{ "info": { "author": "Bailey de Villiers", "author_email": "bailey.devilliers@gmail.com", "bugtrack_url": null, "classifiers": [], "description": "# Aegis\n
\n \n
\n Report Bug\n \u00b7\n Request Feature\n
\n\n# What is Aegis?\n\n`Aegis` is an open source asset valuation engine that uses many dimensions to create a price profile for an asset. A **dimension** is a general category of evaluation. This evaluation may or may not be a _valuation_ as it could just relate to a general fact/figure such as employment statistics.\n\n**Dimensions** are further broken down into components. For example \"charts\" is a **dimension** which is comprised of **components**: technical indicators, trading psychology, boundaries, and patterns. \n\n> In terms of package hierarchy: Aegis > Dimension > Component > Class > Function\n\n> E.g. Aegis > Equity > Risk > Risk > Sharpe()\n\n**Dimensions** exist as sub-packages within the Aegis package and can/should be combined by the developer with various other dimensions/components to create hollistic asset valuation. The dimensions and their components are broken down as follows:\n* Charts (incomplete)\n * Bounds (e.g. all_time_high, all_time_low))\n * Indicators (e.g. RSI, OBV, SMA)\n * Shapes (e.g. square_consolidating, head_and_shoulders)\n * Trend (e.g. strength, forecast)\n* Debt\n * Utilities\n* Equity\n * Accounting (e.g. asset_composition, liquidity)\n * Growth (e.g. plowback, roe, growth)\n * Risk (e.g. beta, cost_of_capital, wacc)\n * Statistics (e.g. var, covariance, correlation)\n * Valuation (e.g. div_yield, ddm, fixed_div, gordons, PVGO)\n* Macroeconomic (incomplete)\n * GDP (e.g. GDP, gov_consum, investment)\n * Labour (e.g. employment, unemployment, labour_force)\n * Price (e.g. cpi, ppi)\n * Trade\n* Rates (incomplete)\n* Sentiment (incomplete)\n\nThese dimensions and their relevant components allow `Aegis` to evaluate most assets not only according to their accounting book value, but also in accordance with the market, similar-risk products, macro conditions, and more.\n\n# Getting Started\n\n`Aegis` uses common data science libraries such as `pandas` for most of its needs.\n\n### Installation\n1. To get started with `aegis`:\n```bash\npip install git+ttps://github.com/itchysnake/aegis\n```\n\nIf this is giving you errors you can alternatively try:\n\n```bash\npython -m pip install git+ttps://github.com/itchysnake/aegis\n```\n\n2. Check your installation directory\n\n### Usage\nOnce installed you can get started by calling the package:\n\n```\nimport aegis\n\n# Using 'charts' dimension\namzn_ath = aegis.charts.bounds.Bounds.ath(\"AMZN\",\"6mo\")\nnflx_rsi = aegis.charts.indicators.Indicators.rsi(\n ticker = \"NFLX\", \n period =\" 6mo\",\n window = 14\n)\n\n# Using 'equity' dimension\naapl_roe = aegis.equity.growth.Growth.roe(\"AAPL\")\nmsft_risk = aegis.equity.risk.Risk.sharpe(\"MSFT\")\n\n# Using 'macro' dimension\nspain_labour = aegis.macro.labour.Labour.unemployment(\"Spain\")\njpn_gdp = aegis.macro.gdp.GDP.gdp(\"Japan\", type = \"real\")\n```\n\nFeel free to experiment and combine indicators to create valuable insights into the markets.\n\n# Data Procurement\n\nData procurement is not included in Aegis natively. I am currently building a package to integrate Aegis with the existing [Alpaca Markets API](https://github.com/alpacahq/alpaca-trade-api-python). At this time you must use whatever is comfortable for you.\n\n# License\n\nAegis is released under the [MIT License](https://github.com/itchysnake/aegis/blob/master/LICENSE).\n", "description_content_type": "text/markdown", "docs_url": null, "download_url": "", "downloads": { "last_day": -1, "last_month": -1, "last_week": -1 }, "home_page": "https://github.com/itchysnake/aegis", "keywords": "", "license": "MIT", "maintainer": "", "maintainer_email": "", "name": "aegis-engine", "package_url": "https://pypi.org/project/aegis-engine/", "platform": null, "project_url": "https://pypi.org/project/aegis-engine/", "project_urls": { "Homepage": "https://github.com/itchysnake/aegis" }, "release_url": "https://pypi.org/project/aegis-engine/1.0.7/", "requires_dist": null, "requires_python": "", "summary": "Capital market asset valuation engine.", "version": "1.0.7", "yanked": false, "yanked_reason": null }, "last_serial": 16487929, "releases": { "1.0.0": [ { "comment_text": "", "digests": { "blake2b_256": "8c2180ecd2dd2b9482dee85010bc35a8e4f31677ef480e39dcba4cbad96dc721", "md5": "902ef0d61bec248e35fde9592605970f", "sha256": "f5db3591ec4c7099d88ecc00bf46bb8efe7ff0ba3dd9ef78caab0934a1754794" }, "downloads": -1, "filename": "aegis-engine-1.0.0.tar.gz", "has_sig": false, "md5_digest": "902ef0d61bec248e35fde9592605970f", "packagetype": "sdist", "python_version": "source", "requires_python": null, "size": 3728, "upload_time": "2023-01-17T13:16:06", "upload_time_iso_8601": "2023-01-17T13:16:06.313431Z", "url": "https://files.pythonhosted.org/packages/8c/21/80ecd2dd2b9482dee85010bc35a8e4f31677ef480e39dcba4cbad96dc721/aegis-engine-1.0.0.tar.gz", "yanked": false, "yanked_reason": null } ], "1.0.1": [ { "comment_text": "", "digests": { "blake2b_256": "3605ed89c8b4d8d5af5824c97da0f3791798745b3e6b44727021d820348a908e", "md5": "7c849e3f905a8fa81d224c2201ea4262", "sha256": "a06ba49a7f6dfdaebd4d3d4bd5db896c6ca1ded52df33938765ebc3debd7bff0" }, "downloads": -1, "filename": "aegis_engine-1.0.1.tar.gz", "has_sig": false, "md5_digest": "7c849e3f905a8fa81d224c2201ea4262", "packagetype": "sdist", "python_version": "source", "requires_python": null, "size": 3717, "upload_time": "2023-01-17T23:09:21", "upload_time_iso_8601": "2023-01-17T23:09:21.330070Z", "url": "https://files.pythonhosted.org/packages/36/05/ed89c8b4d8d5af5824c97da0f3791798745b3e6b44727021d820348a908e/aegis_engine-1.0.1.tar.gz", "yanked": false, "yanked_reason": null } ], "1.0.2": [ { "comment_text": "", "digests": { "blake2b_256": "a7e7f5e05885c1918dab9e4535b88110c7e6714d52d8457e8040635f921d2156", "md5": "fce5151ec9cb444b05d54672da360339", "sha256": "420cf8c947d0502dc6e4f236d3b64635629681bec595683696e6b5903009a5b6" }, "downloads": -1, "filename": "aegis_engine-1.0.2.tar.gz", "has_sig": false, "md5_digest": "fce5151ec9cb444b05d54672da360339", "packagetype": "sdist", "python_version": "source", "requires_python": null, "size": 3858, "upload_time": "2023-01-19T10:28:33", "upload_time_iso_8601": "2023-01-19T10:28:33.456134Z", "url": "https://files.pythonhosted.org/packages/a7/e7/f5e05885c1918dab9e4535b88110c7e6714d52d8457e8040635f921d2156/aegis_engine-1.0.2.tar.gz", "yanked": false, "yanked_reason": null } ], "1.0.3": [ { "comment_text": "", "digests": { "blake2b_256": "97bf301e2c61fccdbf416b987c11df1c0484afcb36b50f5115fae52d727425eb", "md5": "e15176feefa5b386c80327a56f205e8e", "sha256": "4f61bc5bcc49fac0e396bbc14c63d005fe81ba0df950c7d94193b81eb20ce390" }, "downloads": -1, "filename": "aegis_engine-1.0.3.tar.gz", "has_sig": false, "md5_digest": "e15176feefa5b386c80327a56f205e8e", "packagetype": "sdist", "python_version": "source", "requires_python": null, "size": 3847, "upload_time": "2023-01-19T10:35:55", "upload_time_iso_8601": "2023-01-19T10:35:55.606015Z", "url": "https://files.pythonhosted.org/packages/97/bf/301e2c61fccdbf416b987c11df1c0484afcb36b50f5115fae52d727425eb/aegis_engine-1.0.3.tar.gz", "yanked": false, "yanked_reason": null } ], "1.0.4": [ { "comment_text": "", "digests": { "blake2b_256": "29e4fb298eafe98906f06460b4a725435badf61b05215a6f6567985fbdd91318", "md5": "26b3a847dad88cf6fdcbbf27bb9c5e9e", "sha256": "9ac7f8f4717046b174c655a1fbb648b833857eead6eeb8b45c7772d69c8638bf" }, "downloads": -1, "filename": "aegis_engine-1.0.4.tar.gz", "has_sig": false, "md5_digest": "26b3a847dad88cf6fdcbbf27bb9c5e9e", "packagetype": "sdist", "python_version": "source", "requires_python": null, "size": 17530, "upload_time": "2023-01-19T10:40:56", "upload_time_iso_8601": "2023-01-19T10:40:56.534178Z", "url": "https://files.pythonhosted.org/packages/29/e4/fb298eafe98906f06460b4a725435badf61b05215a6f6567985fbdd91318/aegis_engine-1.0.4.tar.gz", "yanked": false, "yanked_reason": null } ], "1.0.5": [ { "comment_text": "", "digests": { "blake2b_256": "7ee674134cc9a102691c4c84884d8f627c4937dc8a3fef446505749a7ede3906", "md5": "0a1a2a62ef7bebcaf73dd7fd8333be9e", "sha256": "ed0016e8edd91a5d35a7e14ea8dead183f7cf7e15615e1f521699d671f519bf1" }, "downloads": -1, "filename": "aegis_engine-1.0.5.tar.gz", "has_sig": false, "md5_digest": "0a1a2a62ef7bebcaf73dd7fd8333be9e", "packagetype": "sdist", "python_version": "source", "requires_python": null, "size": 19256, "upload_time": "2023-01-19T11:09:09", "upload_time_iso_8601": "2023-01-19T11:09:09.616582Z", "url": "https://files.pythonhosted.org/packages/7e/e6/74134cc9a102691c4c84884d8f627c4937dc8a3fef446505749a7ede3906/aegis_engine-1.0.5.tar.gz", "yanked": false, "yanked_reason": null } ], "1.0.6": [ { "comment_text": "", "digests": { "blake2b_256": "6e82b375f644f7a281190ead8b957f04b9cd6a2fbca9ee3fb7783a2fe856925d", "md5": "e2b753364bf752f0880a5b59431f566e", "sha256": "81bac74225e8acf39fc0ac8cce67664ae785d2b2bb6b3679eca8c1f22f19a292" }, "downloads": -1, "filename": "aegis_engine-1.0.6.tar.gz", "has_sig": false, "md5_digest": "e2b753364bf752f0880a5b59431f566e", "packagetype": "sdist", "python_version": "source", "requires_python": null, "size": 19038, "upload_time": "2023-01-19T11:17:17", "upload_time_iso_8601": "2023-01-19T11:17:17.084924Z", "url": "https://files.pythonhosted.org/packages/6e/82/b375f644f7a281190ead8b957f04b9cd6a2fbca9ee3fb7783a2fe856925d/aegis_engine-1.0.6.tar.gz", "yanked": false, "yanked_reason": null } ], "1.0.7": [ { "comment_text": "", "digests": { "blake2b_256": "3106214ef5681c70704000aa58177ac6e95e12749316819b961f95738129e3f8", "md5": "8f4b000dbf600c1605b280016cc549a0", "sha256": "b488777dd68fa5e9e5272141c15e47d86e20e6e368a8872dbf98e2901f5cd123" }, "downloads": -1, "filename": "aegis_engine-1.0.7.tar.gz", "has_sig": false, "md5_digest": "8f4b000dbf600c1605b280016cc549a0", "packagetype": "sdist", "python_version": "source", "requires_python": null, "size": 18450, "upload_time": "2023-01-19T14:01:52", "upload_time_iso_8601": "2023-01-19T14:01:52.881108Z", "url": "https://files.pythonhosted.org/packages/31/06/214ef5681c70704000aa58177ac6e95e12749316819b961f95738129e3f8/aegis_engine-1.0.7.tar.gz", "yanked": false, "yanked_reason": null } ] }, "urls": [ { "comment_text": "", "digests": { "blake2b_256": "3106214ef5681c70704000aa58177ac6e95e12749316819b961f95738129e3f8", "md5": "8f4b000dbf600c1605b280016cc549a0", "sha256": "b488777dd68fa5e9e5272141c15e47d86e20e6e368a8872dbf98e2901f5cd123" }, "downloads": -1, "filename": "aegis_engine-1.0.7.tar.gz", "has_sig": false, "md5_digest": "8f4b000dbf600c1605b280016cc549a0", "packagetype": "sdist", "python_version": "source", "requires_python": null, "size": 18450, "upload_time": "2023-01-19T14:01:52", "upload_time_iso_8601": "2023-01-19T14:01:52.881108Z", "url": "https://files.pythonhosted.org/packages/31/06/214ef5681c70704000aa58177ac6e95e12749316819b961f95738129e3f8/aegis_engine-1.0.7.tar.gz", "yanked": false, "yanked_reason": null } ], "vulnerabilities": [] }