{ "info": { "author": "Bailey de Villiers", "author_email": "bailey.devilliers@gmail.com", "bugtrack_url": null, "classifiers": [], "description": "# Aegis\n

\n \n

Multi-dimensional asset valuation engine for capital market securities.

\n

\n\n
\n \n \"aegis\n \n \n \"aegis\n \n \n \"aegis\n \n \n \"aegis\n \n \"aegis\n
\n\n

\n Report Bug\n \u00b7\n Request Feature\n

\n\n# What is Aegis?\n\n`Aegis` is an open source asset valuation engine that uses many dimensions to create a price profile for an asset. A **dimension** is a general category of evaluation. This evaluation may or may not be a _valuation_ as it could just relate to a general fact/figure such as employment statistics.\n\n**Dimensions** are further broken down into components. For example \"charts\" is a **dimension** which is comprised of **components**: technical indicators, trading psychology, boundaries, and patterns. \n\n> In terms of package hierarchy: Aegis > Dimension > Component > Class > Function\n\n> E.g. Aegis > Equity > Risk > Risk > Sharpe()\n\n**Dimensions** exist as sub-packages within the Aegis package and can/should be combined by the developer with various other dimensions/components to create hollistic asset valuation. The dimensions and their components are broken down as follows:\n* Charts (incomplete)\n * Bounds (e.g. all_time_high, all_time_low))\n * Indicators (e.g. RSI, OBV, SMA)\n * Shapes (e.g. square_consolidating, head_and_shoulders)\n * Trend (e.g. strength, forecast)\n* Debt\n * Utilities\n* Equity\n * Accounting (e.g. asset_composition, liquidity)\n * Growth (e.g. plowback, roe, growth)\n * Risk (e.g. beta, cost_of_capital, wacc)\n * Statistics (e.g. var, covariance, correlation)\n * Valuation (e.g. div_yield, ddm, fixed_div, gordons, PVGO)\n* Macroeconomic (incomplete)\n * GDP (e.g. GDP, gov_consum, investment)\n * Labour (e.g. employment, unemployment, labour_force)\n * Price (e.g. cpi, ppi)\n * Trade\n* Rates (incomplete)\n* Sentiment (incomplete)\n\nThese dimensions and their relevant components allow `Aegis` to evaluate most assets not only according to their accounting book value, but also in accordance with the market, similar-risk products, macro conditions, and more.\n\n# Getting Started\n\n`Aegis` uses common data science libraries such as `pandas` for most of its needs.\n\n### Installation\n1. To get started with `aegis`:\n```bash\npip install git+ttps://github.com/itchysnake/aegis\n```\n\nIf this is giving you errors you can alternatively try:\n\n```bash\npython -m pip install git+ttps://github.com/itchysnake/aegis\n```\n\n2. Check your installation directory\n\n### Usage\nOnce installed you can get started by calling the package:\n\n```\nimport aegis\n\n# Using 'charts' dimension\namzn_ath = aegis.charts.bounds.Bounds.ath(\"AMZN\",\"6mo\")\nnflx_rsi = aegis.charts.indicators.Indicators.rsi(\n ticker = \"NFLX\", \n period =\" 6mo\",\n window = 14\n)\n\n# Using 'equity' dimension\naapl_roe = aegis.equity.growth.Growth.roe(\"AAPL\")\nmsft_risk = aegis.equity.risk.Risk.sharpe(\"MSFT\")\n\n# Using 'macro' dimension\nspain_labour = aegis.macro.labour.Labour.unemployment(\"Spain\")\njpn_gdp = aegis.macro.gdp.GDP.gdp(\"Japan\", type = \"real\")\n```\n\nFeel free to experiment and combine indicators to create valuable insights into the markets.\n\n# Data Procurement\n\nData procurement is not included in Aegis natively. I am currently building a package to integrate Aegis with the existing [Alpaca Markets API](https://github.com/alpacahq/alpaca-trade-api-python). At this time you must use whatever is comfortable for you.\n\n# License\n\nAegis is released under the [MIT License](https://github.com/itchysnake/aegis/blob/master/LICENSE).\n", "description_content_type": "text/markdown", "docs_url": null, "download_url": "", "downloads": { "last_day": -1, "last_month": -1, "last_week": -1 }, "home_page": "https://github.com/itchysnake/aegis", "keywords": "", "license": "MIT", "maintainer": "", "maintainer_email": "", "name": "aegis-engine", "package_url": "https://pypi.org/project/aegis-engine/", "platform": null, "project_url": "https://pypi.org/project/aegis-engine/", "project_urls": { "Homepage": "https://github.com/itchysnake/aegis" }, "release_url": "https://pypi.org/project/aegis-engine/1.0.7/", "requires_dist": null, "requires_python": "", "summary": "Capital market asset valuation engine.", "version": "1.0.7", "yanked": false, "yanked_reason": null }, "last_serial": 16487929, "releases": { "1.0.0": [ { "comment_text": "", "digests": { "blake2b_256": "8c2180ecd2dd2b9482dee85010bc35a8e4f31677ef480e39dcba4cbad96dc721", "md5": "902ef0d61bec248e35fde9592605970f", "sha256": "f5db3591ec4c7099d88ecc00bf46bb8efe7ff0ba3dd9ef78caab0934a1754794" }, "downloads": -1, "filename": "aegis-engine-1.0.0.tar.gz", "has_sig": false, "md5_digest": "902ef0d61bec248e35fde9592605970f", "packagetype": "sdist", "python_version": "source", "requires_python": null, "size": 3728, "upload_time": "2023-01-17T13:16:06", "upload_time_iso_8601": "2023-01-17T13:16:06.313431Z", "url": "https://files.pythonhosted.org/packages/8c/21/80ecd2dd2b9482dee85010bc35a8e4f31677ef480e39dcba4cbad96dc721/aegis-engine-1.0.0.tar.gz", "yanked": false, "yanked_reason": null } ], "1.0.1": [ { "comment_text": "", "digests": { "blake2b_256": "3605ed89c8b4d8d5af5824c97da0f3791798745b3e6b44727021d820348a908e", "md5": "7c849e3f905a8fa81d224c2201ea4262", "sha256": "a06ba49a7f6dfdaebd4d3d4bd5db896c6ca1ded52df33938765ebc3debd7bff0" }, "downloads": -1, "filename": "aegis_engine-1.0.1.tar.gz", "has_sig": false, "md5_digest": "7c849e3f905a8fa81d224c2201ea4262", "packagetype": "sdist", "python_version": "source", "requires_python": null, "size": 3717, "upload_time": "2023-01-17T23:09:21", "upload_time_iso_8601": "2023-01-17T23:09:21.330070Z", "url": "https://files.pythonhosted.org/packages/36/05/ed89c8b4d8d5af5824c97da0f3791798745b3e6b44727021d820348a908e/aegis_engine-1.0.1.tar.gz", "yanked": false, "yanked_reason": null } ], "1.0.2": [ { "comment_text": "", "digests": { "blake2b_256": "a7e7f5e05885c1918dab9e4535b88110c7e6714d52d8457e8040635f921d2156", "md5": "fce5151ec9cb444b05d54672da360339", "sha256": "420cf8c947d0502dc6e4f236d3b64635629681bec595683696e6b5903009a5b6" }, "downloads": -1, "filename": "aegis_engine-1.0.2.tar.gz", "has_sig": false, "md5_digest": "fce5151ec9cb444b05d54672da360339", "packagetype": "sdist", "python_version": "source", "requires_python": null, "size": 3858, "upload_time": "2023-01-19T10:28:33", "upload_time_iso_8601": "2023-01-19T10:28:33.456134Z", "url": "https://files.pythonhosted.org/packages/a7/e7/f5e05885c1918dab9e4535b88110c7e6714d52d8457e8040635f921d2156/aegis_engine-1.0.2.tar.gz", "yanked": false, "yanked_reason": null } ], "1.0.3": [ { "comment_text": "", "digests": { "blake2b_256": "97bf301e2c61fccdbf416b987c11df1c0484afcb36b50f5115fae52d727425eb", "md5": "e15176feefa5b386c80327a56f205e8e", "sha256": "4f61bc5bcc49fac0e396bbc14c63d005fe81ba0df950c7d94193b81eb20ce390" }, "downloads": -1, "filename": "aegis_engine-1.0.3.tar.gz", "has_sig": false, "md5_digest": "e15176feefa5b386c80327a56f205e8e", "packagetype": "sdist", "python_version": "source", "requires_python": null, "size": 3847, "upload_time": "2023-01-19T10:35:55", "upload_time_iso_8601": "2023-01-19T10:35:55.606015Z", "url": "https://files.pythonhosted.org/packages/97/bf/301e2c61fccdbf416b987c11df1c0484afcb36b50f5115fae52d727425eb/aegis_engine-1.0.3.tar.gz", "yanked": false, "yanked_reason": null } ], "1.0.4": [ { "comment_text": "", "digests": { "blake2b_256": "29e4fb298eafe98906f06460b4a725435badf61b05215a6f6567985fbdd91318", "md5": "26b3a847dad88cf6fdcbbf27bb9c5e9e", "sha256": "9ac7f8f4717046b174c655a1fbb648b833857eead6eeb8b45c7772d69c8638bf" }, "downloads": -1, "filename": "aegis_engine-1.0.4.tar.gz", "has_sig": false, "md5_digest": "26b3a847dad88cf6fdcbbf27bb9c5e9e", "packagetype": "sdist", "python_version": "source", "requires_python": null, "size": 17530, "upload_time": "2023-01-19T10:40:56", "upload_time_iso_8601": "2023-01-19T10:40:56.534178Z", "url": "https://files.pythonhosted.org/packages/29/e4/fb298eafe98906f06460b4a725435badf61b05215a6f6567985fbdd91318/aegis_engine-1.0.4.tar.gz", "yanked": false, "yanked_reason": null } ], "1.0.5": [ { "comment_text": "", "digests": { "blake2b_256": "7ee674134cc9a102691c4c84884d8f627c4937dc8a3fef446505749a7ede3906", "md5": "0a1a2a62ef7bebcaf73dd7fd8333be9e", "sha256": "ed0016e8edd91a5d35a7e14ea8dead183f7cf7e15615e1f521699d671f519bf1" }, "downloads": -1, "filename": "aegis_engine-1.0.5.tar.gz", "has_sig": false, "md5_digest": "0a1a2a62ef7bebcaf73dd7fd8333be9e", "packagetype": "sdist", "python_version": "source", "requires_python": null, "size": 19256, "upload_time": "2023-01-19T11:09:09", "upload_time_iso_8601": "2023-01-19T11:09:09.616582Z", "url": "https://files.pythonhosted.org/packages/7e/e6/74134cc9a102691c4c84884d8f627c4937dc8a3fef446505749a7ede3906/aegis_engine-1.0.5.tar.gz", "yanked": false, "yanked_reason": null } ], "1.0.6": [ { "comment_text": "", "digests": { "blake2b_256": "6e82b375f644f7a281190ead8b957f04b9cd6a2fbca9ee3fb7783a2fe856925d", "md5": "e2b753364bf752f0880a5b59431f566e", "sha256": "81bac74225e8acf39fc0ac8cce67664ae785d2b2bb6b3679eca8c1f22f19a292" }, "downloads": -1, "filename": "aegis_engine-1.0.6.tar.gz", "has_sig": false, "md5_digest": "e2b753364bf752f0880a5b59431f566e", "packagetype": "sdist", "python_version": "source", "requires_python": null, "size": 19038, "upload_time": "2023-01-19T11:17:17", "upload_time_iso_8601": "2023-01-19T11:17:17.084924Z", "url": "https://files.pythonhosted.org/packages/6e/82/b375f644f7a281190ead8b957f04b9cd6a2fbca9ee3fb7783a2fe856925d/aegis_engine-1.0.6.tar.gz", "yanked": false, "yanked_reason": null } ], "1.0.7": [ { "comment_text": "", "digests": { "blake2b_256": "3106214ef5681c70704000aa58177ac6e95e12749316819b961f95738129e3f8", "md5": "8f4b000dbf600c1605b280016cc549a0", "sha256": "b488777dd68fa5e9e5272141c15e47d86e20e6e368a8872dbf98e2901f5cd123" }, "downloads": -1, "filename": "aegis_engine-1.0.7.tar.gz", "has_sig": false, "md5_digest": "8f4b000dbf600c1605b280016cc549a0", "packagetype": "sdist", "python_version": "source", "requires_python": null, "size": 18450, "upload_time": "2023-01-19T14:01:52", "upload_time_iso_8601": "2023-01-19T14:01:52.881108Z", "url": "https://files.pythonhosted.org/packages/31/06/214ef5681c70704000aa58177ac6e95e12749316819b961f95738129e3f8/aegis_engine-1.0.7.tar.gz", "yanked": false, "yanked_reason": null } ] }, "urls": [ { "comment_text": "", "digests": { "blake2b_256": "3106214ef5681c70704000aa58177ac6e95e12749316819b961f95738129e3f8", "md5": "8f4b000dbf600c1605b280016cc549a0", "sha256": "b488777dd68fa5e9e5272141c15e47d86e20e6e368a8872dbf98e2901f5cd123" }, "downloads": -1, "filename": "aegis_engine-1.0.7.tar.gz", "has_sig": false, "md5_digest": "8f4b000dbf600c1605b280016cc549a0", "packagetype": "sdist", "python_version": "source", "requires_python": null, "size": 18450, "upload_time": "2023-01-19T14:01:52", "upload_time_iso_8601": "2023-01-19T14:01:52.881108Z", "url": "https://files.pythonhosted.org/packages/31/06/214ef5681c70704000aa58177ac6e95e12749316819b961f95738129e3f8/aegis_engine-1.0.7.tar.gz", "yanked": false, "yanked_reason": null } ], "vulnerabilities": [] }