Structure/Target Precision Ratio (Figure 6.39) is a very helpful measure for 
making trade-offs between predictive performance versus network complexity. This 
plot can be best interpreted when following the curve from right to left. Moving to 
the left along the x-axis lowers the Structural Coefficient, which, in turn, results in a 
more complex Structure. 

Figure 6.39	

It becomes problematic when the Structure increases faster than the Precision, i.e. 
we increase complexity without improving Precision. Typically, the “elbow” of the 
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L-shaped curve identifies this critical point. Here, a visual inspection suggests that 
the “elbow” is just below SC=0.3 (Figure 6.39). The portion of the curve further to 
the left on the x-axis, i.e. SC<0.3, shows that Structure is increasing without improv-
ing Precision, which can be a potential cause of over-fitting. Hence, we conclude that 
SC=0.3 is a reasonable choice for proceeding further.

Model 2b: Augmented Markov Blanket (SC=0.3)

Given the results from the Structural Coefficient Analysis, we now wish to relearn 
the network with SC=0.3. The SC value can be set by right-clicking on the back-
ground of the Graph Panel and then selecting Edit Structural Coefficient from the 
Contextual Menu (Figure 6.40), or via the menu: Edit > Edit Structural Coefficient. 
The SC value can then be set with a slider or by typing in a numerical value (Figure 
6.41).

Figure 6.40	

Figure 6.41	

The Structural Coefficient icon ( ) now indicates that we are employing an 
SC value other than the default of 1. After returning to the Modeling Mode 
(  or ), we relearn the network, using the same Augmented Markov Blanket 
algorithm as before. As expected, this produces a more complex network (Figure 
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6.42). The key question is, will this increase in complexity improve the performance 
or perhaps be counterproductive?

Figure 6.42	

Model 2b Performance:

Given that we have removed the Learning/Test Set split, we perform K-Folds 
Cross-Validation. We present the results side-by-side in Figure 6.43:

•	 Model 1 (Markov Blanket)
•	 Model 2a (Augmented Markov Blanket, SC=1)
•	 Model 2b (Augmented Markov Blanket, SC=0.3)

Figure 6.43	

Model 1: Markov Blanket (SC=1) Model 2a: Augmented Markov Blanket (SC=1) Model 2b: Augmented Markov Blanked (SC=0.3)

Value Benign Malignant Value Benign Malignant Value Benign Malignant
Gini Index 33.97% 64.55% Gini Index 34.15% 64.90% Gini Index 34.25% 65.08%
Relative Gini Index 98.52% 98.52% Relative Gini Index 99.06% 99.06% Relative Gini Index 99.33% 99.33%
Mean Lift 1.42 2.05 Mean Lift 1.42 2.05 Mean Lift 1.42 2.06
Relative Lift Index 99.74% 99.19% Relative Lift Index 99.83% 99.52% Relative Lift Index 99.88% 99.66%
ROC Index 99.26% 99.26% ROC Index 99.53% 99.53% ROC Index 99.66% 99.66%

Value Benign (458) Malignant (241) Value Benign (458) Malignant (241) Value Benign (458) Malignant (241)
Benign (452) 444 8 Benign (453) 446 7 Benign (455) 449 6

Malignant (247) 14 233 Malignant (246) 12 234 Malignant (244) 9 235

Value Benign (458) Malignant (241) Value Benign (458) Malignant (241) Value Benign (458) Malignant (241)
Benign (452) 98.23% 1.77% Benign (453) 98.45% 1.55% Benign (455) 98.68% 1.32%

Malignant (247) 5.67% 94.33% Malignant (246) 4.88% 95.12% Malignant (244) 3.69% 96.31%

Value Benign (458) Malignant (241) Value Benign (458) Malignant (241) Value Benign (458) Malignant (241)
Benign (452) 96.94% 3.32% Benign (453) 97.38% 2.90% Benign (455) 98.03% 2.49%

Malignant (247) 3.06% 96.68% Malignant (246) 2.62% 97.10% Malignant (244) 1.97% 97.51%

R2: 0.98874028007
Occurrences

Reliability

Precision

R2: 0.99510288959
Occurrences

Reliability

Precision

Target: Class

Relative Gini Index Mean: 99.33%
Relative Lift Index Mean: 99.77%
ROC Index Mean: 99.66%
Total Precision: 97.85%
R: 0.99435420252

R2: 0.99516518453
Occurrences

Reliability

Precision

Target: Class

Relative Gini Index Mean: 99.06%
Relative Lift Index Mean: 99.68%
ROC Index Mean: 99.53%
Total Precision: 97.28%
R: 0.99754843972

Target: Class

Relative Gini Index Mean: 98.52%
Relative Lift Index Mean: 99.47%
ROC Index Mean: 99.26%
Total Precision: 96.85%
R: 0.99757966325
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All models reviewed, Model 1 (Markov Blanket), Model 2a (Augmented Markov 
Blanket, SC=1), and Model 2b (Augmented Markov Blanket, SC=0.3) have per-
formed at fairly similar levels of classification performance. Reestimating these mod-
els with more observations could potentially change the results and might more clear-
ly differentiate the classification performance. Given its slight edge in performance, 
however, we select Model 2b for now to serve as the basis for the next section of the 
next section, Model Inference.

Model Inference

We now present how the learned Augment Markov Blanket model can be applied in 
practice and used for inference. First, we need to go into Validation Mode (  or ) 
and bring up all the Monitors in the Monitor Panel. As we have a Target Node, we 
can right-click inside the Monitor Panel to activate the corresponding Contextual 
Menu and select Sort > Target Correlation from the Contextual Menu (Figure 6.44).

Figure 6.44	

Alternatively, we can do the same via Monitor > Sort > Target Correlation (Figure 
6.45).
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Figure 6.45	

Monitors are then automatically created for all the nodes “correlated” with the Tar-
get Node. The Monitor of the Target Node is placed first in the Monitor Panel, fol-
lowed by the other Monitors in order of their “correlation” with the Target Node, 
from highest to lowest (Figure 6.46).

Figure 6.46	

As the quotation marks indicate, we use “correlation” not literally in this context. 
Rather, the sort order is determined by Mutual Information. 
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Interactive Inference

We can use now BayesiaLab to review the individual predictions made based on the 
model. This feature is called Interactive Inference, which can be accessed from the 
menu via Inference > Interactive Inference (Figure 6.47).

Figure 6.47	

The Navigation Bar allows scrolling through each record of the database. Record #0 
can be seen in Figure 6.48 with all the associated observations highlighted in green. 
Given these observations, the model predicts a 99.99% probability that Class is Be-
nign (the Monitor of the Target Node is highlighted in red). Given this very high 
probability, calling Class=Benign is the rational prediction. For Record #0, it is indeed 
the correct prediction: The actual value recorded in the dataset is represented by a 
light blue bar, which signals Class=Benign for this case.
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Figure 6.48	

Most cases are rather clear-cut, like Record #0, with probabilities for either class 
around 99% or higher. However, there are a number of exceptions, such as Record #3. 
Here, the probability of malignancy is approximately 55% (Figure 6.49). Given this 
probability, the rational prediction is Class=Malignant, which, however, turns out to 
be incorrect.

Figure 6.49	

Adaptive Questionnaire

In situations in which only individual cases are under review, e.g. when diagnos-
ing a patient, BayesiaLab can provide diagnostic support by means of the Adaptive 
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Questionnaire. The Adaptive Questionnaire can be started from the menu via Infer-
ence > Adaptive Questionnaire (Figure 6.50).

Figure 6.50	

For a Target Node with more than two states, it can be helpful to specify a Target 
State for the Adaptive Questionnaire. Setting the Target State allows BayesiaLab to 
compute Binary Mutual Information and then focus on the designated Target State. 
As the Target Node Class is binary, setting a Target State is not useful (Figure 6.51).

Figure 6.51	

Costs

Furthermore, we can set the cost of collecting observations via the Cost Editor, 
which can be started via the Edit Costs button (Figure 6.52). This is helpful when 
certain observations are more costly to obtain than others.
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Figure 6.52	

Unfortunately, our example is not ideally suited to illustrate this feature, as the FNA 
attributes are all collected at the same time, rather than consecutively. However, we 
can imagine that, in other contexts, a physician starts the diagnosis process by collect-
ing easy-to-obtain data, such as blood pressure, before proceeding to more elaborate 
(and more expensive) diagnostic techniques, such as performing an MRI. 

Once the Adaptive Questionnaire is started, BayesiaLab presents the Monitor 
of the Target Node (red) and its marginal probability. Again, as shown in Figure 6.53, 
the Monitors are automatically sorted in descending order with regard to the Target 
Node by taking into account the Mutual Information (or binary mutual information) 
and the Cost of obtaining the information.

Figure 6.53	

This means that the ideal first piece of evidence is Uniformity of Cell Size. Let us sup-
pose that Uniformity of Cell Size<=2.5 for the case under investigation. Upon setting 
this first observation, BayesiaLab will compute the new probability distribution of 
the Target Node, given the evidence. We see that the probability of Class=Malignant 
has increased to 84.81% (Figure 6.54). Given the evidence, BayesiaLab also recom-
putes the ideal new order of questions and now presents Bare Nuclei as the next most 
relevant question.
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Figure 6.54	

Let us now assume that Bare Nuclei and Bland Chromatin are not available for ob-
servation and that we skip answering them. We instead set the node Clump Thick-
ness<=4.5 (Figure 6.55).

Figure 6.55	

Given this latest piece of evidence, the probability distribution of Class is once again 
updated, as is the array of questions. The small gray arrows inside the Monitors in-
dicate how the probabilities have changed compared to the prior iteration. (Figure 
6.56)

Figure 6.56	

It is important to point out that not only the Target Node is updated as we set evi-
dence. Rather, all nodes are being updated upon setting evidence, reflecting the om-
ni-directional nature of inference within a Bayesian network. We can continue this 
process of updating until we have exhausted all available evidence, or until we have 
reached an acceptable level of certainty regarding the diagnosis.
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WebSimulator

The Adaptive Questionnaire was designed as an application that can also be utilized 
by an “end user” of analysis or study results. As such, it is suitable for a much broader 
audience, beyond the researcher who uses BayesiaLab as a desktop research labora-
tory. For instance, clinicians could use the Adaptive Questionnaire for decision sup-
port without any knowledge of Bayesian networks or information theory. 

To reach such a broader user group, we can publish the Adaptive Question-
naire via BayesiaLab’s WebSimulator and make it accessible to anyone with an Inter-
net connection. 

We continue to use the network developed in this chapter and prepare it for 
publication. This process is straightforward and only requires declaring what role 
each node has to play in this use case. We select Tools > WebSimulator Editor (Fig-
ure 6.57).

Figure 6.57	  

In the WebSimulator Editor, we need to define Inputs and Outputs, plus, we need 
to define the Questionnaire Targets. In our example, all predictor nodes serve as In-
puts. The Target Node, Class, simultaneously serves as the only Output and as the 
only Questionnaire Target. Note that the Adaptive Questionnaire in the WebSimu-
lator can work with multiple Targets.

Additionally, we need to define the type of graphical components that will 
be used for the Input and Output nodes. Put simply, the Inputs and Outputs are 
web-adaptations of BayesiaLab’s Monitors, and, as such, there are different ways of 
setting evidence and reading out posterior probabilities. For the purposes of this ex-

▶ Model Utilization in 
Chapter 3, p. 45.
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ample, we select Discrete States: Dropdown List for all Inputs (Figure 6.58) and 
Probabilities: Bar Graph for the Output (Figure 6.59). Most importantly, we mark 
Class as a Questionnaire Target.

Figure 6.58	  

Figure 6.59	

This completes the preparation steps in BayesiaLab proper. We save the network—in 
its native xbl format—to get ready for uploading it to the BayesiaLab WebSimulator 
Server.

We switch to a web browser and open https://simulator.bayesialab.com, which 
brings up the main WebSimulator interface. We click the menu icon and select Go to 
Admin (Figure 6.60), which prompts us to log in (illustration omitted).

Figure 6.60	
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Once logged in, we see all models that we have already uploaded to the WebSimula-
tor (Figure 6.61).

Figure 6.61	

Clicking on New Questionnaire allows us to select the xbl file we saved and provide 
names for the questionnaire and the author of the model (Figure 6.62).

Figure 6.62	

Upon confirmation, we see our new Adaptive Questionnaire listed in the overview of 
models. From this screen, we can highlight our model and immediately click Publish.
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Figure 6.63	

As the final step, we need to choose whether our new Adaptive Questionnaire should 
be accessible to the public or whether it needs to be private and password-protected 
(Figure 6.64). By default, all BayesiaLab users have access to a public account, which 
is what we select here.

Figure 6.64	

Clicking OK publishes this questionnaire for the world to see. The questionnaire’s 
public URL can be retrieved by clicking Show Details (Figure 6.65).
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Figure 6.65	

The URL of this example, 
https://simulator.bayesialab.com/#!questionnaire/183190421773,
can now be used to access the questionnaire from any web browser. The link brings 
up a simple layout with Inputs in the upper left panel and the Output in the right-
hand panel. Given the input type we chose, we enter our observations via drop-down 
menus in each Input, e.g. Uniformity of Cell Size>2.5. This is the same value we used 
for the earlier demo of the Adaptive Questionnaire with the desktop version of 
BayesiaLab (Figure 6.66).

Figure 6.66	
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Upon setting the first piece of evidence, the observed Input moves to the bottom left 
panel, and the probability of the Output Class is updated. Additionally, the recom-
mended order for the next-best piece of evidence is recomputed and presented in the 
upper left panel.

Figure 6.67	

Target Interpretation Tree

After this excursion into a web-based application, we return to the BayesiaLab desk-
top software. However, we remain on the topic of model utilization and show a func-
tion that is closely related to the Adaptive Questionnaire.

Although its tree structure is not directly visible, the Adaptive Questionnaire 
is a dynamic tree for seeking evidence leading to the diagnosis of one particular case. 
In fact, a new tree is generated for every extra piece of evidence.

The Target Interpretation Tree, on the other hand, is explicitly shown in the 
form of a static graphical tree. The Target Interpretation Tree is induced once from 
all cases and then prescribes the order for seeking the optimum sequence for gather-
ing evidence. As such, it is not dynamic and not case-specific, i.e. the recommended 
order does not change given evidence. This makes it practical when hard-and-fast 
rules are required, e.g. in preparation for emergency situations. However, as a static 
tree, it lacks the flexibility of skipping missing observations.
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The Target Interpretation Tree can be started from the menu via Analy-
sis > Target Interpretation Tree (Figure 6.68).

Figure 6.68	

Upon starting this function, we need to set several options (Figure 6.69). We define 
the Search Stop Criteria and set the Maximum Size of Evidence to 3 and the Mini-
mum Joint Probability to 1 (percent).

Figure 6.69	

By default, the Target Interpretation Tree is presented in a top-down format (Figure 
6.70).
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Figure 6.70	

Sometimes, it may be more convenient to change the layout to a left-to-right format 
via the Switch Position button ( ) in the upper left-hand corner of the window that 
contains the tree. The tree in Figure 6.71 is presented in the left-to-right layout.

The Target Interpretation Tree prescribes in which sequence evidence should 
be sought for gaining the maximum amount of information towards a diagnosis, also 
taking into account the relative cost of acquiring the evidence. Going from left to 
right, we see how the probability distribution for Class changes given the evidence 
set thus far. 
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Figure 6.71	

The leftmost node in the tree, without any evidence set, shows the marginal probabil-
ity distribution of Class. The bottom panel of this node shows Uniformity of Cells Size 
as the most important evidence to seek.

Figure 6.72	

The three branches that emerge from the node represent the possible states of Uni-
formity of Cells Size, i.e. the Hard Evidence we can observe. If we set evidence anal-
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ogously to what we did in the Adaptive Questionnaire, we will choose the middle 
branch with the value Uniformity of Cell Size<=2.5 (2/3) (Figure 6.73).

Figure 6.73	

This evidence updates the probabilities of the Target State, now predicting a 17.80% 
probability of Class=Malignant. At the same time, we can see what is the next best 
piece of evidence to seek. Here, it is Bare Nuclei, which will provide the greatest in-
formation gain towards the diagnosis of Class. The information gain is quantified with 
the Score displayed at the bottom of the node (Figure 6.74)

Figure 6.74	

The Score is the Conditional Mutual Information of the node Bare Nuclei with re-
gard to the Target Node, divided by the cost of observing the evidence if the option 
Utilize Evidence Cost was checked. In our case, as we did not check this option, the 
Score is equal to the Conditional Mutual Information.

Mapping

We can quickly verify the Score of 2.7% by running the Mapping function. First, we 
set the evidence Uniformity of Cell Size<=2.5 and then run Analysis > Visual > Map-
ping.
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Figure 6.75	

The Mapping window features drop-down menus for Node Analysis and Arc Anal-
ysis (Figure 6.76). However, we are only interested in Node Analysis, and we select 
Mutual Information with the Target Node as the metric to be displayed.

Figure 6.76	

The size of the nodes—beyond a fixed minimum size—is now proportional to the Mu-
tual Information with the Target Node given the current set of evidence. It shows 
that given Uniformity of Cell Size<=2.5, the Mutual Information of Bare Nuclei with 
the Target Node is 0.027. Note that the node on which evidence has already been set, 
i.e. Uniformity of Cell Size, shows a Mutual Information of 0 (Figure 6.76). 
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As per this visualization, learning Bare Nuclei will bring the highest informa-
tion gain among the remaining variables. For instance, if we now observed Bare Nu-
clei>5.5 (3/3), the probability of Class=Malignant would reach 90.85% (Figure 6.77).

Figure 6.77	

Finally, BayesiaLab also reports the joint probability of each tree node, i.e. the proba-
bility that all pieces of evidence in a branch, up to and including that tree node, occur 
(Figure 6.78).

Figure 6.78	

Figure 6.78 says that the joint probability of Uniformity of Cell Size<=2.5 and Bare Nu-
clei>5.5 is 0.89%. This implies that in approximately 1 out of 100 case, this particular 
combination of evidence is to be expected.

As opposed to this somewhat artificial illustration of a Target Interpretation 
Tree in the context of FNA-based diagnosis, Target Interpretation Trees are often 
prepared for emergency situations, such as triage classification, in which rapid diag-
nosis with constrained resources is essential. We believe that our example still con-
veys the idea of “optimum escalation” in obtaining evidence towards a diagnosis.
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7. Unsupervised Learning

Unsupervised Structural Learning is perhaps the purest form of knowledge dis-
covery as there are no hypotheses constraining the exploration of possible re-

lationships between variables. BayesiaLab offers a wide range of algorithms for that 
purpose. Making this technology easily accessible can potentially transform how re-
searchers approach complex, high-dimensional problem domains.

Example: Stock Market

We find the mass of data available from financial markets to be an ideal proving ground 
for experimenting with knowledge discovery algorithms that generate Bayesian net-
works. Comparing machine-learned knowledge with our personal understanding 
of the stock market can perhaps allow us to validate BayesiaLab’s “discoveries.” For 
instance, any structure that is discovered by BayesiaLab’s algorithms should be con-
sistent with an equity analyst’s understanding of fundamental relationships between 
stocks. 

In this chapter, we will utilize Unsupervised Learning algorithms to automat-
ically generate Bayesian networks from daily stock returns recorded over a six-year 
period. We will examine 459 stocks from the S&P 500 index, for which observations 
are available over the entire timeframe. We selected the S&P 500 as the basis for our 
study, as the companies listed on this index are presumably among the best-known 
corporations worldwide, so even a casual observer should be able to critically review 
the machine-learned findings. In other words, we are trying to machine learn the ob-
vious, as any mistakes in this process would automatically become self-evident. Quite 
often, experts’ reaction to such machine-learned findings is, “well, we already knew 
that.” Indeed, that is the very point we want to make, as machine-learning can—with-
in seconds—catch up with human expertise accumulated over years and then rapidly 
expand beyond what is already known.

The power of such algorithmic learning will be still more apparent in entirely 
unknown domains. However, if we were to machine learn the structure of a foreign 
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equity market for expository purposes, we would probably not be able to judge the 
resulting structure as plausible or not. 

In addition to generating human-readable and interpretable structures, we 
want to illustrate how we can immediately use machine-learned Bayesian networks 
as “computable knowledge” for automated inference and prediction. Our objective is 
to gain both a qualitative and quantitative understanding of the stock market by using 
Bayesian networks. In the quantitative context, we will also show how BayesiaLab 
can carry out inference with multiple pieces of uncertain and even conflicting evi-
dence. The ability of Bayesian networks to perform computations under uncertainty 
makes them suitable for a wide range of real-world applications.

Dataset

The S&P 500 is a free-float capitalization-weighted index of the prices of 500 large-
cap common stocks actively traded in the United States, which has been published 
since 1957. The stocks included in the S&P 500 are those of large publicly held com-
panies that trade on either of the two largest American stock market exchanges; the 
New York Stock Exchange and the NASDAQ. For our case study, we have tracked the 
daily closing prices of all stocks included in the S&P 500 index from January 3, 2005, 
through December 30, 2010, only excluding those stocks that were not traded contin-
uously over the entire study period. This leaves a total of 459 stock prices with 1,510 
observations each. The top three panels of Figure 7.1 show the S&P 500 Index, plus 
the stock prices for Apple Inc. and Yahoo! Inc. Note that the plot of the S&P 500 Index 
is only shown for reference; the index will not be included in the analysis. 

Data Preparation and Transformation

Rather than treating the time series in levels, we difference the stock prices and com-
pute the daily returns. More specifically, we will take differences of the logarithms of 
the levels, which is a good approximation of the daily stock return in percent. After 
this transformation, 1,509 observations remain. The bottom three panels of Figure 7.1 
display the returns. 
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Figure 7.1	
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Data Import

We use BayesiaLab’s Data Import Wizard to load all 459 time series1 into memory 
from “SP500.csv”.2 BayesiaLab automatically detects the column headers, which con-
tain the ticker symbols3 as variable names (Figure 7.2).

Figure 7.2	

The next step identifies the variable types contained in the database and, as expected, 
BayesiaLab finds 459 Continuous variables (Figure 7.3).

1  Although the dataset has a temporal ordering, for expository simplicity, we treat each 
time interval as an independent observation.

2  The S&P 500 data is available for download from the Bayesia website: 
www.bayesia.us/sp500

3  A ticker symbol is a short abbreviation used to uniquely identify publicly traded stocks.
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Figure 7.3	

There are no missing values in this database, so the next step of the Data Import Wiz-
ard can be skipped entirely. We still show it in Figure 7.4 for reference, although all 
options are grayed out.

Figure 7.4	
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Data Discretization

While we can defer a discussion of Missing Values Processing for now, we must 
carefully consider our options in the next step of the Data Import Wizard. Here, we 
need to discretize all Continuous variables, which means all 459 variables in our case. 
In the context of Unsupervised Learning, we do not have a specific target variable. 
Hence, we have to choose one of the univariate discretization algorithms. Following 
the recommendations presented in Chapter 5, we choose K-Means. Furthermore, 
given the number of observations that are available, we aim for a discretization with 5 
bins, as per the heuristic discussed in Chapter 6.

While helpful, any such heuristics should not be considered conclusive. Only 
once a model is learned, we can properly evaluate the adequacy of the selected Dis-
cretization. In BayesiaLab, we also have access to the discretization functions again 
anytime after completing the Data Import Wizard, which makes experimentation 
with different discretization methods and intervals very easy (in the Modeling Mode, 
we can start a new discretization with Learning > Discretization) . 

Before proceeding with the automatic discretization of all variables, we shall 
examine the type of density functions that we can find in this dataset. We use the 
built-in in plotting function for this purpose, which is available in the next step of the 
Data Import Wizard (Figure 7.5). 

Figure 7.5	

▶ Chapter 9. Missing 
Values Processing, 
p. 289.

▶ K-Means in Chap-
ter 5, p. 88.

▶ Discretization Intervals 
in Chapter 6, p. 119.
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After selecting Manual from the Discretization drop-down menu (Figure 7.5) and 
then clicking Switch View, we obtain the probability density function of the first vari-
able A (Figure 7.6). 

Figure 7.6	

Without formally testing it for normality, we judge that the distribution of A (Agilent 
Technologies Inc.) does resemble the shape of a Normal distribution. In fact, the dis-
tributions of all variables in this dataset appear fairly similar, which further supports 
our selection of the K-Means algorithm. We click Finish to perform the discretization 
(Figure 7.7). A progress bar is shown to report on the progress.
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Figure 7.7	

Modeling Mode

After completing the data import, the variables are delivered into the Graph Panel 
(Figure 7.8). The original variable names, which were stored the first line of the data-
base, become our Node Names.

Figure 7.8	

At this point, it is practical to add Node Comments to associate full company names 
with the ticker symbols. We use a Dictionary file for that purpose (Figure 7.9).

▶ Node Comments in 
Chapter 5, p. 92.
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Figure 7.9	

This file can be loaded into BayesiaLab via Data > Associate Dictionary > Node > Com-
ments (Figure 7.10).

Figure 7.10	

Once the Node Comments are loaded, a small call-out symbol ( ) appears next to 
each Node Name, confirming that associating the Dictionary completed successfully. 
(Figure 7.11).
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Figure 7.11	

As the name implies, selecting View > Display Node Comments (  or ) reveals 
the full company names (Figure 7.12).

Figure 7.12	

Node Comments can be displayed for either all nodes or only for selected ones (Fig-
ure 7.13).
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Figure 7.13	

Data Import Review

Before proceeding with the first learning step, we recommend switching to the Vali-
dation Mode (  or ) to verify the results of the import and discretization (Figure 
7.14). 

Figure 7.14	

This gives us an opportunity to compare the variables’ statistics with our understand-
ing of the domain. At first glance, mean values of near zero for all distributions might 
suggest that stocks prices remained “flat” throughout the observation period. For the 
S&P 500 index, this was actually true. However, it could not be true for all individual 
stocks given that the Apple stock, for instance, increased ten-fold in value between 
2005 and 2010. The seemingly low returns are due to the fact that we are studying 



176

daily returns, rather than annual returns. On that basis, even the rapid appreciation of 
the Apple stock translates into an average daily return of “only” 0.2%.4 

A “sanity check” of this kind is the prudent thing to do before proceeding to 
machine-learning.

Unsupervised Learning

The computational complexity of BayesiaLab’s Unsupervised Learning algorithms 
exhibits quadratic growth as a function of the number of nodes. However, the Maxi-
mum Weight Spanning Tree (MWST) is constrained to learning a tree structure (one 
parent per node), which makes it much faster that the other algorithms. More specif-
ically, the MWST algorithm includes only one procedure with quadratic complexity, 
namely the initialization procedure that computes the matrix of bivariate relation-
ships.

Given the number of variables in this dataset, we decide to use the MWST. 
Performing the MWST algorithm with a file of this size should only take a few sec-
onds. Moreover, using BayesiaLab’s layout algorithms, the tree structures produced 
by MWST can be easily transformed into easy-to-interpret layouts. Thus, MWST is a 
practical first step for knowledge discovery. Furthermore, this approach can be useful 
for verifying that there are no coding problems, e.g. with variables that are uncon-
nected. Given the quick insights that can be gleaned from it, we recommend using 
MWST at the beginning of most studies.

We switch back to Modeling Mode (  or ) and select Learning > Unsu-
pervised Structural Learning > Maximum Spanning Tree.

4  BayesiaLab reports the arithmetic mean as Value in the Monitors.
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Figure 7.15	

In addition to its one-parent constraint, MWST is also unique in that it is the only 
learning algorithm in BayesiaLab that allows us to choose the scoring method for 
learning, i.e. Minimum Description Length (MDL) or Pearson’s Correlation (Fig-
ure 7.16). Unless we are certain about the linearity of the yet-to-be-learned relation-
ships between variables, Minimum Description Length is the better choice and, 
hence, the default setting.

Figure 7.16	

At first glance, the resulting network does not appear simple and tree-like at all (Fig-
ure 7.17).
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Figure 7.17	

This can be addressed with BayesiaLab’s built-in layout algorithms. Selecting View > 
Automatic Layout () quickly rearranges the network to reveal the tree structure. 
The resulting reformatted Bayesian network can now be readily interpreted (Figure 
7.18).



179

Chapter 7

Figure 7.18	

Network Analysis

Let us suppose we are interested in Procter & Gamble (PG). First, we look for the 
corresponding node using the Search function (). Note that we will be able to 
search for the full company name if we check Include Comments. Furthermore, we 
can use a combination of wildcards in the search, e.g. “*” as a placeholder for a char-
acter string of any length or “?” for a single character (Figure 7.19).

Selecting PG from the listing search results makes the corresponding node 
flash for a few seconds so it can be found among the hundreds of nodes on the screen. 
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Figure 7.19	 �

Once located, we can zoom in to see PG and numerous adjacent nodes.

Figure 7.20	

As it turns out, the “neighborhood” of Procter & Gamble contains many familiar 
company names, mostly from the consumer packaged goods industry. Perhaps these 
companies appear all-too-obvious, and one might wonder what insight we gained at 
this point. The chances are that even a casual observer of the industry would have 
mentioned Kimberly-Clark, Colgate-Palmolive, and Johnson & Johnson as businesses 
operating in the same field as Procter & Gamble. Therefore, one might argue, similar 
stock price movements should be expected.
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The key point here is that—without any prior knowledge of this domain—a 
computer algorithm automatically extracted a structure that is consistent with the 
understanding of anyone familiar with this domain.
Beyond interpreting the qualitative structure of this network, there is a wide range 
of functions for gaining insight into this high-dimensional problem domain. For in-
stance, we may wish to know which node within this network is most important. In 
Chapter 5, we discussed the question in the context of a predictive model, which 
we learned with Supervised Learning. Here, on the other hand, we learned the net-
work with an Unsupervised Learning algorithm, which means that there is no Target 
Node. As a result, we need to think about the importance of a node with regard to the 
entire network, as opposed to a specific Target Node.

We need to introduce a number of new concepts to equip us for the discussion 
about node importance within a network. As we did in Chapter 5, we once again 
draw on concepts from information theory.

Arc Force

BayesiaLab’s Arc Force is computed by using the Kullback-Leibler Divergence, de-
noted by DKL, which compares two joint probability distributions, P and Q, defined 
on the same set of variables X. 

(7.1)

where P is the current network, and Q is the exact same network as P, except that we 
removed the arc under study.

It is important to point out that Mutual Information and Arc Force are closely 
related. If the child node in the pair of nodes under study does not have any other 
parents, Mutual Information and Arc Force are, in fact, equivalent. However, the 
Arc Force is more powerful as a measure as it takes into account the network’s joint 
probability distribution, rather than only focusing on the bivariate relationship. 

The Arc Force can be displayed directly on the Bayesian network graph. Upon 
switching to the Validation Mode (   or ), we select Analysis  >  Visual  >  Arc 
Force (F) (Figure 7.21). 

( ) ( ) ( )
( )
( )
,logD P Q P

Q
P

X X X
X
X

KL 2
X

< =^ h |



182

Figure 7.21	

Upon activating Arc Force, we can see that the arcs have different thicknesses. Also, 
an additional control panel becomes available in the menu (Figure 7.22).

Figure 7.22	

The slider in this control panel allows us to set the Arc Force threshold below which 
arcs and nodes will be grayed out in the Graph Panel. By default, it is set to 0, which 
means that the entire network is visible. Using Previous ( ) and Next ( ), we can 
step through all threshold levels. For instance, by starting at the maximum and then 
going down one step, we highlight the arc with the strongest Arc Force in the this 
network, which is between SPG (Simon Property Group) and VNO (Vornado Realty 
Trust) (Figure 7.23).
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Figure 7.23	

Node Force

The Node Force can be derived directly from the Arc Force. More specifically, there 
are three types of Node Force in BayesiaLab (the corresponding menu icons are 
shown in parentheses):

•	 The Incoming Node Force ( ) is the sum of the Arc Forces of all incoming 
arcs.

•	 The Outgoing Node Force ( )is the sum of the Arc Forces of all outgoing 
arcs.

•	 The Total Node Force is the ( ) sum of the Arc Forces of all incoming and 
outgoing arcs.

The Node Force can be shown directly on the Bayesian network graph. Upon switch-
ing to the Validation Mode (  or ), we select Analysis > Visual > Node Force 
(H).
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Figure 7.24	

After starting Node Force, we have another additional control panel available in the 
menu (Figure 7.25).

Figure 7.25	

The slider in this control panel allows us to set the Node Force threshold below which 
nodes will be grayed out in the Graph Panel. By default, it is set to 0, which means 
that all nodes are visible. Conversely, by setting the threshold to the maximum, all 
nodes are grayed out. Using Previous ( ) and Next ( ), we can step through the 
entire range of thresholds. For example, by starting at the maximum and then going 
down one step, we can find the node with the strongest Node Force in the this net-
work, which is BEN (Franklin Resources), a global investment management organiza-
tion (Figure 7.26). This functionality is analogous to the control panel for Arc Force. 
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Figure 7.26	

Node Force Mapping

This analysis tool also features a “local” Mapping function, which is particularly use-
ful when dealing with big networks, such as the one in this example with hundreds 
of nodes. We refer to this as a “local” Mapping function in the sense of only being 
available in the context of Node Force Analysis, as opposed to the “general” Mapping 
function, which is always available within the Validation Mode as a standalone analy-
sis tool (Analysis > Visual > Mapping). 

We launch the Mapping window by clicking the Mapping icon ( ) on the 
control panel, to the right of the slider. In this network view, the size of the nodes is 
directly proportional to the selected type of Node Force (Incoming, Outgoing, To-
tal). The thickness of the links is proportional to the Arc Force. Changing the thresh-
old values (with the slider for example) automatically updates the view. 

Choosing Static Font Size from the Contextual Menu and then, for instance, 
reducing the threshold by four more steps, reveals the five strongest nodes, while 
maintaining an overview of the entire network (Figure 7.27).

▶ Mapping in Chap-
ter 6, p. 160.
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Figure 7.27	

Inference

Throughout this book so far, we have performed inference with various types of ev-
idence. The kind of evidence we used was routinely determined by the nature of the 
problem domain.

We will now use this example to systematically try out all types of evidence for 
performing inference. With that, we depart from our habit of showing only realistic 
applications. One could certainly argue that not all types of evidence are plausible in 
the context of a Bayesian network that represents the stock market. In particular, any 
inference we perform here with arbitrary evidence should not be interpreted as an 
attempt to predict stock prices. Nevertheless, for the sake of an exhaustive presenta-
tion, even this somewhat contrived exercise shall be educational.
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Within our large network of 459 nodes, we will only focus on a small subset of 
nodes, namely PG (Procter & Gamble), JNJ ( Johnson & Johnson), and KMB (Kimber-
ly-Clark). These nodes come from the “neighborhood” shown in Figure 7.20.

We start by highlighting PG, JNJ, and KMB to bring up their Monitors. Prior to 
setting any evidence, we see their marginal distributions in the Monitors. We see that 
the expected value (mean value) of the returns is 0 (Figure 7.28).

Figure 7.28	

Inference with Hard Evidence

Next, we double-click the state JNJ>0.012 to compute the posterior probabilities of 
PG and KMB given this evidence. The gray arrows indicate how the distributions have 
changed compared to before, prior to setting evidence (Figure 7.29). Given the ev-
idence, the expected value of PG and KMB are 1.2% and 0.6% respectively (Figure 
7.29).

Figure 7.29	

If we also set KMB to its highest state (KMB>0.012), this would further reduce the 
uncertainty of PG and compute an expected value of 1.8% (Figure 7.30). This means 
that PG had an average daily return of 1.8% on days when this evidence was observed. 

Figure 7.30	

▶ Data Import Review, 
p. 175.
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Inference with Probabilistic and Numerical Evidence

Given the discrete states of nodes, setting Hard Evidence is presumably intuitive to 
understand. However, the nature of many real-world observations calls for so-called 
Probabilistic or Numerical Evidence. For instance, the observations we make in a 
domain can include uncertainty. Also, evidence scenarios can consist of values that 
do not coincide with the values of nodes’ states. So, as an alternative to Hard Evi-
dence, we can use BayesiaLab to set such evidence.

Probabilistic Evidence

Probabilistic Evidence is a convenient way for directly encoding our assumptions 
about possible conditions of a domain. For example, a stock market analysts may con-
sider a scenario with a specific probability distribution for JNJ corresponding to a 
hypothetical period of time (i.e. a subset of days). Given his understanding of the 
domain, he can assign probabilities to each state, thus encoding his belief.

After removing the prior evidence ( ), we can set such beliefs as Probabilis-
tic Evidence by right-clicking the JNJ Monitor and then selecting Enter Probabili-
ties (Figure 7.31). 

Figure 7.31	

For the distribution of Probabilistic Evidence, the sum of the probabilities must be 
equal to 100%. We can adjust the Monitor’s bar chart by dragging the bars to the 
probability levels that reflect the scenario under consideration (Figure 7.31). By dou-
ble-clicking on the percentages, we can also directly enter the desired probabilities. 
Note that changing the probability of any state automatically updates the probabili-
ties of all other states to maintain the sum constraint.

▶ Types of Evidence in 
Chapter 3, p. 42.
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Figure 7.32	

In order to remove a degree of freedom in the sum constraint, we left-click the State 
Name/Value in the Monitor, to the right of each bar (Figure 7.33). Doing so locks the 
currently set probability and turns the corresponding bar turns green. The probability 
of this state will no longer be automatically updated while the probabilities of other 
states are being edited. This feature is essential for defining a distribution on nodes 
that have more than two states. Another left click on the same State Name/Value 
unlocks the probability again.

Figure 7.33	

There are two ways to validate the entered distribution, via the green and the purple 
buttons. Clicking the green button ( ) defines a static likelihood distribution. This 
means that any additional piece of evidence on other nodes can update the distribu-
tion we set (Figure 7.34).

Figure 7.34	

Clicking the purple button ( ) “fixes” the probability distribution we entered by 
defining dynamic likelihoods. This means that each new piece of evidence triggers an 
update of the likelihood distribution in order to maintain the same probability distri-
bution (Figure 7.35). 

Figure 7.35	
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Using either validation method, BayesiaLab computes a likelihood distribution that 
produces the requested probability distribution. By setting this distribution, Bayesia-
Lab also performs inference automatically and updated the probabilities of the other 
nodes in the network (Figure 7.36).

Figure 7.36	

Numerical Evidence

Instead of a specific probability distribution, an observation or scenario may exist 
in the form of a single numerical value, which mans that we need to set Numerical 
Evidence. For instance, a stock market analyst may wish to examine how other stocks
performed given a hypothetic period of time during which the average of the daily re-
turns of JNJ was −1%. Naturally, this requires that we set evidence on JNJ that has an 
expected (mean) value of −0.01 (=−1%). However, this task is not as straightforward 
as it may sound. The questions will become apparent as we go through the steps to 
set this evidence. 

First, we right-click JNJ Monitor and then select Enter Target Value/Mean 
from the Contextual Menu (Figure 7.37).

Figure 7.37	

Next, we type “−0.01” into the dialog box for Target Mean/Value (Figure 7.38). Ad-
ditionally, as was the case with Probabilistic Evidence, we have to choose the type of 
validation, but we now have three options under Observation Type:
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•	 No Fixing, which is the same as the green button, i.e. validation with static 
likelihood.

•	 Fix Mean, which is the same as the purple button, except that the likelihood 
is dynamically computed to maintain the mean value, although the proba-
bility distribution can change as a result of setting additional evidence.

•	 Fix Probabilities, which is the same as the purple button, i.e. validation 
with dynamic likelihood.

Figure 7.38	

Apart from setting the validation method, we also need to choose the Distribution 
Estimation Method as we need to come up with a distribution that produces the de-
sired mean value. Needless to say, there is a great number of distributions that could 
potentially produce a mean value of −0.01. However, which one is appropriate? 

To make a prudent choice, we first need to understand what the evidence rep-
resents. Only then can we choose from the three available algorithms for generating 
the Target Distribution that will produce the Target Mean/Value.

MinXEnt (“Minimum Cross-Entropy”)

Using the MinXEnt algorithm, the Target Distribution, which produces the Target 
Mean/Value, is computed in such a way that the Cross-Entropy between the orig-
inal probability distribution of the node and the Target Distribution is minimized. 
Figure 7.39 shows the distribution with a mean of −0.01 that is “closest” in terms of 
Cross-Entropy to the original, marginal distribution shown earlier in Figure 7.28. 

Figure 7.39	



192

Binary

The Target Mean/Value is generated by interpolating between values of two adja-
cent states, hence the name “Binary.” Here, a “mix” of the values of two states, i.e.  
JNJ<=−0.009 and JNJ<=−0.002, produces the desired mean of −0.01.

Figure 7.40	

Value Shift

The Target Mean/Value is generated by shifting the values of each particle (or virtual 
observation) by the exact same amount.

Figure 7.41	

Target Value/Mean Considerations

As we see in the examples above, using different Target Distributions as Numerical 
Evidence—albeit with the same mean value—results in different probability distribu-
tions.

Binary

The Binary algorithm produces the desired value through interpolation, as in Fuzzy 
Logic. Among the three available methods, it generates distributions that have the 
lowest degree of uncertainty. Using the Binary algorithm for generating a Target 
Mean/Value would be appropriate if two conditions are met:

1.	 There is no uncertainty regarding the evidence, i.e. we want the evidence 
to represent a specific numerical value. “No uncertainty” would typically 
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apply in situations in which we want to simulate the effects of nodes that 
represent variables under our control.

2.	 The desired numerical value is not directly available by setting Hard Ev-
idence. In fact, a distribution produced by the Binary algorithm would 
coincide with Hard Evidence if the requested Target Value/Mean pre-
cisely matched the value of a particular state. 

Given that is impossible to directly set prices in the stock market, it is clearly not a 
good example for illustrating this as a use of the Binary algorithm. Perhaps a price 
elasticity model would be more appropriate. In such a model, we would want to infer 
sales volume based on one specific price level as opposed to a broad range of price 
levels within a distribution. 

MinXEnt and Value Shift

The other two algorithms, MinXEnt and Value Shift, generate Soft Evidence. This 
means that the Target Distribution they supply should be understood like posterior 
distribution given evidence set on a “hidden cause”, i.e. evidence on a variable not 
included in the model. As such, using MinXEnt or Value Shift is suitable for creat-
ing evidence that represents changing levels of measures like customer satisfaction. 
Unlike setting the price of a product, we cannot directly adjust the satisfaction of all 
customers to a specific level. This would imply setting an unrealistic distribution with 
low or no uncertainty.

More realistically, we would have to assume that higher satisfaction is the result 
of an enhanced product or better service, i.e. a cause from outside the model. Thus, 
we need to generate the evidence for customer satisfaction as if it were produced by 
a hidden cause. This also means that MinXEnt and Value Shift will produce a distri-
bution close to the marginal one if the targeted Numerical Evidence is close to the 
marginal value.

Special Cases of Numerical Evidence

If the Numerical Evidence is equal to current expected value, using (a) MinXEnt 
or (b) Value Shift will not change the distribution (Figure 7.42). Using the Binary 
algorithm (c), however, will return a different distribution (except in the context of a 
binary node).
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Figure 7.42	

Marginal Distribution Target Mean=0 (MinXEnt)

Marginal Distribution Target Mean=0 (Value Shift)

Marginal Distribution Target Mean=0 (Binary)

Conflicting Evidence

In the examples shown so far, setting evidence typically reduced uncertainty with 
regard to the node of interest. Just by visually inspecting the distributions, we can tell 
that setting evidence generally produces “narrower” posterior probabilities. 

However, this is not always the case. Occasionally, separate pieces of evidence 
can conflict with each other. We illustrate this by setting such evidence on JNJ and 
KMB. We start with the marginal distribution of all nodes (Figure 7.43).

Figure 7.43	

After setting Numerical Evidence (using MinXEnt) with a Target Mean/Value of 
+1.5% on JNJ, we obtain Figure 7.44.

Figure 7.44	
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The posterior probabilities inferred as a result of the JNJ evidence indicate that the PG 
distribution is more positive than before. More importantly, the uncertainty regard-
ing PG is lower. A stock market analyst would perhaps interpret the JNJ movement 
as a positive signal and hypothesize about a positive trend in the CPG industry. In an 
effort to confirm his hypothesis, he would probably look for additional signals that 
either confirm the trend and the related expectations regarding PG and similar com-
panies.

In the KMB Monitor, the gray arrows and “(+0.004)” indicate that the first evi-
dence increases the expectation that KMB will also increase in value. If we observed, 
however, that KMB decreased by 1.5% (once again using MinXEnt), this would go 
against our expectation (Figure 7.45).

Figure 7.45	

The result is that we now have a more uniform probability distribution for PG—rath-
er than a narrower distribution. This increases our uncertainty about the state of PG 
compared to the marginal distribution (Figure 7.43). 

Even though it appears that we have “lost” information by setting these two 
pieces of evidence, we may have a knowledge gain after all: we can interpret the un-
certainty regarding PG as a higher expectation of volatility.

Measures of Conflict

Beyond a qualitative interpretation of contradictory evidence, our Bayesian network 
model allows us to examine “conflict” beyond its common-sense meaning. A formal 
conflict measure can be defined by comparing the joint probabilities of the current 
model versus a reference model, given the same set of evidence for both. 

A fully unconnected network is commonly used as the reference model, the 
so-called “straw model.” It is a model that considers all nodes to be marginally inde-
pendent. If the joint probability of the set of evidence returned by the model under 
study is lower than that of the reference model, we determine that we have a conflict. 
Otherwise, if the joint probability is higher, we conclude that the pieces of evidence 
are consistent.



196

The conflict measures that are available in BayesiaLab are formally defined as 
follows: 

Global Conflict (Overall Conflict)

(7.2)

where E is the current set of evidence consisting of n observations, and ei is the ith 
piece of evidence.

Bayes Factor

(7.3)

where h is a hypothetical piece of evidence that has not yet been set or observed.

Local Conflict (Local Consistency)

(7.4)

Evidence Analysis Report

Using these definitions, we can compute to what extent a new observation would be 
consistent with the current set of evidence. BayesiaLab provides us with this capabil-
ity in the form of the Evidence Analysis Report, which can be generated by selecting 
Analysis > Report > Evidence Analysis from the main menu (Figure 7.46). 
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Figure 7.46	

The Evidence Analysis Report displays two closely related metrics, Local Consis-
tency (LC) and the Bayes Factor (BF), for each state of each unobserved node in the 
network, given the set of evidence. The top portion of this report is shown in Figure 
7.47. Also, as we anticipated, an Overall Conflict between the two pieces of evidence 
is shown at the top of the report.

Figure 7.47	

Summary

Unsupervised Learning is a practical approach for obtaining a general understand-
ing of simultaneous relationships between many variables in a database. The learned 
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Bayesian network facilitates visual interpretation plus computation of omni-direc-
tional inference, which can be based on any type of evidence, including uncertain 
and conflicting observations. Given these properties, Unsupervised Learning with 
Bayesian networks becomes a universal tool for knowledge discovery in high-dimen-
sional domains.
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8. Probabilistic Structural Equation 
Models

Structural Equation Modeling is a statistical technique for testing and estimating 
causal relations using a combination of statistical data and qualitative causal as-

sumptions. This definition of a Structural Equation Model (SEM) was articulated by 
the geneticist Sewall Wright (1921), the economist Trygve Haavelmo (1943) and the 
cognitive scientist Herbert Simon (1953), and formally defined by Judea Pearl (2000). 
Structural Equation Models (SEM) allow both confirmatory and exploratory model-
ing, meaning they are suited to both theory testing and theory development. 

What we call Probabilistic Structural Equation Models (PSEMs) in BayesiaLab 
are conceptually similar to traditional SEMs. However, PSEMs are based on a Bayes-
ian network structure as opposed to a series of equations. More specifically, PSEMs 
can be distinguished from SEMs in terms of key characteristics:

•	 All relationships in a PSEM are probabilistic—hence the name, as opposed 
to having deterministic relationships plus error terms in traditional SEMs.

•	 PSEMs are nonparametric, which facilitates the representation of nonlinear 
relationships, plus relationships between categorical variables.

•	 The structure of PSEMs is partially or fully machine-learned from data.
In general, specifying and estimating a traditional SEM requires a high degree of sta-
tistical expertise. Additionally, the multitude of manual steps involved can make the 
entire SEM workflow extremely time-consuming. The PSEM workflow in Bayesia-
Lab, on the other hand, is accessible to non-statistician subject matter experts. Per-
haps more importantly, it can be faster by several orders of magnitude. Finally, once a 
PSEM is validated, it can be utilized like any other Bayesian network. This means that 
the full array of analysis, simulation, and optimization tools is available to leverage the 
knowledge represented in the PSEM.

Example: Consumer Survey

In this chapter, we present a prototypical PSEM application: key drivers analysis and 
product optimization based on consumer survey data. We examine how consumers 
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perceive product attributes, and how these perceptions relate to the consumers’ pur-
chase intent for specific products.

Given the inherent uncertainty of survey data, we also wish to identify high-
er-level variables, i.e. “latent” variables that represent concepts, which are not directly 
measured in the survey. We do so by analyzing the relationships between the so-called 
“manifest” variables, i.e. variables that are directly measured in the survey. Including 
such concepts helps in building more stable and reliable models than what would be 
possible using manifest variables only.

Our overall objective is making surveys clearer to interpret by researchers and 
making them “actionable” for managerial decision makers. The ultimate goal is to use 
the generated PSEM for prioritizing marketing and product initiatives to maximize 
purchase intent.

Dataset

This study is based on a monadic1 consumer survey about perfumes, which was con-
ducted by a market research agency in France. In this example, we use survey re-
sponses from 1,320 women who have evaluated a total of 11 fragrances (representa-
tive of the French market) on a wide range of attributes:

•	 27 ratings on fragrance-related attributes, such as, Sweet, Flowery, Femi-
nine, etc., measured on a 1–10 scale. 

•	 12 ratings with regard to imagery about someone who wears the respective 
fragrance, e.g. Sexy, Modern, measured on a 1–10 scale.

•	 1 variable for Intensity, a measure reflecting the level of intensity, measured 
on a 1–5 scale.2

•	 1 variable for Purchase Intent, measured on a 1–6 scale.
•	 1 nominal variable, Product, for product identification.

Workflow Overview

A PSEM is a hierarchical Bayesian network that can be generated through a series of 
machine-learning and analysis tasks:

1  A product test only involving one product. In this study, each respondent evaluated only 
one perfume.

2  The variable Intensity is listed separately due to the a-priori knowledge of its non-lineari-
ty and the existence of a “just-about-right” level.
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1.	 Unsupervised Learning, to discover the strongest relationships between 
the manifest variables.

2.	 Variable Clustering, based on the learned Bayesian network, to identify 
groups of variables that are strongly connected.

3.	 Multiple Clustering: we consider the strong intra-cluster connections 
identified in the Variable Clustering step to be due to a “hidden com-
mon cause.” For each cluster of variables, we use Data Clustering—on 
the variables within the cluster only—to induce a latent variable that rep-
resents the hidden cause.

4.	 Unsupervised Learning, to find the interrelations between the new-
ly-created latent variables and their relationships with the Target Node.

Data Import

We have already described all steps of the Data Import Wizard in previous chapters. 
Therefore, we present most of the following screenshots without commentary and 
only highlight items that are specific to this example. To start the Data Import Wiz-
ard, we open the file “perfume.csv.”3

Figure 8.1	

3  The perfume study data is available for download from the Bayesia website: 
www.bayesia.us/perfume
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Figure 8.2	  

 

Figure 8.3	

For this example, we need to override the default data type for the variable named 
Product as it is a nominal product identifier rather than a numerical value. We can 
change this variable’s data type by highlighting the Product column and clicking the 
Discrete radio button. This changes the color of the Product column to red (Figure 
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8.4). We also define Purchase Intent and Intensity as Discrete variables. Their number 
of states is suitable for our purposes.

Figure 8.4	

Figure 8.5	

The next step is the Discretization and Aggregation screen. Given the number of 
observations, it is appropriate to reduce the number of states of the ratings from the 
original 10 states (1–10) to a smaller number. All these variables are measuring satis-
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faction on the same scale, i.e. from 1 to 10. Following our earlier recommendations, 
the best choice in this context is the Equal Distance discretization. 

By clicking Select All Continuous, we highlight all to-be-discretized variables. 
Then, we choose the type of discretization to be applied, which is Equal Distance 
(Figure 8.6). Furthermore, given the number of observations, we choose 5 bins for 
the discretization.

Figure 8.6	

Clicking Finish finalizes the import process. Upon completion, we are prompted 
whether we want to view the Import Report (Figure 8.7)

Figure 8.7	

As there is no uncertainty with regard to the outcome of the discretization, we decline 
and automatically obtain a fully unconnected network with 49 nodes (Figure 8.8).

▶ Equal Distance in 
Chapter 5, p. 87.
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Figure 8.8	

Step 1: Unsupervised Learning

As a first step, we need to exclude the node Purchase Intent, which will later serve as 
our Target Node. We do not want this node to become part of the structure that we 
will subsequently use for discovering hidden concepts. Likewise, we need to exclude 
the node Product, as it does not contain consumer feedback to be evaluated.

We can exclude nodes by selecting the Node Exclusion Mode ( ) and then 
clicking on the to-be-excluded node (Figure 8.9). Alternatively, holding  while 
clicking the node performs the same function.

Figure 8.9	
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Figure 8.10	

The upcoming series of steps is crucial. We now need to prepare a robust network on 
which we can later perform the clustering process. Given the importance, we recom-
mend to go through the full range of Unsupervised Learning algorithms and com-
pare the performance of each resulting network structure to select the best structure. 

The objective is to increase our chances of finding the optimal network for our 
purposes. Given that the number of possible networks grows super-exponentially 
with the number of nodes (Figure 8.11), this is a major challenge. 

Figure 8.11	

Number of Nodes Number of Possible Networks
1 1
2 3
3 25
4 543
5 29281
6 3.7815×106

7 1.13878×109

8 7.83702×1011

9 1.21344×1015

10 4.1751×1018

... ...
47 8.98454×10376

It may not be immediately apparent how such an astronomical number of networks 
could be possible. Figure 8.12 displays how as few as 3 nodes can be combined in 25 
different ways to form a network.
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Figure 8.12	

Needless to say, generating all 9×10376 networks—based on 47 nodes—and then se-
lecting the best one is completely intractable.4 An exhaustive search would only be 
feasible for a few nodes.

As a result, we have to use heuristic search algorithms to explore a small part 
of this huge space in order to find a local optimum. However, a heuristic search algo-
rithm does not guarantee to find the global optimum. This is why BayesiaLab offers a 
range of distinct learning algorithms, which all use different search spaces or search 
strategies or both:

4  For reference, it is estimated that there are between 1078 to 1082 atoms in the known, 
observable universe.
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•	 Bayesian networks for MWST and Taboo.
•	 Essential Graphs for EQ and SopLEQ, i.e. graphs with edges and arcs repre-

senting classes of equivalent networks. 
•	 Order of nodes for Taboo Order.

This diversity increases the probability of finding a solution close to the global opti-
mum. Given adequate time and resources for learning, we recommend to employ the 
algorithms in the following sequence to find the best solution: 

•	 Maximum Weight Spanning Tree + Taboo
•	 Taboo (“from scratch”)
•	 EQ (“from scratch”) + Taboo
•	 SopLEQ + Taboo
•	 Taboo Order + Taboo

However, to keep the presentation compact, we only illustrate the learning steps 
for the EQ algorithm (Figure 8.13): Learning  >  Unsupervised Structural  Learn-
ing > EQ.

Figure 8.13	

The network generated by the EQ algorithm is shown in Figure 8.14. 
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Figure 8.14	

Pressing P, and then clicking the Best-Fit icon ( ), provides an interpretable view 
of the network (Figure 8.15). Additionally, rotating the network graph with the Ro-
tate Left ( ) and Rotate Right buttons ( ) can help setting a suitable view. 

Figure 8.15	  

We now need to assess the quality of this network. Each of BayesiaLab’s Unsuper-
vised Learning algorithms uses the MDL score—internally—as the measure to opti-
mize while searching for the best possible network. However, we can also employ the  
MDL score for explicitly rating the quality of a network.
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Minimum Description Length

The Minimum Description Length (MDL) score is a two-component score, which 
has to be minimized to obtain the best solution. It has been used traditionally in the 
artificial intelligence community for estimating the number of bits required for repre-
senting (1) a “model,” and (2) “data given this model.” 

In our machine-learning application, the “model” is a Bayesian network, con-
sisting of a graph and probability tables. The second term is the log-likelihood of the 
data given the model, which is inversely proportional to the probability of the obser-
vations (data) given the Bayesian network (model). More formally, we write this as:

(8.1)

where:
•	 α represents BayesiaLab’s Structural Coefficient (the default value is 1), 

a parameter that permits changing the weight of the structural part of the 
MDL Score (the lower the value of α, the greater the complexity of the re-
sulting networks),

•	 DL(B) the number of bits to represent the Bayesian network B (graph and 
probabilities), and

•	 DL(D|B) the number of bits to represent the dataset D given the Bayesian 
network B (likelihood of the data given the Bayesian network).

The minimum value for the first term, DL(B), is obtained with the simplest structure, 
i.e. the fully unconnected network, in which all variables are stated as independent. 
The minimum value for the second term, DL(D|B), is obtained with the fully connect-
ed network, i.e. a network corresponding to the analytical form of the joint probabil-
ity distribution, in which no structural independencies are stated.

Thus, minimizing this score consists in finding the best trade-off between both 
terms. For a learning algorithm that starts with an unconnected network, the objec-
tive is to add a link for representing a probabilistic relationship if, and only if, this 
relationship reduces the log-likelihood of the data, i.e. DL(D|B), by a large enough 
amount to compensate for the increase in the size of the network representation, i.e. 
DL(B).

( , ) ( ) ( | ),MDL B D DL B DL D Ba= +
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MDL Score Comparison

We now use the MDL score to compare the results of all learning algorithms.5 We can 
look up the MDL score of the current network by pressing  while hovering with 
the cursor over the Graph Panel. This brings up an info box that reports a number of 
measures, including the MDL score, which is displayed here as “Final Score” (Figure 
8.16).

Figure 8.16	  

Alternatively, we can open up the Console via Options > Console > Open Console 
(Figure 8.17)

5  The MDL score can only be compared for networks with precisely the same representa-
tion of all variables, i.e. with the same discretization thresholds and the same data.
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Figure 8.17	  

The Console maintains a kind of “log” that keeps track of the learning progress by 
recording the MDL score (or “Network Score”) at each step of the learning process 
(Figure 8.18). Here, “Final Score” marks the MDL score of the current network, 
which is what we need to select the network with the lowest value. 

Figure 8.18	  

The EQ algorithm produces a network with an MDL score of 98,606.572. As is turns 
out, this performance is on par with all the other algorithms we considered, although 
we skip presenting the details in this chapter. Given this result, we can proceed with 
the EQ-learned network to the next step.
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Data Perturbation

As a further safeguard against utilizing a sub-optimal network, BayesiaLab offers 
Data Perturbation, which is an algorithm that adds random noise (from within the 
interval [-1,1]) to the weight of each observation in the database. 

In the context of our learning task, Data Perturbation can help escape from 
local minima, which we could have encountered during learning. We start this algo-
rithm by selecting Learning > Data Perturbation (Figure 8.19)

Figure 8.19	  

For Data Perturbation, we need to set a number of parameters (Figure 8.20). 
The additive noise is always generated from a Normal distribution with a mean of 0, 
but we need to set the Initial Standard Deviation. A Decay Factor defines the expo-
nential attenuation of the standard deviation with each iteration.

Figure 8.20	  
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Upon completion of Data Perturbation, we see the newly learned network in the 
Graph Panel. Once again, we can retrieve the score by pressing  while hovering 
with the cursor over the Graph Panel or by looking it up in the Console. The score 
remains unchanged at 98,606.572. We can now be reasonably confident that we have 
found the optimal network given the original choice of discretization, i.e. the most 
compact representation of the joint probability distribution defined by the 47 mani-
fest variables. 

On this basis, we now switch to the Validation Mode (  or  ). Instead of 
examining individual nodes, however, we proceed directly to Variable Clustering.

Step 2: Variable Clustering

BayesiaLab’s Variable Clustering is a hierarchical agglomerative clustering algorithm 
that uses Arc Force (i.e. the Kullback-Leibler Divergence) for computing the dis-
tance between nodes. 

At the start of Variable Clustering, each manifest variable is treated as a distinct 
cluster. The clustering algorithm proceeds iteratively by merging the “closest” clus-
ters into a new cluster. Two criteria are used for determining the number of clusters: 

•	 Stop Threshold: a minimum  Arc Force value, below which clusters are not 
merged (a kind of significance threshold).

•	 Maximum Cluster Size: the maximum number of variables per cluster.
These criteria can be set via Options > Settings > Learning > Variable Clustering 
(Figure 8.21):

Figure 8.21	

▶ Network Analysis in 
Chapter 7, p. 179.

▶ Arc Force in Chap-
ter 7, p. 181.
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Whereas we do not advise to change the Stop Threshold, Maximum Cluster Size is 
more subjective. For building PSEMs, we recommend a value between 5 and 7, for 
reasons that will become clear when we show how latent variables are generated. If, 
however, the goal of Variable Clustering is dimensionality reduction, we suggest to 
increase Maximum Cluster Size to a much higher value, thus effectively eliminating 
it as a constraint.

The Variable Clustering algorithm can be started via Learning  >  Cluster-
ing > Variable Clustering or by using the shortcut .

Figure 8.22	

In this example, BayesiaLab identified 15 clusters, and each node is now color-coded 
according to its cluster membership. Figure 8.23 shows the standalone graph, outside 
the BayesiaLab window, for better legibility.
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Figure 8.23	

BayesiaLab offers several tools for examining and editing the proposed cluster struc-
ture. They are accessible from an extended menu bar (highlighted in Figure 8.24).

Figure 8.24	
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Dendrogram

The Dendrogram allows us to review the linkage of nodes within variable clusters. It 
can be activated via the corresponding icon ( ) in the extended menu. The lengths of 
the branches in the Dendrogram are proportional to the Arc Force between clusters.  

Figure 8.25	

Also, the Dendrogram can be copied directly as a PDF or as a bitmap by right-click-
ing on it. Alternatively, it can be exported in various format via the Save As... button. 
As such, it can be imported into documents and presentation (Figure 8.26). This abil-
ity to copy and paste graphics applies to most graphs, plots, and charts in BayesiaLab.

Figure 8.26	

Cluster Mapping

As an alternative to Dendrogram, Mapping offers an intuitive approach to examining 
the just discovered cluster structure (Figure 8.27). It can be activated via the Mapping 
button in the menu bar ( ).

▶ Mapping in Chap-
ter 6, p. 160.
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Figure 8.27	

By hovering over any of the cluster “bubbles” with the cursor, BayesiaLab displays a 
list of all manifest nodes that are connected to that particular cluster (Figure 8.28). 
Each list of manifest variables is sorted according to the intra-cluster Node Force. 
This also explains the names displayed on the clusters. By default, each cluster takes 
on the name of the strongest manifest variables. 

Figure 8.28	
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Number of Clusters

As explained earlier, BayesiaLab uses two criteria to determine the default number of 
clusters. We can change this number via the selector in the menu bar (Figure 8.29).

Figure 8.29	

Both the Dendrogram and the Mapping view respond dynamically to any changes to 
the numbers of clusters.

Cluster Validation

The result of the Variable Clustering algorithm is purely descriptive. Once the ques-
tion regarding the number of clusters is settled, we need to formally confirm our 
choice by clicking the Validate Clustering button ( ) in the toolbar. Only then we 
trigger the creation of one Class per Cluster. At that time, all nodes become associat-
ed with unique Classes, which are named “[Factor_i]”, with i representing the identi-
fier of the factor. Additionally, we are prompted to confirm that we wish to keep the 
node colors that were generated during clustering (Figure 8.30).

Figure 8.30	

The clusters are now saved, and the color coding is formally associated with the nodes. 
A Clustering Report (Figure 8.31) provides a formal summary of the new factors and 
their associated manifest variables.6 

6  Note that we use the following terms interchangeably: “derived concept”, “unobserved 
latent variable”, “hidden cause”, and “extracted factor”.

▶ Step 2: Variable Clus-
tering, p. 216.
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Figure 8.31	

The Class icon ( ) in the lower right-hand corner of the window confirms that class-
es have been created corresponding to the factors. This concludes Step 2 and we for-
mally close Variable Clustering via the stop icon ( ) on the extended toolbar.

Editing Factors

Beyond our choice with regard to the number of clusters, we also have the option 
of using our domain knowledge to modify which manifest nodes belong to specific 
factors. This can be done by right-clicking on the Graph Panel, and selecting Edit 
Classes and then Modify from the Contextual Menu (Figure 8.32). Alternatively, we 
can click the Class icon ( ). In our example, however, we show the Class Editor just 
for reference (Figure 8.33) as we keep all the original variable assignments in place.
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Figure 8.32	

Figure 8.33	

Cluster Cross-Validation

We now examine the robustness of the identified factors, i.e. how these factors re-
spond to changes in sampling. This is particularly important for studies that are reg-
ularly repeated with new data, e.g. annual customer satisfaction surveys. Inevitably, 
survey samples are going to be different between the years. As a result, machine learn-
ing will probably discover somewhat different structures each time and, therefore, 
identify different clusters of nodes. Therefore, it is important to distinguish between 
a sampling artifact and a substantive change in the joint probability distribution. The 
latter, in the context of our example, would reveal a structural change in consumer 
behavior. 
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We start the validation process via Tools > Cross-Validation > Variable Clus-
tering > Data Perturbation (Figure 8.34). 

Figure 8.34	

This brings up the dialogue box shown in Figure 8.35.

Figure 8.35	

These settings specify that BayesiaLab will learn 100 networks with EQ and perform 
Variable Clustering on each one of them, all while maintaining the constraint of a 
maximum of 5 nodes per cluster and without any attenuation of the perturbation. 
Upon completion, we obtain a report panel (Figure 8.36), from which we initially 
select Variable Clustering Report.
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Figure 8.36	  

The Variable Clustering Report consists primarily of two large tables. The first table 
(Figure 8.37) in the report shows the cluster membership of each node in each net-
work (only the first 12 columns are shown). Here, thanks to the colors, we can easily 
detect whether nodes remain clustered together between iterations or whether they 
“break up.”

Figure 8.37	

The second table (Figure 8.38) shows how frequently individual nodes are clustered 
together.
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Figure 8.38	

The Clustering Frequency Graph (Figure 8.39) provides yet another visualization of 
the clustering patterns. The thickness of the lines is proportional to the frequency of 
nodes being in the same cluster. Equally important for interpretation is the absence of 
lines between nodes. For instance, the absence of a line between Flowery and Modern 
says that they have never been clustered together in any of the 100 samples. If they 
were to cluster together in future iteration with new survey data, it would probably 
reflect a structural change in the market rather than a data sampling artifact.
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Figure 8.39	

Step 3: Multiple Clustering

The Cluster Cross-Validation was merely a review, and it has not changed the factors 
that we confirmed when we clicked the Validate Clustering button ( ). Although we 
have defined these factors now in terms of classes of manifest variables, we still need 
to create the corresponding latent variables via Multiple Clustering. This process cre-
ates one discrete factor for each cluster of variables by performing data clustering on 
each subset of clustered manifest variables. 

In traditional statistics, deriving such latent variables or factors is typically per-
formed by means of Factor Analysis, e.g. Principal Components Analysis (PCA).
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Before we run this automatically across all factors with the Multiple Clustering algo-
rithm, we will demonstrate the process on a single cluster of nodes, namely the nodes 
associated with Factor_0: Active, Bold, Character, Fulfilled, and Trust. We simply de-
lete all other nodes and arcs and save this subset of nodes as a new, separate xbl file. 

Figure 8.40	

The objective of BayesiaLab’s Data Clustering algorithm is to create a node that com-
pactly represent the joint probability distribution defined by the variables of interest. 
We start Data Clustering via Learning > Clustering > Data Clustering (Figure 8.41). 
Unless we select a subset, Data Clustering will be applied to all nodes.

Figure 8.41	
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In the Data Clustering dialogue box we set the options as shown in Figure 8.42. 
Among the settings, we need to point out that we leave the number of states of the to-
be-induced factor open; we only set a range, i.e. 2–5. This means that we let Bayesia-
Lab determine the optimal number of states for representing the joint probability 
distribution.

Figure 8.42	

Upon completion of the clustering process, we obtain a graph with newly induced 
[Factor_0] being connected to all its associated manifest variables.

Figure 8.43	
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Furthermore, BayesiaLab produces a window that contains a comprehensive clus-
tering report (Figure 8.44). Given its size, we split the full report across two pages 
(Figure 8.45 and Figure 8.46).

Figure 8.44	
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Figure 8.45	

Number of Steps 10
Sample Size 100.00%
Initial Number of States 2
Maximum Number of States 5
Number of States Found 5
Obtained Score 1.724117097
Learning Duration 0h 0m 2s
Fixed Seed Used 31

5 clusters 1.731566929
5 clusters 1.732612261
5 clusters 1.739002125
5 clusters 1.744891778
5 clusters 1.793944067
5 clusters 2.016251303
3 clusters 2.033543432
4 clusters 2.204552832
3 clusters 2.990052523
2 clusters 5.168144999

Cluster 2 32.85%
Cluster 4 27.48%
Cluster 5 21.65%
Cluster 3 11.20%
Cluster 1 6.81%

Cluster Purity Neighborhood
Cluster 3 2.997%
Cluster 5 0.111%

Cluster 5 96.51% Cluster 2 3.444%
Cluster 4 4.699%
Cluster 5 2.331%
Cluster 4 5.894%
Cluster 1 1.965%
Cluster 2 5.360%
Cluster 3 2.436%

Performance Indices
Contingency Table Fit 84.882%
Deviance 1,046.581
Hypercube Cells Per State 530.512

Automatic Selection of the Number of States by Random Walk

Summary of the obtained results

Marginal Probabilities

Clustering Average Purity: 93.656%

Cluster 4 92.06%

Cluster 1 96.84%

Cluster 2 92.97%

Cluster 3 92.14%
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Figure 8.46	
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Relative Significance

In the second part of the report (Figure 8.46), the variables are sorted by Relative 
Significance with respect to the Target Node, which is [Factor_0]. 

(8.2)

where Mi represents the ith manifest variable, and F represents the factor variable. The 
function I(∙) computes the Mutual Information.

Mapping

From the window that contains the report (Figure 8.44), we can also produce a Map-
ping of the clusters (Figure 8.47). 

Figure 8.47	

This graph displays three properties of the identified states (Cluster 1–Cluster 5) 
within the new factor node: 
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,
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•	 The saturation of the blue represents the purity of the clusters: the higher 
the purity, the higher the saturation of the color. Here, all purities are in the 
90%+ range, which is why they are all deep blue.

•	 The sizes represent the respective marginal probabilities of the states (clus-
ters). We will see this distribution again once we open the Monitor of the 
new factor node. 

•	 The distance between any two clusters is proportional to the neighborhood 
of the clusters.

Quadrants

Clicking the Quadrants button in the report window (Figure 8.44) brings up the op-
tions for graphically displaying the relative importance of the node with regard to the 
induced factor (Figure 8.48).

Figure 8.48	

For our example, we select Mutual Information. Furthermore, we do not need to 
normalize the means as all values of the nodes in this Cluster are recorded on the 
same scale.
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Figure 8.49	

This Quadrant Plot highlights two measures that are relevant for interpretation: 
•	 Mutual Information on the y-axis, i.e. the importance of each manifest vari-

ables with regard to the latent variable, [Factor_0]. 
•	 The Mean Value of each manifest variable on the x-axis.

This plot shows us that the most important variable is I(Trust,[Factor_0])=1.26. It is 
also the variable with the highest expected satisfaction level, i.e. E(Trust)=6.79.

When hovering with the cursor over the plot, the upper panel of the Quadrant 
Plot window returns the exact coordinates of the respective point, i.e. Mutual Infor-
mation and Mean Value in this example. 

Upon closing the Quadrant Plot and the report window, we return to the 
Graph Panel. It shows the newly induced Factor directly connected to all its associat-
ed manifest variables. Applying the Automatic Layout () produces a suitable view 
of the network produced by the Data Clustering process (Figure 8.50). 



236

Figure 8.50	

After switching to the Validation Mode (   or ), we open the Monitors for all 
nodes. We can see five states (clusters) for [Factor_0], labeled C1 through C5, as well 
as their marginal distribution. This distribution was previously represented as the 
“bubble size” of Clusters 1–5 in Figure 8.47.

Figure 8.51	

In the Monitor of [Factor_0], we see that the name of each state carries a value shown 
in parentheses, e.g. C1 (2.022). This value is the weighted average of the associated 
manifest variables given the state C1, where the weight of each variable is its Rela-
tive Significance with respect to [Factor_0]. That means that given the state C1 of 
[Factor_0], the weighted mean value of Trust, Bold, Fulfilled, Active, and Character 

▶ Relative Significance, 
p. 233.
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is 2.022. This becomes more apparent when we actually set the evidence C1 (Figure 
8.52).

Figure 8.52	  

Given that all the associated manifest variables share the same satisfaction level scale, 
the values of the created states can also be interpreted as satisfaction levels. State C1 
summarizes the “low” ratings across the manifest nodes. Conversely, C5 represents 
mostly the “high” ratings; the other states cover everything else in between.

Figure 8.53	  

It is important to understand that each underlying record was assigned a specific state 
of [Factor_0]. In other words, the hidden variable is no longer hidden. It has been 
added to the database and imputed for all respondents. The imputation is done via 
Maximum Likelihood: given the satisfaction levels observed for each of the 5 man-
ifest variables, the state with the highest posterior probability is assigned to the re-
spondent.

We can easily verify this by scrolling through each record in the database. To 
do so, we first set [Factor_0] as target node by right-clicking on it and selecting Set as 
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Target Node from the contextual menu (Figure 8.54). Note that the Monitor corre-
sponding to the Target Node turns red.

Figure 8.54	

Then, we select Inference  > Interactive Inference (Figure 8.55).

Figure 8.55	

Using the record selector in the extended toolbar, we can now scroll through each re-
cord in the associated database. The Monitors of the manifest nodes show the actual 
survey observations, while the Monitor of [Factor_0] shows the posterior probabil-
ity distribution of the states given these observations. The state highlighted in light 
blue the marks modal value, i.e. the “winning” state, which is the imputed state now 
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recorded in the database (Figure 8.56). Clicking the Stop Inference icon ( ) closes 
this function.

Figure 8.56	

Network Performance Analysis

While the Performance Indices shown in the Data Clustering Report (Figure 8.45) 
have already included some measures of fit, we can further study this point by start-
ing a more formal performance analysis: Analysis > Network Performance > Over-
all (Figure 8.57). 

Figure 8.57	
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The resulting report provides us with measures of how well this network represents 
the underlying database (Figure 8.58).

Figure 8.58	

Contingency Table Fit

Of particular interest is BayesiaLab’s Contingency Table Fit (CTF), which measures 
the quality of the JPD representation. It is defined as:

(8.3)

where: 
( )ll B  is the mean of the log-likelihood of the data given the network currently under 

study,
( )ll Bu  is the mean of the log-likelihood of the data given the fully unconnected net-

work, i.e. the “worst-case scenario,” and
( )ll B f  is the mean of the log-likelihood of the data given the fully connected net-

work, i.e. the “best-case scenario.” The fully connected network is the complete 
graph, in which all nodes have a direct link to all other nodes. Therefore, it is the exact 
representation of the chain rule, without any conditional independence assumptions 
in the representation of the joint probability distribution.

Accordingly, we can interpret the following key values of the CTF: 

( )
( ) ( )
( ) ( )
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•	 CTF is equal to 100 if the network represents the joint probability distribu-
tion of the data without any approximation, i.e. it has the same log-likeli-
hood as the fully connected network.

•	 CTF is equal to 0 if the network represents a joint probability distribution 
no different than the one produced by the fully unconnected network, in 
which all the variables are marginally independent.

The main benefit of employing CTF as a quality measure is that it has normalized 
values ranging between 0% and 100%.7 

CTF in Practice

It must be emphasized that CTF measures only the quality of the network in terms 
of its data fit. As such, it represents the second term in the definition of the MDL 
score ( ( , ) ( ) ( | )MDL B D DL B DL D Ba= + ). Even though this says, the higher the 
CTF, the better the representation of the JPD, we are not aiming for CTF=100%. This 
would conflict with the objective of finding a compact representation of the JPD. 

The Naive structure of the network used for Data Clustering implies that the 
entire JPD representation relies on the Factor node. Removing this node would 
produce a fully unconnected network with a CTF=0%. Therefore, BayesiaLab ex-
cludes—but does not remove—the Factor node when computing the CTF. This al-
lows measuring the quality of the JPD representation with the induced clusters only.

It is not easy to recommend a threshold value below which the Factor should 
be “reworked,” as the CTF depends directly on the size of the JPD and the number of 
states of the Factor. For instance, given a Factor with 4 states and 2 binary manifest 
variables, a CTF any lower than 100% would be a poor representation of the JPD, as 
the JPD only consists of 4 cells. On the other hand, given 10 manifest variables, with 
5 states each, and a Factor also consisting of 5 states, a CTF of 50% would be a very 
compact representation of the JPD. This means that 5 states would manage to repre-
sent a JPD of 510 cells with a quality of 50%.

Returning to the context of our PSEM workflow, we have the following 3 con-
ditions:

7  This measure can become negative if the parameters of the model is not estimated from 
the currently associated database.

▶ Minimum Description 
Length, p. 212.
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1.	 A maximum number of 5 variables per cluster of variables; 
2.	 Manifest variables with 5 states;
3.	 Factors with a maximum of 5 states.

In this situation, we recommend using 70% as an alert threshold. However, this 
threshold level would have to be reduced if conditions #1 and #2 increased in their 
values or if condition #3 decreased.

Multiple Clustering

The previous section on Data Clustering dealt exclusively with the induction of 
[Factor_0]. In our perfume study, however, we have 15 clusters of manifest variables, 
for which 15 Factors need to be induced. This means that all steps applicable to Data 
Clustering need to be repeated 15 times. BayesiaLab simplifies this task by offering 
the Multiple Clustering algorithm, which automates all necessary steps for all factors.

We now return to the original network, last presented in Figure 8.23. On its ba-
sis, we can immediately start Multiple Clustering: Learning > Clustering > Multiple 
Clustering.

Figure 8.59	

Compared to the dialogue box for Data Clustering (Figure 8.42), the options for Mul-
tiple Clustering are much expanded (Figure 8.60). Firstly, we need to specify an Out-
put Directory for the to-be-learned networks. This will produce a separate network 
for each Factor, which we can subsequently examine. Furthermore, we want the new 
Factors to be connected to their manifest variables, but we do not wish the manifest 
variables to be connected amongst themselves. In fact, we have already learned the 
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relationships between the manifest variables during Step 1. These relationships will 
ultimately be encoded via the connections between their associated Factors upon 
completion of Step 3. We consider these new Factor nodes belonging to the second 
layer of our hierarchical Bayesian network. This also means that, at this point, all 
structural learning involving the nodes of the first layer, i.e. the manifest variables, is 
completed.

We set the above requirements via Connect Factors to their Manifest Vari-
ables and Forbid New Relations with Manifest Variables. Another helpful setting 
is Compute Manifests’ Contributions to their Factor, which helps to identify the 
dominant nodes within each factor.

Figure 8.60	  

The Multiple Clustering process concludes with a report, which shows details re-
garding the generated clustering (Figure 8.61). Among the many available metrics, 
we can check the minimum value of the Contingency Table Fit, which is reported as 
76.16%. Given the recommendations we provided earlier, this suggests that we did 
not lose too much information by inducing the latent variables.
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Figure 8.61	

We can save the report or proceed straight to the new network in the Graph Panel 
(Figure 8.62), which has all nodes arranged in a grid-like arrangement: manifest vari-
ables are on the left; the new factors are stacked up on the right.
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Figure 8.62	

Upon applying Automatic Layout (P), we can identify 15 Factors surrounded by 
their manifest nodes, arranged almost like a field of flowers (Figure 8.63).
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Figure 8.63	

The Arc Comments, which are shown by default, display the Contribution of each 
manifest variable towards its Factor. Once we turn off the Arc Comments ( ) and 
turn on the Node Comments ( ), we see that the Node Comments contain the name 
of the “strongest” associated manifest variable, along with the number of associated 
manifest variables in parentheses. Figure 8.64 shows a subset of the nodes with their 
respective Node Comments.
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Figure 8.64	

Also, by going into our previously specified output directory, we can see that 15 new 
sub-networks (in BayesiaLab’s xbl format for networks) were generated (Figure 
8.65). Any of these files would allow us to study the sub-networks’ properties, as we 
did for the single factor that was generated by Data Clustering.

Additionally, one more file was created in this directory, which is highlighted in 
Figure 8.65. The file marked the suffix “_Final” is the network that consists of both the 
original manifest variables and the newly created Factors. As such, it is labeled as the 
“final” network in BayesiaLab parlance. It is also the network that is currently active.

Figure 8.65	

In this context, BayesiaLab also created two new Classes: 
•	 Manifest, which contains all the manifest variables;
•	 Factor, which contains all the latent variables.

Opening the Class Editor confirms their presence (highlighted items in Figure 8.66). 
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Figure 8.66	

Step 4: Completing the Probabilistic Structural Equation 
Model

Based on the “final” network, we can proceed to the next step in our network build-
ing process. We now introduce Purchase Intent, which had been excluded up to this 
point. Clicking this node while holding X renders it “un-excluded.” This makes Pur-
chase Intent available for learning. Additionally, we designate Purchase Intent as Tar-
get Node by double-clicking the node while holding T.

Looking for an SEM-type network structure stipulates that manifest variables 
be connected exclusively to the factors and that all the connections with Purchase In-
tent must go through the factors. We have already imposed this constraint by setting 
the option Forbid New Relations with Manifest Variables in the Multiple Clustering 
dialogue box (Figure 8.60). This created so-called Forbidden Arcs, which prevent 
learning algorithms from creating new arcs between the specified nodes. BayesiaLab 
indicates the presence of Forbidden Arcs with an icon in the lower right-hand corner 
of the Graph Panel window ( ). Clicking on the icon brings up the Forbidden Arc 
Editor, which allows us to review the currently set constraints (Figure 8.67). We see 
that the nodes belonging to the Class Manifest must not have any links to any other 
nodes, i.e. both directions are “forbidden.”



249

Chapter 8

Figure 8.67	

Upon confirming these constraints, we start Unsupervised Learning to generate a 
network that includes the Factors and the Target Node. In this particular situation, 
we need to utilize Taboo Learning. It is the only algorithm in BayesiaLab that can 
learn a new structure on top of an existing network structure and simultaneously 
guarantee to keep Fixed Arcs unchanged.8 This is important as the arcs linking the 
Factors and their manifest variables are such Fixed Arcs. To distinguish them visual-
ly, Fixed Arcs appear as dotted lines in the network, as opposed to the solid lines of 
“regular” arcs.

We start Taboo Learning from the main menu by selecting Learning > Un-
supervised Structural Learning > Taboo (Figure 8.68) and check the option Keep 
Network Structure in the Taboo Learning dialogue box (Figure 8.69). 

Figure 8.68	

8  EQ can also be used for structural learning on top of an existing network, but as it 
searches in the space of Essential Graphs, there is no guarantee that the Fixed Arcs remain 
unchanged.
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Figure 8.69	

Upon completing the learning process, we obtain the network shown in Figure 8.70. 

Figure 8.70	

As in Step 1, we also try to improve the quality of this network by using the Data 
Perturbation algorithm.
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Figure 8.71	

As it turns out, this algorithm allowed us to escape from a local optimum and re-
turned a final network with a lower  MDL score. By using Automatic Layout () 
and turning on Node Comments ( ), we can quickly transform this network into a 
much more interpretable format (Figure 8.72).
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Figure 8.72	

Now we see how the manifest variables are “laddering up” to the Factors, and we 
also see how the Factors are related to each other. Most importantly, we can observe 
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where the Purchase Intent node was attached to the network during the learning 
process. The structure conveys that Purchase Intent is only connected to [Factor_2], 
which is labeled with the Node Comment “Pleasure_(4).” 

Key Drivers Analysis

Our Probabilistic Structural Equation Model is now complete, and we can use it to 
perform the analysis part of this exercise, namely to find out what “drives” Purchase 
Intent. We return to the Validation Mode (  or ).

In order to understand the relationship between the factors and Purchase In-
tent, we want to “tune out” all manifest variables for the time being. We can do so by 
right-clicking the Use-of-Classes icon ( ) in the bottom right corner of the Graph 
Panel window. This brings up a list of all Classes. By default, all are checked and thus 
visible (Figure 8.73).

Figure 8.73	

For our purposes, we want to un-check All and then only check the class Factor (Fig-
ure 8.74).
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Figure 8.74	

In the resulting view, all the Manifest Nodes are transparent, so the relationship be-
tween the Factors becomes visually more prominent. By de-selecting the manifest 
variables in this way, we also exclude them from the following visual analysis.

Target Analysis

In line with our objective of learning about the key drivers in this domain, we proceed 
to analyze the association of the newly created Factors with Purchase Intent. 

 We return to the Validation Mode (  or ), in which we can use two ap-
proaches to learn about the relationships between Factors and the Target Node: we 
first perform a visual analysis and then generate a report in table format. 

Visual Analysis

We initiate the visual analysis by selecting Analysis > Visual > Target Mean Analy-
sis > Standard (Figure 8.75),
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Figure 8.75	

This brings up a dialogue box with options as shown in Figure 8.76. Given the context, 
selecting Mean for both the Target Node and the Variables (Nodes) is appropriate.

Figure 8.76	

Upon clicking Display Sensitivity Chart, the resulting plot shows the response curves 
of the target node as a function of the values of the Factors (Figure 8.76). This allows 
an immediate interpretation of the strength of association.



256

Figure 8.77	

Target Analysis Report

As an alternative to the visual analysis, we now run the Target Analysis Report: Anal-
ysis > Report > Target Analysis > Total Effects on Target. Although “effects” carries 
a causal connotation, we need to emphasize that we are strictly examining associa-
tions. This means that we perform observational inference as we generate this report. 
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Figure 8.78	  

A new window opens up to present the report (Figure 8.79).9

Figure 8.79	  

The Total Effect (TE) is estimated as the derivative of the Target Node with respect 
to the driver node under study.

(8.4)

9  Under Options > Settings > Reporting, we can check Display the Node Comments in 
Tables so that Node Comments appears in addition to the Node Names in all reports. 

( , ) ,TE X Y
X

Y

d
d=
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where X is the analyzed variable and Y is the Target Node. The Total Effect represents 
the impact of a small modification of the mean of a driver node on the mean of the 
target node. The Total Effect is the ratio of these two values. 

This way of measuring the effect of the Factors on the Target Node assumes the 
relationships to be locally linear. Even though this is not always a correct assumption, 
it can be reasonable for simulating small changes of satisfaction levels.

As per the report, [Factor_2] provides the strongest Total Effect with a value 
of 0.399. This means that observing an increase of one unit in the level of the concept 
represented by [Factor_2] leads to a posterior probability distribution for Purchase 
Intent that has expected value that is 0.399 higher compared to the marginal value.

The Standardized Total Effect (STE) is also displayed. It represents the Total 
Effect multiplied by the ratio of the standard deviation of the driver node and the 
standard deviation of the Target Node. 

(8.5)

This means that STE takes into account the “potential” of the driver under study.
In the report, the results are sorted by the Standardized Total Effect in de-

scending order. This immediately highlights the order of importance of the Factors 
relative to the Target Node, Purchase Intent.

Independence Tests

In the columns further to the right in the report, the results of independence tests 
between the nodes are reported:

•	 Chi-Square (Χ2) test or G-test: The independence test is computed on the 
basis of the network between each driver node and the target variable. It is 
possible to change the type of independence from Chi-Square (Χ2) test to 
G-test via Options > Settings > Statistical Tools.

•	 Degree of Freedom: Indicates the degree of freedom between each driver 
node and the target node in the network.

•	 p-value: the p-value is the probability of observing a value as extreme as the 
test statistic by chance.

If a database is associated with the network, as is the case here, the independence 
test, the degrees of freedom, and the p-value are also computed directly from the 
underlying data.

( , )STE X Y
X

Y

Y

X#
d
d

v
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Factors versus Manifest Nodes

For overall interpretation purposes, looking at factor-level drivers can be illuminat-
ing. Often, it provides a useful big-picture view of the domain. In order to identify 
specific product actions, however, we need to consider the manifest-level driver. As 
pointed out earlier, the factor-level drivers only exist as theoretical constructs, which 
cannot be directly observed in data. As a result, changing the factor nodes requires 
the manipulation of the underlying manifest nodes. For this reason, we now switch 
back our view of the network in order to only consider the manifest nodes in the anal-
ysis. We do that by right-clicking the Use-of-Classes icon ( ) in the bottom right 
corner of the Graph Panel window. This brings up the list of all Classes, of which 
we only check the class Manifest (Figure 8.80). Now all factors are translucent and 
excluded from analysis. 

Figure 8.80	

We repeat both the Target Mean Analysis (Figure 8.81) and the Total Effects on 
Target report.
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Figure 8.81	

Not surprisingly, the Manifest Nodes show a similar pattern of association as the Fac-
tors. However, there is one important exception: the Manifest Node Intensity shows 
a nonlinear relationship with Purchase Intent. The curve for Intensity is shown with a 
gray line in Figure 8.81. Note that by hovering over a curve or a node name, Bayesia-
Lab highlights the corresponding item in the legend or the plot respectively. 

Also, we can see that Intensity was recorded on a 1−5 scale, rather than the 
1−10 scale that applies to the other nodes. Intensity is a so-called “JAR” variable, i.e. a 
variable that has a “just-about-right” value. In the context of perfumes, this character-
istic is obvious. A fragrance that is either too strong or too light is undesirable. Rather, 
there is a value somewhere in-between that would make a fragrance most attractive. 
The JAR characteristic is prototypical for variables representing sensory dimensions, 
e.g. saltiness or sweetness.

This emphasizes the importance of the visual analysis, as the nonlinearity goes 
unnoticed in the Total Effects on Target report (Figure 8.82). In fact, it drops almost 
to the bottom of the list in the report.

It turns out to be rather difficult to optimize a JAR-type variable at a popula-
tion level. For example, increasing Intensity would reduce the number of consumers 
who found the fragrance too subtle. On the other hand, an increase in Intensity would 
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presumably dismay some consumers who believed the original Intensity level to be 
appropriate.

Figure 8.82	
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Constraints via Costs

As this drivers analysis model is intended to be used for product optimization, we 
need to consider any possible real-world constraints that may limit our ability to op-
timize any of the drivers in this domain. For instance, a perfumer may know how to 
change the intensity of a perfume but may not know how to directly affect the per-
ception of “pleasure.” In the original study, a number of such constraints were given. 

In BayesiaLab, we can conveniently encode constraints via Costs, which 
is a Node Property. More specifically, we can declare any node as Not Observable, 
which—in this context—means that they cannot be considered with regard to opti-
mization. Costs can be set by right-clicking on an individual node and then selecting 
Properties > Cost (Figure 8.83).

Figure 8.83	  

This brings up the Cost Editor for an individual node. By default, all nodes have a 
cost of 1. 

Figure 8.84	

Unchecking the box, or setting a value ≤0, results in the node becoming Not Observ-
able (Figure 8.85). 
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Figure 8.85	

Alternatively, we can bring up the Cost Editor for all nodes by right-clicking on the 
Graph Panel and then selecting Edit Costs from the contextual menu (Figure 8.86). 

Figure 8.86	  

The Cost Editor presents the default values for all nodes (Figure 8.87). 

Figure 8.87	

Again, setting values to zero will make nodes Not Observable. Instead of applying this 
setting node by node, we can import a cost dictionary that defines the values for each 
node. An excerpt from the text file is shown in Figure 8.88. The syntax is straightfor-
ward: Not Observable is represented by 0.
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Figure 8.88	

From within the Cost Editor, we can use the Import function to associate a cost dic-
tionary. Alternatively, we can select Data > Associate Dictionary > Node > Costs 
from the main menu (Figure 8.89). 

Figure 8.89	

Upon import, the Node Editor reflects the new values (Figure 8.90), and the pres-
ence of non-default values for costs is indicated by the Cost icon ( ) in the lower 
right-hand corner of the Graph Panel window.
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Figure 8.90	

Furthermore, upon defining costs, we can see that all Not Observable nodes are 
marked with a pastel background ( ), as shown in Figure 8.91. 

Figure 8.91	

It is important to point out that all Factors are also set to Not Observable in our exam-
ple. In fact, we do have two options here: 

1.	 The optimization can be done at the first level of the hierarchical model, 
i.e. using the manifest variables;

2.	 The optimization can be performed at the second level of the model, i.e. 
using the Factors.

Most importantly, these two approaches cannot be combined as setting evidence on 
Factors will block information coming from manifest variables. Formally declaring 
the Factors as Not Observable tells BayesiaLab to proceed with option 1. Indeed, our 
plan is to perform optimization using the manifest variables only.
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Multi-Quadrant Analysis

The network we have analyzed thus far modeled Purchase Intent as a function of per-
ceived perfume characteristics. It is important to point out that this model represents 
the entire domain of all 11 tested perfumes. It is reasonable to speculate, however, 
that different perfumes have different drivers of Purchase Intent. Furthermore, for 
purposes of product optimization, we certainly need to look at the dynamics of each 
product individually.

BayesiaLab assists us in this task by means of Multi-Quadrant Analysis. This 
is a function that can generate new networks as a function of a breakout node in an 
existing network. This is the point where the node Product comes into play, which has 
been excluded all this time. Our objective is to generate a set of networks that model 
the drivers Purchase Intent for each perfume individually, as identified by the Product 
breakout variable.

We start the Multi-Quadrant Analysis by selecting Tools > Multi-Quadrant 
Analysis (Figure 8.92).

Figure 8.92	

This brings up the dialog box, in which we need to set a number of options (Figure 
8.93):
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Figure 8.93	

Firstly, Breakout Variable must be set to Product to indicate that we want to gener-
ate a network for each state of Product. For Analysis, we have a several options: We 
choose Total Effects to be consistent with the earlier analysis. Regarding the Learn-
ing Algorithm, we select Parameter Estimation. This choice becomes obvious once 
the database representing the “overall market” is split into 11 product-specific sub-
sets. Now, the number of available observations per product drops to only 120. Given 
that most of our variables have 5 states, learning a structure with a database that small 
would be challenging.

This also explains why we used the entire dataset to learn the PSEM structure, 
which will be shared by all the products. However, using Parameter Estimation will 
ensure that the parameters, i.e. the probability tables of each network, will be esti-
mated based on the subsets of database records associated with each state of Product. 

Among the Options, we check Regenerate Values. This recomputes, for each 
new network, the values associated with each state of the discretized nodes based on 
the respective subset of data. 

There is no need to check Rediscretize Continuous Nodes because all discret-
ized nodes share the same variation domain, and we require equal distance binning. 
However, we do recommend to use this option if the variation domains are different 
between subsets in a study, e.g. sales volume in California versus Vermont. Without 
using the Rediscretize Continuous Nodes option, it could happen that all data points 
for sales in Vermont end up in the first bin, effectively transforming the variable into 
a constant. 

Furthermore, we do not check the option for Linearize Nodes’ Values either. 
This function reorders a node’s states so that its states’ values have a monotonically 

▶ Discretization Intervals 
in Chapter 6, p. 119.
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positive relationship with the values of the Target Node. Applying this transforma-
tion to the node Intensity would artificially increase its impact. It would incorrectly 
imply that it is possible to change a perfume in a way that simultaneously satisfies 
those consumers who rated it as too subtle and also those who rated it as too strong. 
Needless to say, this is impossible.

 Finally, computing all Contributions will be helpful for interpreting each 
product-specific network. 

Upon clicking OK, 11 networks are created and saved to the output directory 
defined in the dialog box. Each network is then analyzed with the specified Analysis 
method to produce the Multi-Quadrant Plot. Figure 8.94 shows the Quadrant Plot  
for Product 1.

Figure 8.94	

The x-value of each point indicates the mean value of the corresponding manifest 
variable, as rated by those respondents who have evaluated Product 1; the position on 
the y-axis reflects the computed Total Effect.

From the contextual menu (Figure 8.95), we can choose Display Horizontal 
Scales and Display Vertical Scales, which provides the range of positions of the other 
products. 
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Figure 8.95	

Using Horizontal Scales provides a quick overview of how the product under study 
is rated vis-à-vis other products (Figure 8.96). The Vertical Scales compare the im-
portance of each dimension with respect to Purchase Intent. Finally, we can select the 
individual product to be displayed in the Multi-Quadrant Analysis window via the 
Contextual Menu. 

Figure 8.96	

Drawing a rectangle with the cursor zooms in on the specified area of the plot (Figure 
8.97).
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Figure 8.97	

The meaning of the Horizontal Scales and Vertical Scales becomes apparent when 
hovering over any dot as this brings up the position of the other (competitive) prod-
ucts with regard to the currently highlighted attribute (Figure 8.98). 
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Figure 8.98	

In Figure 8.98, this means, for instance, that Product 2 and Product 7 are rated lowest 
and highest respectively on the x-scale with regard to the variable Fresh. In terms of 
Total Effect on Purchase Intent, Product 12 and Product 2 mark the bottom and top 
end respectively (y-scale).

From a product management perspective, this suggests that for Product 1, with 
regard to the attribute Fresh, there is a large gap to the level of the best product, i.e. 
Product 7. So, one could interpret the variation from the status quo to the best level as 
“room for improvement” for Product 1. 

On the other hand, as we can see in Figure 8.99 (scales omitted), the variables 
Personality, Original and Feminine, and have a greater Total Effect on Purchase Intent. 
These relative positions will soon become relevant as we will need to simultaneously 
consider improvement potential and importance for optimizing Purchase Intent.
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Figure 8.99	

BayesiaLab’s Export Variations function allows us to save the variation domain for 
each driver, i.e. the minimum and maximum mean values observed across all prod-
ucts in the study.

Knowing these variations will be useful for generating realistic scenarios for 
the subsequent optimization. However, what do we mean by “realistic”? Ultimately, 
only a subject matter expert can judge how realistic a scenario is. However, a good 
heuristic is whether or not a certain level is achieved by any product in the market. 
One could argue that the existence of a certain satisfaction level for some product 
means that such a level is not impossible to achieve and is, therefore, “realistic.”

Clicking the Export Variations button (Figure 8.100) saves the absolute varia-
tions to a text file (Figure 8.101) for subsequent use in optimization. 

Figure 8.100	
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Figure 8.101	

Figure 8.102	

Product Optimization

In order to perform optimization for a particular product, we need to open the net-
work for that specific product. Networks for all products were automatically generat-
ed and saved during the Multi-Quadrant Analysis (Figure 8.103), so we simply need 
to open the network for the product of interest. The suffix in the file name reflects the 
Product.

Figure 8.103	
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To demonstrate the optimization process, we open the file that corresponds to Prod-
uct 1 (Figure 8.104). Structurally, this network is identical to the network learned 
from the entire dataset. However, the parameters of this network were estimated only 
on the basis of the observations associated with Product 1.

Figure 8.104	

Now we have all the elements that are necessary for optimizing the Purchase Intent of 
Product 1: 

•	 A network specific to Product 1;
•	 A set of driver variables, selected by excluding the non-driver variables via 

Costs; 
•	 Realistic scenarios, as determined by the Variation Domains of each driver 

variable.
With the above, we are now in a position to search for node values that optimize 
Purchase Intent.

Target Dynamic Profile

Before we proceed, we need to explain what we mean with optimization. As all ob-
servations in this study are consumer perceptions, it is clear that we cannot direct-
ly manipulate them directly. Rather, the purpose of this optimization is to identify 
in which order these perceptions should be addressed by the perfume maker. Some 
consumer perceptions may relate to specific odoriferous compounds that a perfumer 
can modify; other perceptions can perhaps be influenced by marketing and branding 
initiatives. However, the precise mechanism of influencing consumer perceptions is 
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not the subject of our discussion. From our perspective, the causes that could influ-
ence the perception are hidden. Thus, we have here a prototypical application of Soft 
Evidence, i.e. we assume that the simulated changes in the distribution of consumer 
perceptions originate in hidden causes.

While BayesiaLab offers a number of optimization methods, Target Dynamic 
Profile is appropriate here. We start it from within Validation Mode (  or ) by 
selecting Analysis  >  Report  >  Target Analysis  >  Target Dynamic Profile (Figure 
8.105).

Figure 8.105	

We need to explain the large number of options that must be set for Target Dynamic 
Profile (Figure 8.106). These options will reflect our objective of pursuing realistic 
sets of evidence:

▶ Numerical Evidence in 
Chapter 7, p. 190.
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Figure 8.106	

In Profile Search Criterion we specify that we want to optimize the mean value of 
the Target Node, as opposed to any particular state or the difference between states.

Joint Probability

Next, we specify under Criterion Optimization that the mean value of the Target 
Node is to be maximized. Furthermore, we check Take Into Account the Joint Prob-
ability. This weights any potential improvement in the mean value of Target Node by 
the joint probability that corresponds to the set of simulated evidence that generated 
this improvement. The joint probability of a simulated evidence scenario will be high 
if its probability distribution is close to the original probability distribution observed 
in the consumer population: the higher the joint probability, the closer is the simulat-
ed scenario to the status quo of customer perception. 

In practice, checking this option means that we prefer smaller improvements 
with a high joint probability over larger ones with a low joint probability. Figure 8.107 
illustrates this point: . . % . . . % .0 146 26 9 0 0393 0 174 21 33 0 0371# #2= = . 
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Figure 8.107	

Original Distribution
E(Purchase Intent)=3.659
Joint Probability=100%

Scenario: E(Spiced)=7
E(Purchase Intent)=3.805 (+0.146)
Joint Probability=26.9%

Scenario: E(Spiced)=7.5
E(Purchase Intent)=3.833 (+0.174)
Joint Probability=21.33%

If all simulated values were within the constraints set in the Variation Editor, it would 
be better to increase the driver variable Spiced to a simulated value of 7 rather than 
7.5, even though Purchase Intent would be higher for the latter value of Spiced. In 
other words, the “support” for E(Spiced)=7 is greater than for E(7.5), as more respon-
dents are already in agreement with such a scenario. Once again, this is about pursu-
ing improvements that are achievable rather than proposing pie-in-the-sky scenarios. 

Costs

In this example, so far, we have only used Costs for selecting the subset of driver vari-
ables. Additionally, we can utilize Costs in the original sense of the word in the opti-
mization process. For instance, if we had information on the typical cost of improving 
a specific rating by one unit, we could enter such a value as cost. This could be a dollar 
value, or we could set the costs in such a way that they reflect the relative effort re-
quired for the same amount of change, e.g. one unit, in each of the driver variables. 
For example, a marketing manager may know that it requires twice as much effort to 
change the perception of Feminine compared to changing the perception of Sweet. If 
we want to quantify such efforts by using Costs, we will need to ensure that the costs 
of all variables share the same scale. For instance, if some drivers are measured in dol-
lars, and others are measured in terms of time spent in hours, we will need to convert 
hours to dollars. 

In our study, we leave all the included driver variables at a cost of 1, i.e. we 
assume that it requires the same effort for the same amount of change in any driver 
variable. Hence, we can leave the Utilize Evidence Cost unchecked.10

10  Not Observable nodes still remain excluded as driver variables.
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Compute Only Prior Variations needs to remain unchecked as well. This op-
tion would be useful if we were interested in only computing the marginal effect of 
drivers. For that purpose, we would not want any cumulative effects or conditional 
variations given other drivers.

Associate Evidence Scenario will save the identified sets of evidence for sub-
sequent evaluation.

The setting Search Methods is critically important for the optimization task. 
We need to define how to search for sets of evidence. Using Hard Evidence means 
that would we exclusively try out sets of evidence consisting of nodes with one state 
set to 100%. This would imply that we simulate a condition in which all consumers 
perfectly agree with regard to some ratings. Needless to say, this would be utterly un-
realistic. Instead, we will explore sets of evidence, consisting of distributions for each 
node, by modifying their mean values as Soft Evidence. More precisely, we use the 
MinXEnt method to generate such evidence. 

In this context, we reintroduce the variations we saved earlier. We reason that 
the best-rated product with regard to a particular attribute represents a plausible up-
per limit for what any product could strive for in terms of improvement. This also 
means that a driver variable that has already achieved the best level will not be opti-
mized any further in this framework.

Variation Editor

Clicking on Variations brings up the Variation Editor (Figure 8.108). By default, it 
shows variations in the amount of ±100% of the current mean.

Figure 8.108	  

To load the Variations that we generated through Multi-Quadrant Analysis, we click 
Import and select Absolute Variations from the pop-up window.

▶ MinXEnt (“Minimum 
Cross-Entropy”) in 
Chapter 7, p. 191.
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Figure 8.109	

Now we can open the previously saved file.

Figure 8.110	

The Variation Editor now reflects the constraints. Any available expert knowledge 
can be applied here, either by entering new values for the Minimum Mean or Maxi-
mum Mean, or by entering percent values for Positive Variations and Negative Vari-
ations.

Depending on the setting, the percentages are relative to (a) the Current Mean, 
(b) the Domain, or (c) the Progression Margin as illustrated in Figure 8.111.
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Figure 8.111	
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Using the Progression Margin is particularly useful as it automatically constrains the 
positive and negative variations in proportion to the gap from the current mean to 
the maximum and minimum mean values respectively. In other words, it limits the 
improvement potential of a driver variable as its value approaches the maximum. It 
is a practical—albeit arbitrary—approach to prevent overly optimistic optimizations.

Figure 8.112	  

Next, we select MinXEnt in the Search Method panel as the method for generating 
Soft Evidence. In terms of Intermediate Points, we set a value of 20. This means that 
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BayesiaLab will simulate 22 values for each node, i.e. the minimum and maximum 
plus 20 intermediate values, all within the constraints set by the variations. This is 
particularly useful in the presence of non-linear effects.

Within the Search Stop Criteria panel, Maximum Size of Evidence specifies 
the maximum number of driver variables to be recommended as part of the optimiza-
tion policy. This setting is once again driven by real-world considerations. Although 
one could wish to bring all variables to their ideal level, a decision maker may recog-
nize that it is not plausible to pursue anything beyond the top-4 variables. 

Alternatively, we can choose to terminate the optimization process once the 
joint probability of the simulated evidence drops below the specified Minimum Joint 
Probability. 

The final option, Use the Automatic Stop Criterion, leaves it up BayesiaLab to 
determine whether adding further evidence provides a worthwhile improvement for 
the Target Node.

Optimization Results

Once the optimization process concludes, we obtain a report window that contains a 
list of priorities: Personality, Fruity, Flowery, and Tenacious (Figure 8.113).

Figure 8.113	
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To explain the items in the report, we present a simplified and annotated version in 
Figure 8.114. Note that this report can be saved in HTML format, for subsequent ed-
iting as a spreadsheet. Preparing Figure 8.114 is an example of that approach. 

Figure 8.114	

No	
  Observation

Node Initial	
  Value/Mean Value/Mean	
  at	
  T Final	
  Value/Mean Value/Mean Joint	
  Probability
Initial	
  value	
  of	
  Purchase	
  
Intent,	
  prior	
  to	
  optimization.	
  
▼

Initial	
  joint	
  
probability	
  is	
  100%.	
  
▼

3.583 100.00%
Personality 6.183 6.183 6.783 3.725 72.68%

▲	
  Value	
  of	
  Purchase	
  Intent	
  
after	
  Personality 	
  is	
  set	
  to	
  
optimal	
  value.

This	
  means	
  that	
  after	
  setting	
  
Personality 	
  to	
  the	
  optimal	
  
value,	
  Purchase	
  Intent	
  
increases	
  from	
  3.583	
  to	
  
3.725.

Fruity 6.125 6.39 7.083 3.77 58.72%
▲	
  2nd	
  most	
  
important	
  node

▲	
  Initial	
  value	
  of	
  Fruity,	
  
prior	
  to	
  optimization.

▲	
  Value	
  of	
  Fruity, 	
  	
  after	
  
Personality 	
  is	
  set	
  to	
  
optimal	
  value.

▲	
  Optimal	
  value	
  of	
  Fruity,	
  
within	
  given	
  constraints.

▲	
  Value	
  of	
  Purchase	
  Intent,	
  
after	
  Personality 	
  and	
  Fruity	
  
are	
  set	
  to	
  optimal	
  values.

▲	
  New	
  joint	
  
probability	
  after	
  
setting	
  Personality.

Flowery 6.692 6.991 7.306 3.792 53.97%
▲	
  3rd	
  most	
  
important	
  node

▲	
  Initial	
  value	
  of	
  Flowery,	
  
prior	
  to	
  optimization.

▲	
  Value	
  of	
  Flowery, 	
  	
  after	
  
Personality 	
  and	
  	
  Fruity	
  
are	
  set	
  to	
  optimal	
  value.

▲	
  Optimal	
  value	
  of	
  
Flowery, 	
  within	
  given	
  
constraints.

▲	
  Value	
  of	
  Purchase	
  Intent,	
  
after	
  Personality, 	
  Fruity,	
  and	
  
Flowery	
  are	
  set	
  to	
  optimal	
  
values.

▲	
  New	
  joint	
  
probability	
  after	
  
setting	
  Flowery.

Tenacious 6.167 6.611 6.851 3.806 51.36%
▲	
  4th	
  most	
  
important	
  node

▲	
  Initial	
  value	
  of	
  
Tenacious ,	
  prior	
  to	
  
optimization.

▲	
  Value	
  of	
  Tenacious ,	
  
after	
  Personality,	
  Fruity,	
  
and	
  Flowery	
  are	
  set	
  to	
  
optimal	
  values.

▲	
  Optimal	
  value	
  of	
  
Tenacious ,	
  within	
  given	
  
constraints.

▲	
  Value	
  of	
  Purchase	
  Intent,	
  
after	
  Personality,	
  Fruity,	
  
Flowery,	
  and	
  Tenacious 	
  are	
  
set	
  to	
  optimal	
  values.

▲	
  New	
  joint	
  
probability	
  after	
  
setting	
  Tenacious.

Node Initial	
  Value/Mean Final	
  Value/Mean
Original 6.092 6.621

▲	
  Initial	
  value	
  of	
  Original ,	
  
prior	
  to	
  optimization.

▲	
  Final	
  value	
  of	
  Original ,	
  
after	
  setting	
  the	
  top-­‐4	
  
nodes	
  to	
  the	
  optimal	
  
levels.

Fresh 6.425 7.058
▲	
  Initial	
  value	
  of	
  
Fresh, 	
  prior	
  to	
  
optimization.

▲	
  Final	
  value	
  of	
  Fresh,	
  
after	
  setting	
  the	
  top-­‐4	
  
nodes	
  to	
  the	
  optimal	
  
levels.

Feminine 7.4 7.811
▲	
  Initial	
  value	
  of	
  
Feminine 	
  prior	
  to	
  
optimization.

▲	
  Final	
  value	
  of	
  
Feminine, 	
  after	
  setting	
  
the	
  top-­‐4	
  nodes	
  to	
  the	
  
optimal	
  levels.

▲	
  This	
  means	
  that	
  after	
  applying	
  all	
  four	
  listed	
  
measures,	
  an	
  increase	
  of	
  0.223	
  would	
  be	
  observed	
  
for	
  Purchase	
  Intent.

▲	
  Initial	
  value	
  of	
  
Intensity, 	
  prior	
  to	
  
optimization

▲	
  Optimal	
  value	
  of	
  
Intensity, 	
  within	
  given	
  
constraints.

Collateral
Effects

▲	
  New	
  joint	
  
probability	
  after	
  
setting	
  Personality.	
  
This	
  means	
  that	
  
72.68%	
  of	
  the	
  
observations	
  already	
  
meet	
  this	
  condition.

Purchase	
  Intent

Other	
  Nodes

Search	
  Method:	
  Value/Mean	
  Variations	
  in	
  %	
  of	
  Mean	
  -­‐	
  Fix	
  Mean	
  (MinXEnt)
Target	
  Dynamic	
  Profile	
  Purchase	
  Intent:	
  Value/Mean	
  Maximization	
  (A	
  posteriori)

Even	
  though	
  Other	
  Nodes 	
  do	
  not	
  directly	
  belong	
  to	
  
the	
  recommended	
  group	
  of	
  top	
  drivers,	
  the	
  
predicted	
  level	
  of	
  Purchase	
  Intent	
  can	
  only	
  be	
  
reached	
  with	
  certainy	
  if	
  the	
  Other	
  Nodes 	
  can	
  be	
  set	
  
to	
  these	
  levels.

▲	
  Most	
  important	
  
node

A	
  priori	
  ▶

Analysis	
  Context
No	
  other	
  evidence	
  is	
  set

Most importantly, the Value/Mean column shows the successive improvement upon 
implementation of each policy. From initially 3.58, the Purchase Intent improves to 
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3.86, which may seem like a fairly small step. However, the importance lies in the 
fact that this improvement is not based on Utopian thinking, but rather on modest 
changes in consumer perception, well within the range of competitive performance.

Evidence Scenarios

As an alternative to interpreting the static report, we can examine each element in 
the list of priorities. To do so, we bring up all the Monitors of the nodes identified for 
optimization.

Figure 8.115	

Then, we retrieve the individual steps by right-clicking on the Evidence Scenario 
icon ( ) in the lower right-hand corner of the main window (Figure 8.116).
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Figure 8.116	

Selecting the first row in the table (Index=0) sets the evidence that corresponds to 
the first priority (Figure 8.116), i.e. Personality. We can now see that the evidence we 
have set is a distribution, rather than a single value. The small gray arrows indicate 
how the distribution of the evidence and the distributions of Purchase Intent, Fruity, 
Flowery, and Tenacious are all different from their prior, marginal distributions (Fig-
ure 8.117). The changes to the Fruity, Flowery, and Tenacious correspond what is 
shown in the report in the column Value/Mean at T (Figure 8.114).

Figure 8.117	

By selecting Index=1 we introduce a second set of evidence, i.e. the optimized distri-
bution for Personality (Figure 8.118). 
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Figure 8.118	

Continuing with Index 2 and 3, we see that the improvements to Purchase Intent be-
come smaller (Figure 8.119 and Figure 8.120).

Figure 8.119	

Figure 8.120	
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Bringing up all the remaining nodes would bring up any “collateral” changes as a re-
sult of setting multiple pieces of evidence.

The results tell us that for Product 1, a higher consumer rating of Personality 
would be associated with a higher Purchase Intent. Improving the perception of Per-
sonality might be a task for the marketing and advertising team. Similarly, a better 
consumer rating of Fruity would also be associated with greater Purchase Intent. A 
product manager could then interpret this and request a change to some ingredients. 
Our model tells us that, if such changes in consumer ratings were to be brought about 
in the proposed order, a higher Purchase Intent would be potentially be observed.

While we have only presented the results for Product 1, we want to highlight 
that the priorities are indeed different for each product, even though they all share the 
same underlying PSEM structure. The recommendations from the Target Dynamic 
Profile of Product 11 are shown in Figure 8.121.

Figure 8.121	

This is an interesting example as it identifies that the JAR-type variable Intensity needs 
to be lowered to optimize Purchase Intent for Product 11.  

It is important to reiterate that the sets of evidence we apply are not direct 
interventions in this domain. Hence, we are not performing causal inference. Rather, 
the sets of evidence we found help us prioritize our course of action for product and 
marketing initiatives.
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Summary

We presented a complete workflow that generates a Probabilistic Structural Equa-
tion Model for key drivers analysis and product optimization. The Bayesian networks 
paradigm turned out to a practical platform for the development of the model and 
its subsequent analysis, all the way through optimization. With all steps contained in 
BayesiaLab, we have a single, continuous line of reasoning from raw survey data to a 
final order of priorities for action.  
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9. Missing Values Processing

Missing values are encountered in virtually all real-world data collection pro-
cesses. Missing values can be the result of non-responses in surveys, poor re-

cord-keeping, server outages, attrition in longitudinal surveys, or the faulty sensors 
of a measuring device, etc. Despite the intuitive nature of this problem, and the fact 
that almost all quantitative studies are affected by it, applied researchers have given 
it remarkably little attention in practice. Burton and Altman (2004) state this pre-
dicament very forcefully in the context of cancer research: “We are concerned that 
very few authors have considered the impact of missing covariate data; it seems that 
missing data is generally either not recognized as an issue or considered a nuisance 
that it is best hidden.”

Given the abundance of “big data” in the field of analytics, missing values pro-
cessing may not be a particularly fashionable topic. After all, who cares about few 
missing data points if there are many more terabytes of observations waiting to be 
processed? One could be tempted to analyze complete data only and simply remove 
all incomplete observations. Regardless of how many more complete observations 
might be available, this naive approach would almost certainly lead to misleading in-
terpretations or create a false sense of confidence in one’s findings.

Koller and Friedman (2009) provide an example of a hypothetical medical trial 
that evaluates the efficacy of a drug. In this trial, patients can drop out, in which case 
their results are not recorded. If patients withdraw at random, there is no problem 
ignoring the corresponding observations. On the other hand, if patients prematurely 
quit the trial because the drug does not seem to help them, discarding these obser-
vations introduces a strong bias in the efficacy evaluation. As this example illustrates, 
it is important to understand the mechanism that produces the missingness, i.e. the 
conditions under which some values are not observed.

As missing values processing—beyond the naive ad hoc approaches—can be 
a demanding task, both methodologically and computationally, the objective of this 
chapter is to demonstrate how advanced missing values processing methods can be 
integrated into a research workflow with BayesiaLab.
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We have already mentioned missing values processing several times in earli-
er chapters, as it is one of the steps in the Data Import Wizard. However, we have 
delayed a formal discussion of the topic until now because the recommended miss-
ing values processing methods are tightly integrated with BayesiaLab’s learning al-
gorithms. Indeed, all of BayesiaLab’s core functions for learning and inference are 
prerequisites for the successful application of missing values processing. With all 
building blocks in place, we can now explore this subject in detail. 

Types of Missingness

There are four principal types of missing values that are typically encountered in re-
search:

1.	 Missing Completely at Random (MCAR)
2.	 Missing at Random (MAR)
3.	 Missing Not at Random (MNAR) or Not Missing at Random (NMAR)1

4.	 Filtered Values
We will now exemplify each of these conditions with a causal Bayesian network. In 
this format, we can conveniently illustrate (a) the data-generating process (DGP), 
(b) the mechanism that causes the missingness, and (c) the observable variables that 
contain the missing values (Figure 9.1).

Figure 9.1	

Data-Generating
Process (Hidden)

Missingness
Mechanism

Observable
Variables

Furthermore, we can use this causal network directly to simulate all missingness con-
ditions and evaluate their (mostly adverse) effects. In the second half of this chapter, 
we take this experiment a step further by generating sample data from this model. 

1  Both of these equivalent expressions, MNAR and NMAR, appear equally frequently in 
the literature. We use MNAR throughout this chapter. 
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With actual data, the problems associated with missingness become tangible. Be-
yond highlighting these challenges, we will put BayesiaLab to the test by feeding it 
the incomplete data in an attempt to recover the original distributions. As it turns 
out, Bayesian networks provide a perfect platform for overcoming the complications 
caused by missing data. 

Missing Completely at Random

Missing Completely at Random (MCAR) means that the missingness mechanism is 
entirely independent of all other variables. In our causal Bayesian network, we en-
code this independent mechanism with a boolean variable named MCAR_X1. 

Furthermore, we assume that there is a variable X1 that represents the original 
data-generating process. This variable, however, is hidden, so we cannot observe it 
directly. Rather, we can only observe X1 via the variable X1_obs, which is a “clone” 
of X1 but with one additional state, “?”, which indicates that the value of X1 is not 
observed. 

The Bayesian network shown in Figure 9.2 is a subnetwork of the complete net-
work of Figure 9.1. The behavior of the three variables we just described is encoded 
in this subnetwork.

Figure 9.2	  
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In addition to this qualitative structure, we need describe the quantitative part, i.e. 
the parameters of this subnetwork, including the missingness mechanism and the ob-
servable variable: 
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•	 X1 is a continuous variable with values between 0 and 1. We have arbitrarily 
defined a Normal distribution for modeling the DGP. 

•	 MCAR_X1 is a boolean variable without any parent nodes. This means that 
MCAR_X1 is independent of all variables, whether hidden or not. Its prob-
ability of being true is 10%.

•	 X1_obs has two parents: the data-generating variable X1 and the missing-
ness mechanism MCAR_X1. The conditional probability distribution of 
X1_obs is defined by the following deterministic rule:

(9.1) 

Now that our causal Bayesian network is fully specified, we can evaluate the impact 
of the missingness mechanism on the observable variable X1_obs. Given that we have 
created a complete model of this small domain, we automatically have perfect knowl-
edge of the distribution of X1. Thus, we can directly compare X1 and X1_obs via the 
Monitors (Figure 9.3).

Figure 9.3	

Data-Generating Process (Hidden) Simulated Deletion of MissingObservable Distribution

Create
Missing

? Delete

We see that X1 (left) and X1_obs (center) have the same mean and the same standard 
deviation. This suggests that the remaining observations in X1_obs (center) are not 
different from the non-missing cases in X1 (left). The only difference is that X1_obs 
(center) has one additional state (“?”) for missing values, representing 10% of the ob-
servations. Thus, deleting the missing observations of an MCAR variable should not 
bias the estimation of its distribution. In BayesiaLab, we can simulate this assumption 
by setting negative evidence on “?” (green arrow labeled “Delete”). As we can see, the 
distribution of X1_obs (right) is now exactly the same as the one of X1 (left).

Under real-world conditions, however, we typically do not know whether the 
missing values in our dataset were generated completely at random (MCAR). This 

?MCAR X1 X1 X1IF THEN ELSEX1 obs obs= =
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would be a strong assumption to make, and it is generally not testable. As a result, we 
can rarely rely on this fairly benign condition of missingness and, thus, should never 
be too confident in deleting missing observations.

Missing at Random

Secondly, data can be Missing at Random (MAR). Here, the missingness of data de-
pends on observed variables. A brief narrative shall provide some intuition for the 
MAR condition: in a national survey of small business owners about business climate, 
there is a question about the local cost of energy. Chances are that the owner of a 
business that uses little electricity, e.g. a yoga studio, may not know of the current 
cost of 1 kWh of electric energy and could not answer that question, thus producing 
a missing value in the questionnaire. On the other hand, the owner of an energy-in-
tensive business, e.g. an electroplating shop, would presumably be keenly aware of 
the electricity price and able to respond accordingly. In this story, the probability of 
non-response is presumably inversely proportional to the energy consumption of the 
business. 

In the subnetwork shown of Figure 9.4, X3_obs is the observed variable that 
causes the missingness, e.g. the energy consumption in our story. X2_obs would be 
the stated price of energy, if known. X2 would represent the actual price of energy in 
our narrative. Indeed, from the researcher’s point of view, the actual cost of energy in 
each local market and for each electricity customer is hidden.

Figure 9.4	
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To simulate this network, we need to define its parameters, i.e. the quantitative part 
of the network structure: 

•	 X2 is a continuous variable with values between 0 and 1. Here, too, we have 
arbitrarily defined a Normal distribution for modeling the DGP.

•	 MAR_X2 is a boolean variable with one parent, which specifies that the 
missingness probability depends directly on the fully observed variable 
X3_obs. The exact values are not important here, as we only need to know 
that the probabilities of missingness are inversely proportional to the values 
of X3_obs:

(9.2)

•	 X2_obs has two parents, i.e. the data generating variable X2 and the miss-
ingness mechanism MAR_X2. The conditional probability distribution of 
X2_obs can be described by the following deterministic rule:

(9.3)

Given the fully specified network, we can now simulate the impact of the missingness 
mechanism on the observable variable X2_obs.

Figure 9.5	

Data-Generating Process (Hidden) Simulated Deletion of MissingObservable Distribution

Create
Missing

? Delete

As Figure 9.5 shows, the mean and standard deviation in the Monitor of X2_obs indi-
cates that the distribution of the observed values of X2 differs significantly from the 
original distribution, leading to an overestimation of X2 in this example. We can sim-
ulate the deletion of the incomplete observations by setting negative evidence on “?” 
in the Monitor of X2_obs (green arrow labeled “Delete”). The simulated distribution 
of X2_obs (right) clearly differs from the one of X2 (left).

( )P MAR true X3 X3
1

X2 obs
obs

\;=

?MAR X2 X2 X2IF THEN ELSEX2 obs obs= =
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Missing Not at Random

Missing Not at Random (MNAR) refers to situations in which the missingness of a 
variable depends on hidden causes (unobserved variables), such as the data-generat-
ing variable itself, for instance. This condition is depicted in the subnetwork of Figure 
9.6. 

An example of the MNAR condition would be a hypothetical telephone survey 
about alcohol consumption. Heavy drinkers might decline to provide an answer out 
of fear of embarrassment. On the other hand, survey participants who drink very lit-
tle or nothing at all might readily report their actual drinking habits. As a result, the 
missingness is a function of the very variable in which we are interested.

Figure 9.6	
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In order to proceed to simulation, we need to specify the parameters of the missing-
ness mechanism and the observable variable: 

•	 X4 is a continuous variable with values between 0 and 1, and a Normal dis-
tribution models the DGP.

•	 MNAR_X4 is a boolean variable with one parent, which specifies that the 
missingness probability depends directly on the hidden variable X4. How-
ever, the exact values are unimportant. We simply need to state that the 
probabilities of missingness are proportional to the values of X4:

(9.4)( )P MNAR true X4 X4X4 \;=



296

•	 X4_obs has two parents, i.e. the data-generating variable X4 and the miss-
ingness mechanism MNAR_X4. The conditional probability distribution is 
defined by the following deterministic rule:

(9.5)

The impact of the missing values mechanism becomes apparent as we compare the 
Monitors of the network side by side (Figure 9.7).

Figure 9.7	
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As Figure 9.7 shows, the mean and standard deviation in the Monitor of X4_obs (cen-
ter column) indicate that the distribution of the observed values of X4 differs signifi-
cantly from the original distribution (left column), leading to an underestimation of 
X4 in this example. We can simulate the deletion of the incomplete observations by 
setting negative evidence on “?” (green arrow labeled “Delete”). The simulated dis-
tribution of X4_obs (right column) indeed differs from the one of X4 (left column).

Filtered Values

There is a fourth type of missingness, which is less often mentioned in the literature. 
In BayesiaLab, we refer to missing data of this kind as Filtered Values. In fact, Filtered 
Values are technically not missing at all. Rather, Filtered Values are values that do not 
exist in the first place. Clearly, something nonexistent cannot become missing as a 
result of a missingness mechanism. 

For instance, in a hotel guest survey, a question about one’s satisfaction with 
the hotel swimming pool cannot be answered if the hotel property does not have a 
swimming pool. This question is simply not applicable. The absence of a swimming 

?MNAR X4 X4 X4IF THEN ELSEX4 obs obs= =

▶ Filtered Values in 
Chapter 5, p. 84.
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pool rating for this hotel would not be a missing value. On the other hand, for a hotel 
with a swimming pool, the absence of an observation would be a missing value. 

Conceptually, Filtered Values are quite similar to MAR values, as Filtered Val-
ues usually depend on other variables in the dataset, too, which may or may not be 
fully observed. However, Filtered Values should never be processed as missing val-
ues. In our example, it is certainly not reasonable to impute a value for the swimming 
pool rating if there is no swimming pool. Rather, a Filtered Value should be consid-
ered a special type of observation.

In BayesiaLab, an additional state, marked with a chequered icon ( ), is added 
to this type of variable in order to denote Filtered Values.2 Figure 9.8 shows an exam-
ple of a network including Filtered Values.

Figure 9.8	
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Once again, we must describe the parameters of the subnetwork, including the Fil-
tered Values mechanism and the observable variable: 

•	 Filter_X5 is a boolean variable with one parent, which specifies that it de-
pends on the hidden variable X4. Here, X5 becomes a Filtered Value if X4 is 
greater than 0.7.

(9.6)

2  BayesiaLab’s learning algorithms implement a kind of local selection for excluding the 
observations with Filtered Values while estimating the probabilistic relationships.

.Filter X4 0 7>X5 =



298

•	 X5 is a continuous variable with values between 0 and 1. It has two parents, 
X4 and the Filtered Values mechanism.

(9.7)

•	 X5_obs is a pure clone of X5, i.e. X5 is fully observed.

(9.8)

For the sake of completeness, we present the Monitors of X5 (left) and X5_obs (right) 
in Figure 9.7.

Figure 9.9	
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Missing Values Processing in BayesiaLab

BayesiaLab offers a wide range of missing values processing methods, which we are 
going to present in detail. However, we must emphasize that some of them, including 
listwise/casewise deletion and means imputation, are not recommended for default 
use. We still include these methods for two reasons: first, they are almost universally 
used in statistical analysis, and, secondly, under certain circumstances they can be 
safe to use. Regardless of their suitability for research, they highlight numerous chal-
lenges, which Bayesian networks and BayesiaLab can help overcome.

In the following, we will explore the advantages and disadvantages of the full 
range of techniques on the basis of a dataset that we are going to generate from our 
original, complete network (Figure 9.1). Given that we have specifically encoded all 
types of missingness mechanisms in this network, we can consider this dataset as a 
worst-case scenario, which is ideal for testing purposes.

( )Filter X5 Filtered Value X5 f X4IF THEN ELSEX5 = =

X5 X5obs =
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Generate Data

To begin this exercise, we have BayesiaLab produce the data that we will later use for 
testing. We can directly generate data according to the joint probability distribution 
encoded by the network (Figure 9.10): Data > Generate Data. 

Figure 9.10	

Next, we must specify whether to generate this data internally or externally (Figure 
9.11). For now, we generate the data internally, which means that we associate data 
points with all nodes. This includes missing values and Filtered Values according 
to the original network (Figure 9.1). For the Number of Examples (i.e. cases or re-
cords), we set 10,000.

Figure 9.11	
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The database icon ( ) signals that a dataset is now associated with the network. Ad-
ditionally, we can see the number of cases in the database at the top of the Monitor 
Panel (Figure 9.12).

Now that this data exists inside BayesiaLab, we need to export it, so we can 
truly start “from scratch” with the test dataset. Also, in terms of realism, we only want 
to make the observable variables available, rather than all. We first select the nodes 
X1_obs through X5_obs and then select Data > Save Data from the main menu (Fig-
ure 9.12).

Figure 9.12	

Next, we confirm that we only want to save the Selected Nodes, i.e. the observable 
variables (Figure 9.13).

Figure 9.13	

Upon specifying a file name and saving the file, the export task is complete. A quick 
look at the CSV file confirms that the newly generated data contain both missing val-
ues and Filtered Values, as indicated with question marks and asterisks respectively 
(Figure 9.14).
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Figure 9.14	

X1_obs X2_obs X3_obs X4_obs X5_obs

0.3783 0.3918 0.4755 ? 0.4325
0.1805 ? 0.0013 0.0128 0.0285

? 0.3301 0.4012 0.3250 0.2648
0.4255 0.4228 0.3131 0.4745 0.5560
0.2417 ? 0.2706 0.3522 0.3501
0.1871 0.2761 0.2408 0.2130 0.0755
0.2969 ? 0.0282 0.1632 0.2486

? ? 0.3287 0.2853 0.2530
? ? 0.5532 0.6657 0.5450

0.3000 0.3828 0.3089 0.4449 0.3303
0.2696 0.2944 0.3908 0.3136 0.2844
0.5140 0.5324 0.4672 0.2563 0.0063

? 0.3462 0.3493 0.1822 0.2123
0.7138 0.8546 0.9913 0.9055 *
0.4547 0.4679 0.4244 0.5196 0.6340

? ? 0.3543 ? 0.4009
? 0.7393 0.7520 0.8349 *

0.1101 ? 0.1035 0.1218 0.2954
0.5611 0.3608 0.3052 0.3254 0.2020
0.1644 ? 0.2596 0.3652 0.3655

Now that we have produced a dataset with all types of missingness, we discard our 
data-generating model and start “from scratch.” We approach this dataset as if this 
were the first time we see it, without any assumptions and without any background 
knowledge. This provides us with a suitable test case for BayesiaLab’s range of missing 
values processing methods. 

Data Import Wizard

In a typical data analysis workflow in BayesiaLab, we first encounter Missing Values 
Processing in the Data Import Wizard. There, we need to choose from several op-
tions, which can be grouped into Filter, Replace By, and Infer. We will repeat the 
Data Import Wizard for each available Missing Values Processing option and then 
utilize each option in conjunction with the appropriate learning and estimation al-
gorithms. This will yield one completed dataset for each Missing Values Processing 
approach in BayesiaLab. With these newly completed datasets, we can examine how 
well they match the original data. Ultimately, this gives us guidance for choosing the 
appropriate Missing Values Processing option as a function of what we know about 
the data-generating process and the missingness mechanism in particular.
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Our dataset consisting of 10,000 records was saved as a text file, so we start the import 
process via Data > Open Data Source > Text File. We show the first two steps of the 
Data Import Wizard only for reference as their options have already been discussed 
in previous chapters. Note the missing values in columns X1_obs, X2_obs, and X4_obs 
in the Data panel (Figure 9.15). Column X5_obs features Filtered Values, which are 
marked with an asterisk (“*”).

Figure 9.15	  

The next step of the Data Import Wizard requires no further input, but we can review 
the statistics provided in the Information Panel (Figure 9.16): we have 5,547 missing 
values (=11.09% of all cells in the Data panel) and 1,364 Filtered Values (=2.73%).
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Figure 9.16	

The screen of Figure 9.17 brings us to the core task of selecting the Missing Values 
Processing method. The default option3 is pre-selected, but we will instead explore 
all options systematically from the top. 

Figure 9.17	

3  The default method can be specified under Settings > Data > Import & Associ-
ate > Missing & Filtered Values.
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Filter (Listwise/Casewise Deletion)

BayesiaLab’s Filter4 method is generally known as “listwise deletion” or “casewise 
deletion” in the field of statistics. It is the first option listed, and it represents the 
simplest approach of dealing with missing values, and it is presumably the most com-
monly used one, too. This method simply deletes any record that contains a missing 
value in the specified variables.

Figure 9.18 shows Filter applied to X1_obs only. Given this selection, the Num-
ber of Rows, i.e. the number cases or records in the dataset, drops from the original 
10,000 to 8,950. Note that Filter can be applied variable by variable. Thus, it is possi-
ble to apply Filter to a subset of variables only and use other methods for the remain-
ing variables.

Figure 9.18	  

Before we can evaluate the effect of Filter, we need to complete the data import pro-
cess. However, given the number of times we have already presented the entire im-
port process, we omit a detailed presentation of these steps. Instead, we fast forward 
to review the Monitors of the processed variables in BayesiaLab (Figure 9.19).

4  The Filter method is not to be confused with Filtered Values (see Filtered Values, 
p. 296.) 



305

Chapter 9

Figure 9.19	

In the Graph Panel, the absence of the question mark icon on X1_obs signals that it no 
longer contains any missing values.
The Monitors now show the processed distributions. However, for a formal review of 
the processing effects, we need to compare the distributions of the newly processed 
variables with their unprocessed counterparts.

In Figure 9.20, we compare the original distributions (left column), followed 
by the distributions corresponding to the 10,000 generated samples (center column), 
and the distributions produced by the application of Missing Values Processing 
(right column). This is the format we will employ to evaluate all missing values pro-
cessing methods. 

Recalling the section on MCAR data, we know that applying Filter to an MCAR 
variable should not affect its distribution. Indeed, for X1_obs (top right) versus X1 
(top left), the difference between the distributions is not significant, and it is only 
due to the sample size. Sampling an infinite size dataset would lead to the exact same 
distribution.
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Figure 9.20	

Data-Generating Process (Hidden) Processed Data (8,950 Rows)Generated Data (10,000 Rows)
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Now we turn to testing the application of Filter to all variables with missing values, 
i.e. X1_obs, X2_obs, and X4_obs (Figure 9.21).

Figure 9.21	  

Even before evaluating the resulting distributions, we see in the Information Panel 
that over half of the rows of data are being deleted as a result of applying Filter. It is 
easy to see that in a dataset with more variables, this could quickly reduce the num-
ber of remaining records, potentially down to zero. In a dataset in which not a single 
record is completely observed, Filter is obviously not applicable at all.

Figure 9.22 presents the final distributions (right column), which are all sub-
stantially biased compared to the originals (left column). Whereas filtering alone on 
X1_obs, an MCAR variable, was at least “safe” for X1_obs by itself (Figure 9.20), fil-
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tering on X1_obs, X2_obs, and X4_obs adversely affects all variables, including X1_obs 
and even X3_obs, which does not contain any missing values.

As a result, we must strongly advise against using this method, within Bayesia-
Lab or in any statistical analysis, unless there is certainty that all to-be-deleted incom-
plete observations correspond to missing values that have been generated completely 
at random (MCAR). Another exception would be if the to-be-deleted observations 
only represented a very small fraction of all observations. Unfortunately, these caveats 
are rarely observed, and the Filter method, i.e. listwise or casewise deletion, remains 
one of the most commonly used methods of dealing with missing values (Peugh and 
Enders, 2004). 

Figure 9.22	

Data-Generating Process (Hidden) Processed Data (4,985 Rows)Generated Data (10,000 Rows)
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Replace By (Mean/Modal Imputation)

As opposed to deletion-type methods, such as Filter, we now consider the “opposite” 
approach, i.e. filling in the missing values with imputed values. Here, imputing means 
replacing the non-observed values with estimates, in order to facilitate the analysis of 
the whole dataset.

In BayesiaLab, this function is available via the Replace By option (Figure 
9.23). We can specify to impute any arbitrary value, e.g. based on expert knowledge, 
or an automatically generated value. For a continuous variable, BayesiaLab offers a 
default replacement of the missing values with the mean value of the variable. For 
a discrete variable, the default is the modal value, i.e. the most frequently observed 
state of the variable. In our example, X1_obs has a mean value of 0.40878022. This is 
the value to be imputed for all missing values for X1_obs.

Note that Replace By can be applied variable by variable. Thus, it is possible to 
apply Replace By to a subset of variables only and use other methods for the remain-
ing variables.

For the purposes of our example, we use Replace By for X1_obs, X2_obs, and 
X4_obs. As soon as this is specified, the number of the remaining missing values is 
updated in the Information Panel. By using the selected method, no missing values 
remain.

Figure 9.23	

In the same way we studied the performance of Filter, we now review the results of 
the Replace By method (Figure 9.24). Whereas this imputation method is optimal at 
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the individual/observation level (it is the rational decision for minimizing the predic-
tion error), it is not optimal at the population/dataset level. The right column in Fig-
ure 9.24 shows that imputing all missing values with the same value has a strong im-
pact on the shape of the distributions. Even though the mean values of the processed 
variables (right column) remain unchanged compared to observed values (center col-
umn), the standard deviation is much reduced. 

Similar to our verdict on Filter, Replace By cannot be recommended either 
for general use. However, its application could be justified if expert knowledge were 
available for setting a specific replacement value or if the number of affected records 
were negligible compared to the overall size of the dataset.

Figure 9.24	

Data-Generating Process (Hidden) Processed Data (10,000 Rows)Generated Data (10,000 Rows)

Missing Values Mechanism Missing Values Processing

Replace By 
Mean

Replace By 
Mean

Replace By 
Mean

MCAR

MAR

No
Missing

MNAR
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Infer: Static Imputation

Static Imputation resembles the Replace By method (i.e. mean/modal imputation) 
but differs in three important aspects: 

1.	 While Replace By is deterministic, Static Imputation performs random 
draws from the marginal distributions of the observed data and saves 
these randomly-drawn values as “placeholder values.”

2.	 The imputation is only performed internally, and BayesiaLab still “re-
members” exactly which observations are missing.

3.	 Whereas Replace By can be applied to individual variables, any of the 
options under Infer apply to all variables with missing values, with 
the exception of those that have already been processed by Filter or 
Replace By.

The buttons under Infer are available whenever a variable with missing values ( ) is 
selected in the Data panel (Figure 9.25).

Figure 9.25	

Although this probabilistic imputation method is not optimal at the observation/in-
dividual level (it is not the rational decision for minimizing the prediction error), it is 
optimal at the dataset/population level.

As illustrated in Figure 9.26, by drawing the imputed values from the current 
distribution keeps the distributions of variables pre- and post-processing the same. 
As a result, Static Imputation returns distributions that match the ones produced by 
Filtering, but without deleting any observations. As no records are discarded, Static 
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Imputation does not introduce any additional biases. However, the distributions of 
X2 (MAR) and X4 (MNAR) remain strongly biased.

Figure 9.26	

Data-Generating Process (Hidden) Processed Data (10,000 Rows)Generated Data (10,000 Rows)

Sample Generation Missing Values Processing

MCAR

MAR

No
Missing

MNAR

Infer: Dynamic Imputation

Dynamic Imputation is the first of a range of methods that take advantage of the 
structural learning algorithms available in BayesiaLab. 
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Figure 9.27	

Like Static Imputation, Dynamic Imputation is probabilistic; imputed values are 
drawn from distributions. However, unlike Static Imputation, Dynamic Imputation 
does not only perform imputation once, but rather whenever the current model is 
modified, i.e. after each arc addition, deletion, and reversal during structural learning. 
This way, Dynamic Imputation always uses the latest network structure for updating 
the distributions from which the imputed values are drawn. 

Upon completion of the data import, the resulting unconnected network ini-
tially has exactly the same distributions as the ones we would have obtained with 
Static Imputation. In both cases, imputation is only based on marginal distributions. 
With Dynamic Imputation, however, the imputation quality gradually improves 
during learning as the structure becomes more representative of the data-generating 
process. For example, a correct estimation of the MAR variables is possible once the 
network contains the relationships that explain the missingness mechanisms. 

Dynamic Imputation might also improve the estimation of MNAR variables 
if the structural learning finds relationships with proxies of hidden variables that are 
part of the missingness mechanisms.

In Figure 9.28, the question marks ( ) associated with X1_obs, X2_obs, and 
X4_obs confirm that the missingness is still present, even though the observations 
have been internally imputed.
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Figure 9.28	

On the basis of this unconnected network, we can perform structural learning. We 
select Learning > Unsupervised Structural Learning > Taboo (Figure 9.29). 

Figure 9.29	

While the network (Figure 9.30) only takes a few moments to learn, we notice that it 
is somewhat slower compared to what we would have observed using a non-dynam-
ic missing values processing method, e.g. Filter, Replace By, or Static Imputation. 
For our small example, the additional computation time requirement is immaterial. 
However, the computational cost increases with the number of variables in the net-
work, the number of missing values, and, most importantly, with the complexity of 



314

the network. As a result, Dynamic Imputation can slow down the learning process 
significantly.

Figure 9.30	

To make the network in Figure 9.30 visually consistent with the original order of the 
variables, we select all nodes and then select Alignment > Horizontal Distribution 
from the contextual menu (Figure 9.31).

Figure 9.31	

Figure 9.32 shows the horizontally aligned network. 
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Figure 9.32	

Figure 9.33 reports the performance of the Dynamic Imputation. The distributions 
show a substantial improvement compared to all the other methods we have dis-
cussed so far. As expected, X2_obs is now correctly estimated, and it even improves 
the distribution estimation of the difficult-to-estimate MNAR variable X4_obs. More 
specifically, there is now much less of an underestimation of the mean value.
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Figure 9.33	

Data-Generating Process (Hidden) Processed Data (10,000 Rows)Generated Data (10,000 Rows)

Sample Generation Missing Values Processing

MCAR

MAR

No
Missing

MNAR

Infer: Structural EM

Structural Expectation Maximization (or Structural EM for short) is the next avail-
able option under Infer (Figure 9.34). This method is very similar to Dynamic Impu-
tation, but instead of imputing values after each structural modification of the model, 
the set of observations is supplemented with one weighted observation per combina-
tion of the states of the jointly unobserved variables. Each weight equals the posterior 
joint probability of the corresponding state combination.
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Figure 9.34	

Upon completion of the data import process, we perform structural learning again, 
analogously to what we did in the context of Dynamic Imputation. As it turns out, 
the discovered structure is equivalent to the one previously learned. Hence, we can 
immediately proceed to evaluate the performance (Figure 9.35).

The distributions produced by Structural EM are quite similar to those ob-
tained with Dynamic Imputation. At least in theory, Structural EM should perform 
slightly better. However, the computational cost can be even higher than that of Dy-
namic Imputation because the computational cost of Structural EM also depends on 
the number of state combinations of the jointly unobserved variables.
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Figure 9.35	

Data-Generating Process (Hidden) Processed Data (10,000 Rows)Generated Data (10,000 Rows)

Sample Generation Missing Values Processing

MCAR

MAR

No
Missing

MNAR

Entropy-Based Imputations

Under Infer, we have two additional options, namely Entropy-Based Static Imputa-
tion and Entropy-Based Dynamic Imputation (Figure 9.36). As their names imply, 
they are based on Static Imputation and Dynamic Imputation. 
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Figure 9.36	

Whereas the standard (non-entropy-based) approaches randomly choose the se-
quence in which missing values are imputed within a row of data, the entropy-based 
methods select the order based on the conditional uncertainty associated with the 
unobserved variable. More specifically, missing values are imputed first for those vari-
ables that meet the following conditions: 

1.	 Variables that have a fully-observed/imputed Markov Blanket
2.	 Variables that have the lowest conditional entropy, given the observa-

tions and imputed values
The advantages of the entropy-based methods are (a) the speed improvement over 
their corresponding standard methods and (b) their improved ability to handle data-
sets with large proportions of missing values.

Approximate Dynamic Imputation

As stated earlier, any substantial improvement in the performance of missing values 
processing comes at a high computational cost. Thus, we recommend an alternative 
workflow for networks with a large number of nodes and many missing values. The 
proposed approach combines the efficiency of Static Imputation with the imputation 
quality of Dynamic Imputation. 

Static Imputation is efficient for learning because it does not impose any addi-
tional computational cost on the learning algorithm. With Static Imputation, missing 
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values are imputed in-memory, which makes the imputed dataset equivalent to a fully 
observed dataset.

Even though, by default, Static Imputation runs only once at the time of data 
import, it can be triggered to run again at any time by selecting Learning > Param-
eter Estimation. Whenever Parameter Estimation is run, BayesiaLab computes the 
probability distributions on the basis of the current model. The missing values are 
then imputed by drawing from these distributions. If we now alternate structural 
learning and Static Imputation repeatedly, we can approximate the behavior of the 
Dynamic Imputation method. The speed advantage comes from the fact that values 
are now only imputed (on demand) at the completion of each full learning cycle as 
opposed to being imputed at every single step of the structural learning algorithm. 

Approximate Dynamic Imputation in Practice

As a best-practice recommendation, we propose the following sequence of steps.
1.	 During data import, we choose Static Imputation (standard or entro-

py-based). This produces an initial imputation with the fully unconnect-
ed network, in which all the variables are independent.

2.	 We run the Maximum Weight Spanning Tree algorithm to learn a first 
network structure.

3.	 Upon completion, we prompt another Static Imputation by running Pa-
rameter Estimation. Given the tree structure of the network, pairwise 
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variable relationships provide the distributions used by the Static Impu-
tation process.

4.	 Given the now-improved imputation quality, we start another structur-
al learning algorithm, such as EQ, which may produce a more complex 
network.

5.	 The latest, more complex network then serves as the basis for yet anoth-
er Static Imputation. We repeat steps 4 and 5 until we see the network 
converge towards a stable structure.

6.	 With a stable network structure in place, we change the imputation 
method from Static Imputation to Structural EM via Learning > Miss-
ing Values Processing > Structural EM (Figure 9.37).

Figure 9.37	

7.	 With the new imputation method set, running Parameter Estimation 
now prompts the Structural EM algorithm, which fine-tunes the impu-
tation.

While this approximate Dynamic Imputation workflow requires more input and 
supervision by the researcher, for learning large networks, it can save a substantial 
amount of time compared to using the all-automatic Dynamic Imputation or Struc-
tural EM. Here, “substantial” can mean the difference between minutes and days of 
learning time.
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Summary

Traditionally, the process of specifying an imputation model has been a scientific 
modeling effort on its own, and few non-statisticians dared to venture into this spe-
cialized field (van Buuren, 2007). With Bayesian networks and BayesiaLab, handling 
missing values properly now becomes feasible for researchers who might otherwise 
not attempt to deal with missing values beyond the ad hoc approaches. Responding 
to Burton and Altman’s serious concern stated in the introduction of this chapter, we 
believe that the presented methods can help missing values processing become an 
integral part many more research projects in the future.
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10. Causal Identification & Estimation1

“Δημόκριτος έλεγε βούλεσθαι μάλλον μίαν ευρείν αιτιολογίαν 
ή την Περσών βασιλείαν εαυτού γενέσθαι.” (“Democritus 
used to say that ‘he prefers to discover a causality rather 
than become a king of Persia’.”)—Democritus, according 
to a late testimony of Dionysius, Bishop of Alexandria, by 
Eusebius of Caesarea in Præparatio evangelica (Εὑαγγελικὴ 
προπαρασκευή)

The evolution of Bayesian network research is closely related to advances in the 
understanding of causality. In fact, both developments are intimately tied to the 

seminal works of Judea Pearl. Also, it is presumably fair to say that one of the “unique 
selling points” of Bayesian networks is their capability of performing causal inference. 
However, we do want to go beyond merely demonstrating the mechanics of causal 
inference. Rather, we rather want to establish under what conditions causal inference 
can be performed. More specifically, we want to see what assumptions are required to 
perform causal inference with non-experimental data.

To approach this topic, we need to break with the pattern established in the 
earlier chapters of this book. Instead of starting with a case study, we start off at a 
much higher level of abstraction. First, we discuss in theoretical terms as to what is 
required for performing causal identification, estimation, and inference. Once these 
fundamentals are established, we can proceed to discuss the methods, along with 
their limitations, including Directed Acyclic Graphs and Bayesian networks. These 
techniques can help us distinguish causation from association when working with 
non-experimental data.

1  This chapter was prepared in collaboration with Felix Elwert on the basis of his course, 
Causal Inference with Graphical Models.
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Motivation: Causality for Policy Assessment and Impact 
Analysis

In this chapter, we discuss causality mostly on the basis of a “toy problem,” i.e. a sim-
plified and exaggerated version of a real-world challenge. As such, the issues we raise 
about causality may appear somewhat contrived. Additionally, the constant practical 
use of causal inference in our daily lives may make our discussion seem somewhat 
artificial. 

To highlight the importance of causal inference on a large scale, we want to 
consider how and under what conditions big decisions are typically made. Major gov-
ernment or business initiatives generally call for extensive studies to anticipate conse-
quences of actions not yet taken. Such studies are often referred to as “policy analysis” 
or “impact assessment”: 

•	 “Impact assessment, simply defined, is the process of identifying the future 
consequences of a current or proposed action.” (IAIA, 2009)

•	 “Policy assessment seeks to inform decision-makers by predicting and eval-
uating the potential impacts of policy options.” (Adelle and Weiland, 2012)

What can be the source of such predictive powers? Policy analysis must discover a 
causal mechanism that links a proposed action/policy to a potential consequence/
impact. Unfortunately, experiments are typically out of the question in this context. 
Rather, impact assessments—from non-experimental observations alone—must de-
termine the existence and the size of a causal effect.

Given the sheer number of impact analyses performed, and their tremendous 
weight in decision making, one would like to believe that there has been a long-estab-
lished scientific foundation with regard to (non-experimental) causal effect identifi-
cation, estimation, and inference. Quite naturally, as decision makers quote statistics 
in support of policies, the field of statistics comes to mind as the discipline that studies 
such causal questions. 

However, casual observers may be surprised to hear that causality has been 
anathema to statisticians for the longest time. “Considerations of causality should be 
treated as they always have been treated in statistics, preferably not at all…” (Speed, 
1990).

The repercussions of this chasm between statistics and causality can be felt 
until today. Judea Pearl highlights this unfortunate state of affairs in the preface of 
his book Causality: “… I see no greater impediment to scientific progress than the 
prevailing practice of focusing all our mathematical resources on probabilistic and 
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statistical inferences while leaving causal considerations to the mercy of intuition and 
good judgment.” (Pearl, 1999)

Rubin (1974) and Holland (1986), who introduced the counterfactual (poten-
tial outcomes) approach to causal inference, can be credited with overcoming statis-
ticians’ traditional reluctance to engage causality. However, it will take many years for 
this fairly recent academic consensus to fully reach the world of practitioners, which 
is one of our key drivers for promoting Bayesian networks.  

Sources of Causal Information

Causal Inference by Experiment

Randomized experiments have always been the gold standard for establishing causal 
effects. For instance, in the drug approval process, controlled experiments are man-
datory. Without first having established and quantified the treatment effect, and any 
associated side effects, no new drug could win approval by the Federal Drug Admin-
istration or any other such organization.

Causal Inference from Observational Data and Theory

However, in many other domains, experiments are not feasible, be it for ethical, eco-
nomical or practical reasons. For instance, it is clear that a government could not cre-
ate two different tax regimes to evaluate their respective impact on economic growth. 
Neither would it be possible to experiment with two different levels of carbon emis-
sions to measure the proposed warming effect.

“So, what does our existing data say?” would be an obvious question from poli-
cy makers, especially given today’s high expectations concerning Big Data. Indeed, in 
lieu of experiments, we can attempt to find instances, in which the proposed policy 
already applies (by some assignment mechanism), and compare those to other in-
stances, in which the policy does not apply.

However, as we will see in this chapter, performing causal inference on the ba-
sis of observational data requires an extensive range of assumptions, which can only 
come from theory, i.e. domain-specific knowledge. Despite all the wonderful advanc-
es in analytics in recent years, data alone, even Big Data, cannot prove the existence 
of causal effects.
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Identification and Estimation Process
The process of determining the size of a causal effect from observational data can be 
divided into two steps:

Causal Identification

Identification analysis is about determining whether or not a causal effect can be es-
tablished from the observed data. This requires a formal causal model, i.e. at least 
partial knowledge of how the data was generated. To justify any assumptions, domain 
knowledge is key. It is important to realize that the absence of causal assumptions 
cannot be compensated for by clever statistical techniques, or by providing more 
data. Needless to say, recognizing that a causal effect cannot be identified will bring 
any impact analysis to an abrupt halt.

Computing the Effect Size

If a causal effect is identified, the effect size estimation can be performed in the next 
step. Depending on the complexity of the model, this can bring a whole new set of 
challenges. Hence, there is a temptation to use familiar functional forms and estima-
tors, e.g. linear models estimated by ordinary least squares (OLS). Beyond traditional 
approaches, we will exploit the properties of Bayesian networks in this context.

Theoretical Background
Today, we can openly discuss how to compute causal inference from observational 
data. For the better part of the 20th century, however, the prevailing opinion had been 
that speaking of causality without experiments is unscientific. Only towards the end 
of the century, this opposition had slowly eroded (Rubin 1974, Holland 1986), which 
subsequently led to numerous research efforts spanning philosophy, statistics, com-
puter science, information theory, etc. 
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Potential Outcomes Framework

Although there is no question about the common-sense meaning of “cause and ef-
fect”, for a formal analysis, we require a precise mathematical definition. In the fields 
of social science and biostatistics, the potential outcomes framework2 is a widely ac-
cepted formalism for studying causal effects. Rubin (1974) defines it as follows:

“Intuitively, the causal effect of one treatment, T=13, over an-
other, T=0, for a particular unit and an interval of time from 
t1 to t2 is the difference between what would have happened at 
time t2 if the unit had been exposed to T=1 initiated at t1 and 
what would have happened at t2 if the unit had been exposed 
to T=0 initiated at t1: ‘If an hour ago I had taken two aspirins 
instead of just a glass of water, my headache would now be 
gone,’ or because an hour ago I took two aspirins instead of 
just a glass of water, my headache is now gone.’ Our defini-
tion of the causal effect of T=1 versus T=0 treatment will 
reflect this intuitive meaning.”

•	 Yi,1  Potential outcome of individual i given treatment T=1 (e.g. taking two 
Aspirins)

•	 Yi,0  Potential outcome of individual i given treatment T=0 (e.g. drinking a 
glass of water)

The individual-level causal effect (ICE), is defined as the difference between the indi-
vidual’s two potential outcomes, i.e.

(10.1)

Given that we cannot rule out differences between individuals (effect heterogeneity), 
we define the average causal effect (ACE), as the unweighted arithmetic mean of the 
individual-level causal effects:

(10.2)

E[.] is the expected value operator, which computes the arithmetic mean.

2  The potential outcomes framework is also known as the counterfactual model, the Rubin 
model, or the Neyman-Rubin model.

3  In this quote from Rubin (1974), we altered the original variable name E to T=1 and C 
to T=0 in order to be consistent with the nomenclature in the remainder of this chapter. T is 
commonly used in the literature to denote the treatment condition.

ICE Y Y, ,i i1 0= -

[ ] [ ]ACE E Y E Y, ,i i1 0= -
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Causal Identification

The challenge is that Yi,1 (treatment) and Yi,0 (non-treatment) can never be both ob-
served for the same individual at the same time. We can only observe treatment or 
non-treatment, but not both. 

So, where does this leave us? What we can produce easily is the “naive” estima-
tor of association, S, between the “treated” and the “untreated”4 sub-populations (for 
notational convenience we omit the index i): 

(10.3)

Because the sub-populations in the treated and control groups contain different indi-
viduals, S is clearly not a measure of causation, in contrast to the ACE. This confirms 
the adage “association does not imply causation.”

The question is, how can we move from what we can measure, i.e. the naive 
association, to the quantity of interest, i.e. causation? Determining whether we can 
extract causation from association, is known as identification analysis.

The safest approach of performing identification is conducting a randomized 
experiment. However, the premise of this chapter is that experiments are often not 
feasible for many research questions. Therefore, our only option is to see whether 
there were any conditions, under which the measure of association, S, equals the 
measure of causation, ACE. As a matter of fact, this would be the case if the sub-pop-
ulations were comparable with respect to the factors that can influence the outcome.

Ignorability

Remarkably, the conditions under which we can identify causal effects from observa-
tional data are very similar to the conditions that justify causal inference in random-
ized experiments. A pure random selection of treated and untreated individuals does 
indeed remove any potential bias and allows estimating the effect of the treatment 
alone. This condition is known as “ignorability,” which can be formally written as:

(10.4)

This means that the potential outcomes, Y1 and Y0 must jointly be independent (“9”) 
of the treatment assignment, T. This condition of ignorability holds in an ideal exper-
iment. Unfortunately, this condition is very rarely met in observational studies. How-

4  In this chapter, we use “control”, and “untreated” interchangeably.

[ ] [ ]S E Y T E Y T1 01 0; ;= = - =

( , )Y Y T1 0 =
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ever, conditional ignorability may hold, which refers to ignorability within subgroups 
of the domain defined by the values of X.5

(10.5)

In words, conditional on variables X, Y1 and Y0 are jointly independent of T, the as-
signment mechanism. If conditional ignorability holds, we will be able to utilize the 
estimator, S | X, to recover the average causal effect, ACE | X.

(10.6)

How can we select the correct set of variables X among all variables in a system? How 
do we know that such variables X are observed, or even exist in a domain? The answer 
will presumably be unsatisfactory for many researchers and policy makers: it all de-
pends on expert knowledge and assumptions. 

Causal Assumptions

The MacMillan Dictionary defines “assumption” as “something that you consider 
likely to be true even though no one has told you directly or even though you have no 
proof.” It is presumably fair to say that this carries a somewhat negative connotation. 
It implies that something is not known that perhaps should be known.

In some fields of science, assumptions can be perceived as a sign of weakness 
in reasoning. As a result, assumptions are often on the periphery of research projects, 
rather being at their core.

For causal identification with nonexperimental data, causal assumptions are 
crucial. More specifically, we must assert explicit causal assumptions about the pro-
cess that generated the observed data (Manski 1999, Elwert 2013). 

5  X can be a vector.

( , )Y Y T X1 0 = ;

, ,

[ ] [ ]

[ , ] [ , ]

[ ] [ ]T X T X

ACE X E Y X E Y X

E Y T X E Y T X

E Y E Y

S X

1 0

1 0

1 0

1 0
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Example: Simpson’s Paradox
We will use an example that appears trivial on the surface, but which has produced 
countless instances of false inference throughout the history of science. Due to its 
counterintuitive nature, this example has become widely known as Simpson’s Para-
dox (Wall Street Journal, Dec. 2, 2009). 

This is an important exercise as it illustrates how an incorrect interpretation of 
association can produce bias. The word “bias” may not necessarily strike fear into our 
hearts. In our common understanding, “bias” implies “inclination” and “tendency”, 
and it is certainly not a particularly forceful expression. Hence, we may not be overly 
trouble by a warning about bias. However, Simpson’s Paradox shows how bias can 
lead to catastrophically wrong estimates.

Does the Treatment Kill Patients?

A hypothetical disease equally affects men and women. An observational study finds 
that a treatment is linked to an increase in the recovery rate among all treated patients 
from 40 to 50% (Figure 10.1). Based on the study, this new treatment is widely recog-
nized as beneficial and subsequently promoted as a new therapy.

Figure 10.1	

Treatment Yes No
Yes 50% 50%
No 40% 60%

Patient Recovered

We can imagine a headline along the lines of “New Therapy Increases Recovery Rate 
by 10%.” However, when examining patient records by gender, the recovery rate for 
male patients—upon treatment—decreases from 70% to 60%; for female patients, the 
recovery rate declines from 30% to 20% (Figure 10.2).

Figure 10.2	

Gender Treatment Yes No
Yes 60% 40%
No 70% 30%
Yes 20% 80%
No 30% 70%

Patient Recovered

Male

Female
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So, is this new treatment effective overall or not? This puzzle can be resolved by real-
izing that, in this observed population, there was an unequal application of the treat-
ment to men and women, i.e. some type of self-selection occurred. More specifically, 
75% of the male patients and only 25% of female patients received the treatment. 
Although the reason for this imbalance is irrelevant for inference, one could imagine 
that side effects of this treatment are much more severe for females, who thus seek 
alternatives therapies. As a result, there is a greater share of men among the treated 
patients. Given that men have a better a priori recovery prospect with this type of dis-
ease, the recovery rate of the all treated patients increases. So, what is the true causal 
effect of this treatment?

Synthetic Data

Our particular manifestation of Simpson’s Paradox is not very far-fetched, but it is still 
hypothetical. Therefore, we must rely on synthetic data to make this problem domain 
tangible for our study efforts. We generate 1,000 observations by sampling from the 
joint probability distribution of the original DGP. Needless to say, for this dataset to 
be a suitable example for non-experimental observations, like we would find in them 
under real-world conditions, the true DGP is not known but merely an assumption. 
Our synthetic dataset consists of three variables with two discrete states each:6

•	 X1_Gender: 		  Male (1)/Female (0)
•	 X2_Treatment: 	 Yes (1)/No (0)
•	 X3_Outcome: 		 Patient Recovered (1)/Patient Did Not Recover (0)

Figure 10.3 shows a preview of the first ten rows of the newly generated data.

Figure 10.3	

X1_Gender X2_Treatment X3_Outcome

Female (0) No (0) Patient Did Not Recover (0)
Male (1) Yes (1) Patient Recovered (1)
Male (1) Yes (1) Patient Did Not Recover (0)

Female (0) No (0) Patient Did Not Recover (0)
Male (1) Yes (1) Patient Did Not Recover (0)

Female (0) No (0) Patient Recovered (1)
Female (0) No (0) Patient Recovered (1)

Male (1) No (0) Patient Recovered (1)
Female (0) Yes (1) Patient Did Not Recover (0)
Female (0) Yes (1) Patient Did Not Recover (0)

6  The dataset is available for download from the Bayesia website: www.bayesia.us/simpson

▶ Generate Data in 
Chapter 9, p. 299.



334

Methods for Identification and Estimation
For now, we set aside the dataset. We will return to it in each of the two workflows to 
be presented in this chapter, albeit at different points in the process. Both workflows 
have the objective of identifying and estimating causal effects from non-experimental 
data (Figure 10.4).7

Figure 10.4	

Workflow #1
Based on a DAG

Workflow #2
Based on a

Bayesian Network

Experiment 
Possible?

Conduct 
Experiment

no

yes

Estimation

Identification & Estimation

Identification

 

Workflow #1 uses a Directed Acyclic Graph for identification. In this approach, data 
will be introduced at the end of the process, only for estimation (Figure 10.5). Work-
flow #2 is based on a causal Bayesian network (CBN), which adds a JPD parametriza-
tion to a DAG for identification and estimation. In this context, we need to introduce 
data almost immediately (Figure 10.14).

Workflow #1: Identification and Estimation with a DAG

In this workflow (highlighted in Figure 10.5), all causal assumptions for identification 
are expressed explicitly in the form of a Directed Acyclic Graph (DAG) (Pearl 1995, 
2009). These assumptions are not merely checkboxes to tick; rather, they represent 
our complete causal understanding of the data-generating process for the system we 
are studying. Where do we get such causal assumptions for a model? In this day and 
age, when Big Data dominates the headlines, we would like to say that advanced algo-
rithms can generate causal assumptions from data. That is not the case, unfortunately. 
Structural, causal assumptions still require human expert knowledge, or, more gen-

7  Throughout the workflows diagrams, a golden star marks experiments as the optimal 
approach, the “gold standard,” for estimating causal effects.
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erally, theory. In practice, this means that we need to build (or draw) a causal graph of 
our domain, which we can subsequently examine with regard to identification. 

Figure 10.5	
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DAGs versus Bayesian Networks

As we learned in Chapter 2, Bayesian networks use DAGs for the qualitative represen-
tation of probabilistic dependencies. In the context of causal identification, however, 
the arcs in DAGs have a slightly different meaning. Here, arc direction explicitly states 
causality, as opposed to only representing a probabilistic dependency in a Bayesian 
network. To highlight this distinction, we introduce two new expressions: From now 
on, we refer to a non-causal DAG in a Bayesian network as a Probabilistic DAG (or 
PDAG). In contrast, we designate a DAG with a causal semantic as a Causal DAG (or 
CDAG). Given their importance for identification, we need to emphasize the theoret-
ical properties of arcs in a CDAG:

▶ Chapter 2. Bayesian 
Network Theory, p. 21.
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•	 A Directed Arc represents a potential causal effect. The arc direction indi-
cates the assumed causal direction, i.e. “A → B” means “A causes B.”

•	 A Missing Arc encodes the definitive absence of a direct causal effect, i.e. 
no arc between A and B means that there exists no direct causal relation-
ship between A and B and vice versa. As such, a missing arc represents an 
assumption. 

Structures Within a DAG

In a PDAG or CDAG, there are three basic configurations in which nodes can be con-
nected. Graphs of any size and complexity can be broken down into these basic graph 
structures. While these basic structures show direct dependencies/causes explicitly, 
there are more statements contained in them, albeit implicitly. In fact, we can read all 
marginal and conditional associations that exist between the nodes.

Why are we even interested in associations? Isn’t all this about understanding 
causal effects? It is essential to understand all associations in a system because, in 
non-experimental data, all we can do is observe associations, some which represent 
non-causal relationships. Our objective is to separate causal effects from non-causal 
associations.

Indirect Connection

The DAG in Figure 10.6 represents an indirect connection of A on B via C.

Figure 10.6	

Implication for Causality

A causes B via node C. 

Implication for Association

Marginally (or unconditionally), A and B are dependent. This means that without 
knowing the value of C, learning about A informs us about B and vice versa, i.e. the 
path between the nodes is unblocked and information can flow in both directions.
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Conditionally on C, i.e. by setting Hard Evidence8 on (or observing) C, A and 
B become independent. In other words, by “hard”-conditioning on C, we block the 
path from A to B and from B to A. Thus, A and B are rendered independent, given C: 
A=YB and A=B|C.

Common Parent

The second configuration has C as the common parent of A and B (Figure 10.7).

Figure 10.7	

Implication for Causality

C it the common cause of both A and B

Implication for Association

In terms of association, this structure is absolutely equivalent to the Indirect Connec-
tion. Thus, A and B are marginally dependent, but conditionally independent given C 
(by setting Hard Evidence on C): A=YB and A=B|C

Common Child (Collider)

The final structure has a common child C, with A and B being its parents. This struc-
ture is called a “V-Structure.” In this configuration, the common child C is also known 
as a “collider.” 

8  Hard Evidence means that there is no uncertainty with regard to the value of the ob-
servation or evidence. If uncertainty remains regarding the value of C, the path will not be 
entirely blocked and an association will remain between A and B.

▶ Types of Evidence in 
Chapter 3, p. 42.
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Figure 10.8	  

Implication for Causality

C is the common effect of A and B.

Implication for Association

Marginally, i.e. unconditionally, A and B are independent, i.e. the information flow 
between A and B is blocked. Conditionally on C—with any kind of evidence9—A and 
B become dependent. If we condition on the collider C, information can flow be-
tween A and B, i.e. conditioning on C opens the information flow between A and B: 
A=B and A=YB|C.

For purposes of formal reasoning, there is a special significance to this type 
of connection. Conditioning on C facilitates inter-causal reasoning, often referred to 
as the ability to “explain away” the other cause, given that the common effect is ob-
served.

Creating a CDAG Representing Simpson’s Paradox

To model this problem domain, we create a simple CDAG with BayesiaLab, consist-
ing of only three nodes, X1_Gender, X2_Treatment, and X3_Outcome.10 The absence 
of further nodes means that we assume that there are no additional variables in the 
data-generating system, either observable or unobservable. This is a very strong as-
sumption, which cannot be tested, unfortunately. To make such an assumption, we 
need to have a justification purely on theoretical grounds.

9  Even introducing a minor reduction of uncertainty of C, e.g. from no observation (“color 
unknown”) to a very vague observation (“it could be anything, but it is probably not pur-
ple”), unblocks the information flow.

10  For now, we are only using the qualitative part of the network, i.e. we are not consider-
ing the probabilities.

▶ Inter-Causal Reasoning 
in Chapter 4, p. 63.
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Accepting this assumption for the time being, we wish to identify the causal 
effect of X2_Treatment on X3_Outcome. Is this possible by analyzing data from these 
three variables?

Figure 10.9	

We need to ask, what does this CDAG specifically imply? We can find all three basic 
structures in this example:

•	 Indirect Effect: 	 X1_Gender causes X3_Outcome via X2_Treatment
•	 Common Cause: 	 X1_Gender causes X2_Treatment and X3_Outcome
•	 Common Effect: 	 X1_Gender and X2_Treatment cause X3_Outcome

Graphical Identification Criteria

Earlier we said that we also need to understand all the associations in a system, so that 
we can distinguish between causation and association. This requirement will perhaps 
become clearer now as we introduce the concepts of causal and non-causal paths.

Causal and Non-Causal Paths

In a DAG, a path is a sequence of non-intersecting, adjacent arcs, regardless of their 
direction.

•	 A causal path can be any path from cause to effect, in which all arcs are di-
rected away from the cause and pointed towards the effect.

•	 A non-causal path can be any path between cause and effect, in which at 
least one of the arcs is oriented from effect to cause.

Our example contains both types of paths: 
1.  Non-Causal Path: X2_Treatment ← X1_Gender → X3_Outcome (Figure 10.10).
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Figure 10.10	

2.  Causal Path: X2_Treatment → X3_Outcome (Figure 10.11).

Figure 10.11	

Adjustment Criterion and Identification

Among numerous available graphical criteria, the Adjustment Criterion (Shpitser 
et al., 2010) is perhaps the most intuitive one. Put simply, the Adjustment Criterion 
states that a causal effect is identified, if we can condition on (or adjust for) a set of 
nodes such that:

•	 All non-causal paths between treatment and effect are “blocked” (non-caus-
al relationships prevented).

•	 All causal paths from treatment to effect remain “open” (causal relation-
ships preserved).

This means that any association that we can measure after adjustment in our data must 
be causal, which is precisely what we wish to know. What does “adjust for” mean in 
practice? In this context, “adjusting for a variable” and “conditioning on a variable” 
are interchangeable. They can stand for any of the following operations, which all 
introduce information on a variable:
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•	 Controlling
•	 Stratifying
•	 Setting evidence
•	 Observing
•	 “Mutilating”
•	 Matching

At this point, the adjustment technique is irrelevant. Rather, we just need to deter-
mine which variables, if any, need to be adjusted for in order to block the non-causal 
paths while keeping the causal paths open. Revisiting both paths in our DAG, we can 
now examine which ones are open or blocked. 

•	 First, we look at the non-causal path in our DAG: X2_Treatment ← 
X1_Gender → X3_Outcome (Figure 10.10), i.e. X1_Gender is a common cause 
of X2_Treatment and X3_Outcome. This implies that there is an indirect as-
sociation between X2_Treatment and X3_Outcome. Hence, there is an open 
non-causal path between X2_Treatment and X3_Outcome, which has to be 
blocked. To block this path, we simply need to adjust for X1_Gender.

•	 Next is the causal path in our DAG: X2_Treatment → X3_Outcome (Figure 
10.11). It consists of a single arc from X2_Treatment to X3_Outcome, so it is 
open by default and cannot be blocked.

So, in this example, the Adjustment Criterion can be met by blocking the non-causal 
path X2_Treatment ← X1_Gender → X3_Outcome by adjusting for X1_Gender. Hence, 
the causal effect from X2_Treatment to X3_Outcome is identified.

Unobserved Variables

Thus far, we have assumed that there are no unobserved variables in our example. 
However, if we had reason to believe that there is another variable U, which appears 
to be relevant on theoretical grounds, but were not recorded in the dataset, iden-
tification could no longer be possible. Why? Let us assume U is a hidden common 
cause of X2_Treatment and X3_Outcome. By adding this unobserved variable U, a 
new non-causal path appears between X2_Treatment and X3_Outcome via U (Figure 
10.12). 
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Figure 10.12	

Given that U is unobserved, there is no way to adjust for it, and, therefore, this is an 
open non-causal path that cannot be blocked. Hence, the causal effect can no longer 
be estimated without bias. This highlights how easily identification can be “ruined.” 

Effect Estimation by Regression

Returning to the original version of the CDAG (Figure 10.9, i.e. without the unob-
served variable), we are now ready to proceed to estimation. However, our CDAG, 
which helped us identify the causal effect, is only a qualitative representation of the 
data-generating process. To perform the actual effect estimation, we now need to 
quantify the relationships. This means that we have to specify a functional form and 
use our synthetic dataset for the effect estimation. A simple linear regression meets 
our requirements (we are assuming that there are no error terms):

(10.7)

By estimating this regression, we condition on all the variables on the right-hand side 
of the equation (independent variables). With that, we have X1_Gender included as 
a covariate and, therefore, condition on it automatically. This is precisely what the 
adjustment criterion requires in our example. Based on the synthetic data, the OLS 
estimation yields the following coefficients:

. , . , .0 3 0 4 0 10 1 2b b b= = = -

Catastrophic Bias

We can now interpret the coefficient β2 as the total causal effect of X2_Treatment on 
X3_Outcome. It turns out to be a negative effect. So, this causal analysis, which now 
removes bias by taking into account X1_Gender, yields the opposite effect of the one 
we would get by merely looking at association, i.e. −10% instead of +10% in recovery 
rate.

▶ Synthetic Data, 
p. 333.

X3 X1 X2Outcome Gender Treatment0 1 2b b b= + +
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This illustrates that a bias in the estimation of an effect can be more than just a 
nuisance for the analyst. Bias can reverse the sign of the effect. In conditions similar 
to Simpson’s Paradox, effect estimates can be substantially wrong and lead to policies 
with catastrophic consequences. In our example, the treatment under study would 
kill people, instead of healing them, as the naive study, based on association, first 
suggested.

Other Effects

Perhaps we are now tempted to interpret β1 as the total causal effect of X1_Gender on 
X3_Outcome. This would not be correct. Instead, β1 corresponds to the direct causal 
effect of X1_Gender on X3_Outcome. If we want to identify the total causal effect of 
X1_Gender on X3_Outcome, we will need to look once again at the paths in our DAG 
(Figure 10.13).

Figure 10.13	

As it turns out, we have two causal paths from X1_Gender to X3_Outcome, and no 
non-causal path:

1.	 X1_Gender → X3_Outcome
2.	 X1_Gender → X2_Treatment → X3_Outcome

As a result, we must not adjust for X2_Treatment, because otherwise we would block 
the second causal path. A regression that included X2_Treatment would condition on 
X2_Treatment and thus block it. In order to obtain the total causal effect, a regression 
would have to be specified as in equation (10.8):

(10.8)

Estimating the parameter yields β1=0.35. Note that this illustrates that it is impossible 
to assign any causal meaning to regression coefficients without having an explicitly 
stated causal structure.

X3 X1Outcome Gender0 1b b= +
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Workflow #2: Effect Estimation with Bayesian Networks

Conceptual Overview

In workflow #1, the causal effect estimation consisted of two separate elements: first, 
a CDAG that represented the qualitative part of the DGP, and, second, a classical re-
gression that quantified the relationships and performed the effect estimation.

In workflow #2, we present a much more integrated approach by using a causal 
Bayesian network, which combines a CDAG with parameter estimates. This is the 
workflow we describe in this section (highlighted in Figure 10.14).

Figure 10.14	
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Creating a Causal Bayesian Network

We have already defined a CDAG in workflow #1, which we can reuse here towards 
building a causal Bayesian network. Figure 10.15 shows the familiar CDAG in Bayesia-
Lab’s Graph Panel. However, we still have to define the conditional probabilities for 
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completing the specification of the causal Bayesian network. The yellow warning 
symbols ( ) remind us that the parameters have not yet been defined.

Figure 10.15	

At this point, we could define the parameters based on our knowledge of all the prob-
abilities in this domain. We took this approach in the knowledge modeling exercise of 
Chapter 5. Instead, we will utilize our synthetic dataset and BayesiaLab’s Parameter 
Estimation to establish the quantitative part of the network.

Associate Data

We have been using Parameter Estimation extensively in this book, either implicitly 
or explicitly, for instance in the context of structural learning and missing values es-
timation. So far, we have acquired the data needed for Parameter Estimation via the 
Data Import Wizard. Now will use the Associate Data Wizard for the same purpose. 
Whereas the Data Import Wizard generates new nodes from columns in a database, 
the Associate Data Wizard links columns of data with existing nodes. This way, we 
can “fill” our network with data and then perform Parameter Estimation.

We start the Associate Data Wizard via the Associate Data Source function, 
which is available from the main menu under Data > Associate > Data Source > Text 
File (Figure 10.16).

▶ Synthetic Data, 
p. 333.

▶ Parameter Estimation 
in Chapter 5, p. 99.
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Figure 10.16	

This prompts us to select the CSV file containing the our synthetic dataset. Upon se-
lecting the file, BayesiaLab brings up the first screen of the Associate Data Wizard 
(Figure 10.17).

Figure 10.17	

Given that the Associate Data Wizard mirrors the Data Import Wizard in most of its 
options, we omit to describe them here. We merely show the screens for reference as 
we click next to progress through the wizard (Figure 10.18 and Figure 10.19).



347

Chapter 10

Figure 10.18	

Figure 10.19	

The last step shows how the columns in the dataset are linked to the nodes that al-
ready exist in the network (Figure 10.20). Conveniently, the column names in the 
dataset perfectly match the node names. Thus, BayesiaLab automatically associates 
the correct variables. If they did not match, we could manually link them in the final 
step (Figure 10.20).
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Figure 10.20	

Clicking Finish completes the Associate Data Wizard. The database icon ( ) in-
dicates that our network now has a database associated with its structure. We can 
now use this database to estimate the parameters: Learning > Parameter Estimation 
(Figure 10.21).

Figure 10.21	

Once the parameters estimated, there are no longer any warning symbols ( ) tagged 
onto the nodes (Figure 10.22).
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Figure 10.22	

We now have a fully specified and estimated Bayesian network. By opening, for in-
stance, the Node Editor of X3: Outcome, we see that the CPT is indeed filled with 
probabilities.

Figure 10.23	

Path Analysis

Given that we now have a complete Bayesian network, BayesiaLab can help us un-
derstand the implications of the structure of this network. For instance, we can verify 
the paths in the network. Once we define a Target Node, we can examine the possi-
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ble paths in this network. We select X2_Treatment, and then select Analysis > Visu-
al > Influence Paths to Target (Figure 10.24).

Figure 10.24	

BayesiaLab then provides a pop-up window with the Influence Paths report. Select-
ing any of the listed paths shows the corresponding arcs in the Graph Panel. Causal 
paths are shown in blue; non-causal paths are pink (Figure 10.25).

Figure 10.25	

It is easy to see that this automated path analysis could be particularly helpful with 
more complex networks. In any case, the result confirms our previous, manual anal-
ysis, which means that we need to adjust for X1_Gender to block the non-causal path 
between X2_Treatment and X3_Outcome (pink path).
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Inference

To prepare this network for inference, we bring up the Monitors of all three nodes 
(Figure 10.26).

Figure 10.26	

For instance, Figure 10.27 shows the prior distributions (left) and the posterior distri-
butions (right), given the observation X2_Treatment=“Yes (1)”. 

Figure 10.27	

As one would expect, the target variable, X3_Outcome, changes upon setting this ev-
idence. However, X1_Gender, changes as well, even though we know that this treat-
ment could not possibly change the gender of a patient. In fact, what we observe here 
is a manifestation of the non-causal path: X2_Treatment ← X1_Gender → X3_Outcome. 
This is the very path we need to block, as per our earlier studies of the DAG, in order 
to estimate the causal effect, X2_Treatment → X3_Outcome.

So, how do we block a path in a Bayesian network? We do have a two options 
in this regard, and both are conveniently implemented in BayesiaLab.
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Pearl’s Graph Surgery

The concept of “graph surgery” is much more fundamental than our technical objec-
tive of blocking a path, as stipulated by the Adjustment Criterion. Graph surgery is 
based on the idea that a causal network represents a multitude of autonomous rela-
tionships between parent and child nodes in a system. Each node is only “listening” 
to its parent nodes, i.e. the child node’s values are only a function of the value of its 
parents, not of any other nodes in the system. Also, these relationships remain invari-
ant regardless of any values that other nodes in the network take on.

Should a node in this system be subjected to an outside intervention, the nat-
ural relationship between this node and its parents would be severed. This node no 
longer naturally “obeys” inputs from its parent nodes; rather an external force fixes 
the node to a new value, regardless of what the values of the parent nodes would 
normally dictate. Despite this particular disruption, the other parts of the network 
remain unaffected in their structure.

How does this help us estimate the causal effect? The idea is to consider the caus-
al effect estimation as simulated interventions in the given system. Removing the arcs 
going into X2_Treatment implies that all the non-causal paths between X2_Treatment 
and the effect, X3_Outcome, no longer exist, without blocking the causal path (i.e. the 
same conditions apply as with the Adjustment Criterion).

Previously we computed the association in a system and interpreted it causally. 
Now have a causal network as a computational device, i.e. the Bayesian network, and 
can simulate what happens upon application of the cause. Applying the cause is the 
same as an intervention on a node in the network. 

In our example, we wish to determine the effect of X2_Treatment, our cause, 
on X3_Outcome, the presumed effect. In its natural state, X2_Treatment, is a func-
tion of its sole parent X1_Gender. To simulate the cause, we must intervene on 
X2_Treatment and set it to specific values, i.e. “Yes (1)” or “No (0)”, regardless of what 
X1_Gender would have induced. This is equivalent to randomly splitting the patient 
population into two sub-populations of equal size and forcing the first group to re-
ceive treatment and withholding the treatment from the second group. Such a ran-
dom selection removes the association between X2_Treatment and X1_Gender. This 
severs the inbound arc from X1_Gender into X2_Treatment, as if it were “surgical-
ly” removed. However, all other properties remain unaffected, i.e. the distribution 
of X1_Gender, the arc between X1_Gender and X3_Outcome, and the arc between 
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X2_Treatment and X3_Outcome. This means, after performing the graph surgery, set-
ting X2_Treatment to any value is an intervention, and any effects must be causal. 

While we could perform graph surgery manually on the given network, this 
function is automated in BayesiaLab. After right-clicking the Monitor of the node 
X2_Treatment, we select Intervention from the Contextual Menu (Figure 10.28).

Figure 10.28	

The activation of the Intervention Mode for this node is now highlighted by the blue 
background of the Monitor of X2_Treatment (Figure 10.29).

Figure 10.29	

Setting evidence on X2_Treatment is now an Intervention and no longer an observa-
tion (Figure 10.30).



354

Figure 10.30	

By setting the Intervention, BayesiaLab removes the inbound arc into X2_Treatment 
to visualize the graph mutilation (Figure 10.30). Additionally, the node symbol chang-
es to a square ( ), which denotes a Decision Node in BayesiaLab. Furthermore, the 
distribution of X1_Gender remains unchanged. We first set X2_Treatment=“No (0)”, 
then we set X2_Treatment=“Yes (1)”, as shown in the Monitors (Figure 10.31).

Figure 10.31	

More formally, we can express these interventions with the do-operator.
P(X3_Outcome=“Patient Recovered (1)” | do(X2_Treatment=“No(0)”))=0.5
P(X3_Outcome=“Patient Recovered (1)” | do(X2_Treatment=“Yes(1)”))=0.4

As a result, the causal effect is −0.1.
As an alternative to manually setting the values of the intervention, we can employ 
BayesiaLab’s Total Effects on Target function (Figure 10.32).
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Figure 10.32	

Given that we have set X2_Treatment to Intervention Mode, Total Effects on Tar-
get computes the total causal effect. Please note the arrow symbol (→) in the re-
sults table (Figure 10.33). This indicates that the Intervention Mode was active on 
X2_Treatment.

Figure 10.33	

Introduction to Matching

Earlier in this chapter, adjustment was achieved by including the relevant variables in 
a regression. Instead, we now perform adjustment by matching. In statistics, match-

▶ Adjustment Criterion 
and Identification, 
p. 340.
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ing refers to the technique of making distributions of the sub-populations we are 
comparing, including multivariate distributions, as similar as possible to each other. 
Applying matching to a variable qualifies as adjustment, and, as such, we can use it 
with the objective of keeping causal paths open and blocking non-causal paths. In our 
example, matching is fairly simple as we only need to match a single binary variable, 
i.e. X1_Gender. That will meet our requirement for adjustment and block the only 
non-causal path in our model.

Intuition for Matching

As the DAG-related terminology, e.g., “blocking paths”, may not be universally un-
derstood by a non-technical audience, we can offer a more intuitive interpretation 
of matching, which our example can illustrate very well. We have seen that, because 
of the self-selection phenomenon we described in this population, by setting an 
observation on X2_Treatment, the distribution of X1_Gender changes. What does 
this mean? This means that given we observe those who are actually treated, i.e. 
X2_Treatment=“Yes (1)”, they turn out to be 75% male. Setting the observation to 
“not treated”, i.e. X2_Treatment=“No (0)”, we only have a 25% share of male patients 
(Figure 10.34).

Figure 10.34	

Given this difference in gender composition, comparing the outcome between the 
treated and the non-treated is certainly not an apples-to-apples comparison as we 
know from our model that X1_Gender also has a causal effect on X3: Outcome. With-
out controlling X1_Gender, the effect of X2_Treatment is confounded by X1_Gender. 

So, how about searching for a subset of patients, in both treated and non-treat-
ed groups, which had an identical gender mix as illustrated in Figure 10.35 in order to 
neutralize the gender effect?
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Figure 10.35	
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In statistical matching, this process typically involves the selection of units in such a 
way that comparable groups are created, as shown in Figure 10.36. In practice, this 
is typically a lot more challenging as the observed units have more than just a single 
binary attribute.

Figure 10.36	

Not Treated Treated
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This approach can be extended to higher dimensions, meaning that the observed 
units need to be matched on a range of attributes, often including both continuous 
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and discrete variables. In that case, exact matching is rarely feasible, and some simi-
larity measures must be utilized to define a “match.”

Jouffe’s Likelihood Matching

With Likelihood Matching, as it is implemented in BayesiaLab, however, we do not 
directly match the underlying observations. Rather we match the distributions of the 
relevant nodes on the basis of the joint probability distribution represented by the 
Bayesian network.

In our example, we need to ensure that the gender compositions of untreated 
(left) and treated groups (right) are the same, i.e. a 50/50 gender mix. This theoreti-
cally ideal condition is shown in the Monitors in Figure 10.37.

Figure 10.37	

However, in Figure 10.38, the actual distributions reveal the inequality of gender dis-
tributions for the untreated (left) and the treated (right).

Figure 10.38	

How can we overcome this? Consider that prior distributions exist for the to-be-
matched variable X1_Gender, which, upon setting evidence on X2_Treatment, meet 
the desired, matching posterior distributions. In statistical matching, we would pick 
units that match upon treatment. In Likelihood Matching, however, we pick prior 
distributions that, upon treatment, have matching posterior distributions. In prac-
tice, for Likelihood Matching, “picking prior distributions” translates into setting 
Probabilistic Evidence.

Trying this out with actual distributions perhaps makes it easier to understand. 
We can set Probabilistic Evidence on the node X1_Gender by right-clicking on the 
Monitor and selecting Enter Probabilities from the contextual menu (Figure 10.39).
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Figure 10.39	

Now we can enter any arbitrary distribution for this node. For reasons that will be-
come clear later, we set the distribution to 75% for Male (1), which implies 25% for 
Female (0). Given the new evidence, we also see a new distribution for X2_Treatment 
(Figure 10.40).

Figure 10.40	

What happens now if we set treatment to X2_Treatment=“No (0)”? As it turns out, 
X1_Gender assumes the very distribution that we desired for the treated group. Simi-
larly, we can set probabilistic evidence on X1_Gender in such a way that X2_Treatment= 
“Yes (1)”, will also produce the 50/50 distribution. Hence, we have matching distribu-
tions for the untreated and the treated groups (Figure 10.41).
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Figure 10.41	

Matching Distributions

The obvious follow-up question would be how the appropriate probabilistic evidence 
can be found? In the example shown in Figure 10.41, we simply picked one without 
explanation, and it happened to produce the desired result. We will not answer this 
question, as the algorithm that produces the sets of probabilistic evidence is propri-
etary. However, for practitioners, this should be of little concern. Likelihood Match-
ing is a fully-automated function in BayesiaLab, which performs the search in the 
background, without requiring any input from the analyst.

Direct Effects Analysis

So, what does this approach look like when applied to our example? We select 
X2_Treatment and the select Analysis > Report > Target Analysis > Direct Effects 
on Target (Figure 10.42).
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Figure 10.42	

We immediately obtain a report that shows a Direct Effect of −0.1 (Figure 10.43).

Figure 10.43	

In BayesiaLab’s terminology, a Direct Effect is the estimate of the effect between a 
node and a Target Node, by controlling for all variables that have not been defined as 
Non_Confounder.11 In the current example, we only examined a single causal effect, 
but the Direct Effects Analysis can be applied to multiple causes in a single step.

11  This is intentionally aligned with the terminology used in the social sciences (Elwert, 
2013).
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Nonlinear Causal Effects

Due to the binary nature of all variables, our example was inherently linear. Hence, 
computing a single coefficient for the Direct Effect is adequate to describe the causal 
effect. However, the nonparametric nature of Bayesian networks offers another way 
of examining causal effects. Instead of estimating merely one coefficient to describe 
a causal effect, BayesiaLab can compute a causal “response curve.” For reference, we 
now show how to perform a Target Mean Analysis. Instead of computing a single 
coefficient, this function computes the effect of interventions across a range of values. 
This function is available under Analysis > Visual > Target Mean Analysis > Direct 
Effects (Figure 10.44).

Figure 10.44	

This brings up a pop-up window prompting us to select the format of the output. 
Selecting Mean for Target, and Mean for Variables is appropriate for this example 
(Figure 10.45).
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Figure 10.45	

We confirm the selection by clicking Display Sensitivity Chart. Given the many it-
erations of this example throughout this tutorial, the resulting plot is not surprising. 
It appears to be a linear curve with the slope equivalent to the previously estimated 
causal effect (Figure 10.46).

Figure 10.46	
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Soft Intervention

However, it is important to point out that it just looks like a linear curve. Loosely 
speaking, from BayesiaLab’s perspective, the curve merely represents a series of 
points connected by lines. Each point was computed by setting Interventions at in-
termediate points between X2_Treatment=“No  (0)” and X2_Treatment=“Yes  (1)”. 
How should this be interpreted, given that X2_Treatment is a binary variable? The an-
swer is that this can be considered as computing the causal effect of soft interventions. 

In the context of policy analysis, this is perhaps highly relevant. One can cer-
tainly argue that many policies, when implemented, do rarely apply to all units. For 
instance, a nationwide vaccination program might only expect to reach 80% of the 
population. Hence, the treatment variable should presumably reflect that fact. An-
other example would be the implementation of a new speed limit. Once again, not all 
drivers will drive precisely at the speed limit. Rather, there is presumably a broad dis-
tribution of speeds, presumably centered roughly around the newly stipulated speed 
limit. So, simulating the real-world effect of an intervention requires us to compute it 
probabilistically, as shown here.

Conclusion

This chapter highlights how much effort is required to derive causal effect estimates 
from observational data. Simpson’s Paradox illustrates how much can go wrong even 
in the simplest of circumstances. Given such potentially serious consequences, it is 
a must for policy analysts to formally examine all aspects of causality. To paraphrase 
Judea Pearl, we must not leave causal considerations to the mercy of intuition and 
good judgment. 

It is fortunate that causality has emerged from its pariah status in recent de-
cades, which has allowed tremendous progress in theoretical research and practical 
tools. “…practical problems relying on casual information that long were regarded as 
either metaphysical or unmanageable can now be solved using elementary mathe-
matics” (Pearl, 1999). 

Bayesian networks, and the BayesiaLab software platform are the direct result 
of this research progress. It is now upon the community of practitioners to embrace 
this progress to develop better policies, for the benefit of all of us.

▶ Inference with Proba-
bilistic and Numerical 
Evidence in Chap-
ter 7, p. 188.
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