ExGUtils: Manual

D. Gamermann*?

#Department of Physics, Universidade Federal do Rio Grande do
Sul (UFRGS) - Instituto de Fsica , Av. Bento Gonalves 9500 -
Caixa Postal 15051 - CEP 91501-970 - Porto Alegre, RS, Brasil.

March 6, 2018

Abstract

This is a description of the functions in the modules of the ExGUtils
package.

Keywords: exgaussian, statistical analysis, psychometrics, reaction times

1 Introduction

This document contains the description of the functions found in the modules of
the package ExGUtils and presents examples of uses for them. The package has
been written mainly to aide statistical analysis of data involving the ex-Gaussian
function, as is usually the case of reaction times in psychometric experiments,
for example.

Some examples deserve graphical representations (plots) of the results. The
package ExGUtils does not contain any graphical utility, so for this purpose
we recommend the use of the gnuplot software which can be used inside the
python interpreter via the Gnuplot package, whose functions we import with
the commands found in Listings 1:

Listing 1: Commands used to import graphical objects from GNUplot.
from Gnuplot import Gnuplot as gplot
from Gnuplot import Data as gdata
from Gnuplot import Func as gfunc
g = gplot(persist=1)

Note that the commands in Listings 1 should only be used if GNUplot and
the Gnuplot package for python are installed in the computer. The reader who

*gamermann@gmail.com

wishes, should adapt the plotting commands in order to visualize the graphs
with other plotting tools.

This manual refers to the version 3.0 of the ExGUtils package. Version 3.0
is very different from Versions 1.0 and 2.0.

Some users of version 2.0 reported problems when compiling the C functions
in a windows system. Therefore, in this new version of the package, when
installing it, the user can opt to either compile or not the C functions. If he
chooses not to compile them, only the pyexg module will be installed. This
module has all functions and algorithms which in version 2.0 were programmed
in C now programmed purely in python. If the user does compile (successfully)
the C functions, both modules, pyexg and uts, will be installed. They both
have basically the same functions (with a few exceptions which will be discussed
later), but while the functions in one module are programmed in C, in the other
module they are purely programmed in python.

Only the module pyexg has dependencies. Some of its functions depend on
the numpy, scipy, math and random packages.

Another difference between the present version and previous ones, is the
nomenclature of some functions. Due to some feedback we received, we tried
to standardize the function names such that they have now similar scipy and
numpy nomenclature.

Many functions in this package deal with (possibly heavy) numerical calcu-
lations. Numerical calculations can be involving and become unstable. In order
to properly perform (and understand the results) of numerical calculations it
is very advisable that the user understands the calculation and controls some
parameters of it. In this manual we explain the most involving calculations
and the numerical parameters that may be controlled (precision, for example)
in order to obtain meaningful results. All numerical parameters in the func-
tions do have default values that, in principle, should give a reasonable results,
but it is possible that particular functions or datasets may fall in unstable pa-
rameter regions and, in such cases, it may be useful to control some numerical
parameters.

2 Modules Functions

The two modules that are installed with the ExGUtils package are:

e pyexg — All functions in this module are programmed in python language.
In order to use this module, the packages numpy, scipy, math and random
must previously be installed by the user (math and random usually come
by default with python).

e uts — The functions in this module are programmed in C and must be
compiled when installing the module (the user should answer Y when asked
“Compile C [Y/n]?”. This module has no dependency with other python
packages.

Most functions have the same names and receive the same arguments in
both modules. The difference will be speed (our tests indicate that the C func-
tions run at least 50 times faster than the python ones for the most complex
calculations), numerical precision and stability (again C is better than python).

The following functions can be imported from both modules:

e Random Number Generators: The basic algorith for generating homoge-
neous random numbers in the uts module has been taken from Numerical
Recipes in C and it is the basic random number generator in order to
construct random numbers with different distributions in this module. In
the module pyexg all random number generators come from the random
package, they are simply imported with different names in order to assure
compatibility and consistency.

— drand — Generates a random number with homogeneous distribution
between 0 and 1.

— exp_rvs — Generates a random number with exponential distribu-
tion.

— gauss_rvs — Generates a random number with gaussian distribu-
tion.

— exg-rvs — Generates a random number with ex-gaussian distribu-
tion.

e Numerical and Statistical Analysis

— histogram — Produces an histogram from a numerical dataset.
— stats — Calculates the statistics of a dataset.
— stats_his — Calculates the statistics of the data in an histogram.

— correlation — Calculates the linear correlation coefficient for two
datasets.

— minsquare — Adjusts a polynomial using the minimum square method
to a list of points.

e Specific to Ex-gaussian function

— gauss_pdf — Evaluates the gaussian distribution at a given point.

— gauss_cdf — Evaluates the gaussian cumulative distribution at a
given point.

— exg-pdf — Evaluates the ex-gaussian distribution at a given point.

— exg_lamb_pdf — Same as exg_pdf but uses the ex-gaussian parametrized
only in terms of its asymmetry.

— exg_cdf — Evaluates analytically the cumulative distribution for the
ex-gaussian at a given point.

— exg_lamb_cdf — Same as exg_cdf but uses the ex-gaussian parametrized
only in terms of its asymmetry.

— exg_ppf — Evaluates the point at which the ex-gaussian distribution
leaves a given left tail. Is the inverse of exg_cdf.

— exg_lamb_ppf — Same as exg_ppf but uses the ex-gaussian parametrized
only in terms of its asymmetry.

— stats_to_pars — Evaluates the parameters u, ¢ and 7 from a dis-
tribution statistics.

— pars_to_stats — Evaluates the statistics correspondent to the pa-
rameters u, o and T.

— exgLKHD — Evaluates the likelihood and its gradient in parameter
space for a dataset given the parameters p, o and 7.

— maxLKHD — Evaluate the parameters pu, 0 and 7 that maximize the
likelihood for a dataset.

— exgSQR — Evaluates the sum of squares and its gradient in parameter
space for the histogram built from a dataset given the parameters p,
o and T.

— minSQR — Evaluate the parameters p, ¢ and 7 that minimize the
sum of squares for a dataset.

The following functions are present only in the uts module:

e int_points_gauss — Generates an gaussian partition of points in order
to perform an integral.

e intsum — Calculates the integral for a function calculated for every point
in a gaussian partition.

The following functions are present only in the pyexg module:

e zero — Finds the zero of a function.
e ANOVA — Performs the ANOVA test (ANalysis Of VAriance).

e integral — Integrates a function between two points.

3 Some Examples and Uses

The calls to the random number generators are straight forward. The probabil-
ity density for each distribution is given in equations (1-4) for the homogeneous,
exponential, gaussian and ex-gaussian distributions respectively.

Table 1: Statistics for the probability distributions.

Distribution M S t
Homogeneous % ﬁ 0
Exponential T T 2
Gaussian I o 0
Ex-Gaussian | p+7 o2+ 712 ﬁ

0 ,ifz<0Qorz>1
1

; (1)

h(z) = { , otherwise

elafr) = %,)
lafma) = —e 3 3)
y(x/u,0,7) = %e%@‘”—é_h)erfc (W) (4)

The average M, standard deviation S and skewness ¢ for a given probability
distribution f(z) are calculated, as:

M = /OO zf(x)dx, (5)

s? = /}:(w — M)? f(x)dz, (6)
t = /O:O (x SM>3f(z)dx. (7)

The result for the statistics for each one of the distributions in terms of its
parameters can be found in table 1.

In Listings 2 we use the random number generators in order to generate
1000000 random numbers with each probability distribution. Then we use the
function stats to evaluate the statistics of each set generated and compare it
with the expected values of table 1. In a computer with a pentium i7 processor
the commands in this listing took around 1.2 seconds to run (with the C com-
piled functions). Note that four sets with a million random numbers in each are
generated and statistics for each set is evaluated.

Listing 2: Generation of set of random numbers with different distributions and
evaluation of their statistics. Note that the results obtained are random, so in
every execution of the commands, slightly different results are obtained.

from ExGUtils.uts import stats , drand, drand.exp, drand_-gauss, drand-exg

N = 1000000

mu = 100.; sig = 50.; tau = 150.
1lil = [drand () for ii in xrange(N)]
1i2 = [exp-rvs(tau) for ii in xrange(N)]
1i3 = [gauss_.rvs (mu, sig) for ii in xrange(N)]
li4 = [exg-rvs(mu, sig, tau) for ii in xrange(N)]
After each result , the expected walue in parenthesis
[M, S, t] = stats(lil, True)
print ”Homogeneous: M=%4.4f_(%4.4f) _S=%4.4f_(%4.4f) o t=%4.4f_(%4.4£)"% \
(M, 0.5, S, (1./12)%x.5, t, 0.)
[M, S, t] = stats(1li2, True)
print ”Exponential: M=%4.4f_(%4.4f) __S=%4.4f_(%4.4f) c_t=%4.4f_(%4.4£)"% \
(M, tau, S, tau, t, 2.)
[M, S, t] = stats(li3 , True)
print ” Gaussian———: M=%4.4f_(%4.4f) __S=%4.4f_(%4.4f) o _t=%4.4f_(%4.4£)"% \
(M, mu, S, sig, t, 0.)
[M, S, t] = stats(1li4 , True)
print "Ex—Gaussian: M=%4.4f_(%4.4f) __S=%4.4f_(%4.4f) . t=%4.4f_(%4.41)"% \
(M, muttau, S, (sig#*2+tau**2)**.5, t, 2.x(taux*3)/((sig**2+tau**2)*x(3./2.)))
Results :
#Homogeneous: M=0.4997 (0.5000) S=0.2887 (0.2887) t=0.0022 (0.0000)
#Exzponential: M=149.7682 (150.0000) §=149.8710 (150.0000) t=2.0007 (2.0000)
#Gaussian : M=100.0817 (100.0000) §=49.9567 (50.0000) t=0.0015 (0.0000)
#Ex— Gaussian : M=249.9907 (250.0000) §=158.0081 (158.1139) t=1.6990 (1.7076)

In the example found in Listings 2 one can also see the use of function
stats. This function must have at least one argument (a list of numbers). Its
second argument is an optional boolean which is False by default. The function
stats returns the statistics of the numbers contained in the list, if the optional
argument is false, it returns only the average and standard deviation for the
numbers in the list, if the second argument is true, it returns the skewness as
well.

Another important function in this module for statistical analysis is the
histogram function. This function has one mandatory argument which is a list
of numbers (from which it will build the histogram) and a series of optional
arguments in order to control the histogram parameters. One can control the
interval under which the function constructs the histogram with the parameters
ini and fin that by default are the smallest and the largest values in the list.
The parameter Nint specifies the number of intervals in the histogram and is,
by default, two times the square root of the number of elements in the list. The
size of the intervals are, therefore, % The function histogram returns
two lists: the list of the class marks (a number representing each interval), and
the counts in each interval. The parameter dell is used to control the class
marks positions, its default number is 0.5 which indicates that each point in the
class mark list is the middle point of the interval. For this parameter a number
between 0 and 1 should be used, 0 indicating the beginning of the interval and
1 indicating its other extreme (the use of numbers outside the interval [0;1) will
not result in error, but may return senseless results, for it would shift the class
marks to outside their proper intervals. There are two parameters to control
the kind of histogram: The parameter accu can have the values 0, 1 or -1. The
value 0 is the default and it counts the points in each interval, the values 1
and -1 result in cumulative distributions, -1 for the left-tail and 1 for the right
tail; Finally, if accu=0, one can choose three types of normalization with the

parameter norm. The default is norm=0 and returns (the second list of the
returned values) the absolute number of counts in each interval (the sum of
all elements in the returned list will be the number of points), norm=1 is the
“integral” normalization, so that the total sum of the area of the histogram
is equal to one (the sum of all elements in the returned list times the size of
the intervals will be equal to one) and norm=-1 means frequency histogram,
the number corresponding to each interval is the proportion of points in each
interval (the sum of all elements in the returned list will be equal to one).

The function stats_his does the same as function stats but for data dis-
tributed as a histogram (two lists as input, the class marks and the counts).
If the count list in the histogram is not the absolute number of counts in each
histogram (different normalization, norm=1 for example), one should also know
the total number of counts and enter also parameters in the stats_his indi-
cating the normalization and the value for the number of points, otherwise the
results might have big errors associated to them. We show in Listing 3 example
of the use of the histogram function in order to produce some plots, and the
stats and stats_his functions to obtain statistics. Also, in this example, one
can already see the use of the function exg_pdf which is quite straightforward.
In figure 1 one can see the plot generated by the commands.

Listing 3: Use of the functions histogram, stats and stats_his.

from ExGUtils.uts import stats, stats-his , histogram , exg-rvs, exg-pdf

N = 10000

mu = 100.; sig = 50.; tau = 150.

1i4 = [exg-rvs(mu, sig, tau) for ii in xrange(N)]

[x, y] = histogram (1i4 , norm=1)

y2 = [exg_pdf(xi, mu, sig, tau) for xi in x|

dl = gdata(x, y2, with.="lines_lw_3_lc_1”, title="exgaussian”)
d2 = gdata(x, y, with_="boxes_lc_.3", title="histogram”)

g.plot(d1l, d2)

M, S, t = stats(li4 , 1)

print ”"Li4_stats _—: . M=%f, S =%f, -t =%f_"%M, S, t)

[x, y] = histogram (1i4 , norm=0)

M1, S1, t1 = stats_his(x, y, assymetry=True)

print ”For_norm=0o_: o M.=_%f , oS _=_%f , -t .= %f oo sum (yi)-=_%f"%(M1, S1, t1, sum(y))

[x, y] = histogram (1i4 , norm=—1)

M1, S1, t1 = stats_his(x, y, assymetry=1, norm=—1, N=N)

print ”For_norm=—1:0 M_=_%f , .S_=_%f , .t .=_%f o sum (yi)-=_%f"%M1, S1, t1, sum(y))

[x, y] = histogram (1i4 , norm=1)

M1, S1, t1 = stats_-his(x, y, assymetry=1, norm=1, N=N)

print "For_norm=1_:_.M_=%f, .S =_%f , -t =_%f sum (yixdx) =-%f"%(M1, S1, tl, sum(y)=*(x[1]—x[0]))
output :

#Li4 stats M = 251.001140, S = 161.469213, t = 1.822576

#For norm=0 : M = 251.002816, S = 161.473770, t = 1.819510 sum (yi) = 10000.000000
#For morm=—1: M = 251.002816, S = 161.473770, t = 1.819510 sum (yi) = 1.000000
#For norm=1 : M = 251.002816, S = 161.478770, t = 1.819510 sum (yikdz) = 1.000000

The function correlation evaluates, given two lists of numbers, X and Y,
the linear correlation coefficient between them:

P | 12(%*@(%*17) (8)

00y

where c is the linear correlation coefficient, x; and y; are the elements in the X
and Y lists, z and § are the averages of the lists and o, and o, are the standard
deviations of the elements in the lists.

0.004

histogram ——
exgaussian ---------

0.0035 _,' :

0.003 I
0.0025

0.002 !
0.0015 f

I
,.;;.il\“

0

0.0005

0
-200

Figure 1: Histogram plotted along side the ex-gaussian function produced by

the command line in Listing 3.

The function minsquare adjusts an polynomial to a dataset using the min-
imum square method. It returns a list containing the coefficients of the fitted
polynomial, plus a number which is the minimized value for the sum of squares.
In Listing 4 one uses the random number generator to generate noisy data, and
then fits a third degree polynomial to the data using the minsquare function.

The plot produced by the commands can be found in figure 2.

Listing 4: Produces noisy data and fits a polynomial to it.

from ExGUtils.uts import correlation , minsquare, drand

N = 25

dx = 8./N

x = [—-3+ii*dx for ii in xrange(N)]

fu = lambda x: x**3—3%x**%2—x+3

data = [fu(xi)+12+«drand () for xi in x]

errs = [12xdrand() for xi in x]

[coefs , chi2] = minsquare(x, data, errs, deg=3)

fit = lambda x, coefs: sum([coef*x*%ii for ii, coef in enumerate(coefs)])
yfit = [fit(xi, coefs) for xi in x]

d = gdata(x, data, errs, with.="err”, title="noisy_data”)

dfit = gdata(x, yfit, with_="1lines_lw_3”, title="minsquare_fit”)
g.plot(d, dfit)

print 7 fit _result:_y(x)_=_—%3.3f _+_%3.3f_x_+_%3.3f_x"2_+_%3.3f_x"3"%tuple(coefs)
print ”Linear_correlation_between_fit_and_noisy_data: _%f"%correlation (data,

output :
#fit result: y(z) = 6.505 + —0.774 = + —2.602 ©°2 + 0.947 z°3
#Linear correlation between fit and noisy data: 0.976798

The function zero receives two mandatory arguments and two keyword ar-
guments. The mandatory arguments are the function (whose zero one wants to
find) and an initial point to start the search. The function implements Newton’s

method and has two keyword arguments:

e eps — The precision within the zero must be found. In other words, the
search stops when the value of the function at the point is smaller than

eps.

‘noisy data ——
40 | minsquare fit }] B

Figure 2: Polynomial fitted to noisy data..

e delt — Newton’s method must evaluate the derivatives of the function
and follow it in order to find the zero. The keyword argument delt should

be a small number Ax that is used in order to evaluate numerically the

9 () = LatAn—f()

derivative of the function: o A

Suppose we want to evaluate the value of x for which:

5(e*—1)—ze® = 0, (9)

(this equation appears when one tries to obtain Wien’s Law from Planck’s black-
body raidiation spectrum).

In Listings 5 one can see the python commands used to call the zero function
in order to perform this task.

Listing 5: Commands used to evaluate a zero at different precisions.

from ExGUtils.pyexg import zero
from math import exp

func = lambda x: 5.%(exp(x)—1.)—x*exp(x)

for ep in [l.e—4, 1l.e—6, 1l.e—15]:

x = zero (func, 6., eps=ep)

print 7 {(_-%5.18f_.) =_%5.18f ____eps=_%5.181"%(x, func(x), ep)
Result
#
f(4.965114385178566181) = —0.000021223789417490 eps= 0.000100000000000000
f(4.965114288298355551) = —0.000000214967826651 eps= 0.000001000000000000
f(4.965114281744276907) = 0.000000000000000000 eps= 0.000000000000001000

4 Numerical Calculations

Here we make a few comments about the algorithms used and parameters that
can be controlled in order to obtain meaningful results. Some functions may
also take too long if some parameters are not properly chosen (it might cost to
much to get a result with too much precision in some instances, for example).

The _ppf functions (percent point functions) use Newton’s method to find
the point where the cumulative distributions (_cdf functions) have a given value.
This is an iterative method that starts at some given point. If the starting point
is near an asymptote or a point where the derivative of the function is close to
zero (the _pdf functions have small values), the method may become unstable.
There is a keyword argument for the _ppf functions which is the starting point.
By default it is zero (not the value zero, but, when it is zero, the starting
point will be the average value of the distribution). If the function does not
return a reasonable result (our tests indicate that it returns infinity and raises
RuntimeWarnings in the python functions when the algorithm enters unstable
regions) one might try to change this argument to a non-zero value (if one does
wish to start the search at zero, we suggest to start at a very small value 1.e-10,
for example).

The functions maxLKHD and minSQR perform a maximum and minimum as-
cent/descent algorithm in order to maximize and minimize the likelihood and
sum of squares, respectively for a dataset. The algorithm in both cases will fol-
low a path given by the gradients in parameter space that are evaluated by the
functions exgLKHD and exgSQR. Given an initial point, the algorithm evaluates
the gradient at the point and advances following the gradient for maximizing or
the opposite direction to minimize. The initial advanced step and point in the
search can be controlled. If no initial point is given, the initial point is given
by the parameters u, o and 7 correspondent to the dataset statistics and the
keyword argument parameter lambda controls the advance step. If not given,
the initial advance in parameter space is 5. This step adapts itself while the
algorithm runs in order to efficiently arrive to the maximum/minimum. If a
positive value is given for the keyword argument parameter lambda, the initial
advance is this number and if a negative number is entered, the adaptive step
is the number times the module of the gradient.

5 Bias When Performing Fits

We have performed the following test in order to study possible bias in the three
different fitting methods that can be directly used within the package:

We constructed 10000 datasets with 10000 ex-gaussian random numbers gen-
erated with the parameters yu = 30, 0 = 20 and 7 = 20.

Now, for each dataset, we evaluated the values of u, o and 7 best fitting the
data via the three methods: maximum likelihood (maxLKHD function), minimum
squares (minSQR function) and moments (stats and stats_to_pars functions).

Then the average value of each parameter for each method and its standard

10

deviation was evaluated. The deviation from this average to the nominal value
used to generate the random numbers should be compared with the standard
deviation from the average divided by the square root of 10000 (the population
of datasets). The results were:

Moments

mub = 30.030567 +- 0.005933
sib = 20.011060 +- 0.004087
tab = 19.971779 +- 0.005933

o

mub = 30.015070 +- 0.004773
sib = 19.999438 +- 0.003025
tab = 19.987277 +- 0.004750

o

mub = 30.027971 +- 0.007022
sib = 20.001701 +- 0.004929
tab = 19.977125 +- 0.008647

The method that best performs appears to be the maximum likelihood
method. In this method, the 7 parameter is the one that presents the most
statistically significant deviation from its nominal value. The code to generate
the above results can be found in Listings 6.

Listing 6: Code to study bias in the different fitting methods.

mu = 30.
sig = 20.
tau = 20.
N1 = 10000
N2 = 10000

sts-mom = []
sts-lkhd = []
sts_sqr = []

for ii in xrange(N1):
nums = [exg-rvs(mu, sig, tau) for jj in xrange(N2)]
M, S, t = stats (nums, True)

sts_mom .append (stats_to_pars (M, S, (.5%t)*%(1./3)))
sts-lkhd .append (maxLKHD (nums))

[xi, yi] = histogram (nums, norm=1)

sts_sqr .append (minSQR(xi, yi))

listas = [sts-mom, sts_lkhd, sts-sqr]

names = [”Moments” , "maxLKHD” , "minSQR”]
no = (1.%N1)xx.5
for ii, name in enumerate(names):
li = listas [ii]
mus = [ele[0] for ele in 1i]
sis = [ele[1] for ele in 1i]
tas = [ele[2] for ele in 1i]
mu
mm, sm = stats (mus)
print "%s_:\n———————————"%name
print "mub_=_%f_+—_%f” %(mm, sm/no)
sig
mm, sm = stats(sis)

print ”sib_=_%f_+—_%f” %(mm, sm/no)

11

tau

mm, sm = stats (tas)

print "tab_=_%f_4—_%f”%(mm, sm/no)
print

print

6 Bugs and Feedback

These functions have been thoroughly tested in a linux mint system using python
2.7. Some functions have already been tested in a windows system running
python 2.7 via idle with no conflicts found until now.

Please email any detected bugs, suggestions or your feedback to the author.

7 License

ExGUtils is released under the GNU GENERAL PUBLIC LICENSE. See COPY-
ING and README files for further information.

12

