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This paper presents a physics-inspired metaheuristic optimization algorithm, known as Electromagnetic
Field Optimization (EFO). The proposed algorithm is inspired by the behavior of electromagnets with
different polarities and takes advantage of a nature-inspired ratio, known as the golden ratio. In EFO, a
possible solution is an electromagnetic particle made of electromagnets, and the number of electro-
magnets is determined by the number of variables of the optimization problem. EFO is a population-
based algorithm in which the population is divided into three fields (positive, negative, and neutral);
attraction-repulsion forces among electromagnets of these three fields lead particles toward global
minima. The golden ratio determines the ratio between attraction and repulsion forces to help particles
converge quickly and effectively. The experimental results on 30 high dimensional CEC 2014 benchmarks
reflect the superiority of EFO in terms of accuracy and convergence speed over other state-of-the-art
optimization algorithms.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Metaheuristic algorithms are used to find an approximate
optimal solution for difficult optimization problems, for which
there is no deterministic method to solve them within a reason-
able time. A metaheuristic algorithm is defined as a problem
independent algorithm that can find approximate solutions to
hard problems. Metaheuristics are inspired by nature and try to
solve problems by mimicking ethology, biology, or physics [1].

Evolutionary algorithms (EAs) are stochastic, population-based
metaheuristic algorithms. EAs differ from some optimization
methods, such as Simulated-Annealing [2] and Tabu search [3],
because they evolve a population of solutions to reach an approx-
imate optimal solution instead of one solution [4]. Generally, EAs
search the problems domain as follows: a population of random
individuals (solutions) is initialized for the first time, and then the
fitness of individuals are evaluated by the fitness function. In the
next generations, individuals evolve towards the global best
solution by means of EAs and the guidance of the fitness function.
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This process continues until it reaches the maximum number of
iterations or finds the expected near-optimum solution.

The ability to balance between exploration (diversification) and
exploitation (intensification) plays a significant role in the success
of an EA. Exploitation is required to explore the problem surface
globally and identify the area of the search space that contains the
global best solution (global minima). Exploitation is required to
find an accurate solution by intensifying the search in the area that
is determined by the exploration stage. Achievement of this
balance is the main characteristic of EAs and the way they differ
from each other [5]. Generally, EAs are more exploration-oriented
rather than exploitation oriented. This characteristic makes them
suitable for hard problems with lots of local optimal solutions
(local minima) because they keep a population of solutions and
investigate a large area to find the global best solution.

Several well-known, nature-inspired EAs are: Genetic Algo-
rithm (GA), which works based on the principle of the Darwinian
theory of survival [6,7], Particle Swarm Optimization (PSO) [8-11],
which works based on the foraging behavior of a swarm of birds
[7], Differential Evolution (DE) [12], which is similar to GA with
modified crossover and mutation methods, and Harmony Search
(HS) [13,14], which works based on the way that musicians
experiment and change their instruments’ pitches to improvise
better harmonies. These well-known optimization algorithms
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have been applied for the optimization of many optimization
problems [15] and have demonstrated acceptable accuracy and
speed. However, the challenge in this area is how to be inspired
from the existing knowledge about optimization and the way in
which nature behaves to improve the existing algorithms or
develop a new algorithm, which can quickly find the best solution
globally while avoiding optimal solutions locally.

Two recently proposed nature-inspired optimization algo-
rithms are Artificial Bee Colony (ABC) [16,17] and Group Search
Optimizer (GSO) [18]. ABC is an optimization algorithm based on
the intelligent foraging behavior of honey bee swarms, and the
GSO algorithm is inspired by animals’ food search behavior. Both
algorithms have been successfully applied to various optimization
problems and have demonstrated competitive search power.

Physics-inspired heuristics are another type of EAs, that are
motivated by physics laws. In 2008, Tayarani [15,19] proposed a
magnetic-inspired optimization algorithm called Magnetic Opti-
mization Algorithm (MOA), which is inspired by the attraction
force among magnetic particles. In MOA, possible solutions are
presented by magnets with different mass, which are scattered in
a lattice-like structure all over the search space and apply a force
of attraction to their neighbors, according to their fitness. A similar
algorithm to MOA is the Gravitational Search Algorithm (GSA) [20],
which considers the search agents (particles) as masses that
attract each other based on the gravitational forces between them.
Some other recent algorithms have used a similar idea for
optimization based on the physics-inspired laws of forces. Mag-
netic Charged System Search (MCSS) [21] utilizes the governing
laws for magnetic forces in addition to electrical forces for
optimization. Ions Motion Optimization (IMO) [22] is proposed
based on the attraction and repulsion of anions and cations to
perform optimization.

Motivated by the previously proposed force-based algorithms
and the fact that in most of them, particles are attracted to the
fittest particle, which increases the chances of finding local
minima, this paper proposes a physics-inspired optimization
algorithm called Electromagnetic Field Optimization (EFO), which
is inspired by two phenomena. The first phenomenon is the
attraction-repulsion forces among electromagnets with different
polarities, and the second phenomenon is a nature-inspired ratio
called the golden ratio [23], which is also known as god’s
fingerprint. In our algorithm, particles move a distance away from
particles with low fitness (bad solutions) and get closer to the
fittest particles (good solutions) based on the attraction-repulsion
forces among three electromagnetic fields. The repulsion force
helps particle to avoid local minima and the attraction force leads
particles toward global minima. Experimental results on the CEC
2014 benchmarks show that our proposed algorithm outperforms
existing algorithms.

2. Electromagnetic field optimization

An electromagnet is a type of magnet in which electrical
current produces a magnetic field. In contrast to the permanent
magnet, an electromagnet has single polarity (positive or nega-
tive), which is determined by the direction of the electrical current
and can be changed by changing the direction of the electrical
current. Moreover, there are two different forces among electro-
magnets: attraction and repulsion. Electromagnets with the same
polarity repel each other, and those with opposite polarity attract
each other. The attraction force among electromagnets is (5-10%)
stronger than the repulsion force. Our algorithm uses these

concepts and replaces the ratio between attraction and repulsion
forces with the golden ratio. This helps particles to adequately
investigate the problem search space and find a near-optimal
solution.

EFO is a population-based algorithm and each solution vector is
represented by one group of electromagnets (electromagnetic
particle). The number of electromagnets of an electromagnetic
particle is determined by the number of variables of the optimiza-
tion problem. Therefore, each electromagnet of the electromag-
netic particle corresponds to one variable of the optimization
problem. Moreover, all electromagnets of the same electromag-
netic particle have the same polarity. However, each electro-
magnet can apply a force of attraction or repulsion on the peer-
electromagnets that correspond to the same variable of the
optimization problem.

EFO searches the problems domain as follows: first, a popula-
tion of electromagnetic particles is generated randomly, and the
fitness of each particle is evaluated by a fitness function; then,
particles are sorted according to their fitness. Second, sorted
particles are divided into three groups, and a portion of the
electromagnetic population is allocated to each group; the first
group is called the positive field and consists of the fittest
electromagnetic particles with positive polarity, the second group
is called the the negative field and consists of the electromagnetic
particles with the lowest fitness and negative polarity, and the
remaining electromagnetic particles form a group called the
neutral field, which has a small negative polarity almost near
zero. Finally, in each iteration of the algorithm, a new electro-
magnetic particle is shaped and evaluated by a fitness function. If
the generated electromagnetic particle is fitter than the worst
electromagnetic particle in the population, then the generated
particle will be inserted into the sorted population according to its
fitness and obtain a polarity based on its position in the popula-
tion; moreover, the worst particle will be eliminated. This process
continues until it reaches the maximum number of iterations or
finds the expected near-optimal solution.

EFO determines the position of each electromagnet of a
generated electromagnetic particle as follows: from the electro-
magnetic particles of each electromagnetic field (positive, nega-
tive, and neutral), three peer electromagnets are randomly
selected (one electromagnet from each field). Afterwards, the
generated electromagnet gets the position and polarity (small
negative polarity) of the selected electromagnet from the neutral
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Fig. 1. Direction of forces among electromagnets. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)
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Fig. 2. General flow of EFO.

field and gets affected by the selected electromagnets from the
positive field (attraction) and negative field (repulsion) by random
force intensity. In other words, the generated electromagnet
moves a distance away from the bad solutions and approaches
good solutions. Fig. 1 shows the direction of forces among electro-
magnets of different fields; in this figure, positive, neutral, and
negative fields are colored, respectively, as blue, green, and red. As
illustrated in Fig. 1, each electromagnet of the electromagnetic
particles of the neutral field is affected by two random peer
electromagnets from the negative field (repulsion) and positive
field (attraction).

The coexistence of two opposite forces among electromagnets
and the fact that the new solution is generated by moving a

distance away from bad solutions and moving closer to the
good solutions cause effective search and fast convergence.
However, to keep diversity and avoid local minima, randomness
is an indispensable part of EFO. Therefore, for some of the
generated electromagnetic particles (not all), only one of the
electromagnets is changed with a randomly generated electro-
magnet. The reason for applying randomness to some electro-
magnetic particles is that the existence of the random variables in
all solutions will prevent finding a good solution. However,
applying randomness to some solutions brings diversity into
the population and prevents local minima. The general flow of
EFO is presented in Fig. 2, and the pseudo-code of the proposed
algorithm is presented in Algorithm 1.
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Algorithm 1.

O oYU b WN =

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

[«Part 1: algorithm parameter initialization::/
Input: f(x)/*:objective function::/
Input: N_var=number of electromagnets of electromagnetic particle/# number of problem variables s/
Input: N_emp=number of electromagnetic particles in population
Input: R_rate =probability of changing one electromagnet of generated particle with a random electromagnet
Input: Ps_rate=probability of selecting electromagnets of generated particle from the positive field s/without change::/
Input: P_field=portion of population, which belongs to positive field :/good solutions s/
Input: N_field=portion of population, which belongs to negative field :/bad solutions s/
Input: min= lower boundary; max=upper boundary
Constant: phi=1.6180339887498948/:: golden ratio =/
[«Part 2: initialization of a random electromagnetic field::/
for i=1 to N_emp do
for j=1 to N_var do

em_pop[i, j]=min +rand(0,1)% (max-min)
new_emp[j]=em_pop [i, j]
end for
fit[i]=f{new_emp)
end for

sortPopulation(em_pop,fit)/# sort population from best to worst based on fitness::/
[«part 3: main loop (optimization):/
RI=1/xindex of one electromagnet of generated particle, which might be initialized by random number:/

while (stop criterion is not met) do
force= rand(0,1)/: should be outside of the loop, to be the same for all electromagnets of generated particle :x/
for i=1 to N_var do
I_pos= rand(1, floor(N_emp: P_field) )/# Index of a random particle from positive field:x/
[_neg=rand( floor((1 - N_field)% N_emp), N_emp )/# Index of a random particle from negative field:x/
[_neu=rand( ceil(N_emp: P_field), ceil((1 - N_field)# N_emp) )/* Index of a random particle from neutral field:/
if (rand(0,1) < Ps_rate) then
new_emp|i]=em_pop [I_pos, i]
Else
new_emp|i]=em_pop[l_neu, i]+ phi = force = (em_pop[I_pos, i] - em_pop[I_neu, i]) - force = (em_pop[I_neg, i] -
em_pop|I_neu, i])/*search strategy::/
end if
If (new_emp|i] > max or new_emp[i] < min ) then
new_emp|i]=min +rand(0,1)% (max-min)/# replace with random value if outside boundary::/
end if
end for
if ( rand(0,1) < R_rate) then:/randomization of one electromagnet of some generated electromagnetic particles::/
new_emp|[RI]=min +rand(0,1)% (max-min)
RI+ +
if (RI > N_var) then
RI=1
end if
end if
New_fit=f{new_emp)/«fitness of generated particle::/
If (New_fit < worst(fit) ) then
insertInSortedPopulation(new_emp)/s insert in the sorted population based on fitness::/
end if
end while
return em_pop|[1,1: N_var]

Line 31 of the EFO pseudo-code, which is labeled as search calculated as follows:

strategy, is the most important part of the algorithm and the only
mathematical equation in the EFO algorithm. In this part, a

EMPY® = EMP{ + ( (¢ )% (EMP] —EMP{’) )

randomly selected electromagnet from the neutral field is affected _ (r*(EMp’f’f _EMp{S‘)) 1)
(virtually) by selected electromagnets from the positive field ! !

(attraction) and negative field (repulsion) to determine the posi- where EMP is the electromagnetic particle; r is the random value
tion of the generated electromagnet. The new position is between 0 and 1 (generated once for each new electromagnetic
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particle); j is the variable index (index of generated electromag-
net); K is the random index from neutral field (generated for each
electromagnet of generated particle); P is the random index from
positive field (generated for each electromagnet of generated
particle); N is the random index from negative field (generated
for each electromagnet of generated particle).

For generation of a new electromagnetic particle, Eq. (1) is
calculated for all of the electromagnets (variables) of the generated
electromagnetic particle (solution). For instance, when the opti-
mization problem has five variables, Eq. (1) should be calculated
for (j; 1:5) to generate a new solution. This means that several
particles cooperate to generate a new electromagnetic particle.
The minimum number of cooperative particles to shape a new
particle is 3, when for all electromagnets of the generated particle,
the random function selects electromagnets from the same parti-
cles, and the maximum number of cooperative particles is calcu-
lated by multiplying the number of problem variables by three. For
example, when the number of problem variables is 5, the mini-
mum number of cooperative particles to shape a new particle is
3 and the maximum is 15. Meanwhile, in other optimization
algorithms, this number is considerably lower than that of EFO.
For example, in GA, only 2 solutions (parents) shape a new
solution [24], and in PSO, three different positions (current
position, personal best, and global best) determine the new
position of the particles [25].

The new electromagnetic particle generation process for the
optimization of function A is demonstrated in Fig. 3; in this figure,
positive, neutral, and negative fields are colored, respectively, as
blue, green, and pink.

A. The optimization function, defined as

f= (}1&)24— (%X2>2

where global optimum x* =0 and f(x*) =0.

The high degree of cooperation among particles is the most
important characteristic of EFO, which causes fast convergence
towards global minima. Another important feature of EFO is rando-
mization, which brings diversity into the population and avoids
finding local minima. Moreover, EFO takes advantage of the golden
ratio to search the optimization problem search space effectively.
These characteristics make EFO a robust optimization algorithm.

2.1. Derivation of Eq. (1)

Eq. (1) is composed of two parts: the first part is calculating the
distance between the randomly selected electromagnets from the
positive field and neutral field by using Eq. (2), and the second part is
calculating the distance between the randomly selected electromag-
nets from the negative field and neutral field by using Eq. (3). To make

Electromagnetic field in generation i

the neutral electromagnets move toward the positive electromagnets
and move a distance away from the negative electromagnets, we add
the position of the neutral electromagnets to a random portion of the
calculated distance by using Eq. (2) and negative of the calculated
distance by using Eq. (3). As we mentioned earlier, the force power of
the positive field is greater than the force power of the negative field.
Therefore, in Eq. (4), we multiplied the calculated distance between
the positive and neutral electromagnets by Phi (approximately 1.61),
which is proven to have the best performance based on our experi-
ments. By combining Egs. (2)-(4), we will obtain Eq. (1).

D" = EMP’ — EMP{’ )
D} = EMP’ — EMP}’ 3)
EMP™ = EMP 4 ( (g 1)) — (rseD}") 4)

2.2. EFO parameters setting

Like all optimization algorithms, parameters setting plays a
significant role in the performance of EFO. The most important
parameter of EFO is N_emp, which determines the number of
electromagnetic particles of the population. A small number of
particles inside the population will cause finding local minima
instead of global minima due to the lack of knowledge about the
search space. Additionally, a large population will lead to slow
convergence. We experimentally found out that a population smaller
than 50 tends to find local minima even for low-dimensional
problems, and a population greater than problem dimension (D)
increases the computational time.

In EFO, the population is divided into three groups with different
polarities, and the P_field and N_field parameters determine the
percentage of the allocated population to each group. P_field is a
portion of the population assigned to the positive field. Based on our
experiments, the best value for P_field is between 0.05 and 0.1. N_field
determines a portion of the population allocated to the negative field,
and the remaining is allocated to the neutral field. Experimental
results show that the best value for N_field is between 0.4 and 0.5.

Other important parameters of EFO are Ps_rate and R_rate.
Ps_rate is the probability of selecting electromagnets of the generated
electromagnetic particle from electromagnets of the positive field
without changing them, and R_rate is the possibility of changing one
electromagnet of the generated electromagnetic particle with a
randomly generated electromagnet. Based on our experiments, the
best values for Ps_rate and R_rate are between 0.1 and 0.4.

A comprehensive study on EFO parameters is presented in Section
4, Table 1 shows the summary of the EFO parameters’ ranges.

Electromagnetic field in generation i+1

xi=- xi=1 f(xH=0.5 x1=-035 | x3=-0.54 | f(x*)=0.08
x2=2 x2=-2 f(x®) =125 x2=2 x2=1 f(x?) =05
3=3 |xi=4 | f(x3) =456 ¥=2 x3=- FGH =125
xt=3 x5 =4 f(x*) =5.56 xt=3 x5 =4 f(x*) =4.56
x5 =8 x5=6 f(x®) =13 x"eW=-0.35 x5 =5 x5 =4 f(x%) =5.56
x=11 |x$=6 f(x®) =16.56 x5"=-0.54 x=8 x5=6 f(x® =13
x/=10 |[xJ=9 f(x7) =265 x] =11 x5 =6 f(x7) =16.56
x2=9 x5=11 | f(x®)=3531 x2=10 x5=9 f(x®) =265
=15 |x3=11 | f(x)=4431 X =9 x5 =11 f(x®)=3531
x°=21 [x°=13 | f(%) = 6981 =15 |x°=11 | f(™) =443l

2 = xf+ ((px (=) = (r+ () - xD))

xmeW = x6 4 (((p* ) * (x3 —x$ )— (r*(xzs—xzé))

Fig. 3. New electromagnetic particle generation.

Please cite this article as: H. Abedinpourshotorban, et al., Electromagnetic field optimization: A physics-inspired metaheuristic
optimization algorithm, Swarm and Evolutionary Computation (2015), http://dx.doi.org/10.1016/j.swev0.2015.07.002



http://dx.doi.org/10.1016/j.swevo.2015.07.002
http://dx.doi.org/10.1016/j.swevo.2015.07.002
http://dx.doi.org/10.1016/j.swevo.2015.07.002

6 H. Abedinpourshotorban et al. / Swarm and Evolutionary Computation § (AEEE) REE-EER

2.3. An example of optimization by EFO

Optimization of one highly multimodal function called the
Rastrigin function is provided in this section to demonstrate the
movement of electromagnetic particles towards global minima. In
this experiment, we set the number of electromagnetic particles
(N_emp) to 500. We use a large population in this experiment to
illustrate the particles’ movement clearly, while for optimization of
this function, a population consisting of 50 particles is sufficient
and a larger population only increases the computational time.

Table 1
EFO parameters setting.

Parameters Lowest value Highest value
N_emp 50 D

P_field 0.05 0.1

N_field 04 0.5

Ps_rate 0.1 0.4

R_rate 0.1 04
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Fig. 8. Position of particles in iteration no. 5000.
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Table 2
Parameter settings used in experiments.

Algorithm P_field N_field Ps_rate R_rate C Wo Wi N, N, N Limit

EFO 0.1 0.45 0.2 0.3 - - - - - - -

ABC - - - - - - - 50% of colony size 50% of colony size 1 NeskD

CLPSO - - - - 1.49445 0.9 04 - - - -
Table 3

Mean and standard deviation ( + SD) of error for the CEC 2014 benchmark functions (dimension=30).

Function GSA CLPSO ABC GSO CoDE EFO
1. 3.14E+08 1.20E+08 3.08E+07 2.20E+08 7.81E+06 5.75E+05
(6.12E+07) (3.16E+07) (1.90E+07) (5.38E+07) (5.32E+06) (3.37E+05)
2. 1.55E+10 3.15E+09 1.82E+04 144E+10 3.28E+07 2.18E+02
(3.15E+09) (7.96E+08) (1.24E+04) (2.10E+09) (1.32E+07) (5.60E+02)
3. 8.64E-+04 4.04E+04 2.13E+03 9.96E +04 2.20E+02 2.06E+03
(7.90E+03) (1.16E+04) (1.51E+03) (1.76E+04) (7.34E+01) (2.11E+03)
4. 1.39E+03 4.96E+02 1.05E+02 1.84E+03 1.71E+02 5.08E+01
(2.38E+02) (7.33E+01) (2.63E+01) (2.51E+02) (1.34E+01) (4.18E+01)
5. 2.00E+01 2.10E+01 2.04E+01 2.04E+01 2.08E+01 2.00E+01
(4.56E —04) (7.07E-02) (4.71E-02) (8.21E-02) (4.55E-02) (2.99E-02)
6. 3.04E+01 2.85E+01 1.92E+01 1.26E+02 3.01E+01 5.09E+00
(2.47E+00) (1.47E+00) (1.61E+00) (6.15E+00) (1.40E+00) (1.59E+00)
7. 1.63E+02 2.92E+01 3.12E-01 9.62E+01 1.30E+00 1.02E-02
(2.53E+01) (5.31E+00) (1.30E-01) (1.92E+01) (9.26E—-02) (1.50E—-02)
8. 1.46E+02 1.62E+02 6.45E+00 4.17E+02 1.05E+02 9.29E-01
(9.73E+00) (1.27E+01) 1.59E+00 (3.38E+01) (7.50E+00) (9.03E-01)
9. 1.64E+02 2.51E+02 1.25E+02 8.09E+02 2.00E+02 1.55E+02
(1.82E+01) (1.22E+01) (2.12E+01) (6.48E+01) (1.22E+01) (4.71E+01)
10. 3.91E+03 4.26E+03 1.01E+02 7.66E+03 3.34E+03 3.08E+00
(6.06E+02) (2.91E+02) (7.57E+01) (1.01E+03) (2.25E+02) (1.53E+00)
11. 4.38E+03 6.30E+03 2.90E+03 1.76E+04 6.17E+03 7.25E+03
(5.09E+02) (4.23E+02) (2.51E+02) (1.39E+03) (2.72E+02) (2.53E+02)
12. 2.03E—-02 2.47E+00 4.66E—01 1.14E+00 1.72E4+00 2.99E+00
(1.14E-02) (3.52E-01) (8.11E-02) (212E-01) (2.22E-01) (3.85E-01)
13. 3.73E+00 6.79E—-01 3.82E-01 5.54E-01 5.86E—01 3.01E-01
(2.88E—01) (8.40E—-02) (4.32E-02) (4.85E—-02) (8.43E—-02) (6.25E—-02)
14. 7.26E+01 5.14E+00 2.39E-01 5.59E+00 4.00E-01 3.75E-01
(1.44E+01) (2.71E+00) (2.98E-02) (1.01E+01) (5.41E-02) (1.33E-01)
15. 1.37E+03 8.27E+02 1.38E+01 2.98E+03 2.07E+01 1.33E+01
(6.14E+02) (4.27E+02) (3.13E+00) (1.75E+03) (1.87E+00) (2.13E+00)
16. 1.37E+01 1.29E+01 1.13E+01 448E+01 1.26E+01 1.04E-+01
(2.70E-01) (2.28E-01) (3.30E-01) (8.60E—01) (2.75E-01) (3.92E-01)
17. 2.30E+07 4.31E+06 5.98E+06 4.50E+07 1.64E+04 2.31E+05
(6.61E+06) (1.72E+06) (3.90E+06) (1.46E+07) (9.04E+03) (1.72E+05)
18. 5.36E+02 112E+07 7.51E+03 8.16E+ 06 5.43E+03 3.07E+03
(3.37E+02) (6.16E+06) (716E+03) (1.06E+07) (2.73E+03) (2.80E+03)
19. 1.73E+02 4.87E+01 1.81E+01 2.32E+02 1.30E+01 1.02E+01
(3.09E+01) (1.61E+01) (710E+00) (4.93E+01) (8.47E—01) (1.57E+01)
20. 2.54E+05 2.06E+04 1.49E+ 04 1.26E+05 1.13E+02 8.31E+03
(1.26E+05) (9.05E+03) (9.14E+03) (3.31E+04) (1.98E+01) (4.62E+03)
21. 1.01E+07 7.15E+05 8.89E+05 1.88E+07 2.67E+03 141E+05
(4.52E+06) (3.96E+05) (6.78E+05) (6.27E+06) (4.83E+02) (9.40E+04)
22. 1.27E+03 4.98E+02 4.55E+02 3.05E+03 4.89E+02 3.11E+02
(3.24E+02) (1.27E+02) (1.21E+-02) (4.81E+02) (9.56E+01) (2.20E+02)
23. 2.66E + 02 3.37E+02 3.19E+02 4.26E+02 3.16E+02 3.15E+02
(9.55E+01) (4.88E+00) (2.36E+00) (1.53E+01) (2.68E—-01) (9.01E-12)
24. 2.15E+02 2.70E+02 2.30E+02 4.03E+02 2.41E+02 2.30E+02
(8.30E+00) (3.52E+00) (1.72E+00) (8.92E+00) (3.53E+00) (5.26E+400)
25. 2.05E+02 2.22E+02 2.12E+02 3.35E+02 2.08E+02 2.05E+02
(2.49E-+00) (2.80E+00) (1.59E+00) (2.00E+01) (1.24E+00) (2.43E+00)
26. 1.90E+02 1.01E+02 1.00E+02 2.05E+02 1.01E+02 1.17E+02
(2.67E+01) (5.94E-01) (5.90E-02) (1.55E+00) (8.04E-02) (4.88E+01)
27. 1.74E+03 5.00E+02 4.84E+02 3.55E+03 5.07E+02 4.42E+02
(3.65E+02) (3.04E+01) (1.51E+01) (1.85E+02) (1.28E+02) (6.42E+01)
28. 2.31E+03 1.61E+03 1.18E+03 1.99E+04 1.14E+03 9.05E +02
(9.41E+02) (1.80E+02) (1.46E+02) (3.25E+03) (2.19E+-01) (5.31E+01)
29. 3.30E+07 9.25E+04 1.71E+03 8.13E+05 7.30E+03 1.30E+03
(1.12E+08) (3.55E+04) (4.92E+02) (6.96E+05) (3.08E+03) (4.04E-+02)
30. 1.79E+06 3.02E+04 8.24E+03 7.73E+05 5.57E+03 2.73E+03
(6.33E+05) (8.06E+03) (3.90E+03) (2.26E+05) (1.19E+03) (9.21E+02)
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Table 4
Mean and standard deviation ( + SD) of error for the CEC 2014 benchmark functions (dimension=50).

Function GSA CLPSO ABC GSO CoDE EFO
1. 437E+08 1.48E+08 2.81E+07 2.39E+07 1.21E+07 1.52E+06
(2.51E+08) (2.57E+07) (1.01E+07) (6.94E +06) (4.48E+06) (5.46E+05)
2. 3.04E+10 6.81E+09 2.88E+04 4.88E+07 1.89E+07 6.83E+03
(4.95E+09) (112E+09) (411E+04) (2.58E+07) (9.45E+06) (7.04E+03)
3. 152E+05 9.86E+04 1.06E+04 2.00E-+04 4.16E+03 3.18E+04
(7.53E+03) (1.68E+04) (3.66E+03) (6.02E+03) (1.89E +03) (1.39E+04)
4, 436E+03 9.77E+02 1.59E+02 2.92E+02 1.44E+02 9.44E+ 01
(8.38E+02) (1.39E+02) (2.76E+01) (5.23E+01) (155E+01) (2.91E+01)
5. 2.00E+01 211E+01 2.04E+01 2.00E+01 2.10E+01 2.00E+01
(8.83E—05) (4.87E—-02) (3.53E-02) (2.90E-02) (6.56E—02) (2.67E—02)
6. 5.57E+01 5.08E+01 3.78E+01 4.72E+01 5.57E+01 1.60E +01
(3.12E+00) (2.46E +00) (2.65E+00) (4.07E+00) (2.67E+00) (2.31E+00)
7. 2.85E+02 6.32E+01 5.72E—01 1.81E+00 1.20E4-00 2.66E—02
(4.55E+01) (8.63E+00) (1.36E—01) (5.33E—01) (7.20E—02) (517E-02)
8. 2.81E+02 2.92E+02 1.26E+01 7.70E+01 2.30E+02 1.37E+00
(1.96E+01) (1.87E+01) (1.74E+00) (1.60E+01) (1.45E+01) (1.42E+00)
9. 3.64E+02 4.73E+02 2.58E+02 3.09E+02 3.80E+02 1.91E+02
(312E+01) (213E+01) (2.83E+01) (4.95E+01) (1.89E+01) (1.41E-+02)
10. 7.68E+03 7.62E+03 2.29E+02 1.01E+03 7.26E+03 4.70E+00
(7.20E+02) (5.19E+02) (1.07E+02) (3.73E4-02) (3.84E+02) (2.04E+00)
11. 8.54E+03 114E+04 5.74E+03 6.79E+03 121E+04 1.36E+04
(7.53E+02) (5.09E+02) (3.27E+02) (9.11E+02) (4.27E+02) (6.24E+02)
12. 1.32E—02 2.67E+00 471E-01 6.03E—01 2.47E+00 3.94E+00
(1.06E—02) (3.28E—-01) (5.73E-02) (1.91E—01) (2.74E—01) (3.38E-01)
13. 3.79E+00 7.61E—01 451E-01 5.59E—01 6.53E—01 3.51E—01
(2.45E-01) (8.47E—02) (411E-02) (6.64E—02) (6.56E—02) (6.35E—02)
14, 6.16E+01 1.60E+01 2.98E—01 3.09E—01 431E-01 420E-01
(1.46E+01) (3.71E+00) (2.50E—-02) (2.80E—02) (8.50E—02) (2.15E-01)
15. 2.07E+04 3.31E+03 3.14E+01 1.47E+02 3.78E+01 2.47E+01
(116E+04) (1.93E+03) (6.02E4-00) (3.90E+-01) (2.26E4-00) (7.71E+00)
16. 2.26E+01 2.24E+01 1.97E+01 2.28E+01 2.28E+01 2.22E401
(4.78E-01) (2.33E-01) (4.02E—-01) (3.05E—01) (3.26E—01) (3.40E-01)
17. 3.49E+07 1.77E407 1.01E+07 4,00E+06 1.81E-+05 2.84E+05
(1.48E+07) (4.74E+06) (4.96E+06) (1.42E+06) (1.24E+05) (1.05E+05)
18. 6.93E+08 2.51E+07 9.92E+03 1.28E+03 3.62E+03 8.97E+02
(8.46E +-08) (8.22E+06) (9.94E+03) (9.26E+02) (2.31E+03) (9.37E+02)
19. 2.02E+02 9.23E+01 3.33E+01 5.37E+01 3.62E+01 5.84E 401
(3.38E4-01) (119E+01) (1.06E+01) (3.36E+01) (1.08E+01) (217E+01)
20. 1.07E+05 5.17E+04 3.96E+04 1.94E+04 5.04E-+02 1.10E+04
(4.22E+04) (1.06E+04) (1.29E+04) (1.11E+04) (3.17E+02) (6.66E+03)
21. 4.19E+06 5.71E+06 7.30E+06 3.36E+06 212E+04 2.72E+05
(1.42E+06) (2.15E+06) (4.36E+06) (1.65E+06) (1.61E+04) (1.51E+05)
22. 2.45E+03 1.36E+-03 1.14E+03 1.48E+03 1.44E+03 1.12E+03
(7.30E+02) (1.71E402) (1.89E+02) (3.27E402) (1.59E+02) (2.86E+02)
23 214E+02 3.90E+02 3.57E+02 3.54E+02 3.55E+02 3.44E+02
(7.68E+01) (8.19E+00) (7.30E+00) (1.97E+00) (1.77E—01) (3.25E—10)
24. 2.47E+02 3.39E+02 2.71E+02 2.70E+02 2.83E+02 2.69E+02
(112E+01) (6.72E+00) (1.78E+00) (7.39E+00) (1.80E+00) (6.14E+00)
25. 2.03E-+02 2.46E+02 2.22E+02 2.48E+02 2.18E+02 2.18E+02
(4.02E +00) (5.30E+00) (2.80E+00) (8.18E+00) (1.94E+00) (3.58E+00)
26. 2.00E+02 1.10E+02 1.01E+02 1.94E+02 1.04E+02 1.62E+02
(8.47E—02) (2.83E+01) (6.75E—02) (2.55E+01) (1.82E+01) (5.97E+01)
27. 3.29E+03 1.33E+03 1.08E+03 1.63E+03 1.28E+03 7.98E+02
(7.49E+02) (3.66E+02) (3.78E402) (9.43E+-01) (1.47E+02) (6.71E+01)
28. 5.71E+03 3.02E+03 215E+03 7.04E+03 1.92E+03 1.55E+03
(111E+03) (4.20E+02) (3.42E+02) (1.17E+03) (1.26E+02) (2.22E+02)
29, 2.00E+02 410E+05 3.32E+03 5.43E+03 2.00E+04 1.91E+03
(7.50E—02) (1.64E+05) (1.46E+03) (2.32E+03) (715E+03) (5.37E+02)
30. 4.97E+06 6.00E-+04 1.61E+04 5.17E+04 1.97E+04 1.24E+ 04
(5.07E+06) (1.52E+04) (4.10E+03) (1.36E+04) (2.00E+03) (2.45E+03)
B. Rastrigin function, defined as 2000, 3500, and 5000, and illustrated the particles’ movement
towards global minima (Figs. 5-8). In this experiment, the EFO
n
minf(x) = Z (¥~ 10 cos (27x)+ 10) parameters are set as follows:
i=1
® N_emp500
where global optimum x* =0 and f(x*)=0 for —5.12 <x; <5.12 ® N_var2
(Fig. 2). ® P_field0.1
As illustrated in Fig. 4, the Rastrigin function has several local ® N_field0.45
minima. We ran EFO on this function for 5000 iterations, captured ® Ps_rate0.3
the position of the electromagnetic particles after iteration no. 1, ® R_rate0.2
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The movements of the electromagnetic particles from shallow
local minima towards deep local minima and then the global
minimum are illustrated in Figs. 5-8. As shown in Fig. 8, all
particles migrated to the global minimum region, to intensify the
search for a near-optimal solution.

2.4. Computational time complexity of EFO

To show the complexity of a given algorithm, the running time
is stated as a function relating the input length to the number of
steps. The Big-O notation is mostly used to serve this purpose.

To show the complexity of EFO, we assume that (n) is the
number of electromagnetic particles and (d) is the dimension of

Table 5
Summary of Wilcoxon’s rank sum at 5% significant level.

Vs. EFO 30 Dimension 50 Dimension
GSA + (better) 5 6
—(worse) 23 23
=~ (no sig.) 2 1
CLPSO + (better) 2 2
—(worse) 26 27
=~ (no sig.) 2 1
ABC + (better) 4
—(worse) 23 21
=~ (no sig.) 3
GSO + (better) 1
—(worse) 28 21
=~ (no sig.) 1 4
CoDE + (better) 6 8
—(worse) 22 17
=~ (no sig.) 2 5
Table 6

Mean Friedman ranks of error for the CEC 2014 benchmark functions
(dimension=30).

Function GSA CLPSO ABC GSO CoDE EFO

1 5.867 4.033 2.967 5.100 2.033 1.000
2. 5.633 4.000 2.000 5.367 3.000 1.000
3. 5.200 4.000 2.500 5.800 1.233 2.267
4. 5133 4.000 1.933 5.867 3.000 1.067
5. 1.000 5.300 5.667 2.567 4.033 2433
6. 4.333 3.500 2.00 6.000 4.167 1.000
7. 6.000 4.000 1.967 5.000 3.000 1.033
8. 4.267 4.733 2.000 6.000 3.000 1.000
9. 2.367 5.000 1.800 6.000 3.833 2.000
10. 4133 4.700 2.500 5.500 3.167 1.000
11. 2.000 3.883 1.500 6.000 3.617 4.000
12. 1.000 5.833 2.000 3.067 4.000 5.100
13. 6.000 4.700 2.067 3.300 3.933 1.000
14. 6.000 4.733 1.301 2.733 3.367 2.866
15. 5.000 4.200 1.267 5.800 2.967 1.766
16. 4.967 3.733 2.467 6.000 2.800 1.033
17. 5.067 3.400 4.400 5.643 1.200 1.290
18. 1.233 5.700 3.544 5.010 3.613 1.900
19. 5.100 3.933 2.667 5.900 2.200 1.200
20. 5.800 3.600 3.067 5.200 1.000 2.333
21 5.033 3.400 3.500 5.967 1.000 2.100
22. 5.000 3.000 2.500 6.000 2.667 1.833
23. 2.400 4.667 3.600 5.933 2.733 1.667
24. 1.000 5.000 2.600 6.000 3.833 2.567
25. 1.933 5.000 3.867 6.000 2.600 1.600
26. 4.667 3.633 1.700 6.000 2.400 2.600
27. 5.000 3.233 2.833 6.000 2.367 1.567
28. 4.500 4133 2.800 6.000 2.500 1.067
29. 2133 4.933 2.668 5.866 3.900 1.500
30. 5.900 4.000 2.734 5.100 2.233 1.033
Sum 123.666 127.98 78.416 160.72 85.396 53.822

the optimization problem. If (m) is the maximum number of
fitness function evacuation, the complexity of each part of Algo-
rithm 1 is calculated as in Egs. (5)-(7) and the overall complexity
is calculated as in Eq. (8). From Eq. (8) we can conclude that EFO
algorithm has a polynomial time complexity.

part1:0(1) (5)
part 2 : O(n:d)+ O(n= log (n)) (6)
part 3 : O(msns=d)+ O(msn) (7)
Table 7

Mean Friedman ranks of error for the CEC 2014 benchmark functions
(dimension=50).

Function  GSA CLPSO  ABC GSO CoDE  EFO
1. 6.000 5000  3.633 3167 2200  1.000
2. 6.000 5000  1.800 3833 3167  1.200
3. 6.000 5000 2100 3133 1100 3.667
4, 6.000 5000  2.700 4000 2133 1167
5. 2.000 5167  5.767 3000 4066  1.000
6. 5233 4033 2034 3300 5400  1.000
7. 6.000 5000  2.000 3967 3033  1.000
8. 5333 5634  2.000 3000 4033  1.000
9. 3.867 6000  2.000 2867 4533 1733
10. 5133 5334 2,000 3000 4533  1.000
1. 3233 4200 1067 2500 4867 5133
12. 1.000 4733 2.667 2733 4667 5200
13. 6.000 4633 2767 2667 3933  1.000
14, 6.000 5001 1533 1833 3433 3200
15. 5.967 5032 1967 4000 2467 1567
16. 5.267 4767  1.000 4000 3933 2033
17. 5.800 5000 4133 3067 1333 1667
18. 5133 5333 3.901 1931 3400 1302
19. 6.000 4767  2.000 2967 2234  3.032
20. 6.000 4700  4.066 2867  1.000 2367
21. 4167 5133 5.067 3633 1000  2.000
22. 5.967 3033 3.400 3467 3533 1.600
23. 1.167 5967 4567 4367 2967 1965
24. 1.033 6000  3.000 3100 4933 2934
25. 1.000 5400  3.733 5600 2667  2.600
26. 4700 3633 1300 5567 2367  3.433
27. 5.900 3400  2.850 4800 3000  1.050
28. 5133 4000  2.700 5867 2200 1100
29. 1.000 6.000  3.000 3833 4967  2.200
30. 4333 5033 2501 4633 2967 1533
Sum 136366 146933 83253  106.699 96.066  60.683
5
]
10k
0° | 3
105 1 1 1 1 1
] 05 1 15 2 25 3

Number of fitness function evaluations X 104

Fig. 9. Convergence curves of shifted and rotated high conditioned elliptic
function.
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Fig. 10. Convergence curves of shifted and rotated Rosenbrock’s function.
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Fig. 11. Convergence curves of shifted Rastrigin’s function.
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Number of fitness function evaluations 5 104

Fig. 12. Convergence curves of hybrid function 6 (CEC 2014).

Errar
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Fig. 13. Convergence curves of composition function 8 (CEC 2014).

overall complexity : O(1)+ O((m+ 1):n=d) + O(n log (n)) + O(msxn)
®)

3. Computational evaluation

In this section, a comprehensive evaluation of EFO is presented
to illustrate the computational power of our algorithm.

3.1. Experimental setup and results

For the evaluation of EFO, a comprehensive experimental evaluation
and comparison with five well-known optimization algorithms (ABC,
GSO, GSA, CLPSO and CoDE) is provided based on 30 benchmarks of the
CEC 2014 competition. Among the compared algorithms, ABC [16,26],
GSO [18], and GSA[20,27] are recently published algorithms while
CLPSO [9] and CoDE [28] are competitive variants of PSO and DE.

During our experiments, we kept the population size of all
algorithms equal to 50, and other parameters of the compared
algorithms have been set as suggested by authors. GSO, GSA and
CoDE are parameter-less algorithms, and the parameter settings of
the other algorithms are provided in Table 2.

Comparison between EFO and the other optimization algo-
rithms is performed based on 30 and 50 dimensional versions of
the CEC 2014 benchmark functions. The maximum number of
fitness evaluations is set to D%10>. The mean and standard devia-
tion of the optimization error (best-optimum) of 30 independent
runs of each algorithm are presented in Tables 3 and 4.

To analyze the obtained results statistically, two non-parametric
statistical tests called Wilcoxon’s rank sum test [29-33] and Fried-
man test [29] are conducted at the 5% significant level. The
statistical testing of the algorithms based on Wilcoxon’s rank sum
test is reported in Table 5. The symbols (+, —, ~ ) indicate that a
given algorithm performed significantly better (+), significantly
worse (—), or not significantly different ( ~ ) compared to EFO.

As illustrated in Table 5, EFO outperforms all the compared
algorithms and finds better solutions for most of the CEC 2014
problems over both dimensions. For instance, EFO outperforms the
most competitive algorithm among the compared algorithms
(CoDE) in optimization of 73% of the 30D problems, while for
the remaining problems, EFO performs either the same or slightly
worse than CoDE.

As there are more than two algorithms for comparison, it is
necessary to compare them based on Friedman test to avoid
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Table 8
CEC 2014 subset used for convergence comparison. D: dimension, C: characteristic, U: unimodal, M: multimodal, S: separable, N: non-separable.
Function NO.in CEC 2014 Function name D C Range
1. Shifted and rotated high conditioned elliptic function 30 UN —100 <x; <100
4. Shifted and rotated Rosenbrock’s function 30 MN —100<x; <100
8. Shifted Rastrigin’s function 30 MS —100 <x; < 100
22. Hybrid function 6 30 MN —100 <x; <100
30. Composition function 8 30 MN —100<x; <100
Table 9
Variation of mean and standard deviation ( + SD) of error with variation of N_emp (dimension=30).
Function NO. in CEC 2014/N_emp 30 50 100 150
1. 5.63E+05 5.61E+05 3.75E+06 1.15E+07
(2.82E+05) (3.43E+05) (1.27E+06) (5.64E+06)
4, 6.83E+01 4.63E+01 5.67E+01 8.93E+01
(4.20E+01) (3.24E+01) (4.32E+01) (3.77E+01)
8. 6.57E—01 4.97E-01 6.52E+00 2.55E+01
(747E-01) (5.24E—-01) (2.23E+00) (2.94E+00)
22. 3.12E+02 4.42E+02 4.34E+02 6.69E+02
(1.99E+02) (2.24E+02) (2.18E+02) (1.49E+02)
30. 3.06E+03 2.86E+03 244E+03 2.69E+03
(7.66E+02) (1.08E+03) (7.99E+02) (6.01E402)
Table 10

Variation of mean and standard deviation (+ SD) of error with variation of P_field
(dimension=30).

and N_field values for shifted and rotated high conditioned elliptic function

P_field/N_field 0.3 04 0.5 0.6

0.05 6.81E+05 4.67E+405 3.17E+05 5.69E+05
(4.19E+05) (2.48E+05) (1.86E+05) (4.88E+05)

0.1 6.27E+05 6.98E+05 4.33E+05 5.79E+05
(3.74E+05) (3.78E+05) (2.43E+05) (3.91E+05)

0.15 1.38E+06 1.16E+ 06 9.66E+05 1.20E+06
(6.88E+05) (5.50E+05) (6.49E+05) (8.33E+05)

0.2 1.66E+06 1.95E+06(8.38E+05) 1.27E+06(6.77E+05) 1.67E+06(1.11E+06)
(7.65E+05)

Table 11 Table 12

Variation of mean and standard deviation ( + SD) of error with variation of P_field
and N_field values for shifted and rotated Rosenbrock’s function (dimension=230).

Variation of mean and standard deviation ( + SD) of error with variation of P_field

and N_field values for shifted Rastrigin’s function (dimension=30).

P_field/N_field 03 04 0.5 0.6 P_field/N_field 03 04 0.5 0.6

0.05 418E+01 413E+01 4.83E+01 4.92E+01 0.05 5.97E—01 497E-01 3.98E-01 6.97E—01
(435E+01)  (346E+01)  (3.26E+01)  (3.23E+01) (839E-01)  (7.04E—01) (514E—01)  (115E-+00)

0.1 313E+01 6.74E+01 5.36E+01 3.55E+01 0.1 6.98E—01 1.09E +00 8.95E—01 6.35E—01
(474E+01)  (3.32E+01)  (412E+01)  (4.77E+01) (478E—01)  (119E+00)  (109E+00)  (6.69E—01)

0.15 6.09E +01 3.73E+01 6.08E+01 7.48E+01 0.15 1.06E+00 5.97E—01 1.29E+00 6.96E—01
(3.06E+01)  (3.71E+01)  (342E+01)  (5.01E+01) (9.98E—-01)  (839E—01) (9.44E—01)  (115E-+00)

0.2 6.71E+01 8.18E+01 5.74E+01 9.07E+01 02 1.59E 400 1.19E+00 6.96E—01 9.95E—01
(355E+01)  (3.88E+01)  (432E+01)  (4.51E+01) (9.61E—01)  (7.85E—01)  (8.19E—01)  (1.05E+00)

transitivity between the results. Tables 6 and 7 show the results
of Friedman test ranks on both dimensions. As can be seen from
Tables 6 and 7, EFO algorithm has lower summary rank
compared to other algorithm. Therefore, we can conclude that
EFO outperforms all of the compared algorithms in both

dimensions.

3.2. Convergence comparison

As shown in Tables 5-7, EFO outperforms the other algorithms
for optimization of the CEC 2014 problems. Convergence compar-
isons between EFO, CLPSO, ABC, GSO, GSA and CoDE for optimiza-
tion of a subset of CEC 2014 functions are shown in Figs. 9-13. Due
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to the large number of functions in the CEC 2014 problem set, we
selected one function from each category to illustrate the conver-
gence of the compared algorithms. The list of selected functions and
their characteristics are presented in Table 8.

As we mentioned earlier, the electromagnetic particles in EFO
are highly cooperative; this characteristic helps EFO to converge
effectively by obtaining sufficient knowledge about the search

Table 13
Variation of mean and standard deviation ( + SD) of error with variation of P_field
and N_field values for hybrid function 6 (dimension=30)

P_field/N_field 0.3 04 0.5 0.6

0.05 2.62E+02 1.70E+02 3.58E+02 3.40E+02
(1.00E+02) (8.95E+01) (113E+4-02) (2.25E+02)

0.1 5.63E+02 2.89E+02 3.41E+02 4.34E+02
(3.37E+02) (2.60E+02) (2.56E+02) (2.49E+02)

0.15 3.77E+02 4.55E+02 3.52E+02 2.23E+02
(2.30E+02) (2.73E+02) (1.80E+02) (211E+02)

0.2 3.60E+02 5.16E+02 4.60E+02 4.50E+02
(2.30E+02) (2.40E+02) (2.76E+02) (2.68E+02)

Table 14

Variation of mean and standard deviation ( + SD) of error with variation of P_field
and N_field values for composition function 8 (dimension=30).

P_field/N_field 0.3 04 0.5 0.6

0.05 2.66E+03 2.50E+03 3.00E+03 2.57E+03
(7.98E+02) (6.18E+02) (7.98E+02) (8.18E+02)

0.1 2.54E+403 3.15E+03 2.66E+03 2.73E+03
(5.39E+02) (1.15E+03) (5.79E+02) (5.92E+02)

0.15 2.70E+03 3.36E+03 3.21E+03 2.49E+03
(8.41E+02) (5.76E+02) (9.68E+02) (8.06E+02)

0.2 2.93E+03 2.93E+03 3.13E+03 2.86E+03
(5.78E+02) (8.88E+02) (7.52E+02) (6.24E+02)

Table 15

Variation of mean and standard deviation ( 4+ SD) of error with variation of R_rate
and Ps_rate values for shifted and rotated high conditioned elliptic function
(dimension=30).

R_rate/Ps_rate 0.1 0.2 0.3 0.4

0.1 4.55E+05 4.62E+05 5.84E+05 6.20E+05
(2.95E+05) (2.06E+05) (4.08E+05) (4.36E+05)

0.2 8. 16E+05 6.53E+05 5.49E+05 4.46E+05
(5.07E+05) (3.50E+05) (2.43E+05) (2.72E+05)

0.3 7.06E+05 5.36E+05 3.66E-+05 6.42E+05
(3.34E+05) (2.25E+05) (1.48E+05) (3.38E+05)

04 6.53E+05 8.52E+05 5.52E+05 9.67E+05
(411E+05) (5.26E+05) (4.25E+05) (4.67E+05)

Table 16

Variation of mean and standard deviation ( + SD) of error with variation of R_rate
and Ps_rate values for shifted and rotated Rosenbrock’s function (dimension=30).

R_rate/Ps_rate 0.1 0.2 0.3 0.4

0.1 4.26E+01 5.05E+01 2.37E+01 3.84E+01
(4.63E+01) (4.70E+01) (3.46E+01) (3.58E+01)

0.2 3.61E+01 3.44E+01 3.60E+01 3.50E+01
(4.02E+01) (5.34E+01) (4.78E+01) (4.55E+01)

0.3 6.18E+01 3.41E+01 6.15E-+01 7.46E+01
(4.85E+01)  (427E+01)  (5.02E+01)  (4.71E+01)

0.4 3.78E+01 6.36E+01 5.49E+01 7.21E+01
(3.66E+01) (3.76E+01) (412E+01) (3.39E+01)

Table 17
Variation of mean and standard deviation ( + SD) of error with variation of R_rate
and Ps_rate values for shifted Rastrigin’s function (dimension=30).

R_rate/Ps_rate 0.1 0.2 0.3 04

0.1 6.49E+00 5.07E+00 4.90E+00 4.34E+00
(1.72E4+00)  (227E+00)  (1.41E+00)  (1.61E+00)

0.2 2.36E+00 149E+00 1.89E+00 1.56E+400
(116E+00)  (1.07E+00)  (145E+00)  (1.04E+00)

0.3 1.19E+00 5.97E-01 3.98E-01 2.44E-01
(147E+00)  (9.61E—01)  (5.14E—01)  (4.30E—01)

0.4 1.19E+00 1.99E-01 4.00E-01 1.16E-01
(1.03E+00)  (420E-01)  (512E—01)  (3.10E—01)

Table 18

Variation of mean and standard deviation ( + SD) of error with variation of R_rate
and Ps_rate values for hybrid function 6 (dimension=30).

R_rate/Ps_rate 0.1 0.2 0.3 0.4

0.1 4.08E+02 3.51E+02 3.54E+02 4.15E+02
(1.96E+02) (2.92E+02) (1.91E+02) (1.44E+02)

0.2 4.42E+02 2.78E+02 3.79E+02 4.14E+02
(2.52E+02) (2.23E+02) (2.18E+02) (2.08E+02)

0.3 4.49E+02 3.43E+02 3.93E+02 4.23E+02
(2.56E+02) (2.18E+02) (2.22E+02) (1.87E+02)

0.4 4.27E+02 2.94E+02 4.39E+02 3.25E+02
(2.24E+402) (2.24E+02) (1.60E+02)

Table 19

Variation of mean and standard deviation ( + SD) of error with variation of R_rate
and Ps_rate values for composition function 8 (dimension=30).

R_rate/Ps_rate 0.1 0.2 0.3 0.4

0.1 2.39E+03 2.54E+03 3.19E+03 3.47E+03
(2.39E+03) (2.54E+03) (3.19E+03) (3.47E+03)

0.2 2.71E+03 2.96E+03 3.07E+03 2.72E+03
(271E+03)  (2.96E+03)  (3.07E+03)  (2.72E+03)

0.3 3.14E+03 2.96E+03 2.81E+03 2.89E+03
(314E+03)  (2.96E+03)  (2.81E+03)  (2.89E-+03)

0.4 2.32E+03 2.88E+03 2.89E+03 2.56E+03
(2.32E+03)  (2.88E+03) (2.89E+03)  (2.56E-+03)

Mean error

. " 0.4 3

Sl 03 005 pAe
Fig. 14. Variation of mean and standard deviation ( + SD) of error with variation of
P_field and N_field values for shifted and rotated high conditioned elliptic function
(dimension=30).
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Fig. 16. Variation of mean and standard deviation ( + SD) of error with variation of
P_field and N_field values for shifted Rastrigin’s function (dimension=30).
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space from a large subset of particles for the generation of new

particles. Therefore, as seen in Figs. 9-13, EFO converges faster 4. Impact of parameters on the performance of EFO

than the other compared algorithms in the optimization of all

types of functions (unimodal, multimodal, separable, non- In Section 2.1, we briefly discussed the EFO parameters. In this
separable). section, we comprehensively study the impact of EFO parameters
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on the performance of the algorithm. For this experiment, we used
the function set that was introduced in Table 8. Because the
number of electromagnetic particles (N_emp) is the most impor-
tant parameter of EFO, we first evaluated the impact of this
parameter on the mean error of optimization. The results of this
experiment are reported in Table 9.

As illustrated in Table 9, a population consisting of 50 electro-
magnetic particles outperforms greater and smaller populations.
Therefore, in this experiment, we kept the population size con-
stant (equal to 50) and studied the effects of variation in EFO
parameters pairwise. The obtained results from the different
parameter settings are summarized in Tables 10-19, and the
corresponding surface charts are illustrated in Figs. 14-23.

In summary, a large population slows down the convergence
while increasing the chances of avoiding local minima, and a small
population tends to find local minima. Other important para-
meters of EFO are P_field and N_field; a large value for P_field
increases the global search and slows down convergence, while a
small value for P_field reduces the global search and increases the
local search. On the other hand, the portion of the population
allocated to the negative field should be equal or slightly higher
than that of the neutral field to increase the global search power
by repulsing electromagnets to different directions and helping
them to avoid trapping in local minima. Therefore, Eq. (9) is
suggested for calculation of the N_field value.

1— P_field

N field = —— )

The remaining parameters of EFO are Ps_rate and R_rate,
High Ps_rate increases the convergence speed but reduces the
global search power by selecting the existing electromagnets of
the positive field for generation of new electromagnetic parti-
cles. Meanwhile, low Ps_rate slows down convergence and
causes particles to bounce around the solution. On the other
hand, low R_rate increases the convergence rate but reduces
diversity in the population, which leads to finding local minima.
While, high R_rate prevents particles from converging
efficiently.

Therefore, a balance between global and local search is
needed to lead the electromagnetic particles toward global
minima. This balance can be achieved by the proposed para-
meter setting in Table 1.

5. Conclusions

This paper presented a physics-inspired and easy to imple-
ment algorithm for the optimization of continuous problems
called EFO. This algorithm is inspired by the behavior of electro-
magnets and takes advantage of a nature-inspired ratio known
as the golden ratio. Various experiments have been conducted
for a better understanding of the algorithm behavior. Moreover,
a comprehensive experimental investigation on the EFO para-
meters has been made, discussed and used to formulate an
accurate and robust algorithm. Experimental results over 30
high dimensional CEC 2014 optimization functions prove that
EFO generally outperforms other search-based approaches in
terms of accuracy and convergence rate.

As future works, EFO should be applied to real-world problems
to validate the applicability of this algorithm for real-world
problems. Additionally, new search strategies and self-adaptive
approaches can be proposed based on the introduced concepts in
this paper to improve the search power and accuracy of EFO.
Moreover, EFO works only on continuous problems. Therefore, a
study can be conducted to adapt this algorithm for the optimiza-
tion of discrete problems.
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