{ "info": { "author": "Michael Cole", "author_email": "michael.cole@rutgers.edu", "bugtrack_url": null, "classifiers": [ "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Programming Language :: Python :: 3" ], "description": "# ActflowToolbox\n## The Brain Activity Flow (\"Actflow\") Toolbox\nA toolbox to facilitate discovery of how cognition & behavior are generated via brain network interactions\n\n## Version 0.3.0\n\n## Visit [https://colelab.github.io/ActflowToolbox/](https://colelab.github.io/ActflowToolbox/) for more information\n\n### Version info:\n* Version 0.3.0: Added Glasso FC to the set of connectivity methods (new recommended best practice for activity flow mapping); see updated HCP_example Jupyter notebook for a demo [2023-09-24]\n* Version 0.2.6: Added combinedFC to the set of connectivity methods (current recommended best practice for activity flow mapping); see updated HCP_example Jupyter notebook for a demo\n* Version 0.2.5: Fixed minor bug related to applying parcel level non-circular code to subcortical data.\n* Version 0.2.4: Updated the non-circular code to be more efficient. Also created an easier and faster version of the non-circular approach that is at the parcel level (excluding all parcels within 10mm of the target parcel).\n\n### Cite as:\n1) Cole MW, Ito T, Bassett DS, Schultz DH (2016). \"Activity flow over resting-state networks shapes cognitive task activations\". Nature Neuroscience. 19:1718\u20131726.http://dx.doi.org/10.1038/nn.4406\n2) https://github.com/ColeLab/ActflowToolbox/\n3) The article that describes the specific toolbox functions being used in most detail\n\n## How to install\n\n
Option 1:\n
Within an Anaconda environment: conda install -c conda-forge actflow\n
Option 2:\n
pip install actflow\n
Option 3:\n
git clone --recurse-submodules https://github.com/ColeLab/ActflowToolbox.git\n