¥ MMP

MMP Platform User Manual

Authors: B. Patzak, V. Smilauer’

Version 1.0, 05/2015

Table of Content

Table of Content
Introduction
Platform installation
Prerequisites
Windows platforms
Linux / Unix (*nix) platforms
General requirements
Other recommended packages/softwares
Installing the MMP platform
Verifying platform installation
Platform operations
Developing application API
Distributed Model
Internal platform solution - JobManager resource allocation
Installation
Setting up ssh server
Setting up Job Manager
Configuration
Troubleshooting
Simple distributed example using jobManager resource allocation
References

' Czech Technical University, Faculty of Civil Engineering, Department of Mechanics, Thakurova 7, 166 29
Prague, Czech Republic

Introduction

The approach followed in the MMP-project is based on an system of distributed, interacting
objects designed to solve given problem. The individual objects represent entities in the
problem domain, including individual simulation packages, but also the data, such as fields
and properties. The abstract classes are introduced for all entities in the model space [1].
They define a common interface that needs to be implemented by any derived class,
representing particular implementation of specific component. Such interface concept allows
using any derived class on a very abstract level, using common services defined by abstract
class, without being concerned with the implementation details of an individual software
component. This essentially allows to manipulate all simulation tools using the same interface.
Moreover, as the simulation data are represented by objects as well, the platform is
independent on particular data format(s), as the exchanged data (such as fields and
properties) can be manipulated using the same abstract interface. Therefore, the focus on
services is provided by objects (object interfaces) and not on underlying data itself.

The complex simulation pipeline developed in MMP-platform consists of top-level script in
Python language [3] (called scenario) enriched by newly introduced classes. Later in the
project, the top level script will be generated using a graphical tool. In principle, any control
script can be recasted into a class implementing Application class interface, so that it could
itself represent an application in MMP platform. Such an approach would allow building a
hierarchy of nested applications. The application steering and data exchange will be realized
in a standard way by calling individual services (methods). In case of distributed
environments, a transparent communication layer is provided, as described in the subsection
on Distributed environments. The software design of the platform has been described in
[5,6,7].

Even though the platform can be used locally on a single computer orchestrating installed
applications, the real strength of the MMP platform is its distributed design, allowing to
execute simulation scenarios involving remote applications. The concept of so called proxy
object that represent remote objects allows to hide all the details of remote data exchange
and execution to the user. In turn, only minimal change of local simulation scenarios is
required when distributed resources are included. The distributed model is described in
Section Distributed Model.

Platform installation

Prerequisites

Windows platforms

e We suggest to install Anaconda scientific python package (tested version 2.1):
https://store.continuum.io/cshop/anaconda/
ssh client: putty.exe is recommended, http://www.putty.org/
optionally ssh key generator: puttygen.exe is recommended, http://www.putty.org/

http://www.mmp-project.eu/
https://sourceforge.net/projects/mupif/
https://store.continuum.io/cshop/anaconda/
https://store.continuum.io/cshop/anaconda/
http://www.putty.org/
http://www.putty.org/
http://www.putty.org/
http://www.putty.org/

e optionally ssh server if you need to accept SSH incoming connections and allowing
others to be on your system. FreeSSHd server is recommended,
http://www.freesshd.com/

Linux / Unix (*nix) platforms

e The Python (Python 2.x) installation is required. Some functionality depend on vtk
python module, that is available in Python 2.x version only.

e You can dowload the python installation package from
https://www.python.org/downloads/. Just pick up the latest version in the 2.x series
(tested version 2.7.8).

e We recommend to install pip - a tool for installing and managing Python packages. If
not already installed as a part of your python distribution, the installation instructions
can be found here.
ssh client (normally included in standard distributions)
optionally ssh server (required for application server installation)

General requirements

e MMP platform depends/requires Pyro4 (tested version 4.30) and numpy (tested 1.6.2)
modules. To install these modules using pip:

pip install Pyro4

e MMP platform requires pyvtk (tested 0.4.85) python module. To install this module
using pip:

pip install pyvtk

Other recommended packages/softwares

e Paraview (tested 4.2.0), visualization application for vtu data files,
http://www.paraview.org/
Windows: Notepad++ (tested 6.6.9), http://notepad-plus-plus.org/
Windows: conEmu, windows terminal emulator,
https://code.google.com/p/conemu-maximus5/

Installing the MMP platform

The recommended procedure is to install platform as a python module using pip:

pip install mupif

http://www.freesshd.com/
http://www.freesshd.com/
https://www.python.org/downloads/
https://www.python.org/downloads/
http://pip.readthedocs.org/en/latest/installing.html
http://pip.readthedocs.org/en/latest/installing.html
http://www.paraview.org/
http://www.paraview.org/
http://notepad-plus-plus.org/
http://notepad-plus-plus.org/
https://code.google.com/p/conemu-maximus5/
https://code.google.com/p/conemu-maximus5/

Alternatively, the development version of the platform can be installed from git repository:

e We recommend to install git, a open source revision control tool. You can install git
using your package management tool or download installation package directly from
git website.

e Once you have git installed, just clone the MMP platform repository into a directory
"mupif-code":

git clone git.//git.code.sf.net/p/mupif/code mupif-code

Verifying platform installation

The platform installation comes with many examples, that can be used to verify the successful
installation. The examples are located in examples subfolder. For example, to run Example01:

cd examples/Example01
python Example01.py

Platform operations

The complex simulation pipeline developed in MMP-platform consists of top-level script in
Python language (called scenario) enriched by newly introduced classes. These classes
represent fundamental entities in the model space (such as simulation tools, properties, fields,
solution steps, interpolation cells, units, etc). The top level classes are defined for these
entities, defining a common interface allowing to manipulate individual representations using a
single common interface. The top level classes and their interface is described in platform
Interface Specification document [1].

In this document, we present a simple, minimum working example, illustrating the basic
concept. The example presented in this section is assumed to be executed locally. How to
extend these examples into distributed version is discussed in the section Simple distributed
example using JobManager.

The presented example in Table 1 illustrates an example of so called weak-coupling, where
for each solution step, the first application (Application1) evaluates the value of concentration
that is passed to the second application (Application2) which based on provided concentration
values (PropertylD.PID_Concentration) evaluates the average cumulative concentration
(PropertylD.PID_CumulativeConcentration). This is repeated for each solution step. The
example also illustrates, how solution steps can be generated in order to satisfy time step
stability requirements of individual applications.

http://git-scm.com/downloads
http://git-scm.com/downloads

from mupif import *
import applicationl
import application2

time = 0
timestepnumber=0
targetTime = 1.0

applicationl.applicationl(None) # create an instance of application #1
application2.application2(None) # create an instance of application #2

appl
app2

loop over time steps
while (abs(time -targetTime) > 1.e-6):
#tdetermine critical time step
dt2 = app2.getCriticalTimeStep()
dt = min(appl.getCriticalTimeStep(), dt2)
#update time
time = time+dt
if (time > targetTime):
#tmake sure we reach targetTime at the end
time = targetTime
timestepnumber = timestepnumber+l

create a time step
istep = TimeStep.TimeStep(time, dt, timestepnumber)

try:
#solve problem 1
appl.solveStep(istep)
#request temperature field from appl
c = appl.getProperty(PropertyID.PID_Concentration, istep)
register temperature field in app2
app2.setProperty (c)
solve second sub-problem
app2.solveStep(istep)
prop = app2.getProperty(PropertyID.PID_CumulativeConcentration, istep)
print ("Time: %5.2f concentraion %5.2f, running average %5.2f" %
(istep.getTime(), c.getValue(), prop.getValue()))

except APIError.APIError as e:
logger.error("Following API error occurred: %s" % e)
break

terminate
appl.terminate();
app2.terminate();

Table 1: Simple example illustrating simulation scenario

The full listing of this example can be found in examples/Example01. The output is illustrated
in Figure 1.

http://sourceforge.net/p/mupif/code/ci/master/tree/examples/Example01/

@ S ® bp@jaja: /home/bp/Documents/projects/MMP/mupif.git/fexamples/Example01

bp@jaja:~/Documents/projects/MMP/mupif.git/examples/Example®1$ python Examplefl.py
Time: .10 concentraion ©.10, running average 0.10

.20 concentraion .20, running average .15

.30 concentraion .30, running average .20

.40 concentraion .40, running average .25

.50 concentraion .50, running average .30

.60 concentraion .60, running average .35

.70 concentraion .76, running average .40

.80 concentraion .80, running average .45

.90 concentraion .98, running average .50

.00 concentraion 1.00, running average .55
bp@jaja:~/Documents/projects/MMP/mupif.git/examples/Exampled1s I

L Qs R e i s o
oo

0
0
0
0
0
0
0
0
0
1

@

Fig. 1: Output from Example01.py

The platform installation comes with many examples, located in examples subdirectory of
platform installation and also accessible online in the platform repository. They illustrate
various aspects, including field mapping, vtk output, etc.

Developing Application Program Interface (API)

In order to establish an interface between the platform and external application, one has to
implement an Application class. This class defines a generic interface in terms of general
purpose, problem independent, methods that are designed to steer and communicate with the
application. The Table 2 presents an overview of application interface, the full details with
complete specification can be found in API specificaton [1], also available online.

Method Description
__init__(self, file) Constructor. Initializes the application.
getMesh (self, tstep) Returns the computational mesh for given

solution step.

getField(self, fieldID, time) Returns the requested field at given time.
Field is identified by fieldID.

setField(field) Registers the given (remote) field in
application.

https://sourceforge.net/p/mupif/code/ci/master/tree/examples/
http://www.mmp-project.eu/wiki/images/3/30/MMP_D1.1.pdf

getProperty(self, proplD, time, objectID=0)

Returns property identified by its ID
evaluated at given time.

setProperty(self, property, objectID=0)

Register given property in the application

setFunction(self, func,objectiD=0)

Register given function in the application

solveStep(self, tstep)

Solves the problem for given time step.

finishStep(self, tstep)

Called after a global convergence within a
time step.

getCriticalTimeStep()

Returns the actual critical time step
increment.

getApplicationSignature()

Returns the application identification

terminate()

Terminates the application.

Table 2: Application interface: an overview of basic methods.

From the perspective of individual simulation tool, the interface implementation can be

achieved

by means of either direct (native) or indirect implementation.

e Native implementation requires a simulation tool written in Python, or a tool with
Python interface. In this case the Application services will be implemented directly
using direct calls to suitable application’s functions and procedures, including
necessary internal data conversions. In general, each application (in the form of a
dynamically linked library) can be loaded and called, but care must be taken to convert
Python data types into target application data types. More convenient is to use a
wrapping tool (such as Swig[5] or Boost [6]) that can generate a Python interface to
the application, generally taking care of data conversions for the basic types. The
result of wrapping is a set of Python functions or classes, representing their application
counterparts. The user calls an automatically generated Python function which
performs data conversion and calls the corresponding native equivalent.

e Indirect implementation is based on wrapper class implementing Application
interface that implements the interface indirectly, using, for example, simulation tool
scripting or 1/O capabilities. In this case the application is typically standalone
application, executed by the wrapper in each solution step. For the typical solution
step, the wrapper class has to cache all input data internally (by overloading
corresponding set methods), execute the application from previously stored state,

passing input data, and parsing its output(s) to collect return data (requested using get
methods).

MMP Application _ MMP Interface

zﬁz MMP

Fig. 2: lllustration of indirect approach

The example illustrating the indirect implementation is available from 2nd workshop material
(located in examples/Workshop02/Demo31). Typically, this is a three-phase procedure. In the
first step, when external properties and fields are being set, the application interface has to
remember all these values. In the second step, when the application is to be executed, the
input file is to be modified to include the mapped values. After the input file(s) are generated,
the application itself is executed. In the last, third step, the computed properties/fields are
requested. They are typically obtained by parsing application output and returned. This
three-step procedure is illustrated in the following example listing taken from Demo31. In this
example, the application should compute the average value from mapped values of
concentrations over the time. The external application is available, that can compute an
average value from the input values given in a file. The application interface accumulates the
mapped values of concentrations in a list data structure, this is done is setProperty method.
During the solution step in a solveStep method, the accumulated values of concentrations
over the time are written into a file, the external application is invoked taking the created file
as input and producing an output file containing the computed average. The output file is
parsed when the average value is requested using getProperty method.

https://sourceforge.net/p/mupif/code/ci/master/tree/examples/Workshop02/Demo31.py

3
4 def setProperty(self, property, objectID=0):

5 if (property.getPropertID() == PropertyID.PID_Concentration):
6 # remember the mapped value

7

8

Set Remember . self.values.append(property.getvalue())
—_— else:
9 raise APIError.APIError ('Unknown property ID')
10 def solveStep(self, tstep, stageID=0, runInBackground=False):
11 f = open('app3.in', 'w')
pI’OdUCE input file 12 # process list of mapped values and store them into an external file
SDIVe 13 for :al :: ?etf?la}t)le?{ Y
14 .write(str(val)+'\n
Execute 15 f.close()
16 # execute external application to compute the average
17 os.system("python ./application3.py")
18 def getProperty(selr, proplD, time, objectID=0)*
19 if (propID == PropertyID.PID_CumulativeConcentration):
20 # parse output of application3
21 f = open('app3.out', 'r')
Get Parse output 22 answer = float(f.readline())
23 f.close()
3 24 return Property.Property(answer, PropertyID.PID_CumulativeConcentration,
ValueType.Scalar, time, propID, 0)
25 else:
26 raise APIError.APIError ('Unknown property ID')

Typical workflow Typical actions
on interface

Fig. 3: Typical workflow in indirect approach to APl implementation

Distributed Model

Common feature of parallel and distributed environments is a distributed data structure and
concurrent processing on distributed processing nodes. This brings in an additional level of
complexity that needs to be addressed. To facilitate execution and development of the
simulation workflows, the platform provides the transparent communication mechanism that
will take care of the network communication between the objects. An important feature is the
transparency, which hides the details of remote communication to the user and allows to work
with local and remote objects in the same way.

The communication layer is built on Pyro library [4], which provides a transparent distributed
object system fully integrated into Python. It takes care of the network communication
between the objects when they are distributed over different machines on the network. One
just calls a method on a remote object as if it were a local object — the use of remote objects
is (almost) transparent. This is achieved by the introduction of so-called proxies. A proxy is a
special kind of object that acts as if it were the actual object. Proxies forward the calls to the
remote objects, and pass the results back to the calling code. In this way, there is no
difference between simulation script for local or distributed case, except for the initialization,
where, instead of creating local object, one has to connect to the remote object.

https://pythonhosted.org/Pyro4/

[MNamesarver }

A A
User scenario Remote computer
#local scenario e
obj1 = new Object1 M{ Object1] % [F‘:.rrcr Daemon J
obj1.compute() Y Eﬁ

Registers

#distributed scenario @
Obj2Proxy = NS-=locate('Object2’) t dl (.
Obj2Proxy.compute() e I_ __"I:'%:l;%anrgfi%ﬁm LUbJectE]

Fig.4: Local vs remote object communication scenarios compared

To make an object remotely accessible, it has to be registered with the daemon, a special
object containing server side logic which dispatches incoming remote method calls to the
appropriate objects. To enable runtime discovery of the registered objects, the name server is
provided, offering a phone book for Pyro objects, allowing to search for objects based on
logical name. The name server provides a mapping between logical name and exact location
of the object in the network, so called uniform resource identifier (URI). The process of object
registration and of communication with remote objects (compared to local objects) is
illustrated on Fig. 4.

Within the MMP project, the nameserver service is hosted at CTU infrastructure, see Table 3
for details. For the use of the platform outside the MMP project a different Pyro nameserver
should be set up and used, see Pyro documentation.

nameserver hostname nameserver |IP address port

mech.fsv.cvut.cz 147.32.130.137 9090

Table 3: MMP nameserver parameters.

The platform is designed to work on virtually any distributed platform, including grid and cloud
infrastructure. For the purpose of performing simulations within a project, it is assumed that
individual simulations and therefore the individual simulation packages will be distributed over
the network, running on dedicated servers provided by individual partners, forming grid-like
infrastructure.

According to requirements specified in D1.2 Software Requirements Specification Document
for Cloud Computing [2], different functional requirements have been defined, with different
levels of priorities. Typical requirements include services for resource allocation, access and

https://pythonhosted.org/Pyro4/nameserver.html

license control, etc. In the project, we decided to follow two different strategies, how to fulfill
these defined requirements. The first one is based on developing custom solution for resource
allocation combined with access control based on standardized SSH technology based on
public key cryptography for both connection and authentication. It uses platform distributed
object technology and this allows its full integration in the platform. This solution is intended to
satisfy only the minimum requirements, but its setup and operation is easy. It setup does not
requires administrative rights and can be set up and run using user credentials. The second
approach is based on established condor middleware. This solution provides more finer
control over all aspects. On the other hand, its setup is more demanding. The vision is to
allow the combination of both approaches. Both approaches and their requirements are
described in following sections.

Internal platform solution - JobManager resource allocation

This solution has been developed from scratch targeting fulfilment of minimal requirements
only while providing simple setup. The resource allocation is controlled by JobManager. Each
computational server within a platform should run an instance of JobManager, which provides
services for allocation of application instances based on user request and monitoring
services.

The JobManager is implemented as python object like any other platform components and is
part of platform source code. It is necessary to create an instance of JobManager on each
application server and register it on the platform nameserver to make it accessible for clients
running simulation scenarios. This allows to access JobManager services using the same
Pyro technology, which makes the resource allocation to be part of the the simulation
scenario. Typically, the simulation scenario script first establishes connection to the platform
nameserver, which is used to query and create proxies of individual JobManagers. The
individual JobManagers are subsequently requested to create the individual application
instances (using allocateJob service) and locally represented by corresponding proxy objects.
Finally, the communication with remote application instances can be established using
proxies created in the previous step, see Fig. 4 illustrating typical work flow in the distributed
case.

The job manager has only limited capability to control allocated resources. In the present
implementation, the server administrator can impose the limit on number of allocated
applications. The configuration of the jobmanager requires only simple editing of configuration
file. The individual applications are spawned under new process to enable true concurrency of
running processes and avoid limitations of Python related to concurrent thread processing.

Mameaserver .

Register as jobmani Server

rocess #l

[Daeman J [Joblu'lanager J

Scenario #1 —

e
m " Lie.
JM-=ns.connect(jobmani’) === Jobban Proxy

APP = JM allocateJob() Frocess #1 Frocess &
APP solve() \ \

(‘?5»7@3[Application1 Proxy]
I termineJob{APP) | 4 [J [}
Daemon Daemon

[Application 1 J [Application 2 J

Fig. 5: Typical control flow with resource allocation using JobManager.

The status of individual job managers can be monitored with the jobManStatus.py script,
located in tools subdirectory of the platform distribution. This script displays the status of
individual jobs currently running, including their run time and user information. The information
displayed is continuously refreshed, see Fig. 6.

(> bp@ijaja: /home/bp/Documents/projects/MMP/mupif.git/tools

bp@jaja: fhome/bp/Documents/projects/MM... X | bp@jaja: /home/bp/Documents/projects/MM... X

MuPIF Remote JobMan MONITOR 11:14:50
JobManager :Mupif.JobManager@demo

Port wuserf@host

9094 bp@jaja 00:00:15
90926 bp@jaja @@:ao:ezl

Fig. 6: Screenshot of Job Manager monitoring tool

The wuser and access control is controlled using ssh authorization. The individual
computational servers and their platform services are assumed to run behind a firewall. To
establish the connection to a remote server and platform services a secure connection has to
be established. This is realized using setting up ssh tunnel, that allows client to communicate
with protected communication ports on the server. The ssh connections can be authorized by
traditional user/passwords or by accepting public ssh keys generated by individual clients and
send to server administrators.

port 3300

— X— X—-* Server

\ port 22

Client —

Firewall

Fig. 7: Bypassing firewalls with ssh tunnels

The status of individual computational servers can be monitored online using the provided
monitoring tool. A simple ping test can be executed, verifying the connection to the particular
server and/or allocated application instance.

Installation

Setting up ssh server

SSH server provides functionalities which generally allows to

Securely transfer encrypted data / streams

Securely transfer encrypted files (SFTP)

Remote command execution

Forwarding or tunneling a port

Securely mounting a directory on a remote server (SSHFS)

Ssh server is the most common on Unix systems, freeSSHd server can be used on Windows
free of charge. The server usually requires root privileges for running. Ssh TCP/UDP protocol
runs on a port 22 and uses encrypted communication by default.

Connection to a ssh server can be carried out by two ways. A user can authenticate by typing
username and password. However, MuPIF prefers authentication using asymmetric
private-public key pairs since the connection can be established without user’s interaction and
password typing every time. Figure 8 shows both cases.

ssh server
mech.fsv.cvul.cz

Pom any

Client

Login via usermname/password:

Ui ssh mmpi@mech. fav.cvul.cz
Windows: putty.exe mmp@mech.fsv.ovul.cz

Login via private/public keys:

Unix: ssh mmp@maech. fsv.cvut.cz - ~projectkeysid rsa Add a public key to
Windows: putty.exe mmp@mech.fsv.cvut.cz - C\Users\Keys\public-S5H2.ppk known hosts before

the ssh connection

Fig. 8: Connection to a ssh server using username/password and private/public keys

Private and public keys can be generated using commands ssh-keygen for Unix and
puttygen.exe for Windows. Ssh2-RSA is the preferred key type, no password should be set up
since it would require user interaction. Keys should be stored in ssh2 format (they can be
converted from existing openSSH format using ssh-keygen or puttygen.exe). Two files are
created for private and public keys; Unix id_rsa and id_rsa.pub files and Windows id_rsa.ppk
and id_rsa files. Private key is a secret key which remains on a client only.

Authentication with the keys requires appending a public key to the ssh server. On Unix ssh
server, the public key is appended to e.g. mech.fsv.cvut.cz.;/home/mmp./ssh/
authorized_keys. The user from a Unix machine can log in without any password using a ssh
client through the command

ssh mmp@mech.fsv.cvut.cz -i ~/project/keys/id_rsa

Ssh protocol allow setting up port forwarding via port 22, so called tunneling. Such scenario is
sketched in Figure 9, getting through a firewall in between. Since the communication in
distributed computers uses always some computer ports, data can be easily and securely
transmitted over the tunnel.

par 4000

%_"" Ssh server

Firewall

parl ;2(4 mech.fsv.cvut.cz

/t port 3300

_

;
|
|

Unix: ssh -L 4000:mech.fsv.cvut.cz; 3306 mmpi@mech.fsv.cvuf.cz
Windows: putty.exe -L 4000:mech.fsv.cvul.cz:3306 mmp@mech.fsv.cvut.cz

Fig. 9: Creating a ssh forward tunnel

Setting up Job Manager

The skeleton for application server is distributed with the platform and is located in
examples/Example06-JobMan. The following files are provided:

e server.py: The implementation of application server. It starts JobManager instance and
corresponding daemon. Most likely, no changes are required.

e serverConfig.py: configuration file for the server. The individual entries have to be
customized for particular server. Follow the comments in the configuration file. In the
example, the server is configured to run on Unix-based system.

e JobMan2cmd.py: python script that is started in a new process to start the application
instance and corresponding daemon. Its behaviour can be customized by conf.py.
test.py: Python script to verify the jobManager functionality.
clientConfig.py: configuration file for client code (simulation scenarios). The client can
run on both Unix / Windows systems, configuring correctly ssh client.

The setup requires to install the platform, as described in Section Platform installation. Also,
the functional application API class is needed. Fig. 10 shows the flowchart

Nameserver Sarver run server.py

nshost=147.32.130. 137
nsport=8080, hkey=".."

Riegister as jobmani

Process #0
Daemon
jobManPort=44361
JjobManPortsForjob crelldr et
5={90917,9094)
Local computer nathost=127.0.0.1
run scenario, py "
5555 o 44367
JM-=ns connect{ jobman1') m!? E
APF = JM.allocateJob{] . S
APP salve() \3‘?:‘[Application Proxy] 6o, | | 2
-Fn Process #1 \ Process #2 \
JM termineJoblAPP) & i)
' it
Daemaon
e.g. port 9091 Dasmon
\ "
' s
Application 1 Application 2
LY L

Fig. 10: Example06-JobMan displaying ports and tunnels in a distributed setup.

The recommended procedure to set up job manager for your server is to create a separate
directory, where you will copy the server.py and serverConfig.py files from
examples/Example06-JobMan directory and customize settings in serverConfig.py.

Configuration

The configuration of the job manager consists of editing the configuration file

(serverConfig.py).

The following variables can be used to customize the server settings:

Variable

Description

deamonHost

hostname or IP address of the application
server, i.e.
daemonHost='147.32.130.137'

hostUserName

user name to establish ssh connection to
server, i.e. hostUserName="mmp'

jobManPort

Server port where job manager daemon
listens, i.e., jobManPort=44361.

jobManNatport

Port reported by nameserver used to
establish tunnel to destination JobManager
port (jobManPort), i.e. jobManNatport=5555

jobManName

Name used to register jobManager at
nameserver, i.e,
jobManName="Mupif.JobManager@micress'

jobManPortsForJobs

List of dedicated ports to be assigned to
application processes (recommended to
provide more ports than maximum number
of application instances, as the ports are not
relesead immediately by operating system,
see jobManMaxJobs)

Example:

jobManPortsForJobs=(9091, 9092, 9093,
9094)

jobManMaxJobs

Maximum number of jobs that can be
running at the same time.
jobManMaxJobs=4

jobManWorkDir

Path to JobManager working directory. In
this directory, the subdirectories for

individual jobs will be created and these will
become working directories for individual
applications. Users can upload/download
files into these job working directories. Note:
the user running job manager should have
corresponding I/O (read/write/create)
permissions.

applicationClass Class name of the application API class.
The instance of this class will be created
when new application instance is allocated
by job manager. The corresponding python
file with application API definition need to be
imported.

The individual ports can be selected by the server administrator, the ports from range
1024-49152 can be used by users / see IANA (Internet Assigned Numbers Authority).

To start application server run:

$ python server.py

The command logs on screen and also in the server.log lodfile the individual requests.

The status of the application server can be monitored on-line from any computer (provided
you have established ssh connection to server) using tools/jobManStatus.py monitor. To start
monitoring, run following command:

$ python jobManStatus.py -j Mupif.JobManager@demo -h 147.32.130.137 -u mmp -p 44361 -n
147.32.130.137 -r 9090 -k mmp-secret-key -t

The -j option specifies the jobmanager name (as registered in pyro nameserver), -h
determines the hostname where jobmanager runs, -p determines the port where jobmanager
is listening, -n is hostname of the nameserver, -r is the nameserver port, -k allows to set
PYRO hkey, -t enforces the ssh tunnelling, and -u determines the username to use to
establish ssh connection on the server, see Figure 11.

There is also a simple test script (tools/jobManTest.py), that can be used to verify that the
installation procedure was successful. It contact the application server and asks for new
application instance.

@ = @ bp@jaja: fhome/bp/Documents/projects/MMP/mupif.git/tools

bp@jaja:~/Documentsfprojects/MMP/mupif.git/tools$ python jobManTest.py -j Mupif.JobManager@demo
-h 147.32.130.137 -u mmp -p 44361 -n 147.32.130.137 -r 9090 -k mmp-secret-key -t

hkey:mmp-secret-key

Nameserver:147.32.130.137:9090

JobManager :Mupif.JobManager@demo@147.32.136.137:44361

Jobmanager uri:PYRO:obj_7b899f9f6437412bb3a4a9195ec24149@127.0.8.1:5555

Application 16@Mupif.PingServerApplication successfully allocted

Terminating 16@Mupif.PingServerApplication

Time consumed 2.272660 s

bp@jaja:~/Documents/projects/MMP/mupif.git/toolsS I

Fig. 11: Testing job manager in a simple setup

Troubleshooting

Verify that the connection to nameserver host works: ping 147.32.130.137
Run the jobManTest.py with additional option “-d” to turn on debugging output,
examine the output (logged also in mupif.log file)

e Examine the output of server messages printed on screen and/or in file server.log

Simple distributed example using jobManager resource allocation

The process of allocating a new instance of remote application involves several steps, see
Table 4. First, the secure connection to corresponding job manager has to be established
using ssh tunnel. In the second step, the jobManager is requested to allocate a new
application instance and returns corresponding URI of new application. As the application is
executed in a separate process, a second secure connection to the new process pyro
daemon has to be established and the proxy of application instance obtained. When the
scenario is terminating, all these connections have to be correctly terminated. As this involves
a lot of steps, a utility function PyroUtil.allocateApplicationWithJobManager is provided,
returning an instance of RemoteAppRecord class, which encapsulate all the details of opened
connections, etc. It provides two useful methods: getApplication() returning application Proxy
and terminate() that can be used to correctly terminate the application and close all
connections. Here we show again the example presented in section Platform operations, with
the potential modifications for the distributed case shown in blue color. Note that the

differences are only in the setup and terminating part, the core logic of the scenario remains
the same for local as well as distributed case.

from mupif import *
import applicationl
import application2

time =0
timestepnumber=0
targetTime = 10.0

#locate nameserver

ns = PyroUtil.connectNameServer(nshost=conf.nshost, nsport=conf.nsport,

hkey=conf.hkey)

#establish secure tunnel to JobManager running on (remote) server

try:

applRec = PyroUtil.allocateApplicationWithJobManager (ns, conf.applJobManRec,

conf.jobNatPorts.pop())

PyroUtil.allocateApplicationWithJobManager (ns, conf.app2JobManRec,
conf.jobNatPorts.pop())

app2Rec

applRec.getApplication()
app2Rec.getApplication()

appl
app2

except Exception as e:
logger.exception(e)
applRec.terminate()
app2Rec.terminate()
break

#establish secure tunnel to JobManager running on (remote) server
try:

jobMan2 = PyroUtil.connectApp(ns, conf.jobManName)
retRec2 = jobMan.allocateJob(PyroUtil.getUserInfo(), natPort=conf.jobNatPort)
app2 = PyroUtil.connectApp(ns, retRec2[1])
except Exeption as e:
logger.error("Following API error occurred: %s" % e)
break

loop over time steps
while (abs(time -targetTime) > 1.e-6):
#determine critical time step
dt2 = app2.getCriticalTimeStep()
dt = min(appl.getCriticalTimeStep(), dt2)
#update time
time = time+dt
if (time > targetTime):
#make sure we reach targetTime at the end
time = targetTime
timestepnumber = timestepnumber+l

print ("Step: %d %f %f" % (timestepnumber, time, dt))
create a time step
istep = TimeStep.TimeStep(time, dt, timestepnumber)

try:
#solve problem 1
appl.solveStep(istep)
#request temperature field from appl
c = appl.getProperty(PropertyID.PID_Concentration, istep)
register temperature field in app2
app2.setProperty (c)
solve second sub-problem
app2.solveStep(istep)
prop = app2.getProperty(PropertyID.PID_CumulativeConcentration, istep)
print ("Result: %f" % prop.getValue())

except APIError.APIError as e:
logger.error("Following API error occurred: %s" % e)
break

terminate
applRec.terminate()
app2Rec.terminate()

Table 4: Simple example illustrating simulation scenario

References

1. D1.1 Application Interface Specification, MMP Project, 2014.

2. D1.2 Software Requirements Specification Document for Cloud Computing, MMP
Project, 2015.

3. Python Software Foundation. Python Language Reference, version 2.7. Available at
http://www.python.org

4. Pyro - Python Remote Objects, http://pythonhosted.org/Pyro

5. B. Patzak, D. Rypl, and J. Kruis. Mupif — a distributed multi-physics integration tool.
Advances in Engineering Software, 60-61(0):89 — 97, 2013
(http://www.sciencedirect.com/science/article/pii/S0965997812001329).

6. B. Patzak, V. Smilauer, and G. Pacquaut, accepted presentation & paper “Design of a
Multiscale Modelling Platform” at the conference Green Challenges in Automotive,
Railways, Aeronautics and Maritime Engineering, 25" - 27" of May 2015,
Jyvaskyla (Finland).

7. B. Patzak, V. Smilauer, and G. Pacquaut, presentation & paper “Design of a Multiscale

Modelling Platform” at the 15 ™ International Conference on Civil, Structural, and

http://www.python.org/
http://www.python.org/
http://pythonhosted.org/Pyro4
http://pythonhosted.org/Pyro
http://www.sciencedirect.com/science/article/pii/S0965997812001329

Environmental Engineering Computing, 1% - 4" of September 2015, Prague (Czech
Republic).

http://pythonhosted.org/Pyro4

